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l.Introductign 

One of the old yet unrei;lolved problems :l.n QeD origin1'lted since 

the QED constructJon bas been formulated in a pione"r paper by 

SUdakov 11/ It is just the problem of calculation of the 

aSl{Jl!ptotics of the quark electromagnetie form factor in the 

fOllowing kinematics: 

Q2 = _ Ip-tl 2 » _p2 = _k2 M2» m~ 
where k, and p are momenta of a quark wtth mass m, Sumlllation of 

the Leading double logar1thllli<;: t::orret::ti<:)Ds to the Sud~kov form 
factor in QED /1.21 and later in QeD /3,4/: 

2 2 
Cts11':1) 2 Q2 3 (M) Q2] (n 2n _2 Q2 ]

E = exp ( -----y;- eEln H2 + '4 CF lnH2" +- 0 "'s In M2 

N2-1 g2 
(where C, -- for the gauge group SU IN) and '" =- is the 


E 2N s 4fT 

runn ing coup1 ing const,ant I is the resl.11 t of numerolll:: at tempts of 


solving this problem. The obtained expression for the Sudakov form 


factor is a decreasing function of Q2 and in the limit Q2» H2 its 


asymptotics is determined by neglected non leading logarithmic 


terms~ 

In a preceding paper /51 we proposed the method that allowed 

us to calculate the electromagnetic form factor of a massless 

quark. In the present paper. this method is generalized to a more 

complicated case of the 5udakov form factor. We sum up in the 

Feynman gauge all logarithmic corrections to the Sudakov form 

factor not suppressed by power8 of M2/Q2 and det,ermine its 

asymptotic behavior for Q2» M2, 

2.FactorizatiQIl QL ~ Slldakoy fru:.al ~ 

The Sud:"kov form factor F is related to the amplitude m of 

quark elastic scattering in the electromagnetic field <1. p by the 

following relation: 
1 -1/2 2 

m = ~ yP k F aJJ(p-k) (Z2(P) (It)J + O~iJ' 
P 

where ZZlp). ZZ(lo:) are the quark uavefqnction renorlllali::,tlon 

r _.a~~.:11; .....-. t-:;;; • 
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con:::tants. The m~gnitude of F is determined by the set of Feynman 

diagrams shown in fig .1(al. To give the leading contribution to 

the form factor, these diagrams should have the structure pictured 

in fig. 1 (I) 16-8/. The di::1grams in fig. 1(b) contain fi ve 8ubgraphs 

in accordance with the values of the momentum of particles 

(i.e. ,quark, gluon or ghost) belonging to them 16/. 

(a) hard 6ubgraph H: 
11+, 1_, 1TI :: O(Q) 

(b) collinear 6ubgraph J :p 

O(Q), 1_= O[~2]. ~T:: OeM) 

(c) collinear subgraph J k : 

1+= 0 1 = OJQ), ~T:: OeM) (1) 

(d) soft subgraph S: 

11+, 1_, ITI :: OeM) 

(e) infrared 5ubgraph IR: 
M2 

11+, 1_. ITI :: 0(- ), 
Q 

where we use the light cone coordinates IT=(11;2) and 

work in the frame, where PT :: kT:: 0, p+= k._= Q (Q212Jl12, 
2

P_= k+::-M /Q. 

The properties c-,f the first four 5ubgraphs studied earlier 

15,8-101 in the context of investigation of the asyroptotics of the 

electn:.magn",tic form factor of a ma3sle::ss quark will be exploited 

below in this discussion. It is just the appearance of ill new 

infrared subgraph that does not allow liS to apply the "old" 

methods 18-101 for investigation of the Sudakov form factor. For 

the first time the importance of its inclusion into calculation of 

the Sudakov form factor was stressed in ref. 1111 , 
To calculate the subgraphs, one must first correctly define 

the boundaries of momentum regions (1). For that aim we introduce 

two arbitrary parameters /J and" restricted by the condition /7/_ 

Q2 ) ,,2 > MZ > ,,2 > !!4 
Q2 

The parameter IJ sets the lower boundary of momenta 1 (a) wi thin II 

and, respectively, the upper boundary of mOlllenta l(d) within S. 

The parameter ~ sets the lower boundary of momenta l(d) within S 

and. respectively. t.he upper boundary of momenta l(e) within IlL 

2 

The forlll factor F does not depend on /-l and " but each Bubgraph 

does depend. 

