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1.Introduction

In recent years, lnterest has significantly increased 1n the
study of stochastlc processes and nonlocal (or extended) objects -
fields;this 1s due to the fact that 1t has been possible, first, to
establish an intimate conneotion between the theory of stochastice
processes-and quantum physics 1-5 s where earlier references can be
found, and second, to construct unified theory of all types of ele-
mentary particle interactions inoluding gravitational force’ ~ ',
The former is known under the general name of stochastic quantizaw
tion of systems. There are different approaches to desoription of
stochastic processes, which formally colnoide with quantum phenomena,
Among these the attraotion of the stochastic quantization method
proposed by Parisi and Wu/ll/ is that it has succeeded in reducing
quantum fileld theory to a gaussian stochastlc process called the
Langevin equation, which usually runs in an auxiliaery "fifih-time".

Other direotions are being developed in the investigation of
nonlocal~extended objects. Some of them have been origlnally arisen
from intrinsic problems of local quantum field theory like the
ultraviolet divergences, the problems of electron self-energy, eto.
To solve these problems it 1s usually assumed that 1dealized conw
oept of the locality may be vioclated at small distances and some
statlc charaoteristics of elementary particles must be described by
nonlocal values with distributions over space, for example, ocharge
and mass of the particle may be presented in the form

€=fa’r"_g(r‘:w , m=[dF m7) -

On the other hand, mathematically it means that Dirac ¢ '—function
distribution should be changed by nonlocal distribution of the

types (for detail, see Efimov /12/ )
< > G )
o0 => Ko =§ o (0f)" S (1.1)

or for the wave function of the particle

Blx) = pray = [y Kixy) POy (1.2)




¢ ¢6ﬂzy is local field), i.e., elementary particles may be under—
stood as a spread-out (or nonlocal) objects with some dimension ¢
of length (see Fig.1l). -
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Figure 1.

Ill@&stration of local and nonlocal objects dependl on the
dimensign of space: a) local objeot; bg spread-outnfextended)
obJject {ball, bag,etc.) in the three dimensional casej c¢) extended
object (string) in the one-dimensional case,

It should be noted that from pure geometrical point of view,
relativistic invariant description of extended objects is possible
only in the one dimensional case, 1l.e., relativistic dynamics for
string may be successfully constructed, Nevertheless, from field
point of view, relativistic invariant construction of interaction
ricture between nonlocal objects of types (1.2) 1s also achleved due
to relativistic invariant properties of nonlocal distributions (1.1).
In the last case, basic peculiarity of introducing nonlocality G.1)
is that it leads to change of the particle propagator, for example,
for scalar particletl

A(z-y)= o/ T{ dwdyflo) => (1.3

=> Dir-y) = o/ T{pto peyiflo) -‘7};% f a’,f)e"}”wmff; _,_,__: !;g
-07~1

where L??fé?D is the Fourler transform of nonlocal distribution
Kz .

In this paper, we present method of introducing nonlocality
(1.1)-(1.3) into stochastic quantization scheme within the framework
of %%gggz}n and Schwinger-Dyson formalisms (for detail, see Bern et
al,’ ~~* ). These two equivalent formulations describe gquantum
field theory in afL dimensions by means of markovian stochastic
processes in (d+l) dimensions via a regularized Parisi.Wu-Llangevin
equation and by d-dimensional prescription via regularized Schwinger~
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Dyson equatlons, respectively. We assume that the noilse term in
these equations plays double role 1in the theory; it controls the
quantum behaviour of the theory and at the same time it carries
nonlecality in stochastlc equations. Further, we show that scheme
obtained by such a way is equlvalent to the nonlocal theory with
regilarized propagator of the type of (1.3).

An ocutline of the present paper is as follows. Sec,2 introduces
the nonlocality into the (d+1)-dimensional Langevin formulation for
the scalar theory. In Sec.3 we discuss the equivalent d-dimensional
regularized Schwinger-Dyson equations, and thelr more-or-less conw
ventional weak coupling expansion. Sec.4 is devoted to introduction
of nonlooality into gauge theory and to reformulation of gauge-co-
variant langevin systems in (d+l).dimensions, for which we derive
the regularized Langevin-Feynman rules., These rules are applied in
Sec.b to a computation of the one-loop gluon mass in OCD4. Ag
sketched in ref, due to Bern et al, sy the mass 1s =zero, providing
an explicit check of gauge-invarianoe of thils order for entire ana-
lytic regulators. Sec.7 deals with the simplest gauge theory scalar
electrodynamics. This last section has preparative character in order
to generalize our prescription to the nonabellan theory and the
serious scholar may be advised to begin with this case.

2, Nonlocal Gaussian Noise and Regularized Langevin Systems for
the Scalar Theory

2.1. Nonlocal Noise

We consider the markovian Parisi.¥Wu Langevin system for a
d-dimensional theory of a scalar local fleld ¢ﬁﬁt} with Buolidean
action 8

ERY
boRe
where t 1s additional fictltlous ™ ifth-time" variable, x are
d--dimensional Euclidean coordinates and (x,t) is the usual local
Gausslan noise satisfying the following conditlon

Aplxt) 7(yt)>? = Z-d?f—r) dm;'x-y). (2.2)

Now questlon arises how to introduce nonlocality into this
stochastic equatlon in order to obtaln equivalent stochastlc formu-
lation for the nonlocal field (P (x) (1.2) with propagator (1.3)
in the Buclidean metric. We assume that the noise term in (2,1)
carries nonlocality only and by analogy with (1.2), in this case,
it takes the form

(ﬁ(x,f = - (x,t) + i, ) (2.1



pext) = Nat)= Jdy) Kex-3) peyd), (2.3)

where (d:v) =a/:(.// , and A7z) 1s monlocal distribution investigated

in detail by Erimov/ 12015/ The nonlocal distribution A”(x-y):;(f,’(aj
that multiplies the nolse is a function of the Laplacian

ny =f(dk) (.a)xz (?“'Ly 5 (2-4)

(Bh, = 8~ &y

which guarantees that ij(a) = K)x(a@) . Ve will choose here a
wide class of distribiutions

K, (@)=L sy ()" Car-y) (2.5

for which the ordinary Parisi-Wu equation 1s regained in the limit
£—0, Luey Ky (a) gsg Iay) .

2.2, Nonlocal Distributions

We gee that the function (2.5) is the generalized form of the
well~known local Dirac ~function. 4s usually, its space-~time
properties are investigated in the Minkowski space~time with metrio

ng [z:—fﬂ--‘%--f”=1 ; &‘—'0 , M#V) end depends essentially
or the sequence of coefficients (generally speaking, they are
compex numbers). We say that the generalized function (2.5) 18 glven
in some test function space 1f for any F€ 2 the functional

(K.f) "”‘fﬂ'-%"(?x)ﬁz) =§@§'F/Mﬂ”ffx) < oo (2.6

x=0

is well-defined, i.e., the obtained series converges absolutely.
Passing to the momentum space in (2.6), we obtain

(K. f) = [dp /g’,o‘/ﬂﬁp) < 0o, (2.7)
where
Rty =52 tor 070"

and f(p) is the Fourier transform of f(-‘l') . In other words, the
generaliged function (2.5) is given on X 1if series (2.8) defines

4

¥ 2 1 (2.7) converges
2 1 and the integra
unction A7pYY tor all p gee
toe & fme&/'f. Both conditions (2.6) and (2.7) are equivale
o m;: nown by Efimov 15/, basic physisal prinoiples Such(285)
> £ .
unitarity, causality dictate that as a Fourler transform : P et
1ytic functioa should be ehosen. Further, we ar s
e e putions A7z for which &7z) (2.8) are

tri
only in the class of dis o e
en’cire functions of the variable Z with a finite order of gr

= 2 - 00
so>0» 1/2 and which decrease rapidly enough when A IO

in the Euclidean direction). . -
(n In the Buclidean domain of the varlable /7 for the Four

transform (2.8), the Mellin representation

Cr 1. 5 (2.98)
/‘\/(‘/nge) =27{ jﬂ/}' S’,‘,’,{;} /25(/”’*/2:2) 2.9a
—ﬂw'oo
or 7?—1.03
/ Y 23 2)¥ (2.9%)
V?—,g’!’)*[/((ﬁ‘t’?]gzr_,[iz’; —5}’%‘ O3 0m+p2)
(1<g<p)

and ZAE) depends on the
'yalid, The form of functions Z(/(j)
;:z:xaof the functien K'(‘/%ztﬂ) , For example, if
. F4
212 . _ 2 -4 /(=5’”‘%') ,
I/; = ( (,:):5/;)”/._‘_””{;)2 (SM’J/K COS;) f 9 2
sin

