

обьединенный институт ядерных исследований
 дубна

K 75
E2-88-600 \in
G.P.Korchemsky

DOUBLE LOGARITHMIC ASYMPTOTICS
 IN QCD

Submitted to "Physics Letters B"

1. Introduction

Many years ago Sudakov discovered /1/ that there are processes in gauge theories which being calculated in perturbation theory contain double logarithmic corrections /2/. Investigation of these Sudakov effects in QCD began from multiloop perturbative calculations of leading double logarithmic corrections to the electromagnetic quark form factor F in the following kinematics /3/:

$$
\begin{equation*}
Q^{2}=-(p-k)^{2} \gg \lambda^{2} \gg m^{2}, p^{2}=k^{2}=m^{2}, \tag{1}
\end{equation*}
$$

where p and k are respectively momenta of an initial and a final quark with mass $m ; \lambda^{2}$ is a parameter in the infrared regularization (e.s., fictitious gluon mass). It was established that $13,4 /$:

$$
F=\exp \left(-\frac{a_{s}}{4 \pi} C_{F} \ln ^{2} \frac{Q^{2}}{\lambda^{2}}\right)+O\left(a_{B}^{n} \ln \ln -1 \frac{Q^{2}}{\lambda^{2}}\right)
$$

where $C_{F}=\frac{N^{2}-1}{2 N}$ for the gauge group $S U(N)$ and $a_{B}=\frac{g^{2}}{4 \pi}$. Since this expression is a rapidly decreasing function of the transferred momentum Q^{2}, the natural question arises: could the leading asymptotics of the form factor F be drastically changed by neglected nonleading logarithmic terms? Investigations of Sudakov effects in QED - for the electron form factor - allow one to give a negative answer /5/. Nevertheless, in QCD the algorithm of calculation of nonleading logarithmic corrections to the quark form factor has been formulated /6/ but the important question stated above remains unanswered.

In the present paper we calculate the electronagnetic quark form factor in the kinematics (1) and in a covariant gauge when quarks may be thought as masiless. We sum up all logarithmic corrections to the form factor and examine its nonleading asymptotics.

2. Factorization of the guark electromagnetic form factor

The quark electromagnetic form factor (denoted by F) is expressed through the amplitude \boldsymbol{m}^{μ} of quark elastic scattering in the following manner /2/:

$$
\mathbb{R}^{\mu}=\bar{u}(k) \gamma^{\mu} F v(p)+O\left(\lambda^{2} / Q^{2}\right),
$$

where $\bar{u}(k)$ and $v(p)$ are the wave functions of quarks. The form factor F is determined by the contributions of the diagrams pictured in fig. $1(a)$; among them the leading contributions to F, i.e., those not suppressed by powers of λ^{2} / Q^{2} are given only by the diagrams of fig.1(b) $77,8 /$. These diagrams involve four subgraphs: H, S, J_{p} and J_{k}. The momentum l_{μ} carried by the internal lines of these subgraphs may belons to any of the following regions $/ 7 /$:
(a) hard subgraph H: $\left|1_{+}, 1_{-}, l_{T}\right|=O(Q)$
(b) collinear subgraph $J_{p}: 1_{+}=O(Q), 1_{-}=O\left[\frac{\lambda^{2}}{Q}\right], 1_{T}=O(\lambda)$
(c) collinear subgraph $J_{k}: l_{+}=O\left[\frac{\lambda^{2}}{Q}\right], l_{-}=O(Q), l_{T}=O(\lambda)$
(d) boft subgraph S: $\left|1_{+}, 1_{-}, 1_{T}\right|=O(\lambda)$
where $1_{ \pm}=\frac{I_{0}^{ \pm 1}}{\sqrt{2}}, 1_{T}=\left(1_{1}, 1_{2}\right)$ and $P_{-}=k_{+}=0, p_{T}=\mathbf{k}_{T}=0, P_{+}=k_{-}=Q=\left(Q^{2} / 2\right)^{1 / 2}$.
The contribution to the form factor of a diagram of fig. $1(\mathrm{~b})$ is expressed in a complicated way through the quantities of four tnelved subsuath abine inese are interactions of gluons emfted within collinear subgraphs J_{k} and J_{p} with particles belonging to hard (H) and soft (S) subgraphs. However, the expression for the quark form factor is essentially simplified by summing over all possible configurations of the diagrame of fig. $1(\mathrm{~b})$ with the use of the properties of particles belonging to subgraphs J_{k}, J_{p} and S $18,9 /$. The result of this summation is shown in fig.1(c) where double lines denote operators to be determined by equations (5),(6). Diagrammatically, fig.1(c) represents a factorization but with the momenta in the subgraphs restricted to particular regions (2). The contribution of these diagrams to the form factor may be expressed in the following form:

$$
\begin{equation*}
\bar{u}(k) r^{\mu} v(p) F=F_{S} F_{H} F_{J_{k}} r^{\mu} F_{J_{\mathbf{P}}}, \tag{3}
\end{equation*}
$$

where by F_{i} we denoted the contribution from a certain subgraph.
The hard subgraph H describes interaction of particles at short distances. All internal lines of H are off-shell. Therefore, the contribution of hard subgraph to the form factor depends only on Q^{2}

Fig. 1.(a) General structure of the digerame for the quark efectromagnetio form factor. (b) Diagram: determining the leading contribution to the form factor. (c) Basid factorization of the form factor. The dashed line reposente an external electromagnetic field

Fig. 2. A typical diagram arising from the expansion of the path - ordered exponential. The double line denotes the contour of integration
and the scale parameter μ which determines the lower boundary of

$$
\begin{align*}
& \text { off-shell momentum in (aa): } \\
& \qquad F_{H}=F_{H}\left(\frac{Q^{2}}{\mu}\right)=1-\frac{\alpha_{s}}{4 \pi} C_{F}\left\{\ln ^{2}\left[\frac{Q^{2}}{\mu^{2}}\right\}-3 \ln \left(\frac{Q^{2}}{\mu^{2}}\right\}+6-\frac{n^{2}}{6}\right\} . \tag{4}
\end{align*}
$$

The contribution of the collinear subgraph J_{p} is given by the expression:

$$
\begin{align*}
& F_{J_{p}}=\langle 0| T \mathrm{E}_{\mathbf{k}}(0, \infty) \Psi(0)|\mathrm{p}\rangle_{J_{p}} \tag{5}\\
& \text { e quark field operator, }\rangle_{\text {is }}
\end{align*}
$$

where $\Psi(0)$ is the quark field operator, $|p\rangle$ is one quark state with momentum p. The operator $E_{k}(0, \infty)$ has appeared in this equation as a result of summation of fig. $1(b)$ over a number of collinear gluons emitted from J_{p} and absorbed by H. It is equal to a path-ordered exponential:

$$
E_{k}(0, \infty)=P \exp \left[1 g \int_{0}^{\infty} d s k_{\mu} \hat{A}^{\mu}(k s) e^{-\varepsilon s}\right], \varepsilon \rightarrow 0
$$

The subscript J_{p} in equality (5) reminds us that the momenta of all particles from $F_{J_{p}}$ are to be restricted by the collinear region (ib). Contribution of the collinear subgraph J_{k} may be expressed as follows:

$$
{ }_{F_{J_{k}}}=\langle k| T \Psi(0) \underset{-p}{+}(0, \infty)|0\rangle_{J_{k}},
$$

where " + " denotes hermitian conjugation. The meaning of the subscript J_{k} is the same as in equation (5).

For the contribution to the form factor of the soft subgraph we derive $19,10 /$:
where the subscript S points out that the momenta of all internal particles of ${ }^{F_{S}}$ belong to the soft momentum region (id). P - exponential originate in this equation from summation over soft gluons of fig. $1(b)$ absorbed by the collinear subgraphs J_{p} and J_{k}. A typical ter arising from the expansion of the P - exponential in (6) is pictured in fig. 2.

3. Collinear subgraph

The contribution of the collinear subgraph J_{p}, for instance, is determined by equation (5) and it depends on the dimensionless
variables $\frac{\mu^{2}}{\lambda^{2}}$ and $\frac{Q^{2}}{\mu^{2}}$. We will show that

$$
\begin{equation*}
\frac{d \ln F_{J_{P}}}{d \ln Q^{2}}=0 \tag{7}
\end{equation*}
$$

to all orders of perturbation theory. tot we first transform equality (5) as follows:

$$
\begin{align*}
& \langle P| \Psi(0)|0\rangle \gamma^{\mu} F_{J_{P}}=\lim _{s \rightarrow \infty}\left\langle\left.\bar{\Psi}\left(\frac{2 k s}{\mu^{2}}\right) \right\rvert\, 0\right\rangle\langle 0| \gamma^{\mu} \operatorname{Pexp}\left(i g \int \Delta t k_{\nu} A^{\nu}(k t)\right) \Psi(0)|p\rangle J_{p} \\
& * \exp \left(-i \frac{Q^{2}}{\mu^{2}} \mathrm{~s}\right) \text {. } \tag{8}
\end{align*}
$$