The contribution of a diagram of £ig.1(b) to the f'.:>rm factor 

is expressed in a complicated way through the involved subgraphs 

interacting with each other. But this effects of interaction 

between 6ubgraphs are cancelled 17-9,121 when one SUIIJS the 

diagrams of fig.1(b) differing from each other by a nUll'lber of 

external lines of subgraphs. With the use of prQperties of 

particles belonging to different subgraphs 18,121 the resulting 

sul'll is defined l;>y a set of dj,agj:'ams shown in fig.1(c) where double 

lines denote ()perators to be determir,ed below in (4) . The 

contribution of diagr'~l!Is. of fig.1(c) to U\e forlll fa'~tor lIJay be 

rel"resented in 1;he factorized forlll: 

F::FSFHli'J FIR' (2)FJk p 
where by li'i we ~tenoted contri..blltion from a certain subg,raph. 

The hard subgraph H describes interaction of particles at 

short. (as compared with 1/1J) distances and its contribution to the 

form fa.::tor depends only on the variables Q2 and IJ. One-loop 

calculation of FH yields the following expression: 

ff(2) _ {2 ff(2) (Q2]OIS 
7 - n2}FM FHl~ - 1 - 4n CF In l~ - 3 In 2 + 6" • (3) 

/J /J IJ 

The contribution of collinear subgraphs .J and J to the formp k 
factor may be written as 15,8.12/: 

. ... t 
:: - ~ <OIT ~(p) p E_(O,oo) +(O)IO'J (Z2(P) tI12FJ p ·k p 

(4) 

- i - - (J -1/2- - 4: <OIT ~(O) k E•• (O,oo) "'(k) 10>J Z2(k) •FJ
It p k 

where :i.( p) =Jdx e ipx 'I'(x) is the quark- field operator. Subscripts 

J and J remind us that the momenta of particles belonging to p k 
collinear 8ubgraphs are restricted to regions (lb) and (Ie). The 

involved multipliers g_(O.~) and E_(O,oo) result from summation of 
-k p 

the diagrams in fig.1(b) over the number of collinear gluon 

emitt<:d within J and J and absorbed by H. They equalp k 
path-ordered exponentials: ... 

E_(O,oo) 
-k 

= P exp -ig(J 
0 

ds k 
/-l 

A (-ks)'", - e c-&15) -+ 0 

and for E_(O,"") 
p 

analogously. The vectors k and p lie on the 
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light cone and have the following components: 

p+ = k = Q, P_ = k+ 0, PT = kT = 0 
2 

i. e . .. they differ from momenta p and k by om) - terIIU:!. From 
one-loop calculation we find that: 

In2 t 2 
- ~-- - •=1 CF{ln 

2 (~J - ) 3 In ~~J 3 +!!.2}FJ FJ )..2 2 2 2 &p k ~ 

that is,the contributions ot; the collinea,r subgraphs 40 not depend 
On Q2. These ilIlportant proPerties of F"J <lnd FJ ,i. e .• 

k p 
d In d In FFJ J 
---..".:,~"= ~"O, (5)
d In Q2 d In Q2 

are fulfilled to all ordera of perturbation theory as proved in 

ref. /SI and they are closely related to the properties of 

composite twist-two operators that apPear when one applies the 

operator product expansion on the light cone to expression (4). 

The contribution of the soft subgraph S to the form factor is 

represented as a matrix element of a product of two 
P _ exponentials 15,81 

t
FS = <OIT E_(O,oo) E_(O,m)IO>s 

p -k 

which result from summation of diagrams of fig.l(b) over the 

number of soft gluons absorbed by J and J • The subscript Sp k 
indicates that the momenta of all particles in FS are confined to 

region (1d). Performing one-loop calculation of F S we obt,ain: 

(Q
2 2 ) as { (Q 2) ~~2) 2( 2) }F -,~ 1 - - C 2 In - In -,-- In ~ - 3 . 

S ~2 )..2 4... F 1-'2 ).. 2 ).. 2 

The study of lIIultiloop properties of FS has allowed us to derive 
the following equation 15/: 

~2 
d In 

J r CU6P(g(t)} , (6) 
d In 2).. 

where the anomalous dimension rcusp is defined by (12). 

The contribution of t.he infrared subgraph to the form factor 

may be expref:sed llS follo"s /13/: 

"" 00 
2 t 2

FIR = -JdsJdt exp(i(s+t}) <OIT Ep(O,s/l1 ) I::K(O,t/l1 1IO>IR' (7) 

° 0 
where P - exponentials accumulate all the interaction effects of 

particles bel')nging to infrared subgraph <lith partie les of other 

4
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p /(. " 
Co. ) (b) 

Fig. 1. (a) General structL\re of the d:iagrams for the quark 

electromagnetic form factor. (b) Diagrams determining the leading 

cOlltribution to tile form fClctQr. (c) Ba/3ic factorization of the 

form factor. The dashed line represents an external 

electromagnetic field. 

