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L.Introduction

da 'Y

Many years ago Sudakov discovere that there are procesges

in gauge theories which being calculated in perturbation theory

/2/. Investigation of these

contain double logarithmic corrections
Sudakov effects in QCD began from multiloop perturbative
calculations of leading double logarithmic corrections to the
electromagnetic quark form factor F in the following kinematics /3/:

Q% = - (p-k)2 »aZ »p? , p2 = xZ = nZ, (n

where p and k are respectively momenta of an initial and a final
quark with mass m; Kz is a parameter in the infrared regularization

(e.g., fictitious gluon mass). It was established that /3‘4/:

F = exp[- ;% Cp 1n2 g; ] + 0[ asn 1n on-1 9; ].
N2-1 o

where CF : SN for the gauge group SU(N) and LI v Since this

expression 1is a rapidly decrezsing function of the transferred
momentum 02. the npatural question arises: could the leading
asymptotics of the form factor F be drastically changed by neglected
nonleading logarithmic terms? Investigations of Sudakov effects in
QED - for the electron form factor - allow one to give a negative
/5/. Nevertheless, in QCD the algorithm of calculation of
nonleading logarithmic corrections to the quark form factor has been

answer

formulated /6/ but the important question stated above remains
unanswered.

In the present paper we calculate the electromagnetic quark
form factor in the kinematics (1) and in a covariant gauge when
quarks may be thought as massless. We sum up all logarithmic
corrections to the form factor and examine 1its nonleading
asymptotics. )

2.Factorization of the quark electromagnetic form factor.

The quark electromagnetic form factor (denoted by F) is

"
expressed through the amplitude M of gquark elastic scattering in

the following manner /2/:




® =G 4 F vip) + 002R2),
where u(k) and v(p) are the wave functions of quarks. The form
factor F is determined by the contributions of the diagrams pictured
in fig.1(a); among them the leading contributions to F. t.e.,those
not suppressed by powers of )\2/Q2 are given only by the diagrams of
fig.1(b) /7’?/. These diagrams involve four subgraphs: H, S, Jpand
Jk‘ The momentum 1” carried by the internal linees of these gubgraphs

may belong to any of the following regions /7/:

(a) hard subgraph H: I1+'1—’1T| = 0(Q)

2
(b) collinear subgraph Jp: 1,=0@ .1-= 0[} ] ,lT: o)

2
(c) collinear subgraph Jk: 1.=0 A 1 = 0(Q) L1, O(N)
+ Q - T

(2)

{d) soft subgraph S: |1 .1 .1} = O(\)

1 *1

L)
where 1=

’lT:(ln,lz) and p_=k+:0,pT=kT=0,p+=k_=Q:[é2/2]1/2-

The contribution to the form factor of a diagram of fig.1(b) is
expressed in a complicated way through the quantities of four
invelved sSubgraphs sinde lioie are inleractions oI gluons emitted
within collinear subgraphs Jk and Jp with particles belonging to
hard (H) and soft (S) subgraphs. However, the expression for the
quark form factor is essentially simplified by summing over all
possible configurations of the diagrams of fig.1(b) with the use of
the properties of particles belonging to subgraphs Jk’ Jp and S
/8’9/. The result of this summation 1is shown in fig.1(c) where
double lines denote operators to be determined by equations (5),(6).
Diagrammatically, fig.1(c) represents a factorization but with the
momenta in the subgraphs restricted to particular regions (2). The
contribution of these diagrams to the form factor may be expressed
in the following form:

utk) ¥ vip) F = Fg Fy FJkr“ Fy o (3)
where by F, we denoted the contribution from a cgrtain subgraph.

The hard subgraph H describes interaction of particles at short
distances. All internal lines of H are off-shell. Therefore, the

contribution of hard subgraph to the form factor depends only on Q2

a)

Fig.1l.(a) General structurs of the diagrams for the quark
electromagnetie form factor. (b) Diagrams determining the leading
contribution to the form factor. (c¢) Fasis factovization of the
form factor. The dashed line represents an external

eleqtromagnetic field.

