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1. Introduction 

In recent years, interest has significantly increased in the 
study of stochastic prooesses and nonlocal (or extended) objeots 
fields;thls is due to the fact that it has been possible, first, to 
establish an int~ate conneotion between the theory of stochastic 
processes-and q~tum Physics/l-,I, where earlier references can be 
found, and second, to construct unified theory of all types of ele
mentary particle interactions inoluding gravitational force/6-IO/. 
The former is known under the general name of stochastic quantiza
tion of systems. There are different approaches to desoription of 
stochastic processes, which formally coinoide with quantum phenomena. 
Among these the attraotion of the stochastic quantization method 
proposed by Parisi and Wu/lll is that it has succeeded in reduoing 
quantum field theory to a gaussian stochastic process called the 
Langevin equation, which usually runs in an aux1~i&r7 "fifth-time". 

other direotions are being developed in the investigation of 
nonlocal-extended objects. ~ome of them have been originally arisen 
from intrinsic problems of local quantum field theory like the 
ultraviolet divergences, the problems of electronself-energy, eto. 
To solve these problems it is usually assumed that idealized con
oept of the locality may be violated at small distanoes and some 
static charaoteristics of elementary particles must be described by 
nonlocal values with distributions over space, for example, oharge 
and mass of the particle may be presented in the form 

e=jrlr£/?J m=J.lrm(r)·1 

On the other hand, mathematically it means that Dirac "'-function 
distribution should be changed by nonlocal distribution of the 
types (for detail, see Ef1mov /12/ ) 

(It) "'" C. II (")

drx) =I» kfX) =E (Rt!)1 (aiV tf tx;) (1.1) 
,,~o . 

or for the wave function of the particle 

¢(.%)""" tp(.x) = jdy k(x-y) ¢(y) (1.2) 

• 
:',,;,,",1..r'tn.!-.. I.. ... ~ , ~, 

0: ..'-.', . ". '. ,.. s=_ ~_~"""""'_ 



( ~(~) is local field), i.e., elementary particles may be under
stood as a spread-out (or nonlocal) objects with some dimension ~ 
of length (see Fig.l). 
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Figure 1. 

Ill.stration of local and nonlocal obj~cts depending on the 
dimension of space: a) local objeot; bJ spread-out lextended)
object (ball, bag. etc.) in the three dimensional case; c) extended 
object (string) in the one-dimensional case. 

It should be noted that from pure geometrical point of view, 
relativistic invariant description of extended objects is possible 
only in the one dimensional case, i.e., relativistic dynamics far 
string may be successfully constructed. Nevertheless, from field 
point of view, relativistic invariant construction of interaction 
picture between nonlocal objects of types (1.2) is also achieved due 
to relativistic invariant properties of nonlocal distributions (1.1). 
In the last case, basic peculiarity of introducing nonlocality (1.1) 
is that it leads to change of the particle propagator, for example, 
for scalar particle: 

L!(.:t'-yj= (0/ 7'frkX)~YJjlO> ~ 	 (1.)) 

~ .l)(Y-y) = (0/ '7{fJ(X) fl'{YJ]IO> =/t;I-;K' 0e-ipr.t'-Y) V(1t? 
"ur de; m2-jJ -IE. 

where lI(~,t1~ is the Fourier transform of nonlocal distribution 
KrX) • 

In this paper, we present method of introducing nonlocality 
(1.1)-(1.)) into stochastic quantization scheme within the framework 
of Langevin and Schwinger-Pyson formalisms (for detail, see Bern et 
al. ),141 ). These two equivalent formulations describe quantum 
field theory in af- dimensions by means of markovian stochastic 
processes in (d+l) dimenSions via a regularized Parisi-Wu-Langevin 
equation and by d-dimensional prescript~on via regularized Schwi~er_ 
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Dyson equations, respectively. We assume that the nOise term in 
these equations plays double role in the theory; it controls the 
quantum behaviour of the theory and at the same time it carries 
nonlocality in stochastic equations. Further, we show that scheme 
obtained by such a way is equivalent to the nonlocal theory with 
re~larized propagator of the type of (1.)). 

An outline of the present paper is as follows. Sec.2 introduces 
the nonlocality into the (d+l)-dimensional Langevin formulation for 
the scalar theory. In Sec.) we discuss the equivalent d-dimensional 
regularized Schwinger-Pyson equations, and their more-or-less con
ventional weak coupling expansion. Sec.4 is devoted to introduction 
of nonlooa1ity into gauge theory and to reformulation of gauge-co
variant LangeVin systems in (d+l)-dimensions, for which we derive 
the regularized Langevin-Feynman rules. These rules are applied in 
Sec.6 to a computation of the one-lOOp gluon mass in QCD4• As 
sketched in ref. due to Bern et al. /14/ , the mass is zero, providing 
an explicit check of gauge-invarianoe of this order for entire ana
lytic regUlators. Sec.7 deals with the simplest gauge theory scalar 
electrodynamics. This last section has preparative character in order 
to generalize our prescription to the nonabelian theory and the 
serious scholar may be advised to begin with this case. 

2. 	 Nonlocal Gaussian Noise and Regularized Langevin Systems for 
the Scalar Theory 

2.1. 	 Nonlocal Noise 

We oonsider the markovian Parisi~u Langevin system for a 
d-dimensional theory of a scalar local field ¢rx) with Euolidean 
action S 

· oS 	 (2.1)¢(~, t) = 	- O'¢ (X, f) + 'l(X, 1:) • 

where t is additional fictitious ftfifth-time" variable, x are 
d-dimensional Euclidean coordinates and q (x,t) is the usual local 
Gaussian noise satisfying the following condition 

(2.2).<t;tx, t} '1(Y 1:) >'1 = 2·cf(t--r) cf"rx-y) . 