0 

So '" 
ZM P -±. k 

Ml 
..\ 

Fig.2. A typical diagram arising froll the expansion of the 

path - ordered exponential. The double line denotes the contour of 
integration. 
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6ubgr.'tphG. One-loco., calc'liati.-:·n of FIR gives: 

fA2Q2) _ {2 fA.2Q2) n2} (8)FIRlf.j4 - 1 CF In l7 + 2" • 

To verify the factorization relation (2), we combine one-loop 

values of all subgraph6 and from (2) easily derive tihe well-known 

~xpressiQn for the Sudakov form factor: 

2 
(Q ] a { 2 rg2J rg2

)' 2 2}F /1 2 1 - 4: GF 2 In ~ - ~ In ~ + 1 +;SIT • 

~~!i1 fJ 1JbgrAt1l. 

The cOllt.ribution 

form fact ..'r lDay be 

:fun,~t iona 1 /13/: 
t~ I)) 

FIR -Ids 
° 0 

where the contou r C 

contour C is formed 

';;f the infrare4 subgraph (7) t,o the Sud"kov 

rer-'res"nted as an integral of the contour 

exp(i(s+t) <0 ITPexp(igIdZpAP(Z)] IO>IR' (9) 

C 

is pictured by a double I ine in fig. 2. The 

k 
by two segments directed along vectors ~ and 

M"" 
k p 

That ie why FIR depends on the only scalar ---4 formed by these 

vectors 

moment.) 

and 

in th

the 

e inf

pal'ame

r.:;.red 

tEcr 

~;nbg

A 

raph: 

that sets the 
M 
upper boundary of 

FIR :: fA:~2) . 
The contour C in eq.(9) lies on the light cone and therefore 

FIR pOSBeSB~B additional (as compared with the nonlisht-like 

conloul') logarithmic corrections. Let us deform slightly the 

contour C, i. e.. shi ft the vectors k and p from the light can"" 

into the time-like direction: 

~ 2= k 2:; ",2« Q2 

and consider the resulting from (9) expression for F~~eg) F~~e~) 

~ 4 2 ~ ~ kv 
depends on A" and two scalars M /Q and ","'" /Q'" fonned by vectors 	2 

M 

P"
and -2: 

M 

6 

F(reg )- F(reg )( ~2Q2]
IR - IR 1"'-4 f 

M 
2 

where I" = ln ~ is the cusp angle of the contour C in fig.2. The 
III 

peculiarities of FIR on the light cone are revealed as a singular 

] dependence of F~~eg) on III in the limit m2 /Q2-+ O. 
these peculiaritieli\ is such that the dependence 
d In F( n~g)
---.-¥ onll'~ becomes regular in the 1 i111i t 
d In Q 
the f<:>llowing equa:j.i ty takes place: 

d In F(res)d ln FIB 
lim III 

d In Q2 11'-->0 d In Q2 

But structure of 

of the derivative 

Q2 /5/ Hence 

(10) 

and both its sides do not possess light c(,ne singul.arities. 

Feynm<;ltl integrals arising in th", expansion cof F~~eg) have only two 

mOl11entum scales: .,.. and 114/'12. The parameter"" cuts oft: large (as 

compared with M2/Q) values of momenta. Therefore the dependence of 

Fi~eg) on A maybe thought of as the dependence of (9). with the 

omitted subscript 1R (l.~.• without any restriction of momenta), 

on the renormparameter introduced to suhstract arising ultraviolet 

di vergences /14-16/ Renormalization properties of the contour 

functional (9) with contour C (fig.2) or. equivalently, the 

dependBnce of FIR on A are described by the following 

renormalization group equation /15/: 

( 
"" Aa " + (J(g)"g + rcusplr.g) +2 ]rend(g) ( reg) (. A2Q2 )FIR :"---4

11 
0, (11) 

where rcusp(r,g) and rend(g) are the cusp and end anomalous 

dimensIon" of contour functionals. The CllSP anomalous dimension in 

the limit of large cusp angles y = has the asymptotics /16/. 

r,g) = In rcusp(g) + 0 

"'s ["'6]2 { (67rcusp(g) iT + it N 36CF CF 

where n <Jqu.:..!:o the number of quark fl.,v(ors.
f 

Differentiating both the sides of 1;<1.(11) 

and taking the limit using relation~ 

obtain: 

Q2] (12 )
2m

5 }- nne ' 

with respect to Q2 

lID) and (12) we 

r- 2Q2 

1d 

d In F IR - ) _ 114 
CU6P Q2

( .,..".,.. " + fJ(g)ag " + r (g) 	 o. 
In 

1 



The solution of this equation: 
;>,.2 

d In 	FIR 
= ra [g[ ~:J] ~~J rcusp(g(t» (13)

d In Q2 
M4/Q2 

depends on a new function r a' Substituting (8) into (13.) we find 

the one-Ioqpvalue of rO: rO=o + 0(01 2 )..
5 

4 Ca]('ulption Q.f 5udak(;,v.tb.e. f2..t:m 4ct.lU:.. 

Let ~IS differentiate both tne sides of the factorJzed 

expression (2) for the form factor )lith. respect to Q2 using the 

properti<':s {~l. (6) al).d (13) of sublJraphs. Tne result is as 

follows: 

d In 	F 2) (M4 ) _ 1-'2 

~ d In '~fj- + g( Q4] frO 	 ~ r (g(t»·2t cuspd In 	
M4/Q2 

We 	 are convinced that the dependence on ;>,. is eliminated in the 

r.h.s. of this relation. On the other hand, the independence of 

the form factor of I-' implies FH to obey the following equation 
15/, 

2 Q2 

d In FH e2) :: r(g(Q2» 
 J 	 dt r (g(t».

