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l.Introductign 

One of the old yet unrei;lolved problems :l.n QeD origin1'lted since 

the QED constructJon bas been formulated in a pione"r paper by 

SUdakov 11/ It is just the problem of calculation of the 

aSl{Jl!ptotics of the quark electromagnetie form factor in the 

fOllowing kinematics: 

Q2 = _ Ip-tl 2 » _p2 = _k2 M2» m~ 
where k, and p are momenta of a quark wtth mass m, Sumlllation of 

the Leading double logar1thllli<;: t::orret::ti<:)Ds to the Sud~kov form 
factor in QED /1.21 and later in QeD /3,4/: 

2 2 
Cts11':1) 2 Q2 3 (M) Q2] (n 2n _2 Q2 ]

E = exp ( -----y;- eEln H2 + '4 CF lnH2" +- 0 "'s In M2 

N2-1 g2 
(where C, -- for the gauge group SU IN) and '" =- is the 


E 2N s 4fT 

runn ing coup1 ing const,ant I is the resl.11 t of numerolll:: at tempts of 


solving this problem. The obtained expression for the Sudakov form 


factor is a decreasing function of Q2 and in the limit Q2» H2 its 


asymptotics is determined by neglected non leading logarithmic 


terms~ 

In a preceding paper /51 we proposed the method that allowed 

us to calculate the electromagnetic form factor of a massless 

quark. In the present paper. this method is generalized to a more 

complicated case of the 5udakov form factor. We sum up in the 

Feynman gauge all logarithmic corrections to the Sudakov form 

factor not suppressed by power8 of M2/Q2 and det,ermine its 

asymptotic behavior for Q2» M2, 

2.FactorizatiQIl QL ~ Slldakoy fru:.al ~ 

The Sud:"kov form factor F is related to the amplitude m of 

quark elastic scattering in the electromagnetic field <1. p by the 

following relation: 
1 -1/2 2 

m = ~ yP k F aJJ(p-k) (Z2(P) (It)J + O~iJ' 
P 

where ZZlp). ZZ(lo:) are the quark uavefqnction renorlllali::,tlon 

r _.a~~.:11; .....-. t-:;;; • 
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con:::tants. The m~gnitude of F is determined by the set of Feynman 

diagrams shown in fig .1(al. To give the leading contribution to 

the form factor, these diagrams should have the structure pictured 

in fig. 1 (I) 16-8/. The di::1grams in fig. 1(b) contain fi ve 8ubgraphs 

in accordance with the values of the momentum of particles 

(i.e. ,quark, gluon or ghost) belonging to them 16/. 

(a) hard 6ubgraph H: 
11+, 1_, 1TI :: O(Q) 

(b) collinear 6ubgraph J :p 

O(Q), 1_= O[~2]. ~T:: OeM) 

(c) collinear subgraph J k : 

1+= 0 1 = OJQ), ~T:: OeM) (1) 

(d) soft subgraph S: 

11+, 1_, ITI :: OeM) 

(e) infrared 5ubgraph IR: 
M2 

11+, 1_. ITI :: 0(- ), 
Q 

where we use the light cone coordinates IT=(11;2) and 

work in the frame, where PT :: kT:: 0, p+= k._= Q (Q212Jl12, 
2

P_= k+::-M /Q. 

The properties c-,f the first four 5ubgraphs studied earlier 

15,8-101 in the context of investigation of the asyroptotics of the 

electn:.magn",tic form factor of a ma3sle::ss quark will be exploited 

below in this discussion. It is just the appearance of ill new 

infrared subgraph that does not allow liS to apply the "old" 

methods 18-101 for investigation of the Sudakov form factor. For 

the first time the importance of its inclusion into calculation of 

the Sudakov form factor was stressed in ref. 1111 , 
To calculate the subgraphs, one must first correctly define 

the boundaries of momentum regions (1). For that aim we introduce 

two arbitrary parameters /J and" restricted by the condition /7/_ 

Q2 ) ,,2 > MZ > ,,2 > !!4 
Q2 

The parameter IJ sets the lower boundary of momenta 1 (a) wi thin II 

and, respectively, the upper boundary of mOlllenta l(d) within S. 

The parameter ~ sets the lower boundary of momenta l(d) within S 

and. respectively. t.he upper boundary of momenta l(e) within IlL 

2 

The forlll factor F does not depend on /-l and " but each Bubgraph 

does depend. 