(2.9¢)

=) Y =expi-£)

Y, =2°111+s) ZA/E.
where Jg(«) 1s the ;;essel- sunction for some given value S>0
and £= [m* ) 7%, then
U x)= 927 (2xt +F 4 8) [ 2x)
W, (z) = o7 [(3+22)
Yy = 23 (27 = 1) [ 115+ Ex)

— [(r+s)
y‘/(‘x) - 22.‘{ /“’(’/.*x)/"{’,’f‘s*z)

(2.94)

it




The physical meaning of form factors Ff%ng%) consists of
changing the form of potentials between interacting fields (for
example, the Coulomb and Yukawa laws) at small distances and in
maklng the theory finite in each order of the perturbation seriles of
the theory of coupling constant (Efimov’/ 17 and Namsrai’ 4 Je The
question about a possible unjque cholce of the form-faotors was
d1scussed by Efimov/ls/ (see also Papp,/lel). Efimov/15/ has shown

that the objeots constructed by distributions A7z) (2.5) are
gpread out (nonlooalizea) over space. Thus, the relativistio inva-
rignt dlstributions A7) give a correot description of extended
objeotss In this oase, roughly speaking, the parameter e? may be
identified with the sime of an extended object (a Particle).

Our next goal is in introducing such type of the nonlocality
into stochastic equations. We now turn to this probvlem,

243+ Regularized langevin Systems for the Soalar Theory

With the assumption (2.3), equation (2.1) acquires now the
following form

95.(1;1‘)*-"' '}%@ ¢) +f(ag,),(/(1,y/7(%f), (2.10)

Suoh type of expression (2,10) gives rise o realize our programme
mentioned in a previous work {Namsrai 4 ). We notioe that our
stochastic brescription using entire analytlo regulators 1ﬁeluding
exponential ones may be teohnically superior and useful for nonper-
turbative analysts, which appeared already in a paper due to Doering

using the soalar prototype regulator described by Bern et al./lj/.
4s 1n the usual local stochastic formulation, our Prescription for the
nonlooal Euolidean Green functions of the theory

SFLSc)] > =fgm AL, 4] (2.11)

completes the ocomputational soheme,

Adocording to Bern et al./lj/ the method expounded in this seotion
13 sasy to be gensralized for a looal symmetry, which will be disous—
sed 1n Seotion 5, In this oaseé, the only ohange in the sgheme is the

roplacement of Laplaolan by oovarkant Laplacian in Bga, (2.1)=(2.5)
and (2.10)0

We will further follow Bern et al./13’14/ everywhere and obtain
expliclt weak ooupling expressions for the equation (2,100, First
oonslder simpler oase

8= [tde) [£(2.8)32) +Fmb° + At ] (2.12)

To solve the esquation (2,10} with (2,12) and calculate correlation
funotlons in the free case, 1t 1s convenlent to introduoce the free
Green funotion ¢z, %) which satisfies

o
2 Gty (o-m) Gty =Sl

with the initial oondiltion
Q(x'/ {j = 0 ’ tL < O :

This equation I8 easily solved to glve the expliclt expressions for 61

Grat)=Bct) [(ep) exp [-ipz - (pem) £ ] (2.13)

where /%ﬁ)==cfzﬂ4@h)l « Thus, for (2.12) the integral formulation
of the system (2.10) 1s

¢ o i sl C2018)
Pl t)=[ldy) [t Cexy, t-¢) [Jidey K () prxty ~A By 0] - 2

Here AQ' is the first derivative of the potentlal and we have
employed the technioal devioe of choosing #=-00, so that the
system has equilibrated at any finite fifth~time., The integral equa-
tion may be iterated to any desired order (Parisi and Wu ))

as

’ ’ - o1%)
Beuts= [, )~ [6e A (6,00~ (6, [6nthi)=..)) @
7 7 £ Z
where 1t 1s used ocompaot notation

Goy = Gla-2, , £-1,) (2.16)
(Kp ) = [td4) Koy (a) Py

‘f = jﬂﬂt&;)_/ééﬁ :

1

Agoording to Bern et al./lj/ for oonorete oalculatlon purpose 1t ta
oonvenlent to represent this iteratlon by Langevin “tree diagrams®,


http:analys:.ts

as shown in Fig.2 for the expliolt cholge 2=1y¢$%% In these
dilagrams, eaoh line corresponds to a Langevin Green funotlon (2.13).
and its arrow represents lts rotarded property, while the cross at
the end of a line represents a nonmlocal form-factor (or regulator)

times a nolse factor
X + > <+21

Fig- 2.
Langevin tree dlagrams through C%yflin the nonlooal stochastic scheme.

k 4

In the nonlooal stochastlc schemey, the tree dlagrams may be suocinotly
summarized in a simple set of Langevin tree rules, as shown for this
oase in Fig.3.

) (zt)
e ————

= Glx-z', 1~

—+—< = “z{é’

—— =y
Fig.:”

Langevin tree rules for the nonloocal stochastio qguantization
theory.

Using Bqs. (2.2),(2,13) and (2,15), we easily obtain oorrelam
tion funotions for the free oase f=0 s

D{xy; t~4,) = < Bz, ¢, )Py, 1‘:)>7 =

mint, €y}
= 2oyt ot Gr-2,4-) Qg ) [lde) K (@) K (3).

Taking into aooount the following obvious equalities

f @2,) Koz, (a) Ky () = [y VgD exp l-igea-y)]

8

and
min(t,t,)
v {- o 2t — € /‘({r'fzj(ﬁz*/”z)l
a[ dr exp{-te-ipem~(b-tlpon) | = 2 2074
we get
T I/'(_ 24?)
2 cx-y) ifr; Dix-y, b-4) = ﬁ¢)€ Py 77—2_%‘ (2,17

whioh 1s Jjust nonlocal Buoclidean Green function (1.3) for the scalar
theory. Here we have used definitions

K @)= fipe P P kirt) ,  Vigtd = (ke ]

This result may be also obtalned by using diagrammatio represenw
tation for the Langevin system. Thus, as a speclflo example, the
zeroth order momentum space nonlocal two-point funotion, shown in
Fig.4, oontains two looal langevin Green functions in the combination

4 4
D/:(P):ZV(W?/#«JW« Cn @) Gpy ) drt-t,)=

_ (2.18a)
= Vit ol expl-H-tild,] = Dip) expl-/-4:14, ] -
where we bave introduced
Dip) = VeptI 4, O, Ly=pamt (2418b)

Gy ps=Ob-t) expl-1h-414,] .

R . <A

e

Fig- 4.
Langevin line with a oontractlon in the nenlooal oase.

The result for the nonlooal free propagator 1s therefore

0 Y% A -, -2, 2(2
(s s =) €7 0l p) = fapy €7 71/5.%-}

or




%S~ Viptsg, I h= 20) 8.

(24180)
where

2 Q?/%*/?) 5137)‘{0"@% ) PO=[wp)% e %, (2.184)

In general, each line with a oross (oontraotion) in a Iangevin
dlagram 1s represented by a faotor ZZZQQ) which includes a factor
W/f’). In this connection, 1t should be noted that produot of

generalized functions kgy(ay may be understand as contraotion
operation only. For example,

Ky (a) =[s) Koy w) £y () (2,19)

or

xy “_/(/) zy ’
etc.

For further assimilatlon of calculation experience, we oonsider

gﬁ ~theory and calculate the nonlocal first—order three~point
funotion (Fig.5)

/Q?» [Q'I' /Q’P
4 P AN
. LN
¢ %
Fi e 5.

Langevin three~point diagrams in nonlooal
stochastic oase.

o

Let

A) = g8/3!

