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1 Introduction 

Many years ago Sudakov discovered 111 that there are processes 

in gauge theories which being calculated in perturbation theory 

contain double logarithmic corrections 121 . Investigation of these 

Sudakov effects in QCD began from multiloop perturbative 

calculations of leading double logarithmic corrections to the 

electromagnetic quark form factor F in the following kinematics 131 : 

Q2 = _ (p-k)2 » x2 » m2 , P2 = k2 = m2, ( 1 ) 

where P and k are respectively momenta of an initial and a final 

quark with mass m; X 2 is a parameter in the infrared regularization 

(e.6., fictitious gluon mass). It was established that / 3 · 41 : 
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exp - 4 .. CF ln X 2 + 0 "'s ln ~ 2 , 

N -1 g 
where CF = 2N for the gauge group SU( N) anp "'s = 4,... Since this 

P.xoression is a rapidly decreasing function of the transferred 

momentum Q2 , the natural question arises: could the leading 

asymptotics of the form factor F be drastically changed by neglected 

nonleading logarithmic terms? Investigations of Sudakov effects in 

QED - for the electron form factor - allow one to give a negative 

answer 151 . Nevertheless, in QCD the algorithm of calculation of 

nonleading logarithmic corrections to the quark form factor has been 

formulated /S/ but the important question stated above remains 

unanswered. 

In the 

form factor 

quarks may 

present paper we calculate the 

in the kinematics ( 1) and in a 

be thought as massless. We sum 

electromagnetic quark 

covariant gauge when 

up all logarithmic 

corrections to the form factor and examine its non leading 

asymptotics. 

2 Factorization ~ tha ~ electromagnetic fQca ~-

The quark electromagnetic form factor (denoted by F) is 
~ 

expressed through the amplitude S of quark elastic scattering in 

the following manner 121. 

-~ . ..... 

< • ---~-·. 
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i-t 
'IR = u(k} ri-L F v(p) + ou .. 2;Q2 ), 

where u( k J and v( p) are the wave functions of quarks. The form 

factor F is determined by the contributions of the diagrams pictured 

in fig. 1 (a); among them the leading contributions to F, i. ""· , those 

not suppressed by powers of x2;Q2 are given only by the diagrams of 

fig.l(b) 11 · 81 . These diagrams involve four subgraphs: H. S, J and . p 

Jk. The momentum l~ carried by the internal lines of these subgraphs 

may belong to any of the following regions 111 · 

(a} hard subgraph H: ll+,l_,lTI = O(Q) 

(bl collinear subgraph J : 1 = O(QJ .1 = of~2] 
p + - L 

Ccl collinear subgraph Jk: 1+= o(~2] ,1_= O~QJ 
(d) soft subgraph S: ll+,l_.lTI = O(X) 

,lT= O(X) 

, IT= O(X) 

where 1 = 
10

:!:1,. ,lT=( 1 1 ) and p =k =O,pT=kT=O,p =k =Q=(Q2;2) 112. :t-12 t,2 -+ +- ( 

(2) 

The contribution to the form factor of a diagram of fig.l(b) is 

expressed in a complicated way through the quantities of four 

:!.!;."."-:.!·#"::.;! ~~"t".e;~::.;..!-..,:, c.iJ.l ..... c ~iJcJ.e clL·t: .int-erac-111ons or g1uons emitted 

within collinear subgraphs Jk and JP with particles belonging to 

hard (H} and soft ( S) subgraphs. However, the expression for the 

quark form factor is essentially simplified by summing over all 

possible configurations of the diagrams of fig.l(b) with the use of 

the properties of particles belonging to subgraphs Jk, J and S 
/8 9/ p 

' The result of this summation is shown in fig. 1 (c) where 

double lines denote operators to be determined by equations (5),(6). 

Diagrammatically, fig.l(c) represents a factorization but with the 

momenta in the subgraphs restricted to particular regions (2). The 

contribution of these diagrams to the form factor may be expressed 

in the following form: 

- ~ ~ 
u(k) r v(p) F = F8 FH FJ r FJ , (3) 

k p 
where by F.: we denoted the contribution from a certain subgraph. 