The contribution of a diagram of £ig.1(b) to the f'.:>rm factor 

is expressed in a complicated way through the involved subgraphs 

interacting with each other. But this effects of interaction 

between 6ubgraphs are cancelled 17-9,121 when one SUIIJS the 

diagrams of fig.1(b) differing from each other by a nUll'lber of 

external lines of subgraphs. With the use of prQperties of 

particles belonging to different subgraphs 18,121 the resulting 

sul'll is defined l;>y a set of dj,agj:'ams shown in fig.1(c) where double 

lines denote ()perators to be determir,ed below in (4) . The 

contribution of diagr'~l!Is. of fig.1(c) to U\e forlll fa'~tor lIJay be 

rel"resented in 1;he factorized forlll: 

F::FSFHli'J FIR' (2)FJk p 
where by li'i we ~tenoted contri..blltion from a certain subg,raph. 

The hard subgraph H describes interaction of particles at 

short. (as compared with 1/1J) distances and its contribution to the 

form fa.::tor depends only on the variables Q2 and IJ. One-loop 

calculation of FH yields the following expression: 

ff(2) _ {2 ff(2) (Q2]OIS 
7 - n2}FM FHl~ - 1 - 4n CF In l~ - 3 In 2 + 6" • (3) 

/J /J IJ 

The contribution of collinear subgraphs .J and J to the formp k 
factor may be written as 15,8.12/: 

. ... t 
:: - ~ <OIT ~(p) p E_(O,oo) +(O)IO'J (Z2(P) tI12FJ p ·k p 

(4) 

- i - - (J -1/2- - 4: <OIT ~(O) k E•• (O,oo) "'(k) 10>J Z2(k) •FJ
It p k 

where :i.( p) =Jdx e ipx 'I'(x) is the quark- field operator. Subscripts 

J and J remind us that the momenta of particles belonging to p k 
collinear 8ubgraphs are restricted to regions (lb) and (Ie). The 

involved multipliers g_(O.~) and E_(O,oo) result from summation of 
-k p 

the diagrams in fig.1(b) over the number of collinear gluon 

emitt<:d within J and J and absorbed by H. They equalp k 
path-ordered exponentials: ... 

E_(O,oo) 
-k 

= P exp -ig(J 
0 

ds k 
/-l 

A (-ks)'", - e c-&15) -+ 0 

and for E_(O,"") 
p 

analogously. The vectors k and p lie on the 
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light cone and have the following components: 

p+ = k = Q, P_ = k+ 0, PT = kT = 0 
2 

i. e . .. they differ from momenta p and k by om) - terIIU:!. From 
one-loop calculation we find that: 

In2 t 2 
- ~-- - •=1 CF{ln 

2 (~J - ) 3 In ~~J 3 +!!.2}FJ FJ )..2 2 2 2 &p k ~ 

that is,the contributions ot; the collinea,r subgraphs 40 not depend 
On Q2. These ilIlportant proPerties of F"J <lnd FJ ,i. e .• 

k p 
d In d In FFJ J 
---..".:,~"= ~"O, (5)
d In Q2 d In Q2 

are fulfilled to all ordera of perturbation theory as proved in 

ref. /SI and they are closely related to the properties of 

composite twist-two operators that apPear when one applies the 

operator product expansion on the light cone to expression (4). 

The contribution of the soft subgraph S to the form factor is 

represented as a matrix element of a product of two 
P _ exponentials 15,81 

t
FS = <OIT E_(O,oo) E_(O,m)IO>s 

p -k 

which result from summation of diagrams of fig.l(b) over the 

number of soft gluons absorbed by J and J • The subscript Sp k 
indicates that the momenta of all particles in FS are confined to 

region (1d). Performing one-loop calculation of F S we obt,ain: 

(Q
2 2 ) as { (Q 2) ~~2) 2( 2) }F -,~ 1 - - C 2 In - In -,-- In ~ - 3 . 

S ~2 )..2 4... F 1-'2 ).. 2 ).. 2 

The study of lIIultiloop properties of FS has allowed us to derive 
the following equation 15/: 

~2 
d In 

J r CU6P(g(t)} , (6) 
d In 2).. 

where the anomalous dimension rcusp is defined by (12). 

The contribution of t.he infrared subgraph to the form factor 

may be expref:sed llS follo"s /13/: 

"" 00 
2 t 2

FIR = -JdsJdt exp(i(s+t}) <OIT Ep(O,s/l1 ) I::K(O,t/l1 1IO>IR' (7) 

° 0 
where P - exponentials accumulate all the interaction effects of 

particles bel')nging to infrared subgraph <lith partie les of other 

4­

I 
't' if it 
I I 

• 

p /(. " 
Co. ) (b) 

Fig. 1. (a) General structL\re of the d:iagrams for the quark 

electromagnetic form factor. (b) Diagrams determining the leading 

cOlltribution to tile form fClctQr. (c) Ba/3ic factorization of the 

form factor. The dashed line represents an external 

electromagnetic field. 