The P - exponential entering in. this relation is ordered along the light-like direction of vector k_{2}. It allows one to apply the light, cone operator product expansion $/ 11.12 /$ to the right-hand side of (8). Introducing as usual the reduced matrix elements

$$
\begin{aligned}
& \langle p| \Psi(0)|0\rangle\langle 0| \gamma^{\mu} D^{\mu} \ldots D^{\mu} n_{\Psi(0)|p\rangle_{J}}=p^{\mu} p_{1}^{\mu} \ldots p^{\mu} n_{0}\left(\frac{\mu^{2}}{\lambda^{2}}\right) \\
& \operatorname{trom}(8):
\end{aligned}
$$

one annas from (8):

$$
\begin{equation*}
\langle p| \Psi(0)|0\rangle \gamma^{\mu} E_{J_{p}}=\lim _{s \rightarrow \infty} p^{\mu} \sum_{n=0}^{\infty} \frac{1}{n!}\left[i \frac{Q^{2}}{\mu^{2}} s\right)^{n} \sigma_{n}\left[\frac{\mu^{2}}{\lambda^{2}}\right] \exp \left[-i \frac{Q^{2}}{\mu^{2}} s\right] . \tag{9}
\end{equation*}
$$

A one-loop calculation of o_{n} gives for $n<\frac{\mu^{2}}{\lambda^{2}}$;

$$
o_{n}\left[\frac{\mu^{2}}{\lambda^{2}}\right]=1-\frac{a_{k}}{4 \pi} C_{F}\left\{\left[2 \sum_{k=0}^{n-1} \frac{1}{k+2}+\frac{1}{2}\right] \ln \left[\frac{\mu^{2}}{\lambda^{2}}\right]+\text { cons }\right\}
$$

that coincides with the well-known expression $/ 13$, but for $n>\frac{\mu^{2}}{\lambda^{2}}$

$$
o_{n}\left(\frac{\mu^{2}}{\lambda^{2}}\right) \rightarrow o_{\infty}\left[\frac{\mu^{2}}{\lambda^{2}}\right)=1-\frac{\alpha_{s}}{4 \pi} c_{F}\left\{\ln ^{2}\left[\frac{\mu^{2}}{\lambda^{2}}\right]-\frac{3}{2} \ln \left[\frac{\mu^{2}}{\lambda^{2}}\right]+\frac{1}{2}+\frac{\pi^{2}}{2}\right\}
$$

and does not depend on n. Substituting this relation into (8) we find the one-loop "expression for $F_{J_{p}}$

$$
F_{J_{p}}\left[\frac{\mu^{2}}{\lambda^{2}}\right]=\left[1-\frac{\alpha_{g}}{4 \pi} C_{F}\left\{\ln 2\left[\frac{\mu^{2}}{\lambda^{2}}\right]-\frac{3}{2} \ln \left[\frac{\mu^{2}}{\lambda^{2}}\right]+\frac{1}{2}+\frac{\pi^{2}}{2}\right\}\right] v(p)
$$

that satisfies (7). Using the results of investigation of maltiloop properties of $O_{n} / 14 /$ it may be shown that to all orders of
perturbation theory the matrix elements O_{n} do not depend on n. Hence we conclude from (9) that $E_{J_{p}}=0_{\infty}\left(\frac{\mu^{2}}{\lambda^{2}}\right)^{n} v(p)$, in accordance with statement (7).

4. Soft guberaph

The contribution of soft subgraph to the form factor (6) may be rewritten as the so-called contour functional 10/:

$$
\mathbf{E}_{S}=\langle 0| T P \exp \left[i E \int d z_{\mu} \hat{A}^{\mu}(z)\right]|0\rangle_{S}
$$