The hard subgraph H describes interaction of particles at short 

distances. All internal lines of H are off-shell. Therefore, the 

contribution of hard subgraph to the form factor depends only on Q2 

2 
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p 

Fig.2. A typical diagram arising fr<:·m th,. expansion of the 

path - ordered exponential. The double line denotes t.he. contour t:•f 

int.egration. 
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and the scale parameter 1-1 which determines the lower boundary of 

off-shell momentum in (2a): 

2 "' { 2 2 2 2} 
FH = FH ~2) = 1 - 4! CF ln ~2) - 3 ln ~2) + 6 - ~ · ( 4) 

The contribution of the collinear subgraph JP is given by the 

expression: 

FJ = <OfT Ek(O,m) ~(O)fp>J • (5) 
p p 

where ~(0) is the quark field operator,fp> is one quark state with 

momentum p. The operator Ek(O,m). has appeared in this equation as a 

result of summation of fig.l(b) over a number of collinear gluons 

emitted from JP and absorbed by H. It is equal to a path-ordered 

exponential: 
m 

Ek(O,m) = P exp( ig J ds k,_. A~-'(ks) -es} e e ' - o •. 
0 

The subscript JP in equality (5) reminds us that the momenta of all 

particles from F J are to be restricted by the collinear region 
p 

(2b). Contribution of the collinear subgraph ~k may be expressed as 

f'ollows: 
+ 

FJ = <kfT .(0) E (O,m)fO>J, 
k -P k 

where .. +'' denotes hermitian conjugation. The meaning of the 

subscript Jk is the same as in equation (5). 

For the contribution to the form factor of the soft subgraph we 
derive ;g,lO/. 

+ 
Fs =<OfT ~P(O,m) Ek(O,m)fO>s• (6) 

where the subscript S points out that the momenta of all internal 

particles of Fs belong to the soft momentum region (2d). 

P - exponentials originate in this equation from summation over soft 

gluons of fig.l(b) absorbed by the collinear subgraphs JP and Jk. A 

typical term arising from the expansion of the P - exponentials in 

(6) is pictured in fig.2. 

3 Collinear subgraph 

The contribution of the collinear subgraph JP, for instance, rs 
determined by equation (5) and it depends on the dimensionless 

4 

\~ 

. 2 2 
variables ~-'2 and Q2 . We will show that 

>-. 1-l 

d ln FJ 
p 

d ln Q2 = 0 ( 7) 

to all orders of perturbation thenry. 
equality (5) as follows: 

Let us first transform 

2s/J..12 

<p 1'~-c o > 1 o>r~-'F J =lim<p fiii(2kn 1 o> <o lr~-'Pexp (tgJcttk)v (kt > )>~<( o > 1 p> J 
P s--+oo 1-1 

0 
p 

*expr-~:: s)· (8) 

The P- exponential entering ip.this relation is ordered along the 

light-like direction of vector k,_,. It allows one to apply the light 

cone operator product expansion /ll' 121 to the right-hand side of 

(8). Introducing as usual the reduced matrix elements 

one 

1-l ~-'1 ~-'n 
<pf>~'(OJIO><Oir D ... D ~(O)fp>J 

p 

2 ,_. ~-'1 ~-'no (1-1 ) 
PP ... p nl>-2' 

IHIOS I: rom ( tl): 

<» 1 2 n 2 2 
<pf'~<(OlfO>yl-l FJ =lim pJ..I E nT(iQ2 s) ont"

2
) exp(-iQ

2 
s)· (9) 

p s--+oo n=O 1-1 "'- 1-1 
,, 

A one-loop calculation of 0 gives for n << ~:;. 
n \ .. L.. 

on(~:) = 1 - :: cF{[2:~~k~2 + ~] In(~)+ const} 

2 that coincides with the well-known expression 1131 but for n » ~2 
~-

0 (~-'
2

) --+ o (~-' 2) = 1 -
018 

c {ln 2 (~-' 2) - ~ ln(~-' 2) + .!. + ~2 } 
n A2 oo "'-2 4rr F "'-2 2 "'-2 2 2 

and does not depend on n. Substituting this relation into ( 8) we 
find the one-loop ·'express ion ·for F J 

p 

FJP(~:J =[1 - :: cF{ln
2 t:J ~In(~~) + i + ~2 }]v(p) 

that satisfies 
(7). Using the results of investigation of multiloop 

of On 1
14

1 it may be shown that to all orders of 
properties 
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perturbation theory the matrix 

we conclude from (9) that 

statement ( 1) . 