Now question arises how to introduce nonlocality into this 
stochastic equation in order to obtain equivalent stochastic formu
lation for the nonlocal field ~(x) (1.2) with propagator (1.)) 
in the Euclidean metric. We assume that the noise term in (2.1) 
carries nonlocality only and by analogy with (1.2), in this Gase, 
it takes the form 
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'1(X,t) ~ /I(.:r,t)-:=jrlY)/((X-Y)'l(Y.t), (2.3) 

where (tly) =d} , and Krx) is nonlooal distr1bution inyestigated 
in deta1l by Efimov112,15/ • The nonlooaldistribution k'(X-Y)==~y(D) 
that multiplies the noise is a funotion of the Laplaoian 

4 y =J(cIz)(~)= (~~y (2.4) 

(~):cy == ~.r t"rx-y) 
whioh guarantees that k;y(a) = Kyxro) • We will choose here a 
wide olass of distribut10ns 

00 

KryfO)=!;/i:)! (012)4 O~.x-y) (2.5) 

for wh10h the ord1nary Par1si-Wu equation is regained in the lim1t 
t - 0, i.e., Kxy (a) t+d tf'Yr-y) . 

2.2. Nonlooal Distributions 

We see that the funotion (2.5) is the general1zed form of the 
well-known looal D1rao ~-funot1on. As usually, 1ts spaoe-time 
properties are invest1gated in the K1nkowSki spaoe-time w1th metrio 
$,/= (£=-J;(--tPzz--?n =L ; 4w =0 ,;C:#:J/) and depends essent1ally 

on the sequenoe of ooeffi01ents en (generally speaking, they are 
oompex numbers). We s~ that the generalized funotion (2.5) is given 
in some test function spaoe if for a:tlY f € 8t the funot1onal 

(2.• 6)(K.f)=jA/((z):frz) -& (~j! ~allf{:x)/ < 00 
I~..o 

is well-def1ned, i.e., the obta1ned ser1es oonverges absolutelt. 
Passing to the momentum spaoe in (2.6), we obtain 

(K,:f) == J"P Kr;rfVftp) < 00. (2.7) 

where 

Kr;rfJ = E c. I /211(,0')'& 
I'I~(} (2,,). I 

aDd. ftp) is the Four1er transform of I(X) • In other words, the 
.enera11sed funot1on (2.5) 1s g1ven on at 1f series (2.8) def1nes 

" 

the funotion Krjl{t; for all p2 and the integral (2.7) oonverges 
for any f(X)fI U • Both/ond1tiOnS (2.6) and (2.7) are equivalent. 

As shown by Efimov 15/, basic physioal prinoiples suoh as 
unitarity, oausality diotate that as a Fourier transform of (2.5) 
entire analytio funotion should be chosen. Further, we are interested 
only in t~e olass of distributions K(Z) for whioh KtZ) (2.8) are 
entire funotions of the variable ~ with a finite order of gr~vthao
eJO>p';Jt; 1/2 and wh10h deorease rap1dly enough when Z=p2_
(in the Euo11dean direotion). 2 

In the Euo11dean domain of the variable P for the Fourier 


transform (2.8), the Kellin representation 


,..., ( 1':;

f
i<P ... >1' 2 (2.9a)Kr-f}~r;=.....,. ell'" ~ eJ(mZ+til)J

IE 2t . .> 5",71'5 re 
-(1+'''' 

or -I!.-I"" 
2 2 (2.9b)

Vi-f}2?)= [ Krt;.'ev/ == 1.-Jtis J:!fU- f .J(/11 i+ £) ) '5 
It; I! ,cl -(1+;- SIIt"'S FE 

(I<P<7) 
1s'valid. The form of funotions W(!) and ZI(I) depends on the 

form of the function Kr-fl(1
) • For example, 1£ 

(ml{Z/ . ' I'l IF" 1/ j. nlfi)Z
l{ = r' If f {y (smt/t -cost" () , -/11\2 _,$1 1 

Sill m '" - CQ,S /11 (2.<;10) 

L{ =exp(-I;Vz = (sinfj!)'1 

~ = 2$r(f+s) :!s(I)/!.!. 

where ~ (tt) is the Bessel- funotion for some given value S >0 

and f:::; [(mt1i)t''lYt, then 

ZIr(:r) =.92¥+2:% (2z'+7x +5') /r(9'+2.z) , 

ll1t(z) =2'+2:% / r(3+2x) (2.9d) 

~(z) =r+2:% (22:%+( - f) I r(s+.?,:;t) 

~t!) = (/ro'+s) 

~ (x) = r(t+s)


f 2 2 :0: r(l+z)r(t+s +:r) 
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The physical meaning of form faotors V;-;tf~ oonsists of 
ohanging the form of potentials between interaoting fields (for 
example, the Coulomb and YUkawa laws) at small distanoes and in 
making the theory finite in eaoh order ot the perturbation series of 
the theory of Ooupling oonstant (Ef1mov'15/ and Namsrai/4/ ). The 
question about a possible un1que ohoioe~f/the form-faotors was 
disoussed by Ef1mov/15/ (see also Papp, 6). Bfimoyll5/ has shown 
that the obJeots oonstruoted by distributions K1~) (2.5) are 
spread out (nonlooalized) over spaoe. Thus, the relativistio inva
riant distributions ~(x) give a oorreot desoription of extended 
obJeots. In this oase, roughly speaking, the parameter t may be 
identified with the size of an extended objeot (a partiole). 

Our next goal is in introduoing suoh type of the nonlooality 
into stoohastio equations. We now turn to this problem. 

2.J. Regularized Langevin Systems for the Soalar Theory 
With the assumption (203). equation (2.1) aoquires now the 


following form 


• d'S' . ( 
¢r.r.,t)=- .:f¢ (.x,t) +j(cIy)K{z-Y)f(y,t-). (2.1 0) 

Suoh type of expression (2.10) gives rise to realize our programme 
mentioned in a previous work (Namsrai/4/ ). We notioe that our 
stoohastio presoription tlsing entire analytio regulators inolUding 
exponential ones may be teohnioally superior and useful for nonper_ 
turbative analys:.ts, whio}i appeared alread,y in a Paper due to Doeri~ 
117/ using the soalar prototype regulator desoribed ~y Bern et al./IJ/. 
As in the usual looal stochastio formulation, our presoription for the 
nonlooal Euolidean Green funotions of the theory 

<p[tPro)j >= ttm <F[c/>(· > f)j >''1 (2.11)t ... "", 

oompletes the oomputational soheme. 