where the contour G is denoted by a double line in fig.2. Contour C lies on the light-cone and therefore F_{S} possesses additional (as compared with nonlight-like C) logarithmic peculiarities. To study its structure, let us shift momenta ${\underset{\sim}{\mu}}^{\mu}$ and k_{μ} from the light-cone into the time-like direction: $p^{2}=k^{2^{\mu}}=M^{2}$ and consider the limit $\frac{M^{2}}{Q^{2}} \rightarrow 0$ of the regularized contour functional $F_{S}^{(r e g)}$. It follows Qrom the definition of P - exponentials that $F_{S}^{(r e g)}$ is not changed under the following scale transformations: $P_{\mu} \rightarrow \lambda_{1} p_{\mu}, k_{\mu} \rightarrow \lambda_{2} k_{\mu}$. That is why $\mathrm{F}_{\mathrm{S}}^{(\mathrm{reg})}$ depends only on the invariant combination $\frac{(\mathrm{pk})^{2}}{\mathrm{p}^{2}}$, i.e.. on the cusp angle γ :

$$
r=\ln \frac{Q^{2}}{M^{2}}
$$

of the contour C shown in fig. 2. Therefore the remaining dimensional arguments of $\mathrm{F}_{\mathrm{S}}^{(\mathrm{reg})}$, i.e., μ and λ, give the momentum scales for the Feynman integrals arising from the expansion of $\mathrm{F}_{\mathrm{S}}^{(r e g)}$. As a result; the parameter μ may be thought as an ultraviolet cut-off for $F_{S}^{(r e g)}$ and the dependence of $F_{S}^{(r e g)}$ on μ is closely related with the renormalization properties of contour functional, Renormalization properties of contour functionals are well known $/ 15,16$ / and for the particular contour of fig. 2 they may be expressed as follows 16/:

$$
\left[\mu \frac{\partial}{\partial \mu}+\beta(g) \frac{\partial}{\partial g}+\Gamma_{\text {cusp }}(\gamma, g)\right] F_{S}^{(\operatorname{reg})}\left[\gamma, \frac{\mu^{2}}{\lambda^{2}}\right]=0
$$

where Γ^{2} cusp (γ, g) is the cusp anomalous dimension. In the limit $\frac{Q^{2}}{M^{2} \rightarrow \infty}($ or $\gamma \rightarrow \infty) \Gamma_{\text {cusp }}(\gamma, g)$ has the asymptotics $117 /$:

$$
\begin{gather*}
r_{\text {cusp }}(\gamma, g)=\ln \frac{Q^{2}}{M^{2}} \Gamma_{\text {cusp }}(g)+O\left[\ln ^{0} \frac{Q^{2}}{M^{2}}\right] \tag{11}\\
\Gamma_{\text {cusp }}(g)=\bar{a}_{\bar{B}} C_{F}+\left[\frac{a_{B}}{\bar{n}}\right]^{2} C_{F}\left\{N\left[\frac{67}{36}-\frac{\pi^{2}}{12}\right\}-n_{f} \frac{5}{18}\right\},
\end{gather*}
$$

Where n_{f} equals the number of quark flavors. $\mathrm{F}_{\mathrm{S}}^{(\text {reg })}$ obeys condition 19,10/: $\mathrm{F}_{\mathrm{S}}^{(\mathrm{reg})}[r, 1]=1$ allowing one to solve equation (10):

$$
F_{S}^{(r e g)}\left(\gamma, \frac{\mu^{2}}{\lambda^{2}}\right)=\exp \left[-\ln \frac{Q^{2}}{M^{2}} \int_{\lambda^{2}}^{\mu^{2}} \frac{d t}{2 t} \Gamma_{\text {cusp }}(g(t))+O\left(\ln \frac{0}{q^{2}} M^{2}\right)\right]
$$

where equality (1i) is used. The r.h.s. of this relation depends explicitiy on M. This dependence, being singular in the iimit $\frac{Q^{2}}{M^{2}} \rightarrow \infty$, becomes regular in the derivative: $\frac{d \ln F_{S}^{(r e g)}}{d \ln Q^{2}}$. This means that $\frac{d \ln F_{S}^{(r e g)}}{d \ln Q^{2}}$ does not depend on the position of the contour C (fig.2) with respect to the light-cone. Therefore we find:

$$
\begin{equation*}
\frac{d \ln F_{S}}{d \ln Q^{2}}=\lim _{M \rightarrow 0} \frac{d \ln F_{S}^{(r e g)}}{d \ln Q^{2}}=-\Gamma_{\lambda^{2}} \frac{d t}{2 t} \Gamma_{i n g r}(g(t)) \tag{12}
\end{equation*}
$$

Two-loop calculation points out $/ 17 /$ that $\Gamma_{\text {cusp }}>0$ and therefore $P_{S} \rightarrow$ 0 for $\lambda / \mu \rightarrow 0$. This property of $\Gamma_{\text {cusp }}$ is valld to all orders of a_{s} since it is a consequence of the following estimate of the magnitude of the contour functionals calculated within the framework of perturbation theory $/ 18 /: F_{S} \leq \exp (-k P(C))$ where $P(C)$ ie a perimeter of the contour C (fig. 2) being equal to infinity.