In this conorete case, iteraction solution (2.15) takes the form
in the momentum representation

Feet) = fp &P Gre
where

10

aﬁﬁg'szén%jggé? t%’OyZQZKJ {bUkaf)‘” j?ﬁﬁ;) x
f/'é Glatz, ¢ fd] ) Koy (@) P4, 4) [t )

[t G 28 it Ko .8
To caloulate <%, ¢ 96 e

Commed
following approximaxion
(a,- 46 Na-$4Xa,- -f4) =azs

and the Gaussian nolse property

(2+20)

for connected diagrams we use the

@-£(64qa +84a +4aq)

Cpint)poatpostpoit sy =9 18% ) B te)Sn) B -4, ) +

(2.21)
% Fur)Bid-t,) -1 )82 -
+-n) Bt ) Pt )02, ) + 8 oty ) B2, ) i1, ) B, ] -
After integration over 7. and & varlables, we have
M = o) on) + )6 ',)9/44)1‘
(b by b e = 2J LGt I BRI B ) + B GO, oo

+ 2 DpsGih) ] 8l eprp) -

'4
Taking into account explicit forms (2.18a) and (2,18b) for J%%Q@

and G&ge} functlons and ocarrying out some algebralc operations, we
get

3 —
N 3 fZA)ﬁ. v ;J/£+/) (2.23)

We note that in the presence of the form factor, the loop in
fig.s

(%X'=45Jot, Goutor ) Dfer s = @a24)

=940 W ftak) Deer Do) = Viet) 4

11
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Langevin tadpole dlagram in the nonlooal
stochastlio soheme.

1s not the proper vertex of (2,23) times a nonlocal propagator. This
indicates some pecullarity of the effective d-dimensionsl action of
the theory, which will be discussed in Secs. 3,4.

3, Nonlooal Schwinger-Dyson Equations
3.1, Derivatlon of the SD Bquatlons

The regularized Sohwinger-Dyson (8D) equations with meromorphic
regulators were used 1ln stoohastio quantization soheme due to Bern
et al. 13,14 « We generalize here thelr results for a wilde olass of
nonlooal distributions, Fourler transforms of which are entire analy-
tio funotions of the type (2.9a). It 1s shown that a simple
d-dimensional 8D formulation depends oruolally on the Markovian proe-
perty of the scheme at the stoohastic level. It turns out that this
property does not ohange in our oase.

We begin with the Langevin system (2,I0) and (2,12), Let A7/%]
be any equal fifth-time funotional of the fleld ¢ , then 4its

7-— average evolves in fifth-time acoording to

d<FLéI Yoraen?, J’/WJ
T = ) 7 S o

To transform thls equation, we use the looal white nolse ldentity

Ly ’Lzrf’{?(ye) Jewpl- [t fidy pieat)] =0 G.2)

whioh expresses the Markovian property of our scheme and is easily
verified by teking differentiation of ewp/-f/fdridy iz )]

with respeot to p(yt) . Thus, multiplying (3.2) by any functional
FIé] and 1ntagrat1ng 1t over ) , we get

f “lpot) *2 o ] expl [teide) pra] Fr#] =0 .

12

Integration by paris in 7 glves

o r R f .
Jpepliftatopmalipye~2 Bao /@ =0.
from which 1t follows the formal definition
bzt L (3.3
yot= 237(;«:& f “) pont Dpiit) Szt
for any funotional /A /%] . Now it 1is necessary to define 9¢¥rt&é%%7t1
Ekéﬁctg/%%wgcf) . For this, using the Langevin equation and its
free solution, we obtain
Pdat)
Qf(y,x‘)

- f;&)f/f fuppe @, G by () Rt-t) =Gy ) = F L4

¢
= J #_f(l’y/ﬂfka-x,’f-t"}f/z)(x,‘,m/ 7/;”7: (.4)

Purther, aoccording to egualitles (3,3) and (3.4) we get a chain
rule inte

. DI
Jak, (H/f&f)zzﬁ“ﬁf)’(;/w_/{ﬁ)%:j Fet)
(3.5
= i) by @) (/%zf@'zgw = Jile) Kix /‘7/9%)/“}3 ’
where by definition (2.19)

Kiyto) = flde) Kinl1) &, ()

or

[to Kyt Kyt0) = 1) Vi) ©

Finally, taking into aocount (2,I0), (3.1)~(3.5) we arrive
at the definitlion for the regularized 8D equations

(x5
K4 ’V"‘ ,9,(0)

y J'F[¢] .8
L (FI#y = <ﬁé¢/ fvm +fi )4, ("/J‘m/ Toor 2
ory at equilbrium
ey, G.7)
oGy f 150y 15 > =0
/13/

Further, following Bern et al. and choosing

13



P[¢J = exP[ﬁ’kﬁ’}%)’/ﬂX}]

the Schwinger form of these equatlons may be easily obtained

Jastol-55s /| o * 451010 ] 262) 0. -

J
where Zt7)= (e’);p/f@ﬁﬂ*v)> is the vacuum—to-vaouum
generating funotional.
As shown below, the Schwinger-Dyson equations, plus some boune
dary condition which requires the permutation symmetry of Buolidean
Bogse timewordered product, e.gZ.,

* (?‘,4’%} =<%%) (349)

- - . P »

- » £ s

» - - 2 » . *

are equivalent (at least in weak coupling 1imit) to the Langevin
formulation at equilibrium.

It 18 oonvenlent te study the 8D equatlons (3.7) in momentum
spaces. Making use of the definitions (2,18b), (2.184) and simple
relations

4 ( 19X,
ol e 5=

we have the followlng identities

4 t4 2 Fa /
St (0 es G = - ) pemsty LR

z J)/?ﬁﬁj

Jiter Sy k5] ) SLLEL rvrs
W

Odey) 0%cx) = [ty Vip¥

etc. From which it 41s easlly verified by a functional chain
rule

St 55 >=<JepVeres S M’
- [T [ S ) 5.

(3.10)

14

e g

where we have chosen the interaction

(A
Ad)=g-2-
As a first trivial example, with the boundary condition (3.9)
we compute the regularized free two-point function., Setting and
choosing F‘%% Eqe (3.10) becomes

(¢ )(0} J’{/%)p/) ; p(p} e W}oz/yﬁ;j (3.11)

This result is the correct nonlocal free propagator, in agreement
with the Langevin result (2.18c),

3.2. Iterative Procedure for the Nonlocal 8D Egquations

To compute some nepoint funotlons for any desired order of
ooupling constant g within the SD equations terative method of E%
(3.I0) should be given, This procedure was done by Bern et al, 14/
In our case with nonlocal form factors, thelr result l1s automatically
transmitted, For exampley, 1t 1is mnot difficult to check in analogy with
the formula (3.11) that (%% qé )“” yields the usual Wiok ex—
pansion, as products of nonlocal free propagators (3.11). Moreover,
in the first order of é; it corresponds to the regularized vertex

- ¥ , 4 -1
[ p)=<%. & Y= d”(‘f_j’ﬁ)gﬂw){%ég—(ﬂ R ERT

Ly
For N=3 the result agrees with Egq.(2.23),
Iterative chain rule may be obtained using Eq.(3.10). For
11llustration of thils, we consider ;ﬁ%- theory (N=3). First, setting
f7¥)=%£ in Bg., (3.10), we get

by =~F L [k Jthe) Pp-t-6) <%y > » (.13
in turn <§qu) is given by the formula
% %, 3= O lor) Do)~ £ (0 +0Y " [fih)dly)
(3.14)

x[f?ﬁ‘i‘f,)(¢ ‘é}*‘f(&f’fﬁ’n 7z>]

15



http:Eq.(J.IO
http:Eq.(2.2J
http:rllx).i.vf

Further, assuming /7[4‘]:9%%% in Eq.(3.10), we obtain

(G55 y=[218, 4, 2 T lip) VEg IS, >+ cyehc perm. jn fp] [ - .

+ crehie perm, /};[/Dj_]’f' ..

= »
where definition (é %)r-d)@%)ﬁ,a, szf?j 1s used.