0 

So '" 
ZM P -±. k 

Ml 
..\ 

Fig.2. A typical diagram arising froll the expansion of the 

path - ordered exponential. The double line denotes the contour of 
integration. 
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6ubgr.'tphG. One-loco., calc'liati.-:·n of FIR gives: 

fA2Q2) _ {2 fA.2Q2) n2} (8)FIRlf.j4 - 1 CF In l7 + 2" • 

To verify the factorization relation (2), we combine one-loop 

values of all subgraph6 and from (2) easily derive tihe well-known 

~xpressiQn for the Sudakov form factor: 

2 
(Q ] a { 2 rg2J rg2

)' 2 2}F /1 2 1 - 4: GF 2 In ~ - ~ In ~ + 1 +;SIT • 

~~!i1 fJ 1JbgrAt1l. 

The cOllt.ribution 

form fact ..'r lDay be 

:fun,~t iona 1 /13/: 
t~ I)) 

FIR -Ids 
° 0 

where the contou r C 

contour C is formed 

';;f the infrare4 subgraph (7) t,o the Sud"kov 

rer-'res"nted as an integral of the contour 

exp(i(s+t) <0 ITPexp(igIdZpAP(Z)] IO>IR' (9) 

C 

is pictured by a double I ine in fig. 2. The 

k 
by two segments directed along vectors ~ and 

M"" 
k p 

That ie why FIR depends on the only scalar ---4 formed by these 

vectors 

moment.) 

and 

in th

the 

e inf

pal'ame

r.:;.red 

tEcr 

~;nbg

A 

raph: 

that sets the 
M 
upper boundary of 

FIR :: fA:~2) . 
The contour C in eq.(9) lies on the light cone and therefore 

FIR pOSBeSB~B additional (as compared with the nonlisht-like 

conloul') logarithmic corrections. Let us deform slightly the 

contour C, i. e.. shi ft the vectors k and p from the light can"" 

into the time-like direction: 

~ 2= k 2:; ",2« Q2 

and consider the resulting from (9) expression for F~~eg) F~~e~) 

~ 4 2 ~ ~ kv 
depends on A" and two scalars M /Q and ","'" /Q'" fonned by vectors 	2 

M 

P"
and -2: 

M 

6 

F(reg )- F(reg )( ~2Q2]
IR - IR 1"'-4­ f 

M 
2 

where I" = ln ~ is the cusp angle of the contour C in fig.2. The 
III 

peculiarities of FIR on the light cone are revealed as a singular 

] dependence of F~~eg) on III in the limit m2 /Q2-+ O. 
these peculiaritieli\ is such that the dependence 
d In F( n~g)
---.-¥ onll'~ becomes regular in the 1 i111i t 
d In Q 
the f<:>llowing equa:j.i ty takes place: 

d In F(res)d ln FIB 
lim III 

d In Q2 11'-->0 d In Q2 

But structure of 

of the derivative 

Q2 /5/ Hence 

(10) 

and both its sides do not possess light c(,ne singul.arities. 

Feynm<;ltl integrals arising in th", expansion cof F~~eg) have only two 

mOl11entum scales: .,.. and 114/'12. The parameter"" cuts oft: large (as 

compared with M2/Q) values of momenta. Therefore the dependence of 

Fi~eg) on A maybe thought of as the dependence of (9). with the 

omitted subscript 1R (l.~.• without any restriction of momenta), 

on the renormparameter introduced to suhstract arising ultraviolet 

di vergences /14-16/ Renormalization properties of the contour 

functional (9) with contour C (fig.2) or. equivalently, the 

dependBnce of FIR on A are described by the following 

renormalization group equation /15/: 

( 
"" Aa " + (J(g)"g + rcusplr.g) +2 ]rend(g) ( reg) (. A2Q2 )FIR :"---4­

11 
0, (11) 

where rcusp(r,g) and rend(g) are the cusp and end anomalous 

dimensIon" of contour functionals. The CllSP anomalous dimension in 

the limit of large cusp angles y = has the asymptotics /16/. 

r,g) = In rcusp(g) + 0 

"'s ["'6]2 { (67rcusp(g) iT + it N 36CF CF 

where n <Jqu.:..!:o the number of quark fl.,v(ors.
f 

Differentiating both the sides of 1;<1.(11) 

and taking the limit using relation~ 

obtain: 

Q2] (12 )
2m

5 }- nne ' 

with respect to Q2 

lID) and (12) we 

r- 2Q2 

1d 

d In F IR - ) _ 114 
CU6P Q2

( .,..".,.. " + fJ(g)ag " + r (g) 	 o. 
In 

1 



The solution of this equation: 
;>,.2 

d In 	FIR 
= ra [g[ ~:J] ~~J rcusp(g(t» (13)

d In Q2 
M4/Q2 

depends on a new function r a' Substituting (8) into (13.) we find 

the one-Ioqpvalue of rO: rO=o + 0(01 2 )..
5 

4 Ca]('ulption Q.f 5udak(;,v.tb.e. f2..t:m 4ct.lU:.. 

Let ~IS differentiate both tne sides of the factorJzed 

expression (2) for the form factor )lith. respect to Q2 using the 

properti<':s {~l. (6) al).d (13) of sublJraphs. Tne result is as 

follows: 

d In 	F 2) (M4 ) _ 1-'2 

~ d In '~fj- + g( Q4] frO 	 ~ r (g(t»·2t cuspd In 	
M4/Q2 

We 	 are convinced that the dependence on ;>,. is eliminated in the 

r.h.s. of this relation. On the other hand, the independence of 

the form factor of I-' implies FH to obey the following equation 
15/, 

2 Q2 

d In FH e2) :: r(g(Q2» 
 J 	 dt r (g(t».