LCalculation of the guark form factor

Let us calculate the quark electromagnetic form factor with factorisation relation (3) and wrth the established properties of the subgraphs. Differentiating both the sides of equation (3) with respect to Q^{2} we obtain:

$$
\begin{equation*}
\frac{d \ln F}{d \ln Q^{2}}=\frac{d \ln F_{H}}{d \ln Q^{2}}-\int_{\lambda^{2}}^{\mu^{2}} \frac{d t}{2 t} \Gamma_{\text {cusp }}(g(t)) \cdot \tag{13}
\end{equation*}
$$

where (7) and (12) have been taken into account. The 1.h.s. of (13)
should not depend on μ since the latter is arbitrary momentum scale dividing regfons (2). As a result, F_{H} obeys the renormalization group equation:

$$
\left[\frac{\partial}{\partial \mu}+\beta(g) \frac{\partial}{\partial g}\right] \frac{d \ln F_{H}\left(\frac{Q^{2}}{2}\right)}{d \ln Q^{2}}=\Gamma_{c u s p}(g)
$$

The gereral solution of this equation:

$$
\begin{equation*}
\frac{\left.d \ln F_{H}\left[\frac{Q^{2}}{d}\right]=\Gamma\left(g\left(Q^{2}\right)\right)-\int_{\mu^{2}}^{2 t} \frac{d t}{2 t} \Gamma_{c u \in P}(g(t)),{ }^{2}\right),}{} \tag{14}
\end{equation*}
$$

depende on a new function Γ. The one-loop value of Γ is found by comparing (4) with expression (14): $\Gamma=\frac{3}{4} \frac{a}{n}^{B^{B}} C_{F}$. Substituting equation (14) into (13) we derive the final equation for the form factor:

$$
\frac{d \ln F}{d \ln Q^{2}}\left[\frac{Q^{2}}{\lambda}\right]=\Gamma\left(g\left(Q^{2}\right)\right)-\int_{\lambda}^{2} \frac{d t}{2 t} \Gamma_{\text {cusp }}(g(t))
$$

The solution of this equation contains all the logarithmic corrections to the gusut from fentor not euprresest hy rowers of x^{2} / Q^{2} :

where the functions $\Gamma_{\text {cusp }}$ and Γ are defined in (11) and (14). The one-loop value F_{0} may be found by comparing (15) with well-known one-loop expression for the quark form factor: $F_{0}=1-\frac{a_{B}}{4 \pi} C_{F}\left(\frac{7}{2}+\frac{2}{3} \pi^{2}\right)$.
We cannot find the exact values of Γ

We cannot find the exact values of $\Gamma_{\text {cusp }}, \Gamma$ and F_{0} but we can determine the asymptotics of the quark electromagnetic form factor
for $Q^{2}>\lambda^{2}$. It follows from (15) that among all the logarithmic corrections to F (controlled by $\Gamma_{\text {cusp }}, \Gamma$ and F_{0}) the leading ones, i.e. corrections with the maximum power of logarithm per a_{s}, are related to $\Gamma_{\text {cusp }}$ and , consequently,

$$
F\left[\frac{Q^{2}}{\lambda^{2}}\right] \xrightarrow{Q^{2} \gg \lambda^{2}} \exp \left\{-\int_{\lambda^{2}}^{2^{2}} \frac{d t}{\ln \frac{Q}{t}^{2}} \Gamma_{\text {cusp }}(g(t))\right\}
$$

Since $F_{\text {cusp }}>0$ to all orders of perturbation theory, the quark form factor is a rapidly decreasing function in the limit $Q^{2} \gg \lambda^{2}$. Moreover, the inclusion of nonleading logarithmic corrections, i.e., calculation of $\Gamma_{\text {cusp }}$ to higher arders of α_{s}, only intensifies this asymptotics.

6. Conclubion

In the present paper, we have shown that factorization is valid for the quark electromagnetic form factor in kinematics (1). The factorization has allowed us to describe the double logarithmic asymptotics of the form factor in terms of contour functionals and matrix elements of composite twist-2 operators. Using the renormalization properties of these new objects and certain information on their structure we have derived equation (15) containing all the logarithmic corrections to the form factor. We have established that the quark form factor is a rapidly decreasing function of the transferred momentum \dot{Q}^{2}.