Using the zeroth order result (3.11) for 4 s the first order
tadpole graph (Flg.6) may be immediately obtalned from {3.13) and
(3.14),

o
(B )=-7F7 LI Y%

(3.16)

in agreement with the Langevin result (2.24). After taking next appro-
ximation in Eq.(3.13), expression (3.16) acquires the form

(% =20 (08 Jeth) Pts)~g 4 s aly sy ) *

T pt-g-9) (B 40 ) <BAh A |-

Finally, in order to compute the O(j’) one=loop, contribution
to the two-point function (Fig.7) we take into acoount second temm
in (3.14) and put in 1t the disconneoted part of (3.15) with

(Bh DL = (B, > (HHh > +<bHk D<A, > =
$7% 4

*&g,{—- ; &y

=Z>(g)0(7:)/3’."(;,7+mf?z +6)+fq;z+xé) JT?;; -fve’,)] s

where the subscript on the right ?,&’ means to keep only those
oontributions in which 7 's contract with K ta,

le

oy

Fig.? .

One-loop two-point function in the nonlocal
stochastio scheme.

4s a result of a 1little algebra we obtain

-1 -1 -1,
/7(/9)== 2”‘;2% ﬁ/k)ﬁ’zjﬁpﬁ) (Vak+(Valee +(VA) Gu17)
AA’ - A/’d( +A,o

which 1s the usual local loop when ¢£->0 .

Thus, the 8D equations (3.7) or (3.13)=(3.15) may be solved
iteratively, in this manmer, to any desired order of g + However,
the procedure 1s inoreasingly tedlous. To simplify this prescription,
Bern et al./13’14’18/ have developed a systematlo set of Schwinger-
Dyson~Feyoman rules instead. We mentilon that construotion of any
expresslons of the type of (3.17) acoording to these rules, requires
more efforts than the usual Feynman diagremmatic correspondence.

Finally, for further oomputational purpose we present here
oonorete method of calculation of the expression (3.17). Explicit
form of whioch 1s

/7p)= %;?’m’+/9-7(a&)/?w’+xﬁp? +(p-)] -71/[’79?" IV-grril”) ¢
e gt + Ver IV e k™ + (3,18)
+ /m%‘p’)(w’»«(sz(m Y ox0) Ve t) Vi-aept) ] .

First, oonsider the second term of (3.,18) in the case of d=6 dimen—
sions. By using the Mellin representation (2.9b) for V/Z) and the
general Feynman parametric formula

17


http:3.13)-(3.15
http:Eq.(J.13
http:Eq.(J.IO

VA At /ﬂ/d)f%v, /aée,;f/f'Zoz)

/";‘,)
A e /;ﬂ;’d//ﬂ’ﬂ‘ i
we get _ 400
(O SR PRV

where
14
- 7+

A=- f/oiz Crpx Sz + mit-2).
Further, by shifting the contour of integration to the right we can
reduce thls integral to serles and taking into account the maln
asymptotics we have

P N LT I 5
17 = & mip) e o 4 (B0 Emtrbin ), s

o=0m, Vi) fi1+2)

Iv-7

here we have assumed that function Z{x} has zero at the polnt 2=-1
and V(yﬂzé"%z_,ar[ for the external momentum variable P*
Moreover, in (3.19) we use the /7 ~function properties

/Ur2)=x/T2) , S/ = _s;;r)'r:r'

First and seoond terms in (3.20) correspond to caleculations of
residues at points y= -7 and y=0 , respectlvely, It is clear
that /7 )= 77 (p) + Similar oalculations can be carried out for
the third term in (3,18) and the result is reduced to the follewing
formula

3 4
/7 G = éjﬁ_z? g Gpl (Gea1)
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In (3.20) and (3.21) Z/@)=7 which follows from the normalization
condition Vioj=4f , ana M 1s an arbitrary parameter with
dimension of mass.

4, Renormaligation Prescription and the Three-Point Funotion
in Nonlooal 8D Formalism

A renormalization program in the regularized SD formallism has
been flrst discussed by Bern et al. 13 « For the nonlocal oase,
thelr result ls immedlately repeated., However, some essential
differenoe appears when counterterms in the Lagrangian function
are constructeds In the nonlocal stochastic theory counterterms are
finite, sinoe we do not assume £>0 at the end of calculatlons.
It means that parameter f of the theory remains everywhere, in
particular, in its action. Thus, our acheme is an action regulariza-
tion, beoause at the same time Zfor the Green funciions explicit
divergence does not occur in the effectlve d-dimensional action of
the theory.

For completeness, within the 5D equations we present here
renormalization procedure due to Bern et al. v for the nonlocal
case, Thusy the nonlocal SD equations

S
([l L5, - fig bz [ 5 =0 1)

involve the unrenormalized fileld ¢(1) and the bare Lagrangian-a
whose parameters we ’f?w denote as %% and § . The usual renormali-
zed field 1s % =27, ¢ by means of which renormalized Green
functions /A /¢ ] are constructed, Assuming the faot that the SD
equations homogeneous in /57?5 s we have the nonloocal 8D equations

8(Se +Ser) 2 & SFE(Be] \ _ (4.2)
(/("”’)[ 8%, (2 _ﬂ"ﬁ’jﬁﬂmj(mw/ Jq}e(_:’j >"0’

where %'-‘-.S:q*»gr is the usual textbook breakup into the renorma-
lized Iagrangian and the counterterm Lagranglan. Renormalization
procedure formulated as usually is based on the construction of the
total Dagrangians, for example, in the case of ¢3 theory we have -
explicitly

Lo = Fbl-arm)ty + &
Jcrm.?i(zga‘/)#ﬁaﬁﬂz/;ée +FId +g/5,0¢k3,

(4.3)
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where
%
=4 4/5 , (4.4)

Following Bern st al./13/ we compute here three—polnt vertices
in the nonloocal theory using the lterative method presented in the
previous seotlon for the SD equations. For this purpose, continue
1terative prooedure carried out in Seo.3.2 up to the (93 —order
for <'¢;q v%q%}wm o After simple but tedious calculations, we have

ﬁv?==ﬁ%2-éln?/42; .

(%, % % 5 =290 fflde)te) - £ TYsote) (B8 #1025 )
(4.5)
[E 422, +42, 225 2 o)
P2 BRI R [+ I BRI [+ M M

where

j7==/:Z?zif.iﬁl J

=
Do tl.5, p 1) = - £ [l )ty ) N ) D54 ) By iy #4404+ 4] 5

F . (4.6)
(=742,3
Z;ﬂi&gﬁ)=‘z—7;ﬁ/7, W}(ﬂé}){%}@ (P—V(ﬂ“f"ﬁ) X

_1 .
X[AZ+472*AM+A&+A,3] ,  JEESE

bere -
07 <8%-s-5.)<4 Ao A% > ,

G=0(keL)
Oy =0 Ug-5-5.) < oy 4 4, o, >

2

%=0:lkep) -
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In turn, terms A4 (/=/Z2) are given by the followlng fomula
M= 205l 8) o) Vst o] gy,
M=/ ’;/;7 (i der) J / f(/g)[cf?z 74 S ?,:o'x:-x; ) 4" “('I’f;-g“g ) Vgt

£ f(/x}(a@)( H+Higep) +//qg;»/g )+ N+ Nl 43) + Ng=p,) +

*Lr L) +GR) + Qo) [+ lieois) ).

Here i
N = (4 +4+dy+45 )"

); = /dz +A.7z ’f‘ﬁ& +4$ *4% )wj 3

H'= g+ k) Ly +45 .mﬁ]"if"?g-s-&) XX

3

/V=2f‘?fﬁg)[ﬂkz +Afz +4?'f’fd('z-s;* 2 ) (dél @2 %%ycj
L=Npg=p).

Main asymptotica of (4.5) may be easily oalculated by the same
method as 1t has presented in previous seotion. We are interested

only in divergent parts in the expression (4.5). For exampleyterm
2’y has the form

5= 8 )ty o) S lnp ) ;I’%iy%ﬂ’w%’%ﬂ

[lly+ 8y + 44+ 23] [dy+ 8y, 2y, + 224 r'f

where we have used the usual Wiok expansion for Oy 1in (4,6)
in acoordance with (3.11)., Integration over 4/7 18 easily oarried
out by the same prescription pressented for obtaining leading terms
of two-loop funotion /7(?) (3.18), After some elementary ocaloula-
tionsy main asymptotlos are reduced to the followling formula
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3 . >
S LT

X{ZO“/Z-f [él(pj +47) 4-;7/?;’]53/(2/7-

Remain terms 1n1{4.5) are caloulated in the same manner. Acoording
to Bern et al. 2 obtalined results may be classified within the

differ?]z?g/types of dlagrams, shown in Fig.8 (for detall see Bern
e

et al.