~
.

‘

Fig.2. A typical diagram arising from the expansion of the
path - ordered ekponential. The double line denotes the contour of

integration.



and the scale parameter g which determines the lower boundary of

off-ghell momentum in (2a):

2 a 2 2 2 n2
FH=EH[:’-7]=1--ECF{19Eﬂ-sln[f’-ﬁ]+s--§}- (4)
The contribution of the collinear subgraph JP is given by the
expression:

Fy = <0|T E (0,@) ¥(0)|p>; « %)

J
where ¥(0) ie the quark field operator,|p> is one quark state with
momentum p. The operator Ek(O,m) has appeared in this equation as a
result of summation of fig.1(b) over a number of collinear gluons
emitted from Jp and absorbed by H. It ia equal to a path-ordered

exponential:
[+ 1%
_ o -£68 .
E (0,m) = P exp[ ig f de k, A" (ks) e ]- € — 0.
0

The subscript Jp in equality (5) reminds us that the momenta of all
particles from FJ are to be restricted by the collinear region

p
(2b). Contribution of the collinear subgraph qk may be expressed as

follous:

+
F, = <k|T %) lgp(o,m)|0>,,k’

J
k
where "+” denotes hermitian conjugation. The meaning of the
subscript Jk ie the same as in equation (5).

For the contribution to the form factor of the soft subgraph we

derive /9’10/:

Fg = <O|T E;(O,en) E (0,@)[0>g (8)

" where the subscript S points out that the momenta of all -internal
particles of Fs belong to the esoft momentum region (2d).
P - exponentiale originate in this equation from summation over soft
gluons of fig.1(b) absorbed by the collinear subgraphs Jp and Jk' A
typical term arising from the expansion of the P - exponentiale in
(6) is pictured in fig.2.

d.Collinear subgraph

The contribution of the collinear subgraph Jp, for instance, s
determined by equation (5) and it depends on the dimensionless

-HZ Q2
variables ;5 and ;5: We will show that
d In FJ
P = [43
d In @2 @

to all orders of perturbation theary. pet

us  first +trans
equality (5) ae follows: ranstorn

[#(0) Jo>p* o
< 110>77F ) =1imc w[ s] H
E—’mpf » Jo><o|y Pﬂxp[lgfd?k A (kt)]\l’(O)|p>
2 0
*exp[ 195 s] (8)

The P -
eéxponential entering in. this rejatien is ordered along the

1
ight-1ike direction of vector k It allows one to apply the 1light,
cone operator product expansion /11 tzs to the right-hand siie‘ b
d g ] ae o

(8). Introducing as usual the reduced matrix elemente
Hop u [T
<p|¥(0)]0><0|7 D 1. p "wm)fr»J =pp! puno [“—2]
e ni,2)’
one I1I1nas trom (8): i

o . LJ 2 n 2
<p|%(0) 0>y FJP: lim p EO%[iQ—Z s] o [“—2] exp[-i‘iz. s] (9)
5—a0 nz= Y] A H .

A one-loop calculation of On gives for n « ¥ _-

>,

2. a
2y o, % 1 2
n[)\Z] =1l- g F{[ L k+2 * f] In [;Lz]+ °°"5t}

that coincides with the well.

P
N

2
but for n » 52

2 2 a %
W) = el - Befurls 1
nl2 w2 im Cpyln [)\—2] ""1"[2] E*%

and doee not depend on n.

known expressicn /13/.