4.....SQ.f.t. subgraph 

elements 0 do not depend on n. 
2 n 

F J P =0 .. t 2) v ( p), in accordance 

Hence 

with 

The contribution of soft subgraph to the form factor (6) may be 

rewritten as the so-called contour functional 1 101, 

F5 = <OJTPexp{igfdz~A~{zl)lo>s• 
c 

where the contour C is denoted by a double line in fig. 2. Contour C 

lies on the light-cone and therefore F5 possesses additional (as 

compared with nonlight-like C) logarithmic peculiarities. To study 

its structure, let us shift momenta p and It from the light-cone 
2 2~ 2 ~ 

into the time-like direction: p = It = M and consider the limit 
2 

M 2 -+ 0 of the regularized contour functional F~reg) It follows 

Q • (reg) from the definition of P - exponentials that F5 is not changed 

under the following seale transformations: p~ -~ 1 p~, It~ -~21t12. That 

is why F~reg) depends only on the invariant combination (~It~ ,i.e .• 

on the cusp angle y: 2 P It 

ln Q r = if2 
of the contour C shown in fig.2. Therefore the remaining dimensional 

arguments of r;regl, i.e.,~ and~. give the momentum scales for the 

Feynman integrals arising from the expansion of r;reg). As a result, 

the parameter ~ may be thought as an ultraviolet Lcut-off for F~reg) 
and the dependence of F~reg) on ~ is closely related with the 

renormalization properties of contour functional. Renormalization 

properties of contour functionals are well known 115 · 161 and for the 

particular contour of fig.2 they may be expressed as follows 1161 : 

( 
~ ~ ) ( reg) ( ~2) 

IJ~IJ + (l(g)~g + rcusp<r.el 's e··~ = o, (10) 

where Jcusp(r,g) is the cusp anomalous dimension. In the 

limit ; 2-+ ao (orr -+ ao) rcusp(y,g) baa the asymptotics 1111 · 

6 

] 

j' 

' 

r {y,g) = ln Q2
2 

r {g) + o(ln° ~] 
cusp M cusp M"' 

( 11) 

as { as)2 { (67 ,.2) 5 } 
rcusp{g) = n c, + n c, N M -12 - nfiB ' 

where nf equals the number of quark flavors. F~reg) obeys condition 

19 • 101, F~reg)(r.1) = 1 allowing
2
one to solve equation (10): 

2 Q2 IJ 2 
F~reel (r.~2] = exp[-ln ti2 J2 ~ rcusp(g.(t)) + o(lno :2J ] , 

~ 

where equality ( 11) is 

explicitly on M. This 

used. The r.h.s. of this relation depends 

dependence, being singular in the limit 

Q2 ;z- ao, beco-s regular in the derivative: 

d ln ,<reel 

d ln F(reg) 
5 This means 

d ln Q2 

that ~ does not depend on the position of the contour C 
d ln Q 

{fig.2) with respect to the light-cone. Therefore we find: 
2 

d ln F d ln F(reg) ~ 
---;;.~ = lim s = - r ~~ r . (g(t)). (12) 
d ln Q~ M-+0 d ln Q~ ~2 ~~ ~uo~ 

Two-loop calculation points out 1111 that r >0 and therefore Fg-+ cusp 
0 for ~~~-+ 0. Thia property of rcusp is valid to all orders of as 

since it is a consequence of the following estimate of the ... nitude 

of the contour functionals calculated within the fraaework of 

perturbation theory 1181 : F5 s exp(-k P(C)) where P(C) is a 

perimeter of the contour C (fig.2) beinc equal to infinity. 

5 Calculation ~ the.~ ~ ~ 

Let us calculate the quark electromagnetic form factor with 

factorization relation ( 3) and wtth the established propertiea of 

the sub•raphs. Differentiatine both the sides of equation {3) with 
respect to Q2 ~e obtain: . 

112 
d ln F d ln FH dt 

(13) = - J ft r <e(t))• 
d ln Q2 d ln Q2 ~2 t cuap 

where (T) and (12) have been taken into account. The l.h.e. of (13) 

l 

.... 



should not depend on ~ since the latter is arbitrary momentum scale 

dividing regions (2). As a result, FH obeys the renormalization 

group equation: 

[ ~'!_ + 
8~ 

f1(gl~ ) d ln F ~
2

] - ag H [~2 
d ln Q2 ~ 

r (g). 
cusp 

The general solution of this equation: 

d ln F ~2) Q
2 

--~H l~2 = 'r(g(Q2) l _ J dt 
d ln Q2 22 t 

rcusp(g(t}) 

~ 

depends on a new function r. The one-loop value of r 
a 

comparing ( 4) 

equation C14) 

factor: 

with expression ( 14): r = i rtcF. 
~nto (13) we derive the final equation 

Q2 

(14) 

is found by 

Substituting 

for the form 

d ln F (~:) 
d ln Q2 

r(g(Q2ll - J dt 
22t 

X 

r cusp(g(t) ), 

The solution of this equation contains ell the logarithmic 

":'2!"!"~~-t:, ~ "::"~.~ -t:~ ~~":! ~·-::-.. '!."'~ £":'~~ :!:0.":'-1:0!'" !:':'-I: ~'-"-~!"'!"~=-~~~ 'h·u· T>r>.1'.'f.O'l"e:o ,......p 