Pé.-

Fi1g.8. Nonlocal dlagrams.

a) One-loop two—point functions, b) "Pure® three-poilnt
vertices that are infinite as -0 ¢) Three-point
functions with a loop on the external lines. Cycllc permutoe
tions of the external lines must also be included. a'), b')
and ¢') correspond to thelr counterterm dlagrams,
respectively.

Final results are given in Tables 1 and 2. Comparing the sum of
the loop dlagrams in Table 1 with the sum of the counterterm
diagrams in Tadle 2, we determine the renormallzatlon oonstants

22

Zy=1+d Aot

(47

Z, = 1+ Fo e gt

aw

Iri=gogs [0 "+ 7y

Table 1

Dlagram Leading terms in sum of one-loop dlagrams

8a Z-g;[of‘ﬁ/fpz4.2,,,.2);3,/?/76033‘%2}-2’
o sl g5 lopet*
-r " SR D2 22
A premp et m] [

L EE I Iu? , o (F7 - 2m)lopt 7
2 A+t

It is interesting to notice that Bern et al./lj/ results are
valid for any regulators V(-,o’/") 1f, in their final expressions
for loop dilagrams, coefficients f/fz and &(/IZ!I"‘) should be
changed by 0f” and -gz/t’/z ¢ respectively.

The attraction of our approach 1s that the nonlocal scheme 1s
unltary in the presence of the analytlc regulator (for detail, sae
Erimov 12 )+ In our case, supplementary singularlties caused by
regulators do not exlst and analytio propertles of any diagrams are
conserved at finite value of momentum variables p’ + ¥hile for
meromorphlc regulators like Pauli-=Villars regularization procedure,
analytlc properties of dlagrams are broken and it in turn leads to
gome difficulties in proof of analyticity and unitarity of the
regularized theory with these types of regulators. In last cases one
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expects that unitarity is regained as the regularization is removed
j1ﬁvoo at which of course, singularities (poles) are displaced at
infinity.

5. HNonlogcal Stochastic Quantization of Gauge Fields

At first sight, majority of physicists think that stochastic
quantizatlon method appears to be no more than an amusing alterna-
tive to conventlonal hamlltonian, path integral and action formula-
tions, It turns out that thils method has given birth to a number of
new ldeas and 1s very useful to understand many problems of the field
theory in light of its present developments, As mentloned by Bern
et al. 14 these developments are Zwanziger's gauge-fixing
(Zwanziger/lg/ Floratos et al.’? 20/ Ys laxﬁe-N quenching and

§e—N master fields (Alfaro and Sakita y Oreensite and Halpern
), stochastic stabilization (Greensite and Halpern/236, sto=
chastic regularization (Bern et al. 14 3 NMiemi and WijJewaedhama /24 /

Table 2
Diagram Leading terms in sum of counterterm diagrams
8a* (G +(Zy = 1) pFem (e )
8" 915~V grsmIptsmIpE+mI]
8" glopsm It rmI@iem) ] [ g )

(& + (G- 1) md)+ (g +m) Ve +(4~/)/A?+mﬂ) *
gt rm) (fnt+ (G- ) gt m?)) ]

Brelt et al.,/25{, Namiki and Yamanakalzs/, Bern/27/ ), the QCD4

maps which run in ordinary time (Glandson and Halpern/ZSZ' Bern and

/29/ ) and numerical appllcations of the Langevin equation in
lattice gauge theory {Bamber and Heller 3 Batrounl et al. /31/ ).
For review see Namsrai 4 and M}gdallj/, where earlier references
concernidg this problem are cited.

To intiduce nonleocality into stochastic quantization formalism

24

for gauge fields we follow Bern et al.lef. Our procedure is the same

as it was done by these authors. However, our method is more general
2
and deals with any form factors of the type IQ%pﬁ?)

5,1, Nonlocal Langevin Systems for Gauge Theory

Nonlooal Parisi.Wu Langevin system for SU(N) Yang-Mills theory
in d-dimensions 1s given by ’

(5.1)
At = lezf) wd"Tlnt) ik, ,,,(zw; ‘ut),
where looal nolse satisfies the following relation
2 o\ _ ope i) % (5.2)
(Z"mf)g 5 U)7 =24 %; t-t) I tx-y)

af
and Aﬁ;y¢Q1)is nonlocal distribution discussed in previous sectilons.
According to the equilibrium hypothesis, the nonlocal Buclidean Green
functions determined by vacuum expectation values of products of
fields

CELACID, =<A,)... ful)p =1 [ Dop(2:=%) (5.3)

in the usual non}ocal quantum field theory (zor example, see Efimov

e/ and Namsral ) are now glven by

<F[/4(')])=£rzo (FLAC,E)12, (5.4)

where /:?Ui]issny equal fifth-time functional (product) of the gauge
field /gfqv . In particular, nonlocal propagater for the photon
field ,g,‘(x) in (5.3) takes the form

-t (1)’/‘ z
Dy (xy) =<0l T4 (z)/{,(y)/o) zf_ﬂ, ]/ o’ V/(D sz

2
in accordance with the nonlocal theory. Here, form factor kﬁﬁoﬁ%}
is given by formula (2.9%) with 77 =0,

Our notation in (5.1) is usual

,5’ f@ o) @) Ll = QA

A4 af “9lns
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In this paper we use the following covariant derivative

o al, .df( <
g =G 9/ "4,

/l

In (5 1) we have chosen to add to a Zwanziger gauge-fixing term
c/" ¢ s which we will specify as oZ“= 24" for computational
purposes. As shown below, gauge-invariant quantities do not depend on
the gauge—fixing for the nonlocal case, The nonlocal distribution
ﬁ( ﬂu is a function of the covariant Laplacilan

8% = [y )zs o)

(d.)y = 8% 7
Iuday = G (VO xy)

so that P /
Ke () =K' (a).

In the weak coupling 1limit the Langevin equation (5.1) is the
equivalent integral formulation

¢
af ¢
Alat)=[at' @) Gl tryt-20 [ (k9 + G5.6)

£ & < ,
F X )+ o) Kyr )2t ]

where

s il
G/’,,‘,’, (2, t-t)=d -2 ﬁwe P )
(5.7

[Z‘;@)@ L/ay we f’(f—f'}/“]

1s the Langevin Green function, which is determined by usual
procedures

af
G @)= Ty Clwts + L, G zt) ] -

Here Z:; (4~ﬂ} is the standard transverse (longitudinal) projection
operators; in the momentum space they take the form

26

Tov (K) = div — Kk /K5,

Z,;u ) = Kk Y/ 4F

In (5.6) we have defined the interaction terms
W= “[ah)-BAIE + (34471 - &9
- ;zfé.yme LA 4:/ ;
VS =g %4t (2.49. P

The former arises from the action and last term is due to the
Zwanziger one. In expression (5.6) we have also employed the technie
cal device of choosing 15=="°° sy 90 that the system has equilibra-—
ted at any finite fifth-time

A method of form factor expansion in powers of the coupling
cons tant plays an important role in proof of gauge invariance of the
nonlocal stochastic guantization theory. 4s a first ?tep in this
expansion we write in accordance with Bern et al.

df___d’ /z*f(/—)y _,,_jZ(/—v) (5.10)
where the regulator "vertices” /: and /Z are defined as
E z o
(/;’/;(=/§/"é/&¢‘(,) +/;’;,"(1)2/“)J’ (zy) (5.11a)
( v al tgz anmt ”‘%‘AVA’ ,A?e cpq’
/;}1, =lf7Ff T () A (Z) 6 (X Y) - (5.11b)

X
In (5.11) the @erivatives gi act on everything to the right.
Further, for any distributlon of the type of (2., 5) we may
write down the following expansion rule

' ,/ 22 G g2nt nal
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37l g 1 o ) T g
+z‘§ S ™ iy ) (S ) mri)+...
= L%, ) +3p Jute st ) (K 122 H0)+

+/$_/,z (i) /(/zf)), (‘7)]'*?//5/(/5)(4/ x

[k ) O Hy o0 +14 (a)(/U"’K oy ()] +

(5.12)

, ’ @ a
* 8 g ke ) 410 (17U My RS M)+

* Moo () ([ S Koo (W ()55, () +

+ g, () (g, P () ()55, £, Kl ] +

+ . .

