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1. Introduction

One of the old yet unresolved problems in QCD originated since
the QED construction has been formulated in a pioneer paper by
Sudakov /1/. It is Jjust the problem of calculation of the
agymptotics of the quark electromagnetic form factor in  the
following kinematics:

Qz = - (p*k)z > -pz = ~k2 = Mz > m%
where k. and p are momenta of a quark with mass m. Suammation of
the leading double logarithmice corrections to the Sudakov form

factor in QED .2/ and later in QCD /3’4/:
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. o (M*) 2 a_(M°) 2 2
. 8 2@ ,3 s g n , Zn-2 @
F = exp[ 7 el 0 v G Cglngf]'r O[as In o ]
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{where (. = —— for the gauge group SU(N) and a =-— is the
F 2N i € 4n

running coupling constant) 1z the result of numsrous attempts of
solving this problem. The obtalned expression for the Sudakov form
factor is a decreasing function of Q2 and in the limit Qz» Me its
asymptotics is determined by neglected nonleading logarithmic
terms.

75/ we proposed the method that allowed

In a preceding paper
us to calculate the electromagnetic form factor of a massless
quark. In the present paper, this method i3 generalized to a more
complicated case of the Sudakov form factor. We sum up in the
Feynman gauge all logarithmic corrections to the Sudakov form
factor not suppressed by powers of MZ/Q2 and determine its

asymptotic behavior for Qz» Mz.
2.Factorization of the Sudakoy form factor,

The Sedakov form factor F is related to the amplitude WM of
quark elastic scattering in the electromagnetic field a“ by the
following relation:
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where Zz(p). Zz(k) are the quark wavefunction renormaliczation
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constants. The magnitude of F iz determined by the set of Feynman
diagrams shown in fig.1(a). To give the leading contribution to
the form factor, these diagrams should have the structure pictured
in fig.1(b} /6‘8/. The disgrams in fig.1{b) contain five subgraphs
in accordance with the values of the momentum lu of particles
(t.e. .quark, gluon or ghost) belonging to thenm /6/:
(a) hard subgragh H:
|l+, 1., lT[ = Q)

{(b) collinear subgraph Jp:
12
1,=0M), 1 =0 a s 1p= O(M)
(¢) collinear subgraph J:
u?
1,2 01= 1, 1 = 04Q), 1= O(M) (1}
]

{d) soft subgraph £:

|1+. | lT} = QM)
(e) infrared subgraph IR:
2
I, 1., 171 = od),
Q 151,
where we use the light cone coordinates 1 .= vz ,1T=(1112) and
* 5 N

s _ _ - . _ 2 1/2
work in the frame, where pg = kp= 0, p,= k = Q= [Q7/2 .

p_= k,=-M2/Q.
The properties of the first four subgraphs studled earlier
/5,8-10/ in the context of investigation of the agymptotics of the
electromagnetic form factor of a massless quark will beexploited
below in this discussion. It is just the appearance of a new
infrared subgraph that does not allow ug to apply the “old”
. /8-10/
methods

the firzst time the importance of its inclusion into calculation of
/11/

for investigation of the Sudakov form factor. For

the Sudakov form factor was stressed in ref.

To caleulate the subgraphs, one muet firet correctly define
the boundaries of momentum regions (1). For that aim we introduce
two arbitrary parameters p and X restricted by the condition /7/:

Qz > yz > Mz > kz ¥ g; -

The parameter p sets the lower boundary of momenta 1{(a} within H
and, respectively, the upper boundary of momenta 1(d) within 5.
The parameter X sets the lower boundary of momenta 1(d) within S

and, respectively, the upper boundary of momenta 1(e) within IR.

2

The form factor F does not depend on p and A but each subgraph
does depend. )

The contribution of a diagram of fig.1(b) to the form factor
is expressed in a complicated way through the involved subgraphs
interacting with each other. But this effects of interaction

d /7-9,12/ when one gsums the

betweaen subgraphs are cangelle
disgrams of fig.l(b) differing from each other by a number of
external 1lines of subgraphs. With the use of propertiss of
particles belonging to different subgraphs /8,12/ the resulting
sum ile defined by a set of diagrame shown in fig.1(c) where double
lines denote operators to be determined below in (4). The
contribution of diagrame of fig.l{c) to the form factor may be
represented in the factorized form:
F=Ffs Py Fy By Frr” (2)

where by Fi we dencted contribution from a certain subgraph.