Aooording to Bern et al. IlJI the method expOunded in this seotion 
is easy to be generalized for a looal symmetr,r, whioh will be disous
sed in Seotion 5. In this oase, the only ohange 1n the soheme is the 
replaoement of Laplaoian by oovariant Laplaoian in Bqs. (2.1)-(2.,) 
and (2.10). 
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We will fUrther follow Bern et al. IlJ,141 everywhere and obtain 
explioit weak ooupling expressions for the equation (2.10). First 
oonsider simpler oase 

S' =J(tI~)[J(~¢)(lfo</» +.j",1rj>2 + A(¢;)j. (2.12) 

To solve the equation (2.10) with (2.12) and oaloUlate oorrelation 
funotions in the free oase, 1t is oonvenient to introduoe the free 
Green funotion ~(~,f) whioh satisfies:r Cr:z; of) - (0-"'') G(:z; t) =tfiz)hJ 
with" the in1tial oondition 

c;'r,z, f) =0 f<O.
/ 

This equationE easily solved to give the explioit expressions for ~: 

Crz' t) =&(t)J(d);) eX? fip,z - (p2+mtj t J , (2.D) 

where r+):=: cIP/(k)" • Thus, for (2.12) the integral formulation 
of the system (2.10) is 

~ , (
¢(z;t)=jrely)fa't'C(:r-y,t-t')[jr4JA;z/O) f(~l')-Jrrky- t')j. 2.14) 

Here A' is the first derivative of the potential and we have 
employed the teohn1oal devioe of ohoosing to = -00, so that the 
system has eqUilibrated at any fin1te fifth-time. The integral equa
tion may be iterated to any desired order (Parisi and Wullli ) 
as 

(2.15)¢(~, t) ==jc;, (*fJ -fC.1;(;r(f~ (kf4 -J~ ).'([bzs (K1th-.. .)) 
, t .t 2 ~ 

where it is used oompaot notation 

(2.16)~( - C(x-Xt , I-i,) , 

(..tfJ.. ;. f(o'y) ~,y (a) 'l(Y,t,) 1 

J ::.= j(tI.r,) flltI . 
J: 

Aooord1ng to Bern et al./IJI for oonorete oaloulation purpose it is 
oonven1ent to represent this iteration bT Langevin -tree diagrams-, 

7 

http:analys:.ts


1 3' 
as shown in Fig.2 for the explioit ohoioe A=J7¢jllf. In these 
diagrams, eaoh line oorresponds to a Langevin Green funotion (2.1)), 
and its arrow represents its rotarded property, while the oross at 
the end of a line represents a nonlocal form-factor (or regulator) 
times a noise faotor 

~ )(' + <---< + 2- ~ 
Fig.2 . 

Langevin tree diagrams through O(f'lJ in the nonl.ooal stochastic scheme. 

In the nonlooal stochastic soheme, the tree diagrams may be suooinotly 
summarized in a simple set of Langevin tree rules, as shown for this 
oase in Fig.). 

('l;t) (z't,) 
= t7(.z-.x'~ i-t) 

I 

~ - -r# 

= Kt; 
Fig.)· 

Langevin tree rules for the nonlooal stochastio quantization
theory. 

Using Eqs. (2.2),(2.1)) and (2.15), we easily obtain oorrela
tion funotions for the free oase 1=:0 : 

.D(.z~tf-t~) = <.¢r~I~,J,*Y-~1)1 = 
IIf"'(~'J tz)

=2Jfr4}(tIx)JrIr C(:r-.z;,t,-r) Cry-r,,;-r)jrdz,) k;';l'/a)A;;2', (a). 
-00 

Taking into aooount the following obvious equalities 

!ftlz,) k;z,(a}K;.,y (a) = frt/f) W-rjrJe.rp[-iy(:r-yJ] 

8 

and 

IIf",,(t.,f.)f t:t'reXj1(-(t,--t:)(fZ+/YI2)-(frr)()il.+llftj} = eKRI-(i,-tz)(e~mlJl 
_gO 2(m2+f'V 

we get 

Vi-e2fz.J
4(X-Y) = 11m ])(.r-y, t,-f.t) =/r{t;) fi'ftX-JI) (2.17)

/l/1.+p1.
t, ..fi 

whioh is just nonl.ocal Buolidean Green funotion (1.)) for the soalar 
theory. Here we have used definitions 

~ (0) =ir+)e-ifrx-;t)Kr-/fJ , V(tpztV = [Kl-;:,7t'V]2. 

!DUs result may be also obtained by us:!.ng diagrammatio represen
tation for the Langevin system. Thus, as a speoifio example, the 
zeroth order momentum spaoe nonlooal two-point funotion, shown in 
Fig.4, oontains two looal Langevin Green funotions in the combination 

I -t, ';1.

42 (p) =2·V(-/t:Jf tr't:.rftIf, 6;, 9') C;~ t;P) IrfI - tt') = 
-"" -oP (2.18a) 

== Vi-pzt'tJ;fe,r;>!-It,-tz//Jpi= ikl') e.rp[-/t,-fl l4p] • 
where we have introduoed 

lJrpJ == W-p1t,.ct;.t .1 Ap = p2+ml (2.18b) 

Cfi tp) = &(t,.-~) ex,P[-lit' - &14] . 

ff- . .....Ii 
,. )( E 

Fig. 4 • 

Langevin line with a oontraotion in the nonlooal oase. 