Here the Fourier transforms of generalized fumctions
are glven by

S :
,(/(,ozlj-~/-fg W(E) Pz/zjg

i 7E 4

("'/pzz") _ﬁfd/ Zcf(f)f P

&w%f

@), g2 _ _1
K lpt)= ; % Gort 51 (Y5
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(5.13)

-t
and for the operator /fhy (O)= (0.,/9 "Flz-y) we have

Ny P
Hoy ()=~ [iap) Hoped €77 .
5.14

Hepd)= 1/

With the form factor expansion (5.12) for any desired order it
is not difficulty to iterate the integral egquation (5.6) for the
Langevin field

~ " .15)
/‘g‘ﬁﬂzgf”’/gf "Lp] (5.15

up to arbitrarily high order as well. #s the example, the result for
the form factor A(4) in d=4 dimensions takes the form:

A b= fa«'///@ﬁf““ e oy @) (7.262)

s
(zt}~fm/)6}(zﬂu//¢/ )+ 2 V.t +

0 7& o . (5.16b)
+ [ [K o) ) ey +H) A K W), 2t

/{f‘&f) —-—-jﬁr??@)é’?’(xﬂ«rj{%’ Nty + LV (y,t‘ )+
+a)lF @’ W17 (4°) Hey +Hia) F; 40K e ) +

+ 2 (K 174 Hea) + Heplz A K ) ) + .

+ & (K% [;00°) Hea) fria™) ) +

+ M) f7 (8 K ) [y A D) He) +

(5.16¢c)

&
© He ;) Heo 19K ey 70 f
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Heres; product of operators in (5,16b) and (5.16¢) should be under-
stood as contraction operation between them [see, the formula
(s.12)].

We note that more useful at arbltrary order 1s the equivalent
description in terms of Langevin tree graphs, which are easily
derived from Egs. (5. 6) or (5.16). For this purpose, the tree-
graphlical expansions of the form f?ctor should be glven, that 1s the
same as jt was done by Bern et al.
[Ret) ] =8 sy- V.V
graphs through 6%?{) are shown in Fig.I0, These diagrams may be
constructed to all orders using the Langevin tree rules given in
Fig.9.

for the concrete regulator

- In the nonlocal theory the Langevin tree

Propagators? z(f, -t}

a o -—G,f.f k4)=b-t)0 [,Z,@e el e’/vé’

£ AN
M ¥

pr £ 0/2 Jtt-t) Kp€)

i,:z"::'t t
,d 14
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Fig.9.
Langevin tree rules using nonlocal form factors.
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Fig,10.

Langevin tree diagrams through 5%?5) in the nonlocal
stochastic scheme,
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As a trivial example, we obtain the zeroth order two-point
function., From the solution (5.16a) it follows in accordance with
local noise property (5.2)

] o) -4 {2‘-)” ) zy(
(/?,‘W(.ch)%“aﬁ):on "%{ojé'p Z;,z{p)mL/,,(p) If,z 2 (5.17)

or using the Langevin tree diagram shown in Fig,II

byt ]
D ity =2/ o a[ oy G (ptr-t) G prterty) Rt Vgt ) =

dr ) P Yept)
=J /Z.;gajé totl, @€ /—Pé“-

The result for the nonlocal free gluon propagator is just (5.17)
Other free nonlocal Green functlons are constructed according
to the usual Wick expansion in terms of the result (5.17)

W\/\/\a#:m-\m

Fig.11l.
A simple contraction for the nonlocal theory with

form factor W‘Pzgz)*

In the next section, we_apply these Langevin equations and
their rules for the nonlpoal stochastic guantization theory to the
computation of the one=loop gluon mass.

6., Vanishing Gluon Mass in the Nonlocal Stochastic
Quantization Theory

Verification of gauge invariance in nonlocal stochastlic quanti-
gzation scheme with arbitrary form factors is crucial for its further
developments, We will verify in this section that the QCD, gluon mass
remains gzero at the one—léop level, with any form factors p?aﬂﬂ?ﬂ
or A{(fﬂfﬁ . Our step to study this problem is following, First,
we construot expressions
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af 1
o (rn) = <A @e) A" e,

and

4 74
/V/; (z-y) =< /fifmf’x YA >?

by using equations (5.16). Second, with these obtalned formulas,

we sketch corresponding diagrams. It turns out that there are 47
distinct Langevin graphs in the twowpoint function at order ~
where dlagrams trivially related by symmetry are not lncluded in
the ceunt. As a particular case {Bern's et al./14 ) it is seen that
only I0 make nonzero contributions to the mass renormalization,
while only 2 contribute to the wave functlon and gauge parameter ol
rencrmalizations.

According to Bern et al./14/ we have found 1t comvenient to
group 47 diegrams 1into four classes (see dlagrams sketched in
Figs. 12=~15) of which only the first class contributes to the wave
function and o -renormalizations, and only the first two classes
contribute to the mass renormalization., The third class contribu-
tes only to the finite part of the vacuum polarization, which will
not be considered in this paper, while the dlagrams in the fourth
class vanish ildentically.

The structure of diagrams shown in Figs, 1215 1is similar
with those considered by Bern et al. « Thereforey we do not
discuss them in detall and indicate only some thelr pecullarities.
For example, the dlagrams shown in Fig.12 contain only (Zwanziger
gauge-fixed) Yang-Mills verticesy no form factor vertices, while
the dlagrams (Fig.13) contain at least one /7 or fz regulator
vertexy and provide the additional gluon mass contributions needed
to cancel the contributilon of the ordinary graphs (Fig.12). We notice
that for this class of diagrams, contributions to wave function or

of ~renormalizations are absent. The diagrams, shown in Fig.l4,
also contaln regulator vertices, but contribute only to the finlte
part of the vacuum polarization. Finally, the group of diagrams
(Fig.15) vanishes identically. Some (the tadpole loops) of them
vanish as usual by J(a < antisymmetry. The remaining diagrams
vanlish due to the (fifth~t1me) retarded property of the Langevin
Green functions, which contribute a factor of &(é‘ﬁ)gfézvfy)':ﬁ?
to each diagran,
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Fig.12.

#"0rdinary" nonvanishing Langevin diagrams in nonlocal
stochastic quantization scheme.

@)

Fig.13.
Diagrams with nonlocal regulator vertices that also
Contribute to gluon mass.
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Fig.140

Digagrams with nonlocal regulator vertlces, which are finite
as £ =»0.
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Fig.,15.
Diagrams that vanilsh identically in nonlocal stochastic scheme .



In order to compute expllcit contributions to renormalization
mass correctlon due to dilagrams shown in Figs.12 and 13 we study
expressions /?;'.,'y"rx-y)=(//,fi"‘{:cf)/4§'(w> + Thus, taking into
account the formula (5.16b) 1t is easily seen that explicit contribu—
tion from dlagram 12¢ 1s calculated by using the following formula

af £ !
[y =2 tzt) 2 (20 ), (6.1)

where

¢ ¢ ¢ .
Dlemt)=] a&ff aﬁ_i b et €% G -t «
XG,(.’/I , /</ . Zd?d’ [ gec cs ;
156 Bt bIRBEIO Gopap) [Wapo B RR) Gop (-8 %
gty { yRES o S0 s U
KD =211y 0 REt2) (Kt (Zf/*ﬁ@/}/(/(‘f/})/*

X'z‘l(gnffx}zsfz,é)'

@, €C Z e85
Here explicit form of vertices /€:¢90 B h, A and /gquﬂ
1s sketched in Fig.9. Majority of terms in {6.1) corresponds to some
finite and zero~diagrams shown in Fig.l4 and 15. Further, according
to the formula (5.2) we make nolse contractlon in (6.1), perform the
fifth~time integrations, separate term giving contribution in
accordance with diagram 12¢ and integrate over momentum variable with
form factor Dfﬁpﬁ?y « Thus, after some tensor algebra, we obtain

explicit leading value for this diagram near /2 =0 as

15 = F S B (2 p) lipel,

where

L) = T + o Lug ] p-

Truncatlion neax /o::0 1s accomplished by removal of the factor.