2 	 2t cuspd In 	Q 1-'2 

a 
The one-loop value of function r: r ~ i nSC, can easily be found 

by substituting (3) into this equation. 

Combining the last two expressions we derive the final 

equation for the Sudakov form factor: 
Q2

d In F 

r(g(Q2» + r 0 [g ( ~:) ) 
 dt 	r (g(t».

d In Q2 :: J 2t cusp 

114/Q2 

It is just this equation that we solve to determine th.e Sudakov 

form factor: 

H2 
2 	 . ( Q2 


'O(g(Q2»exp f d~ r(g(t» + J di rO(g(t»
F~2] 
M2 

M4/Q2 


Q2 M2 

2 	 2

dt 1 	Q r - J ( 14)dt- J 2t n~ cusp(g(t» 2t IntQ r (g(t»} •M4 cusp
M2 M4/Q2' 

8 

This expressir;n contains all logarithmic correctlr.>rts to the 

Sudakov form factor not suppressed by powers of M2/Q2. The 

involved functions r, r 0 are known in the one-loop but funct ion 

r cusp';n the two-loop approximation. The one-loop value of F0: 

FO=l- ~F(l + may be found by comparing (14) with the 

one-loQP expression for the Sudakov fOl'm fqctpr. To determine th"l 

asymptotic behavior of the Sud_kav form factor. Ne should not know 

the eXact values of these functions. It folloNS from (14) that the 

asymptotics of F is controlled by rcuep 

2 
2 Q2» 112 {Q d 2 M2 2 }QF~2) ~ exp -J. "'tt In r (g(t» - J dt IntQ r. (g(t})· 

.. ) L t cue;p 2t M4 CUIlP 
M" M4/Q4 

The cusp anomalol,ls dimension is a posit,lvE! definite funct,ion /5/ 

r cusp> (j which is confirmed by two-loop calc;ulatlon (12). Therefore 

we cc,nclude that the Sudakov form factor. with all logarithmic 

corrections being included, i5 a rapidly decreasing function in 
? ?

the limit Q-» M-. 
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KopqeMCKHH r.n. 	 E2-88-628 
CYAaKOBCKHH ~OP~KTOP B ~ 

8 nepTypOaTHBHoA ~ HccneAyeTcH AB~I norapH$MHqe­
CK~ aCHMnTOTHKa 3neKTpoMarHHTHoro ~pM~aKTopa KBapKa 
B CYAaKOBCKOH o~naCTH. OHa o~HCWBaeTCH p TepMHHa~ KOHTYP­
HWX tyHICQ,HOHanOB< 01 TPuP(l16dz~ A~(z» Io~H MaTPtlqllblX 

3neNeQTOB COCTaBHHX onepaTopOB TBHCTa-2. Hcnonb90BaHHe 
3THJI,: QOBHX 06'beKTOB n09BOmmo CYMMHpoBaTb Bee He.nH~~HPYJ.()­

~e nOrapH~qeCKHe nOnpaQKH K cYAaKoBCKoMY ~opM~aKTopy 
B 6UCTPO Y~Ba~~ ~YHK~H~ nepeAallHoro tlMnynbca. 

Pa60Ta BWDonlleHa B na6opa1opHH TeOpeTHQeCKOH ~H9HKH 
'O~. 

npenpHHT 06~eAHHeHHoro HHCTHTyn uepHbJX Hccne.ll,OBUlHA.lly6Ha 1988 
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Korchemsky G. P. , E2-88-628 
Sudakov Form Factor in QCD 

The double logarithmic asymptotics of the quark elec­
tromagnetic form factor in the Sudakov region is inves­
tigated within the framework of perturbative QCD. It 
is described in terms of the contour functionals 
<01 TPe:r;p(ig fdz~AIl(Z» I0> and matrix elements of compo-

C 
site twist-2 operators. Using the renormalization pro­
perties of these, new objects, the nonleading logarithmic 
corrections to the Sudakov form factor are summed to 
give a rapidly decreasing function of the transferred 
momentum. 

The investigation has been performed at the Laborato­
ry of Theoretical Physics, JINR. 
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