The result for the nonlooal free propagator is therefore 

(r/:(.r,)'Prx.d())=j(+) e-ifPr,-~)IJj(p) = I(tIP)eif(~-Xz) Vi?,2!J 
r- )'7' mt +l't. 


or 
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· (a) ., if'/ (i./

<~ ~>= Vitrf~LJp' 0 Yf+fi) = b{fi) 0 tf,+A) , 
 (2.1S0,) 
where 

i"{'p'+I?J =(~).{41f) ; ¢(r)=J{t?)~ e-i,Pz. (2.100) 

In general, eaoh line with a oross (oontraotion) in a Langevin
Idiagram is represented by a. faotor Df2{f) whioh inolUdes a faotor 

YT,rfV. In this oonneotion, it should be noted that produot of 
generalized funotions ~~(O) may be understand as oontraotion 
operation only. For example,

K;; (a) -j(/x) K;~((J.J 4 (0) (2.19) 

or 

Dx~ -I(/z) Dn ilzy • 

eic. 

For further assimilation of oaloulation exper1ence~ we oonsider 
)63-theoryand caloulate the nonlooal first-order three-point 

function (Fig.5) 

/~t /~
11

+ ~+L Y 
" ~~ 
~ Fig.5- ~ 1 

Langevin three-point diagrams in nonlooal 
stoohastic oase-

Let 
A{¢) == j'¢/3! 

In this oonorete oase, iteraotion solution (2.15) takes the form 
in the momentum representation 

¢r-Z', -I) - jc/;;) e -tjPJ: itt) , 

where 

10 

tfrt) =jrtl.r?/dl'eF'~,,,,)ffr~"-}'(a)'1(Y. t;J - ; j{tlx/) " 

..f;t, r;tr.-z"t!...tJjr/y,)K;,)I,(O)'l(R, f , )fcd~) " -.. 
(2.20)

:I~ "(z'-~,t~tz)fr~)~J7{O)?(;;,tl ) j-

To oaloulate (¢l tPD- ..I.. >.(1) for oonneoted diagrams we use the


ill FZ 'l';f} CClrIlf'C
following approximation 

(~~IIx)(tIy-ft,){~-/4) = Cl~t1yq, - jr/,tIy<le +t{C/xIQ +~tlJ(,?) 

and the Gaussian noise property 

(!,(X,t,)fO'I~)'lf.fJ6),?(~f,)) = 9'(t~'.Kz)&tl·t~)tJtr}'v) &fJ·fy) + 
(2.21) 

+J~-.(,)tffr-tJ)£fi'finr,)J(tz-t~) +~-,(y)!(l,-t~)!i)(,,-K.)cf{tz -tlJJ . 

After integration over ft- and a;. variables, we heN'e 

(~~~>~ = -.1JdI,lc(J(ff,)zt(jJ)It~) ·t-l{,/fjI)Co,r;pJ(fA)+ 
(2.22) 

J f J If.!+4 flJ} l1rr&)~tA) 0 0 foil f-/1) . 

! 
Taking into aooount explioit forms (2.1Sa) and (2.1Sb) for 4·(1') 
and CijCf') funotions and oarrying out some algebraio operations, we 
get 

.f 

(~ ~ ~ 'if) = -r; pVLfl1· 17.:1(V A" J~jl"1J+P). (2.23) 
fl & IS """"""< t:1)"LlA '=r * r, rz /.1 

We note that in the presenoe of the form faotor, the loop in 

Fig.6 


(1j>ffJ= -11!tII, C<'fq;)J(tk)Z!/~k)cfip) = (2.24) 

( ~(1)" r.l n=-ziLl,., 0 fpJ) (r-rK) i/{K) Ih-) = W-K¥,jLJ; 

JI 



--

p 

Fig.6. 
Langevin tadpole diagram in the nonlooal 

stoohastio soheme. . 

is not the proper vertex of (2.2J) times a nonlooal propagator. ~is 
indicates some peculiarity of the effective d-dimensional action of 
the theor.1. which will be discussed 1n Secs. 3,4. 

J. Nonlooal Schwinger-Dyson Equations 

J.l. 	 Derivation of the SD Equations 

The regularized Sohwinger-D7son (SD) equations with meromorphio 
regulators were used in stoohastio quantization soheme due to Bern 
et al. /1J ,141 • We generalize here their results for a wide olass of 
nonlooal distributions, Fourier transforms of whioh are entire analy
tio funotions of the type (2.9a). It is shown that a simple 
d-dimensional SD formulation depends oruoially on the Markovian pro
perty of the soheme at the stochastic level. It turns out that this 
property does not ohange in our oase. 

We begin with the Langev1n system (2.10) and (2.12). Let /7r¢J 
be 	any equal fifth-time funotional of the field ¢ , then its 
'1- average evolves in fifth-time acoording to 

cI<PNJ>V = «(/t!:.:) ,(}¢(:r,f) JF'o¢J> . 
di- JIl ~ at J'¢ f 	 ().1) 

To transform this equation, we use the looal white nOise identity 

[f(y.tJ+2£(Y,i) 1eXfI- fjhfitlxJ'l2(Z',i-)j 0 ().i) 

whioh expresses the MarkOVian property of our sCheme and is easily 
verified by taking differentiation of exp!-/ffh(.6;Jtf~t)] . 
with respeot to ~(y;/;) • Thus, multiplying ().2) by any functional 
pr..JJ and 1ntl!!grating it over 'I. ' we get 

_["';[ftY.t)+2J~+) jex/lfIItl7:(tI.z)tr~JjP[¢]=o. 

12 

Integration by parts 1n ~ gives 

hex;:,f-/f/tl7:(/x)I/(:r,tJl/ff)ft)-l'r!~ i)lFCt/J] = o. 
_~ 	 v?~ 

from which it follows the formal definition 

f (1,I) = 2 J' =2~tIz) I{)¢r';;i) Jl 	 (J.J) 
, J'f(y,t) f' IPf(y,rJ i¢rz.I) 

for any funotional F [~] • Now it is neoessary to define 1¢rx,t)ftf(Y,t) 
~¢r:r,t)lg'l(y,i:) • For this, using the Langevin equation and its 

free solution, we obtain 
1;' 

.~.:r,~ =/ t ~lxldt'tJ(.(.x;t-tJftl?}t;!t{a) 17(2, t'j = (J.4J
"l(Y, 'ff)'. ~J' _..., 	 ( . 