We see that this term gives contribution to the wave function renorw
malization only. Now we study dilagrams which give contribution to the
gluon mass renormalization,
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Contribution to mass renormalimation due to dlagram l2a aﬁises
from contraction result between second term for (5.16¢) and /4, (x.t)
in (5.16a)t

£

¢ F
ol ad. ' ] i
/72}“, (p)z‘—:la‘é’la‘lifodrﬁd,q) Cﬂﬂ (f)f-—fjé’(f-tjg(f-t) X

s . <t ’
r{d”""af‘dzzg& (a.t-8) gy (p t-T) +87 T Lgp (p t4) +
F; ¢ éimg,x( p ; ; o J( ¥
xAgv(ﬂt‘z) * Aoy (PtT) dgg (4, £~ 2)

VgD Vit Waggg -

, ~dp? -5 ;é/ a4, mre
where  Aos (p8) = log(p) € g1 € " and 700,

are presented in Fig.9. After some elementary caloulation, we get

a amn rEmx 4 ) V& t(j/,
[laep) =" Lpap) Qi (5) 3 Ji) =57

Infraviolet divergence in this term is ocaused by zero mass of gluon

field. 4ssuming 7’—* y’*f result reads

. a " anws g bon I'4 36~ 3+a . (6.2)
1 )= " e 0 B . |

et Emn al
Here for SU(N) fa f‘o =8N .

Now we calculate correctlons to the gluon mass renormallzation

due to diagrams shown in Fig,12b and Fig.lla, whicé”%re calculated by
using oontraction of first term in (5.160) with A, (z ¢).

Corresponding expressions take the form

* £’
[T (0= 1)t o, [ @) Vg OV gpp P Bttt ) 684 )20 >
L 0. 85) B P ) Bos (8, 14) Lag (pA - 8) (823

W', Cop-1 1) Wi, (B 2P P)
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and

[y (9)=24°8“WE *fidy) / AL (-3 Veg2IK o) «

4’%7, Vi) x (6.4)

K[ UK bt +HytIK gt

K HGEIK b5 f Aot Ly p)

respectively. In (6.3) integration over fifth-time variables should
be carried out, after which thls expression 1s reduced to analogous

formula for 3””CQ) in (6.4)3

as - W
/e (=0 aﬁéy Qi) Disp) 5 + /4, f(a'%) “V"%“/ =

(6.5)
ol s+ 700 1.
=J /ﬁﬁ%zz;ayga)zﬂﬂfqé)lr 7 dztyz Y/ 7 a
By definition (5.13) for the fom factors A (- ,osz 1t 1s
easlly seen that first term with K(“%G/ﬂﬂj in (6.4) goes to

zero at the limit »?>0 and maln asymptotic of its second term is
constant, so that third term gives the following leading term

_ .
/Z/o_go) s ﬂ‘,gp)zﬂw@[o*/ ‘7. (6.6)
Anglogously, contrilbutions to the mass renormalization in QCD4
due to diagrams shown in Fipg.13b,c,d are calculated by using

contraction of third, fourth and £ifth terms in (5.16¢) with
/4?? (z.£) . Corresponding result reads

h 2% 2 2
(L) = S22 B 8o Vip I )

-lao (6.7&)
[w(zj w(zjf L, w! Ty) P
Y shay sty
rios
10

/Z;w W""%’zﬂ@&(p) Mz)]V( I Hp ) (6.75)

ﬂﬂa-Qﬁ)“’ 6?;;; A;uyéﬂ)liuﬁﬂ) }/;0(ﬁ/9?

(6.7¢)

In obtained expressions (6.2), (6.5)-(6.7) truncation near £=0 is
accomplished by removal of the two factors Zﬁéﬁ(plall gum of resule
ting in these dlagram 's contributions is zero, so the gluon remains
massless in thls order for the nonlocal stochastlic guantization
theory with arbitrary form factors. Thls generalizes the regularized
scheme proposed by Bern et al./l4 .

Thusy nonlocal method presented here for Langevin Schwinger~
Dyson formalisms of stochastlc quantization gives ultraviolet fini..
teness to all orders for gauge theory Green functions in 4 dimenw
sions and ensurses its gauge invarlanoce, The latter is aohieved by
using the covariant Laplaoian function (in which the gauge~fixing
term is absent) in the construction of the theory., In our case, the
nonlocal distribution A:y (@) 1s translation invariant and so that
a gauge-covarlant parallel transport of the local nolse guarantees
the gauge covariance of the regularized Langevin system under the

loc?l d-dimensional gauge transformation {for detail, see Bern et al.
14, )i

{2 af £4
Auat) = Q@ Auzt)

£
/j‘(x, Y = Q@) 7"&,{) J

o @'
/C,, a) = Q" 2% Ky ),
where {2¢x) € SOw*-1) 1s the adjoint representation of SU(N),
7. Bcalar Eleotrodynamics

Por concrete computational purpose, we present the method of
elaotrodynamicé congtruction of ' charged spinless particles and
1llustrate the extension of the scheme to include mather multiplets.
Ag in Yang-Mills, the basic 1dea is that gauge-ilnvariance is malin-
talned by choosing each form factor as a function of the covarlant
derivative in the relevant representation.

The nonlooal and Zwanziger gauge-flxed Langevin system for
scalar electrodynamics (SED) takes the form
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o= L5 ,
ftmt) == ey +3 Zeat) +[idy Koy ity (7.1a)
P t) =- g%act) +iefat) Lzt +ﬁa$u/<§,m);yé) (7.1%)

Bty =~ %{zz‘)ﬁeqé?z;f)zc’z; ¢ +f(zr}}/(’,,(zx’7//’(xz‘) s (7.10)

where local nolses satisfy the usual relations

(@%ﬁgmﬂ) =2§£y0"(f-t")op";1~y) (7.2a )
Cptat) plyt) ) =2dr¢-t) & Tay). (7.2b)

Here
S f@) [ fatow + [ Guich)#/° ] (7.20)

is the usual Buclidean actlon of SED constructed by using local
fields A (x¢) and ¢f»’~';z‘) + In contradistinction to nonlooal
quantum field theory (‘Efimov/le’ls‘/ ), interaction Lagrangian in
(7.20) 1s local, The appropriate covariant laplacians for the
charged soalar fields are

Ax}‘ ‘=f (a’z} (QJ"’I (?‘“)")’ ? (2)9 =‘@z_i€¢‘ @ ‘) ﬁ'{_y) J (1.3 b)

A = [@)D0), L), (D hy=(Q+iehutn)E Ty
and we will choose o Z=dA as above,

Further, to check the finiteness and gauge-invariance of
system we compute, as in Sec.6, the d=4 one-loop photon mass
using Langevin techniques. We first need the integral form of the
Langevin system

¢ . -
Autxit) = [tay) () Guv 9,88 [<ie B 69 (3 -2 ) beg,t) — (
- 744 )

~2e* ) Pint) Ay k) +[lde) Koyt izt ]
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4
Pty = ﬂ’ég{[o‘t"C(z-x tt) [~iehutnt) G Feyt)—

) ; , , (7.5)
—zeg( //,7‘.(,%‘)42%/,{9) +tea—-¢(x£)?“4(y,z‘j -

~E Ryt fulyt) fuyt) + i) Kz 8] pzt) |

#
with & similar equation for ¢ « Here

~(p(X- ~2(¢-¢Y) ey .
G (3. -2) = B-t) € P € e eI 6a)

Gray t-2) = Bo-t) fap) et (x‘”e,\;a [~(pemIe-tI] (7.6b)

are the photon and scalar langevin Green functions, respectively.

The first step in a weak coupling expansion of (7.4) and
(7.5) 1s the expansion of the charged scalar form factor to the
desired order which 1s given by the formula (5.12) in Sec.5.
There y«;—»e

‘ a . In x |} nd
(1 = () =i (G Aot 4G ) Pl £° .y

() = 2y = fuerir sty Sy

should be changed. As usual, 1n {7.7) the derivatives act on every-
thing to the right. This expression may be continued to all orders as
shown in Fig.16., In the figure, in accordance with the diagrams
(Fig.9) each specific lines correspond to form factors K , Km, /(a)
and H(ﬂzﬂ) and wavy lines correspond to gauge fields, while
the three~,four- and flve-point vertices represent /-,' and f; M
respectively., The filled arrows ( — P ) denote the retarded
property of the Langevin Green functions, while the other arrows

( —> ) track the direction of the charge flow on a scalar lines.
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Fig, 16

Expansion of the charged scalar form factor in the nonlocal
stoohastic scheme.