2 	 2t cuspd In 	Q 1-'2 

a 
The one-loop value of function r: r ~ i nSC, can easily be found 

by substituting (3) into this equation. 

Combining the last two expressions we derive the final 

equation for the Sudakov form factor: 
Q2

d In F 

r(g(Q2» + r 0 [g ( ~:) ) 
 dt 	r (g(t».

d In Q2 :: J 2t cusp 

114/Q2 

It is just this equation that we solve to determine th.e Sudakov 

form factor: 

H2 
2 	 . ( Q2 


'O(g(Q2»exp f d~ r(g(t» + J di rO(g(t»
F~2] 
M2 

M4/Q2 


Q2 M2 

2 	 2

dt 1 	Q r - J ( 14)dt- J 2t n~ cusp(g(t» 2t IntQ r (g(t»} •M4 cusp
M2 M4/Q2' 

8 

This expressir;n contains all logarithmic correctlr.>rts to the 

Sudakov form factor not suppressed by powers of M2/Q2. The 

involved functions r, r 0 are known in the one-loop but funct ion 

r cusp';n the two-loop approximation. The one-loop value of F0: 

FO=l- ~F(l + may be found by comparing (14) with the 

one-loQP expression for the Sudakov fOl'm fqctpr. To determine th"l 

asymptotic behavior of the Sud_kav form factor. Ne should not know 

the eXact values of these functions. It folloNS from (14) that the 

asymptotics of F is controlled by rcuep 

2 
2 Q2» 112 {Q d 2 M2 2 }QF~2) ~ exp -J. "'tt In r (g(t» - J dt IntQ r. (g(t})· 

.. ) L t cue;p 2t M4 CUIlP 
M" M4/Q4 

The cusp anomalol,ls dimension is a posit,lvE! definite funct,ion /5/ 

r cusp> (j which is confirmed by two-loop calc;ulatlon (12). Therefore 

we cc,nclude that the Sudakov form factor. with all logarithmic 

corrections being included, i5 a rapidly decreasing function in 
? ?

the limit Q-» M-. 
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KopqeMCKHH r.n. 	 E2-88-628 
CYAaKOBCKHH ~OP~KTOP B ~ 

8 nepTypOaTHBHoA ~ HccneAyeTcH AB~I norapH$MHqe
CK~ aCHMnTOTHKa 3neKTpoMarHHTHoro ~pM~aKTopa KBapKa 
B CYAaKOBCKOH o~naCTH. OHa o~HCWBaeTCH p TepMHHa~ KOHTYP
HWX tyHICQ,HOHanOB< 01 TPuP(l16dz~ A~(z» Io~H MaTPtlqllblX 

3neNeQTOB COCTaBHHX onepaTopOB TBHCTa-2. Hcnonb90BaHHe 
3THJI,: QOBHX 06'beKTOB n09BOmmo CYMMHpoBaTb Bee He.nH~~HPYJ.()

~e nOrapH~qeCKHe nOnpaQKH K cYAaKoBCKoMY ~opM~aKTopy 
B 6UCTPO Y~Ba~~ ~YHK~H~ nepeAallHoro tlMnynbca. 

Pa60Ta BWDonlleHa B na6opa1opHH TeOpeTHQeCKOH ~H9HKH 
'O~. 

npenpHHT 06~eAHHeHHoro HHCTHTyn uepHbJX Hccne.ll,OBUlHA.lly6Ha 1988 
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Korchemsky G. P. , E2-88-628 
Sudakov Form Factor in QCD 

The double logarithmic asymptotics of the quark elec
tromagnetic form factor in the Sudakov region is inves
tigated within the framework of perturbative QCD. It 
is described in terms of the contour functionals 
<01 TPe:r;p(ig fdz~AIl(Z» I0> and matrix elements of compo-

C 
site twist-2 operators. Using the renormalization pro
perties of these, new objects, the nonleading logarithmic 
corrections to the Sudakov form factor are summed to 
give a rapidly decreasing function of the transferred 
momentum. 

The investigation has been performed at the Laborato
ry of Theoretical Physics, JINR. 
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