=jri6Jfo fr+)e"/(NJI'G/t'tp) {y (aJ &t-tj = 5'((1) ~ (£1)= j II; (0) . 

Further, aooord1ng to equalities (J.J) and (J.4) we get a chain 
rule into ild1;6 

frrly)4 (0) fty,t) =2jtIJ)K,(D)frlz)f:;~ /;;Z;I) = 
(J.5) 

= Jrlj) ~ (a)fr'?J i:;zr0) -k?,I) = jrtlz) ;:;:(£1) L 
where b.r definition (2.19) 

Kx;ro) =J(rIz) .f;z{O)1;)' (a) 

or 

( . t-'.tt)(X:Y) Z 


)hk;zro)k;,(o)=)f/;J) Vr-;J~e :::::::f:xy(o). 

Finally, taking into aooount (2. 10), (J.l)-(J.5) we arrive 

at the def1nition for the regularized SD equations 


eI _ "r; (-ts t2 ,,n jdF[¢J,\ (J.6)
cit: (P[¢J'1-(./Ix) -J'¢(x) Tjf/Y)K..ty(O)J'¢rY) J'¢Xx) /1 

or, at equiB:>rium 

(J.7)'f. f tPS' _t: z d' jJlPN1><J(Jx) - Jtt:rXJ Tj(r/y) KII'y{a) J¢<YJ 7¢iXj= O· 


/1JI
Further, following Bern et at. and choosing 

I :i 



? [~l = exp[ jfA) .J(Xj ~Xj] 

the Schwinger fozm cf these equations ma1 be easily obtained 

(J.8)/rllx).i.vf [;.r)- / J' +Jrtly) t:;(O).%y) ] 2fJj =0, 
1<1+JJ ' I[ 

where Z(J)=(eXf(j(H).:J~lj}» is the vacuum-to-vaouum 
generating funotional. 

As shown below, the Schwinger...D;rson equations. plus sOOle boun
dary oondition which requires the permutation symmetry of Euolidean 
Bose time-ordered produot, e.g., 

• (~t4>=<-4~> (l.9) 

are equivalent (at least in weak ooupling limit) to the Langevin 
formulation at equilibrium. 

It is oonvenient to study the SD equations (J.7) in momentum 
apaoe. Making use of the definitions (2.18b). (2.18d) and Simple 
relations 

.L = 0.1~ le,!,K J' . J'PN] = ~thl/rKt'/'tl . -" 
&,tr,Q 'J{"'f'/ ~'J'¢(Xj j(M!/ J ~=cf(pl-rJ

O'~ 

we have the follOwing identities 

j(6) (tJt..IfIVt}W SFl~ = _j(t/p)(jJZ+mlj'/" f;Fltfej 
)O'tPrX) f . r "f1> t<il» 

f ( 2 (rFNl _ ;; Th_ VIZ (rFr~l ,
)(tlx))rr/y) /::'xl fa) 8rPly)0'¢(X) -j(tIj) Y(jP 7 ~O'.¢..I' 

etc. From which it is easily verified b,y a funotional chain 
rule 

<frrlj?)4¢*i >=(ft+)V;..,ll'f~~1' 
(J.IO) 

1'1-1 -.I. N-f crF >- L (n/r/r.-)' frlP)S lZ.'A1-i])~ ... ~ "'PI ' (N-I}/)/'!" '')(1- ,=1 r- K, KIII_' "'7' 
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where we have ohosen the interaotion 
cpN


A{t:/» = tf /V! . 

As a first trivial example, with the boundary condition (J.9) 

we compute the regularized free two-point function. Setting and 
choosing Fe:,.. ¢,1 Eq. 0.10) becomes 

-q' 1 -/

(~~ YO)= J ~+Ii)2Jt;?) lJt;') = J,11't'JL11' . (J.ll) 

This result is the correct nonloc&! free propagator, in agreement 
with· the Langevin result (2.18c). 

J.2. Iterative Procedure for the Nonlocal 8D Equations 

To compute some n-point funotions for any desired order of 
ooupling constant g within the 8D equations terative method of E~. 
(J.IO) should be given. This procedure was done by Bern et al. /l ,ltl 

In our case with nonloc&! form factors, their result is automatically 
transmitted. For example, it is not difficult to check in analogy with 
the fonnula (J.ll) that (~~ ... ~yQ) yields the usual Wiok ex
pansion, as prodUcts of nonlocal free propagators (J.ll). Moreover, 
in the first order of i it corresponds to the regulari2;ed vertex 

AI _I 

/7, _ A. ..J. (f)_ fid'/N )/7" f-!ff!1)(/j)].


I q: ....e)-('lI,q~> -(rtl;;1 i_(l}(f,)il . (J.12)e
"., .I 

For N=J the result agrees with Eq.(2.2J). 
Iterative chain rule may be obtained using Eq.(J.IO). For 

illustration of this, we consider ¢~- theory (N-J). First, setting 
F(¢)=¢p in Eq. (J.IO), we get 

(1?) =-I4/./IrtIKt)(tiKr) ?rt-~-kl) <<Ii ¢i:z >' (J.D ) 

in turn (9},9}t> is given by the fozmula 

<% ~t >= lit;+~)])'l',)- ff4(,+IJK,Jjfrtlr,){d'lz) " 

0.14) 
-,; -,/ ]-[tf (tf-r:-~)(~ ~, >-+cf (Kz-f-'lz)<~t4,~z > . 