Having expanded the form factor, an essentially standard
(Parisi and Wu/ll/; Bern et al, 14/

) iterative procedure allows the
expansion of the Langevin solution

Aly1=5, 4" 7.8
Piy) iZ.;E""?ﬁ o , <7577) rmg e g*™ (7.9)

to any desired order, For the photon mass oomputation, the relevant
results with the fomm faotor A(ﬂ%7;{7 are

o ¢
A t)= (@) Guotry ) fids) Koy 0 28) (7. 100)

-4
e 4 at) =) [ G (g, t-t) [-ieH" (s (@ -2 )4 "ty | (1.100)
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k) = i) ' Gyt t) [ ) Br-2) k)

N —t 03 £/ I3 19 #
i Y (BB Yes- LA s B 0 F )] 1300 )

and

3
& T t) = fly [t Gy 40 Jlte) Koo opzt) (7.112)

¢ o, .
e ,z‘)=](z/y) faff’ékwf #4){-ie/ /Z: ) @W?M ¢+
Ut o) - EF ) QA )] +

*fffa@///{wﬁ Ky +£%)/f; '%‘?)/,z f{zi J) } ) (7.11p)

Such expansions may be represented disgrammatically to all orders
as Langevin tree graphs, showyli? Fig.17.

According to Bern et al. these langevin tree dlagrams may
pe constructed to all orders from the simple set of momentum space
langevin tree rules shown 1n Fig.18. Finally, the dlagrams of the
n~polnt nonlocal Green functiona are formed by contracting the trees,
as usually according to Eqs. (7.a) and (7.2v).
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Fig.l?.

Langevin tree diagrams for photon field in the nonlocal
stochastic scheme.
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T TI T T r e = ey,
Fig.18.

Langevin tree rules for scalar electrodynamics in the
nonlocal stochastic scheme,

There are three types of dlagrams (¥1g.19) giving nonvanishing
pontributions to the zero-momentum vacuum polarlzation, 1n which we
do not explicitly exhibit dlagrams which are trlvially related by
symmetry. We now go to study these dlagrams. First, to calculate
corresponding contributions, expresslon of ,4(2‘}(.1,{) should be
found, In mccordance with (7.4) 1ts value 1n momentum representation
acquires the following form:?

Alp -—-2?‘2[%[;, I [ i) Cuip b2
<Gtk e | E“‘ fﬁyﬂ%)Cw,tiéy)O?+ﬁ)¢ . (7.12)
Sl )8R 1) Go Bt ts) G ety )
KAOKAGE [@r )= e[ 7702 it I gns) +
*‘_i;é )Gt 4 )B8Y k), Flopp) S-m4)

¥ G 1) KA. 733! / HEtIK f"’f/,;‘t’ﬁ +K“(;,g’f%/(/f!j/ .
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Gttty T lprg-p-p) Keg IRA LY

AL 7*(,4,4)7(/;,6)}

Next, following the methods of Sec.6 and using contractions
4«) 4(4} £ [ @) 173}
botween A () and A (4H) 4‘ (zt) and A%yl ] one
can cbtaln the expllcit wvalue for dlagrams, shown in Fig,19,
Thus, the diagram 19a gives the followlng contribution to
the photon mass renormalization

_"J t'

#
ﬁ(:)go)z_ge? [, 4/4(42}6-1 (,%f‘*")@ (,Z(Lg’)é'%)fié)x
i~ 2L e 98 (P

x@%,ﬂéj@@@‘fﬁé)é’; /((*/’f'//(/f;«g’/y'
a) 7

4 ¢

Fig.19.

Nonvanishing contributilons to photon mass in the nonloeal
stochastlic scheme.
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After integrativn over fifth-time variables and truncation near

P =0 which is accomplished by removal of the two A/‘F=( Z;,gg))-falzﬂga)},O‘x
factorsy, we obtaln at equilibrium

@ Ve’ il bpil?
fusto) =-2fdy) 57 =2 S (.19

where we have assumed VF//%‘W:.{ by the normalization conditi-
on end notation G‘::ﬁg;ayzy?{ﬁzj . It is easily seen that

contributions corresponding to diagrams 19b,c are equal to each other,
explicit value of which is given by

7 F 3
R0 = 1) = -4 Vipt 9fi/fj/4.£” 6Jite) Cup o2t
Gl ) Gl 1) Gip (p ta =) Gup (PE-6) (25 4P
“(Gpoply Kegt) K T-pop 1) Hip't) -

Elementary integration over fifth-time varlables gives in the

1imit p=0

(lj a2 ?tl ({2 2 74
[T p)=~"Logp) Ly ¥ ‘?W;ﬂ‘k"?f(a?} 7 %‘f,,zjf ;:ﬁ’///(y‘f) (7.12)

or

“ e’ o
/Z,u =5 7p7°

Finally, contribution corresponding to diagram 194 is
() 21/ 2 £ £ e 5

[T )= -8 V(-/Z’i} I:/f"[d'z‘f otts &’( oty f(aé,)él’? (p t-2))
(Ggeph G, t-4) Giprg, ¢-8) [(Zg+p); -2n]*

“ G (ptet) G (p.t8) g, temty) Veg'l -

Here some integrations over fifth-tlme variables and 6/%? should
pe carried out and the result reads to the limit /?—’0

/7(:0(0/ ‘—’—,;?;7{[0“'*21)7‘{? &/(2/‘/. (7.15)

The veader may easily verlfy that the sum of all contributions
is zero, so the photon remains massless to this order for the non-
local stochastlec quantizatlon theory, as it should be.
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Awnedxan M., Hamcpai X.
HenoKansHOCTh M CTOXaCTUUECKOE KBaHTOBAHWE GMIMUECKMX noned

E2-88-557

Npepnomer Meton BBEAEHWA HENOKANLHOCTH B CTOXBCTUHECKYD GOPMYIMPOBKY
nonesoi TEOPHM B paMkax ypasHeswi flavmeBeHa u Hennrep-flasicona. B aTux ypasre-
HuAx Genuit wym wrpaer peokimyn pons: ou KONTPOIMPYET KBaHTOBOE NoBEfeHne
PUINUECKUX CUCTEM M OQHOBPEMEHHO BHOCMT HENOKANLHOCThE 8 Teopwo. flonyuentan
Takuu 06paaoM cxeMa NORHOCTBID BOCHPOUSBOAMT PE3YNLTATM HENOKANbHON KBANTO~
BaHHO# Teopun nona. lipu 3TOM narpaMmMaH B3auMONENCTRMA W NONA OCTaRTCA No~
kanbHuMKk . MpegcTasnedd CToxacTuueckue PErynapuaaymoOsHue npouenyps AnA CKa-
NAPHEX M KanuBpoBOUHEX NONEH,, a TakKe NOAPOGHC M3yueHa CKANRPHAR INeKTPORMHA
MuKa. B HaweRd cxeMe YCNOBUA yHUTApHOCTH M F'DaAMEHTHON MHBAPHAHTHOCTH BMNON
HATCA . .

Pabora swnonHeHa B JlaGopaTopum TeopeTuueckon Puamku OUAM,

IMpenpurt OGteHHEHHOro BHCTHTYTA ANCPHLIX uecnegosannlt, HyGua 1888

Dineykhan M., Namsral Kh, E2-88-557

Nonlocality and Stochastic Quantization of Fleld Theory

- Concept of nonlocallty 1s Introduced into physics by means of stochas-
tic context uslng Langevin and Schwinger-Dyson techniques.This allows us to
reformulate finlte theory of quantum fleld, free from ultraviolet dlvergen~
ces, based on the stochastlic quantization method with nonlocal regulators.
As a nonlocal regulator we choose any entire analytlc function In the mo-
mentum ‘space, which guarantees that our regular?z?tlon method for any theo-
ry of Interest does not violate basic physical princlples such as unitarity,
causality, and gauge Invariance of the theory, Here we present regularlza-
tion scheme for scalar, gauge and scalar electrodynamlcs theories. Our ma-
thematical prescriptlion Is simllar to continuum regularizatlon method of
quantum fleld theory wlth meromorphical regulators lnvestlgated by Bern

and his team.
) The Investlgation has beep performed at the Laboratory of Theoretlcal
Physics, JINR. H
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