The hard subgraph H describes interaction of particles at
short (as compared with 1/4) distances and its contribution to the
form factor depends only on the variables Qz and p. One-loop

calculation of FH yields the following expression:

2 o 2 2 2
- @] . _8 2fa7y | Q- -3
Fy = FH[Qz] =1 - 2 CF{ln [Qz] 3 ln( 2] .7 6} (3)
B ) H 1
The contribution of collinear subgraphs Jp and Jk to the form
factor may be written as /5’8‘12/:
i PR -
Fy = - 7 <O|T ¥(p) p E-(0,m) ¥(0)]0> [ZZ(P)] e
P -k P ,
(4)
F, = - <0|T §(0) k E.(0, ¥(k)[0>, [z,(k)] 1/?
Jk 4 » Jk 2 4

where @(P)=jax eipx ¥(x) is the guark-field operator. Subscripts
Jp and Jk remind us that the momenta of particles belonging to
collinear subgraphs are restricted to regions (1b) and (1lc). The
involved multipliers E.(0,w) and E.(0,w) result from summation of

- P
the diagrams in fig.l(b) over the number of collinear gluon
emitted within Jp and Jk and absorbed by H. They equal

path-ordered exponentials:
. 0 - .
E.(0,0) = P exp[-ig fds x AMks) e 'cs] £ s 0
-k o M
and for E.{0,®w) analogously. The vectors k and p lie on the
P .
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light cone and have the following componente:
p+:k_:Q, p_:k+:0, pT:kT:Ov
2
t.e., they differ from momenta p and k by 0[3—] - terms. From
one-loop calculation we find that:
o 2 2. 2 . 2
= =1 - & 2 MY L3 Y 8,
B, o= E, 1oy CF{M [2) -0 - imfy) -3 )
k A A )
that is,the contributions of the collinear subgraphs do not depend
on Qz. These important properties of FJ and FJ Jloel,
k P

d In F d In F
JP Jk

ama® ama ©
are fulfilled to all arﬁ&rﬂ of perturbation theory as proved in
ref./ﬁf and they are closely related to the properties pf
composite twist-two operators that appear when one applies +the
operator product expansion on the light cone to expression (4).
The contributicn of the soft subgraph 5 to the form factor is
represented as /g 8/matrix element of a product of two

P - exponentiéls
.’.
Fo = <O0]T E.(0,0) E.{0,2)|0>
S S
P -k
which result from summation of diagrams of fig.l(b) over the
nunber of soft gluons absorbed by JP and Jk‘ The subscript S

.

indicates that the momenta of all particles in Fs are confined to
region {1d}. Performing one-loop calculation of FS we obtain:
2 2 a 2 2 2
Fs[‘l—z,’if] =1 - 20 2 1n[Q—2] 1n[‘i§] - 1n2[H—2~] - 3}-
TIEDN T A A

The study of multiloop properties of FS has allowed us to derive

the following equation /5/:
2
d 1n F A
8 I dt

——— - 5 T (g{t))» (6}

d 1n Q2 32 2t " cusp
where the anomalous dimension Fcusp is defined by {12).

The contribution of the infrared subgraph to the form factor
may be expressed as follows /13/:
N 2 2
Fip = -Jdsfdt exp(i(s+t)) <O|T Ex(0,s/M%) Eg(0,t/05)[0>1p s (7)
0 0

where P - exponentials accumulate all the interaction effects of
particles belonging to infrared subgraph with particles of other

4
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Fig.1.(a} General structure of the diagrams for the quark
electromagnetic form factor. (b) Diagrams determining the leading
contribution to the form factor. ({(c) Bagic factorization of the
form factor. The dashed line represents an external
electromagnetic field.
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Fig.2. A typical diagram arising from the expansion of the
Path - ordered exponential. The double line denotes the contour of
integration,



subgraphe. Une-loop calculation of Fro gives:
2,2 o 2,2 2
) PR zpfefy | ],
FIR[i“4 ] 21 - 5 CF{ 1n {‘M4 ] + 7 } (8)

To verify the factorization relation (2), we nombine one-loop

‘yvalues of all subgraphs and from (2) easily derive the well-—known
expression for the Sudakov form factor:

2 a 2 2 ’
9Y .1 . _8¢ 2_]_‘ Q_] + 2521,
s{ﬂz] =1- 2 CF{ 2 1n [32 3m[%] + 1+ Za
J.Infrared gubgraph
The contribution of the infrared subgraph (7) to the Sudakowv

form factor may be repressnted as an integral of the contour
functional /137

@ W
- 5 . : . A
Frp = -Jds fdt exp(i(s+t)) <OITPexp[1ngopA (z)]|o>IR~ (9)
0 i} [
where the contour € is picturad by a double line in fig.2. The
k
contour € ig formed by two segments directed along vectors ~% and
~ O M
P, kp
- That is why FIR depends on the only scalar vy formed by these
M 4]

vectors and the paramster A that sets the upper boundary of

momenta in the infrared subgraph:

2,2
Fig = FIR{A H ]‘
i

The contour O in eq9.{3) lies on the light cone and therefore

FIR possesses  additional (as compared with the nonlight-like
contour) logarithmic corrections. Let us deform slightly the
contour €, t.e., shift the vectors ; and ; from the light con=e
into the time-like direction:

M ;2: ; 2 = mz «QZ
and consider the resulting from (3) expression for Fggeg)’ F%;cg)
2 4.2 2.2 k,
depends on AY and two scalars M /Q° and m™/Q" formed by vectors -5
. M
P
and —g:
M

2.2
(reg)_ o(reg) rtq
Fip = Frg [’* ut ]’

where vy = ln gﬁ is the cusp angle of the contour € in fig.2. The
S

peculiarities of FIR on the light cone are revealed as a singular

dependence of F%?eg) on m in the limit mz/Qz"* . But structure of

these peculiarities is such that the dependence of the derivative

d 1 ¥iZe8)
IR on m2 becomes regular in the limit mPe Q2 /5/. Hence

d 1ln QZ
the following equality takes place:

din F 4 1n Flre8)