J5 

http:Eq.(J.IO
http:Eq.(2.2J
http:rllx).i.vf


Further, assuming F[¢]:.::~~ef& in Eq.(J.IO), we obtain 

<~~~ >=12~+4., +AI!r.r(r~~) Wi1~~<~ >'t-£)'Ch( fWP'1· il1/Plj- (J.l') 

- f..,(LlR't-,* +4sF1/rh,j(,4l) I i"rf, -K, - Kz) (~ ~ c;1, ~>+ 

+ cyc//c ;;erll1. //1 If'j ] + ..._ 

where definition (~~)=~~JLI~ W7f 2tV is used. 
Using the zeroth order result (J.ll) for ~ , the first order 

tadpole graph (Fig.6) may be immediately obtained from (J.lJ) and 
(J.14) , 

-ti (J.16)
(¢),>(I) = -1/ ~r1(c/K)bK) 

in agreement with the Langevin result (2.24). After taking next appro
ximation in Eq.(J.13), expression (3.16) aoquires the form 

.J. (t) I r -f 'ji./ l -ff.. ji<..".> =-2:/14 o t;o)){t/K,)lr-tfJ-cf4){t/r,)(tir,)(vy;) x 

-tl '}xJ ~-I(,-i-f/z)(4:, +Lll'_.~)- <~c4, ~ > . 
Finally, in order to oompute the l?~9 one-loop, oontribution 

to the two-point funotion (Fig.7) we take into acoount seoond term 
in (3.14) and put in it the disconneoted part of (3.15) with 

...L (DJ ri
<~<i~~>~K =(~~,>(~s4:> +<'4¢K.>(~~..,>= 

r-tI., -d . -,f -<I 
= lJre)j)(9'z),cfrt+£f)J' 7ft +Kz) + J (rt+/:l) 0' ('Iz +4)] 1 

where the subscript on the right f./J K means to keep only those 
oontributions in which ~'s oontraot with }('s. 
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Fig.7· 

One-loop two-point fUnction in the nonlocal 
stochastio soheme. 

As a result of a little algeora we obtain 

n f lJrt) {, (V-f t (-f"YO)= z;lLJ<'fJfdK)])-I/)!fp-K) .11.:+ V Ll)p-K +(V-.~lJe 
tlK + LlP-K +Llp 

whioh is the usuallooal loop when / ..... 0 

(J.17) 

~us, the SD equations (3.7) or (3.13)-(3.15) may be solved 
iteratively, in this manner, to any desired order of " • However, 
the prooedure is inoreasingly tedious. To simplify this prescription, 
Bern et al./lJ ,14,lS/ have developed a systematio set of Schwinger
Dyson-Feynm&n rules instead. We mention that construotion of any 
expressions of the type of (J.17) acoording to these rules, requires 
more efforts than the usual Feynman diagrammatio oorrespondenoe • 

Finally, for fUrther oomputational purpose we present here 
oonorete method of calculation of the expression (J.17). Explicit 
form of whioh is 

n I -21- - -fli, lip) = "2""jYIJ,z+/2) }(h)1.?lIJz+K~f'1+ f/-KX} I Vit11} Vi'-y:.-KY/~ x 

xr;"l+(,P-d2)-f -+ Vi-;,zfJ V(-K7f'(m'+KlJ -1 + (J.lS) 

+ (l1i¥jl)(m1+KV-{IJI Z+frKfIfV(-,lIV V(-(KlftlJJ . 

First, oonsider the second term of (J.lS) in the case of d-6 dimen
sions. B.r using the Mellin representation (2.9b) for 1/,(Z) and the 
general Feynman parametrio formUla 
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http:3.13)-(3.15
http:Eq.(J.13
http:Eq.(J.IO


t , 

p'l'f f --jI'.. = I'r;v, + " jU,,) ftlql" ftt'at. t (1-Ec(i) .
6, , . " n. J"'/ J"'/ ) , j e It .=,


''1'') -' '0''' "
0 

11,-( 	 If.,Ii.-' ;v..-'j- /]-1"-/,1-" -/I.. 
Xat, Oil ___ at... E~'J 

J"I 

we get 
-I!.-ioo 

9Z
r-P) fll-/YJ JI-1 Iftt: Z!fy) ('r-!"'f) tlYJ, (J.19)
/I tI) =.If (LJ~+l11lp (2q)6 2.' ,'Y s//'JIf)' /'(f-y) JryJ 1 

r l' ~loP 
where 

( 

fty) = /dx (1-.xI)lAI'f-~ 
o 

A = '-/;;~ z f-jJ<X+ ;m~ + n/(I-,z). 

Further, by shifting the contour of integration to the right we can 
reduce this integral to aeries and taking into account the main 
asymptotics we have 

rlt~) = fl(",t-l;/ft~: /J/-~(iil+EmVtJ(o)&)llf1, (J.20) 

()=!fin Vf.2)/r/~:z)
"..,-( 

here we have assumed that function V(z) has zero at the POUtt .2:'~ - f. 
andV7-/·t~'..,.o= f for the external momentum variable f4 
Moreover, in CJ.19) we use the ~ -function properties 

.7T •/(1+.2)= xlr:l) ((zJlff-x) = 9tllrX 

First and seoond terms in CJ.20) correspond to calculations of 
residues at points y= -/ and y= 0 ,respectively. It is clear 

/7") tz)that t,oJ = f7 (fJ) • SimHar oalculations can be carried out for 
the 	third term in CJ.18) and the result is reduoed to the foll~ng 
formula 

(J) L tltO) & lIZ17 t,P) = - 2.91l'3 ml+;>2 'I' . 	 CJ.2l) 

In CJ.20) and (J.2l) Z!fo)== ( whioh follows from the normalization 
oondition 00)=1 ,and fl is an arbitrary parameter with 
dimension of mass. 