Acknouledaement.

I would like to thank A.V.Ffremov, V.G.Kadyshevsky and A.V.Radyushkin for helpful discussions and support. I wish to thank B.L.Ioffe, A.V.Smilga and A.N.Vasiliev for useful discussions.

Referencer.

1. V.Sudakov, ZhETF, 3(1956)65.
2. P.M.Fishbane and J.D.Sullivan, Phys.Rev.D4(1971)458.
3. J.M.Cornwall and G.Tiktopoulos, Phys.Rev.D13(1976)3370;
V.V.Belokurov and N.I. Useyukina, Phys.Lett.94B(1980)251.
4. J.Frenkel and J.C.Taylor, Nucl. Phya.B116(1976)185.
5. A.H.Mueller, Phys. Rev. D20(1979)2037;
J.C.Collins, Phys.Rev.D22(1980)1478.
6. A.Sen, Phys.Rev.D24(1981)3281.
7. S.Libby and G.Sterman, Phys.Rev.D18(1978)3252;
R.R.Ellis ot al., Nucl.Phys.B152(1979)285;
D. Amati et al. Nuel. Phys. R146(1978)29;
A. H. Mueller, Phys Fev. D18(1978)3705;
A.V.Efremov and A.V. Fadyushkin, Teor. Mat.Fiz.44(1980)17.
8. J.C.Collins, ANL-HEF-PF-84-36.
9. G.P.Korchemeky and A.V.Radyushkin. Sov. J. Nucl. Phys. 45 (1987)910.
10. G.P.Korchemsky and A.V.Radyushkin. Phys. Lett. 171B(1986)459
11. K.G.Wilson, Phys. Rev. 179(1969)1499;
R.A.Frandt and G Preparata, Nucl. Phys.B23(1971)541
12. N. Christ et al. Fhys. Rev. D6(1972)3543.
13. D.J.Gross and F.Wilcsek. Phys.Rev. D9(1974)980:
H. Georgi and H.D.Politzer. Phys.Rev.Dg(1974)416.
14. S. V. Mikhailov and A.V.Radyushkin. Nucl Phys.B254(1985)92.
15. A.M.Polyakov, Nucl. Phys. B164(1980)171:
I. Ya.Aref eva, Phys. Let.t. 93B(1980)347;
V.S. Dotsenko and S.N.Vergeles. Nucl Fhys.B163(1980)189;
R.A. Rrandt ot at. Phys. Rev. T2 4 (1981)879.
16. R.A.Brandt et al. Phys. Kev. T2:6(1982)3611.
17. G.P.Korchemsky and A.V. Radyuzhkin, Nucl. Phys.B283(1987)342.
18. K.G.Wilaon. Phys.fev. [10(1974)2445.

Корчемский Г.П.

Дважды логарифмические асимптотики в КХД
В пертурбативной КХД исслепуется асимптотика электромагнитного формфактора кварка. Іоказано, что сушестнует связь между дчажды логарифмической асимптотикой формрактора и свойствами перенормировок коитурных фуикционалов <0| TPexp[Ig $\left.\int \mathrm{dz}_{\mu} \mathrm{A}^{\mu}(\mathrm{z})\right] \mid 0$. Вычислен электромагнитный формфактор беэмассового кварка. Устаповлено, что нелидируюцие логарифмические поправки к формфактору суммируются в быстро убываюцую экспоиеиту, не изменяя лидирующую дзаж ды логарифмическую асимптотику.

Работа выполнена в Лаборатории теоретической физики ОияИ.

Препрринт Объединенного института вдерных исследованиһ. Дубна 1988

Korchemsky G.p.

Double Logarithmic Asymptotics in QCD
The infrared asymptotics of the quark electromagnetic form factor is investigated within the framework of perturbative QCD. The deep connection between the double logarithmic asymptotics in QCD and renormalization properties of contour functionals $\langle 0| \operatorname{TPexp}\left[\mathrm{ig} \int \mathrm{dz}_{\mu} \mathrm{A}^{\mu}(\mathrm{z})\right]|0\rangle$ is found. In particular, the quark electromagnetic form factor is calculated for massless quarks. It is shown that the nonleading logarithmic corrections to the form factor are summed up to give a decreasing exponential and they do not destroy the leading double logarithmic result.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Index \quad Subject
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