—IF e IR (10)
d in Q m-»0 d ln Q

and both 1ites sgides do net possese  light cone singularities.
Feynman integrals arising in the expaneion of F%geg) have only two
momentum scales: A and M4/Q2. The parameter A cuts off large (as
compared with HZ/Q) values of momenta. Therefore the dependence of
F%geg) on A may be thought of as the dependence of (8), with the
omitted subscript IR (i.e.. without any restriction of momenta),
on the renormparameter introduced to substract arising ultraviolet

/14-18/  Renormalization properties of the contour

divergences
functional {8) with c¢ontour C (fig.2) or, egquivalently, the
dependence of FIR on X  are deccribed by the following

renormalization group equation /15/:

2.2
& 2 (reg){ 27Q -
(M5x + @5 + Touep(ro8) 2 T y(] FIE [, oo ) =0 an

where rcusp(?’g) and rend(g) are the <cusp and end anomalous
dimenslons of contour functionals. The cusp anomalous dimension in
the limit of large cusp angles y = lng§ has the asymptotics /16/:
M

2 2
_.Q 0Q
Feusp(18) = 1n S5, () 0{1n ;5] (12)

o o 2 2
= -8 _8 67 ) . a5
rcusp(g) T oon CF * { n ] CF{ N{3S 12] Re1B }’
where fip eguals the number of quark flavors.

Differentiating hoth the sides of ©q.(11) with respect to @

2 2
and taking the limit w "« Q% using relations (10) and (12) we

obtain:
2.2
dlInF FLELJ
—IRLye J .

J I 4
Ao o
[ % PG+ Tt ) P

0-
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The solution of thie equation:

d1ln F 4 A
d-i;T'f’R - ro[g{gz]] - 4]‘ 23 Fousp(E(E)) (13)
M /Q
depends on a new function FO. Substituting (8) into (13) we find
the one-~loop walue of FO: FOZO + 0(a$2)

4.Calgulation of the Sudakev form factor.

Let us differentiate both the sides of the factorized
expression (2) for the form factor with respect to Q2 using the
properties (%), (8) and (13) of subgraphe. The reesult 1is as
follows:

d ln F dlnF 2] p?

n n . 4

5[32 + T M dt
F el | - Ser . (g(t))-

d In Q2 d 1ln Q2 0[ ( QZ]] 4f 22t cusp'®

M /Q

We are convinced that the dependence on A is eliminated in the
r.h.s. of this relation. On the other hand, the independence of

the form factor of yu implies FH to obey the following equation
/57,

Q
d 1In F, {5
H[ﬁz] a2 dt
i { = (g% - [ & () -
d In Q% iz Zt "cuse

Q

The one-loup value of function I': T = % P CF can easily be found

by substituting (3) into this equation.
Combining the last two exprescsions we derive the final
equation for the Sudakov form factor:

d1n F 4 9
T re@?) + ro(g[gz]} - 4{ 3t Teusp(8(1))
M /Q
It is Jjust this equation that we solve to determine the Sudakov
form factor:

o2 W2
F[: = Fy(e(@?))exs jz% ree) + [ 2 roec)
M w2
"2 w2
dt , Q% _ a2 S8 DR,
- _"2 7% 1055 Tyap(a(t)) j In— w0 Cousp(8(¥))pe (14)
H o /02

This euxpression contains, all logarithmwic corrections to the
Sudakov form factor not suppressed by powers of MZ/QZ. The

involved functions [, FO ars known in the one-loop but function

rcusp in the two-loop approximation. The one-loop value of FO:
C(
Fozl— 4n F(1 + %ﬁz) may be found by comparing (14) with the

one-loop expression for the SBudakov form factor. To determine the
agymptotic behavior of the Sudakav form factor, we should not know
the exact values of these functions., It follows from (14) that the

asymptetice of F is controlled by rcuap:
a? u?
2, Q° » 2 M
dt Q dt tQ
F[:}?] —— exp{-f GE ¥ (et - j It e
' /Q

u".ﬂ
The cusp anomalous dimension is a positive definite function

rcusp) U which is cgnfirmed by two-loop calculation {12}, Therefore

we conclude that the Sudakov form factor, with all logarithwmic

/57

corrections being included, is a rapidly decreasing function in
2 o
the limit @7» M™.
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Korchemsky G.P., E2-88-628
Sudakov Form Factor in QCD

The double logarithmic asymptotics of the quark elec-
tromagnetic form factor in the Sudakov region is inves-
tigated within the framework of perturbative QCD. It
is described in terms of the contour functionals
<01TPexp(igé’dz“Ap{z))lo> and matrix elements of compo-

site twist~2 operators, Using the renormalization pro-
perties of these new objectd, the nonleading logarithmic
corrections to the Sudakov form factor are summed to
give a rapidly decreasing function of the transferred
momentum. .

The investigation has been performed at the Laborato-
ry of Theoretical Physics, JINR.
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