4. 	 Renormalization Fresoription and the Three-Point Funotion 
in Nonlooal SD Formalism 

A renormalization program in the regularized SD formalism has 
been first disoussed by Bern et al. /lJI • For the nonlooal oase, 
their result is immediately repeated. However, some essential 
differenoe appears when oounterterms in the Lagrangian funotion 
are oonstruoted. In the nonlooal stoohastic theory oounterterms are 
finite, sinoe we do not assume /..,.0 at the end of oaloulations. 
It means that parameter t' of the theory remains everywhere, in 
partioular, in its aotion. Thus, our soheme is an aotion regulariza
tion, beoause at the same time for the Green funotions explicit 
divergence does not occur in the effective d-dimensional action of 
the theo17' 

For oompleteness, within the SD equations we present here 
renormalization prooedure due to Bern et al. /lJ! for t~e nonlooal 
oase. Thus, the nonlooal SD equations 

(4.1)(/(tlZ)(1!-) -ft/y)i:/(O)J'~J]f;) > 0 

involve the unrenormalized field ¢rZ ) and the bare Lagrangian £0 
whose parameters we now denote as /71" and,fo • The usual renormali
zed field is 9k 5.4-~ ¢ by means of whioh renormalized Green 
functions F[t:4J are oonstruoted. Assuming the faot that the SD 
equations homogeneous in tit¢: ,we have the nonlooal SD equations 

(4.2)'I. [t(s;.. +Scr) (, 2 J> j JF[¢l?i >- 0 
<)(t/x) ~(Z) - ) (t/y) K:y (a) cf'4ty) 8¢Xr:xJ - , 

~ 

where .s;, =,s~ -+~T is the usual textbook breakup into the renonna
lized Lagrangian and the oounterterm Lagrangian. Renormalization 
procedure formulated as usually is based on the oonstruotion of the 
total Lagrangiruls, for example, in the oase of ¢3 theory we have' 
explicitly 

/' _.L ~ (- 11...( .L -'.3 
"'-R 	- 2 ~~ -a+m /'I"~ + 3/ WR (4.J) 

LeT = f(~-f)¢k(o+m')¢1? +fJm2<¢/ + fr(.fJ-t)¢~3, 
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where 

, tm l /.2¢./7)<= n;.,<$=~~/~ (4.4) 

Following Bern et Bl./1JI we oompute here three-point vertioes 
in the nonlooal theory using the iterative method presented in the 
previous seotion for the 5D equations. For this purpose, oontinue 
iterative prooedure carried out in 5eo.J.2 up to the 0G7~ -order 
for <~ ..p11t¢1}~"M • After simple but tedious oaloulations, we have 

-' ..I. I, If- f J p;I. , -f(~~ ~ >=-2jjlJ}(tiK,)(dKr) -2"(.) ?IJ-K,-Kl)UlK,+i1Kz+L1~+A-1) x 

(4.5) 
x!4~ +2E.z +12;, +2XS +L6' +2L~,J/J.-IV + 

+22;.(4..../3) +L;Vi -g)]+ (;:J -It.)+ (;?-A)1+ ,AI, +;1I.z J 

where 
3_.[

o=[rLJI1]
J .;-1 (I' 

; 

'" LJ; (I:;,K,.;UO f,t; 04'" r;' -f= -zJJ(rIf,)(~){tIs,){tIs.)()k-'l-g)l4+L1fz+4r+LlIl+Ad] cr 
i=< I. /J ~. (4.6)

,.c/.:l J 

f. ~L,;(r, KtAf,) == -fJ){4?, Xdtft.)6/s.)(rI;z) CJ cP t&-~fz) II 

-i 
x [4r, +'% +tJl(, +tJl<, +tJ& ] ) j= 4: SJ ; 

here: 
(').1 (0)

tJi =0 (t'-.s;-S<7)<~ <4z~ ~r ~ ~> , 
Oi =(1;(9,'-4) / q; = 6i(Ai-j?) ;> 

<J;{ = i'Y~-S,-52) <~ ~z ~ ~ t4z <PA /0) , 
,0;= CJ;(9,''''4) a; -= q;:(Kz -/3)I 
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In turn, terms AI,' (i=/,2) are given by the following fomula 

!W, ="J'fJ~+A +10(!r4s +~rfWi1%t)/~) +r;;.-;1J}+tj;"";'J+t/1,,·,/V}J 

Hz = (-!J)j{t/K,)(.lKz))j(frtlr)(r/g)Jj liJr-t;-lZ) j~J';-r-f:) ~ V(-ft"'x 

xf f/(rls,){<iS:t)(II+ H(g'*""ji) +#~~)+N+IY(~""A2)+#(8 .........1),..
" 

+L+L{ft ...Kz) +L.(f:-IV) +(~-fz)] + (kf-Kz )}. 

Here 

It = (AK, +L1Kz +.1,4 +L1~ rf ~ 
J'; = (tJ" + Lltz +AI<, +L1A "".!~h )-.1 ) 

E<I- r ]-:1. 7i.:l -L A. (0)II=(/ (.f+Kz)L4 +A&'+~ (J ~-.s;-~) ("IS,'f$~~~> J 

N=..?i~+,f)(4/z+42 +4;}f'l1t;-s,-~) <¢Sf t4z '11-2~Y()~ 

L = N(A-A)' 

Main asymptotios of (4.5) may be easily oaloulated by the same 
method as it has presented in previous seotion. We are 1nterested 

only in divergent parts in the eXpression (4.5). For example,term 
~9 has the form 

2:; = g(-IP(mZ+llIYm~/trf tf*'+Iz+AJ.!r"r) r:!j'/ (Pl1l+fi2+f{I~... 

l( (rLJ" +~r--A +4i -+.I1/j T '- [4, +L1?-A +'!~h +.2LJ/i r.J.)1 

where we have used the usual W10k eXpansion for or in (4.6) 
in acoordanoe with (J.ll). Integration over af~ is easily oarried 
out by the same,presoription presented for obtaining leading terms 
of two-loop funotion fir;>J (J.1S). After some elementary oaloula
tions, main asymptot1os are reduced to the following formula 
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~t' -=-/:;3 (ml+f{'rl(h11+f:/Ii(2ml+A~+~2rf X 

)( /2(1112 + [1-{;{z-tfjZ) + 7mzlIn;tZIJ' 

Remain terms in (4.5) are calculated in the same manner. Aooord1llg 
to Bern et al. /IJI obtained results may be classified within the 
differ~nt types of diagrams, shown in Fig.S (for detail see Bern 
et al.'lJI ). 