X2/Q2: 

Q2 2 dt dt 2 

{ 

Q2 Q2 } 

F(~z) = Fo(g(Q l)exp [2t: r(g(t)) - [z2t lnQt rcusp(g(t)) ' (15) 

where the functions rcusp and r are defined in (11) and (14). The 

one-loop value F 0 may be found by comparing (15) with well-known 
a 

one-loop expression for the quark form factor: F0=1- ~F~ + ~ n
2
). 

We cannot find the exact values of 'cusp' r and F0 but we can 

determine the asymptotics of the quark electromagnetic form factor 

for Q2» x2 . It follows from ( 15) that among all the logarithmic 

corrections to F (controlled by 'cusp' r and F0 ) the leading ones, 

i.e. , corrections with the maximum power of logarithm per as. are 

related to rcusp and ,consequently, 

2 

F~z) 
Q2 >> x2 
~ 

Q2 

exp{ - J dt 
22t 

X·.·· 

8 

2 
lnQt 'cusp(g(t)) }· 

Since 'cusp>O to all orders of perturbation theory ,the quark 

fora factor is a rapidly decreasing function in the limit Q2» X 2 . 

Moreover, the inclusion of nonleading logarithmic corrections, i.e .• 

calculation of rcusp to higher orders of a
8

, only intensifies this 

asymptotics. 

6 Conclusion 

In the present paper, we have shown that factorization is valid 

for the quark electromagnetic form factor in kinematics ( 1 J . The 

factorization has allowed us to describe the double logarithmic 

asymptotic& of the form factor in terJDB of contour functionals and 

aatrix elements of composite twist-2 operators. Using the 

renormalization properties of these new objects and certain 

information on their structure we have derived equation (15) 

containing all the logarithmic corrections to the form factor. We 

have established that the quark form factor is a rapidly decreasing 

function of the transferred momentum Q2 . 
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KopqeMCKHA r.n. E2-88-600 
~B~ norapH~M~ecKHe acHMUTOTHKH B KX~ 

B nepTypt!aTHBnoA K:K.n HccnenyeTcn acHMnTO'l'HKa :meKTpo­
MarnHTUoro ~OpM~OKTOpa Kl1apKa, lloKaaaJJO 0 '!'1'0 CYII{eCTJJye•r 
CBJI3b MelKAY AUOlKAbl JiorapH!IJMHtJI!CKoli OCI!Mn'l'OTHKOi\ <fJOPMtpaK­
Topa H CBOftCTDaMH nepeHOpMHPOBOK KOIITYPIIblX l}>yUKI~HOilaJIOB 

<OI :rPexp[ig f dzll !ll(z)] 1 0>. Bbi'!HcneH sneKTPOMariiHTIIbJA 
c 

clJopMI}>aKTOp t!esMaccoBoro KBapKa, YcTauoBJleHo, 'ITO neJIHAH-
PY~~e norapH~MH'IeCKHe nonpaBKH K l}>opM~aKTopy CYMMHPY~Tcn 
B t!biCTPO yt!blllaJOJey'IO 3KCUOUeUTy, ue H3MeHJtJt nHAHPY~~y~ AIHllK­
Abl nornpHI}JMH'!eCKy~ aCHMUTOTHKy, 

Pat!oTa B~onHeHa B llat!opaTopHH TeopeTHtJecKoA I}>H3HKH 
OIDIH. 

OpenpiUIT 06.8JUIHIIIIHOro HHC'IIITJTI uepHWx HccneAOaundl. ,lly6aa 1988 

Korchemsky G.P. E2-88-600 
Double Logarithmic Asymptotics in QCD 

The infrared asymptotics of the quark electromagnetic 
fonn factor is investigated within the framework of per­
turbativc QCD. The deep connection between the double 
logarithmic asymptotics in QCD and renormalization proper­
ties of conto\fl' functionnls <0 I TPexp [ ig J dz"'Ail(z)] 1 0> 
is found. In, particular, the quark electromagnetic form 
factor is calculated for massless quarks. It is shown that 
the nonleading logarithmic corrections to the form factor 
are summed up to give a decreasing exponential and they 
do not destroy the leading double logarithmic result. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 

Preprlnt of the .Joint Inatltutefor Nuclear ReHarCh. Dubna 1988 
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