Substlfutlng this relation into (8)
find the one-loop* expreesion for F

2 zp'
F['u__lzl__sc Z[u__B u? 1 z
Jp AZ i= Cf In x2] 5 1n[:§] + 5+ % vip)

that satisfies (7). Using the reeults of in
properties of On 714/

we

vestigation of multiloop
it may be =shown that to all orders of




perturbation theory the matrix elements 0 do not depend on n. Hence
we conclude from (9) that F 'Ow[ 2]v(p), in accordance with
P

statement (7).
4.50ft subgrarh

The contribution of soft subgraph to the form factor (6) may be

rewritten as the so-called contour functional 710/

Fg = <01TPexp[ig_fdz“A“(z)]|0>Sy
c

where the contour ¢ is denoted by a double line in fig.2. Contour C
lies on the light-cone and therefore FS poasegsses additional (as
compared with nonlight-like C) logarithmic peculiarities. To study
its structure, let us shift momenta p_ and k,, from the light-cone

into the time-like direction: p2 = kz = H2 and consider the limit

2
!f — 0 of the regularized contour functional Féreg)' It follows

Q .
from the definition of P - exponentials that Féreg) is not changed

under the following scale transformations: p — p k —A,k . That

1 2
i why F(reg) depends only on the invariant combination —%—— e..
on the cusp angle »:

of the contour C shown in fig.2. Therefore the remaining dimensional

I,.(reg)

arguments of t.e., u and A, give the momentum scales for the

Feynman integrals arising from the expansion of F(reg). As . a result,
the parameter u may be thought as an ultraviolet cut ~off for F(rex)

and the dependence of F(reg)

on u is closely related with the
renormalization properties of contour functional. Renormalization

/15,18/ and for the
/16/:

properties of contour functionals are well known
particular contour of fig.2 they may be expressed as follows

3 a (reg) -
[ Bt P * Tougptrie) ] BT [ 2 ] = 0, (10)
where (r,g8) is the <cusp anomalous dinension. In the

2cusp
L L » (or y — ®) T (r.g) has the asymptotics N/,

limit
HZ Ccusp

 ——

2
Q
(r.8) = ln 5 (&) + o[ln ] (11)

cusp

Fousp'®) = { ] CF{ %7] -n %5 }'

F(res)

Cl.l Bp

where n, equals the number of quark flavors. obeys condition
/9, 10/ F(re')[r 1] =1 allowing one to solve equatlon (10):
2 u

Q
(reg){ u ) _ dt
3 {r.xz] = exp[-1n o % (a(t)) + of1° 2] |E
A2

cusp

where equality (11) is used. The r.h.s. of this relation depends
explicitly on M. This dependence, being singular in the 1limit

(reg)
Q2 d ln Fs
2 @, becomes regular in the derivative: —5— This means
M d lIn Q
that P does not depend on the position of the contour C
d lIn Q
(£fig.2) with respect to the light-cone. Therefore we find:

4 1n Fg d ln r‘“" M
—= = lim —"'—'w— -1 =T (&(t)). (12)
d ln Q° M—0 d 1ln Q“ X2 v mmer

Two-loop calculation points out ni/ that rcusp>0 and therefore Fs—+

0 for A/u — 0. Thia property of Fcuup ig valid to all orders of oy
since it is a consequence of the following estimate of the magnitude
of the contour functionals calculated within the framework of
perturbation theory /187, Fs < exp(-k P(C)) where P(C) is a

perimeter of the contour C (fig.2) being equal to infinity.

S.Calculation of the guark form factor

Let ue calculate the quark electromagnetic form factor with
factorization relation (3) and with the established properties of
the sub(raphs Difforentiatinx both the sides of equation (3) with
respect to Q He obtain:

2
d 1ln F d 1n By ¢

A j r M ouep E(t)) s (13)

d In Q

where (7) and (12) have been taken into account. The l.h.s. of (13)



should not depend on p since the latter is arbitrary momentum scale

dividing regfons (2). As a result, FH obeys the renormalization

d 1In FH{QZ] N

group equation:

) a ’
-+ A e ] = (e)-
[ ou % ) 4 1 Q¢ - cusp
The general solution of this équation:
2
d 1n F [ z] Q at
———— = T(g(@?)) _r T oueplE(ED) (14)
d 1n @° LS
y
depends on a néw function I'. The one-loop value of T' is found by
a
comparing (4) with expression (14): T = % ;BCF. Substituting

equation (14) into (13) we derive the final equation for the form

factor:

2

Q% Q

L”—[x] = rg@?y - [ & (8(t)).
22t cqu

d 1n @2 x

The solution of this equation contains all the logarithmic
stisne to the auark farm feotor not eurnressed by rowars of

2

dt Q
27€ In¢ cusp(g(t)) r(15)

rxf
‘lo
N
A
1
Ty
m
o
Y
*
9
> — 0
|2
34
~
)
pid
34
1
>

where the functions rcusp and T are defined in (11) and (14). The

one-loop value FO may be found by comparing (15) with well-known
G
2
one-loop expression for the quark form factor: Fo—l an F[; ]
We cannot find the exact values of T I and FO but we can

cusp’
determine the asymptotices of the guark electromagnetic form factor

for Qz» kz. It follows from (15) that among all the logarithmic
corrections to F (controlled by Fcusp, r and FO) the leading ones,
i.e., corrections with the maximum power of logarithm per as, are
related to rcusp and ,consequently,
2
2. @2 »a? Vit . @2
F[z—z] ——3 exp _Izﬁ ln—t Cusp(g(t,)) .
. AG. .

Since rcuep>0 to all orders of perturbation theory ,the quark
form factor is a rapidly decreasing functiom in the limit Q » kz
Moreover, the inclusion of nonleading logarithmic corrections, t.e..
calculation of rcuep to higher orders of a, only intensifies this
asymptotics.

6.Conclugion

In the present paper, we have shown that factorization is valid
for the quark electromagnetic form factor in kinematice (1). The
factorization has allowed us to describe the double logarithmic
asymptotice of the form factor in terms of contour functionals and
matrix elements of composite twist-2 operators. Using the
renormalization properties of these new objecta and certain
information on their structure we have derived equation (15)
containing all the logarithmic corrections to the form factor. We
have established that the quark form factor is a rapidly decreasing
function of the traneferred momentum Q
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Kopuemckny T'.II.
lBaxop! nmorapudMpueckue acCHUMHTOTHKH B KXIT

E2-88-600

B neprypGarusnoft KXII ucciesyeTcs aCHMITOTHKAE 3N€KTpPO—
maruptioro dopmpakropa xmapka. llokazano, 4TO CynecTnyer
CBASDL Mexny pvaxuasl norapudMuHucckoll acumnroruxoitt dopmpax-—
TOpa M CBOHCTBAMH NepPeHOPMHPOBOK KOMTYDHuX GYyHKiiHOlajmoB
<0| TPexplig [ dz# AH(z)1| 0>. Buumcnen anmexTpoMaruMTHbI

dopmdakTop Oéguacconoro XBapka, YcranuoBineHOo, 4YTO HenHugu=-
pywupe norapupmHueckue nonpaBkH Kk dopmbakTopy CyMMHPYHOTCA
B OLICTPO yOhBalomyld 9KCHOHEHTY, 1@ USMCHASA NUAHPYIOMYI JBax-
Apl torapudMHUecKyl aCHMATOTHKY .

PaGora swmonieHa B JlaBopaTopuyt TeopeTHuecKol dHM3MKU
OUSH.

Ipenpusy O61enuHeniOro HHCTHTYTA ARGpPHEIX HecneoBanuil. [lyGna 1988

Korchemsky G.P,

Double Logarithmic Asymptotics in QCD

The infrared asymptotics of the quark electromagnetic
form factor 1is investigated within the framework of per-
turbative QCD. The deep connection between the double
lognr1thm1c asymptotics in QCD and renormalization proper-
ties of contour functionals <O | TPexp [-ig [ dz, ﬂ“(z)]| 0>
is found. In particular, the quark Llectromagnet1c form
factor is calculated for massless quarks, It is shown that
the nonleading logarithmic corrections to the form factor
are summed up to give a decreasing cxponential and they
do not destroy the leading double logarithmic result,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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