~ nC"I"+~+-V 
~ ct) 

~f,--<C + --../l
~ ~«-ft , 

ro~~~ + (Pz~~)·-<r< 

.~ +--£?Z2}~~ ~ 
a'j 

Fig.8. Nonlocal diagrams. 

a) One-loop two-point functions. b) ~ure· three-point 
vertices that are infinite as {~O 0) Three-point 
functions with a loop on the external lines. Cyclic permuta
tions of the external lines must also be inoluded. at), b t ) 
and 0') oorrespond to their oounterterm diagrams, 
respeotively. 

Final results are given in Tables 1 and 2. Comparing the sum of 
the loop diagrams in Table 1 with the sum of the oounterterm 
diagrams in Table 2, we determine the renormalization oonstants 
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Z¢ = /+j 2+;J &1£2/'2' .I 

(4.7) 

2J = I+-2<;3 Ih1'2/
2 

) 

1m2 = p{;3 [ rs-!-2+ f fln1'21'j . ., 

Table 1 

Diagram Leading terms in sum of one-lOOp diagrams 

8a ;:;!(y/-2+(JjJ2+21f111hI'ti'l(;:;R+mV-Z , 

;r!;;!r#+I/)(IflI+jl)(hl+;D)-tIh;«zt'2 ,8b 

_b/(p.z+!111)(p7+m9(p1.+m91j-frd-~ff/lr.?1I72)&,1(<f'2
2 'Jr3 'f! rz r.1 L . Il,z +1111 + 

80 

+ ~l-~!ff{:mt}lngzt' + (J"r~ (ffl+2117;)&~Zf/lj 
2fj+-m It +177 

It is interesting to notioe that Bern et al. /IJI results are 
valid for any regulators lI.(j02!V if, in their final expressions 
for loop diagrams, ooeffioients f;12 and IJz(A~l) should be 
changed by CYt-2 and -&I'I/,1. , respeotively.

'" The attraotion of our approaoh is that the nonlooal soheme is 
unitary in the presenoe of the analytio regulator (for detail, see 

1121 )Efimov • In our oase, supplementary singularities oaused by 
regulators do not exist and analytio properties of any diagrams are 
oonserved at finite value of momentum variables 1'2 • While for 
meromorphio regulators like PaUli-Villars regularization prooedure, 
analytio properties of diagrams are broken and it in turn leads to 
some diffioulties in proof of analytioity and unitarity of the 
regularized theory with these types of regulators. In last oase, one 
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expects that unitarity is regained as the regularization is removed 
A..,-,.oo at which of course, singularities (poles) are displaced at 
infinity. 

5. Nonlocal Stochastic Quantization of Gauge Fields 

At first sight, majority of physiCists think that stochastic 
quantization method appears to be no more than an amusing alterna
tive to conventional hamiltonian, path integral and action formUla
tions. It turns out that this method has given birth to a number of 
new ideas and is very useful to understand many problems of the field 
theory in light of its present developments. As mentioned by Bern 
et &1. /14/ these developments are Zwanzigerts gauge-fixing 
(Zwanziger/19/ ; Floratos et al./ 20/ ), lar,e-N quenching and 
lar,e-N master fields (Alfaro and Sakita/21 , Greensite and Halpern 
/22 ), stochastic stabilization (G,?eensite and Halpern/ 2J?, stJ
chastic regularization (Bern et al. 14/; Niemi and Wijewaedhama 24/; 

Table 2 

Diagram Leading terms in sum of counterterm diagrams 

Sat -(J'mZ +(2;, -1)(;;2+ml))(f/2+m2F2 

Sb t -It;-1)[r;/+mV(p/+mV(jJ/+mV]-.J 

Sc' f [ 9/+IIII)(p/+mlJ(/ll-dlJj-.t[ (/(+mz.r:t... 

(tlllt f- (2;,-1)(I/+II1V+ (/t+m'fr;;"t +~-I)(J;/+I11~f

+(!!/rmlIf(tml + (~-I)(ft+mJ)j 

.------------------------------------
Breit et al.,/25/, Namiki and Yamanaka/26/, Bern/27/), the QCD

4 
maps 	which run in ordinary time (Glandson and Halpern/ 2S/; Bern and 

Chan/29 / ) and numerical applications of the Langevin equation in 
lattice gauge theory (Hamber and Heller/ JO/; Batrouni et al./Jl/ ). 
For review see Namsrai/4/ and M~gdal/J/, where earlier referenoes 
concerning this problem are cited. 

To intmduce nonlooality into stochastic quantization formalism 
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for gauge fields we follow Bern et al.' "'~'. Our prooedure is the same 
as it was done by these authors. However, our method is more general 
and deals with any form factors of the type Jl(JP2f~ • 

5.1. 	 Nonlocal Langevin Systems for Gauge Theory 

Nonlocal Parisi-Wu Langevin system for SU(N) Yang-Mills theory 
in 	d-dimensions is given by 

0q J'S jaf I " r; til f (5.1), ~ (:r;I) = -tll:;(~t) +~ 'Z(x,t) +J{Iy),.{j), (L1)~ (y, t). 
~ 	 ~ 

where looal noise satisfies the folloWing relation 

(5.2)(~<l(2it)'l/(" t-J>r = 2t C7'f;,,!(t-t) tf'fr-yj 

J 
and ~y(~) is nonlocal distribution disoussed in previous sections. 
According to the equilibrium hypothesis, the nonlooal Euolidean Green 
functions determined by vacuum expectation values of produots of 
ftells 

<F[A(')])o =<I1,,(:,(f) ... 4-{'z'),{ =.~7J)vlJ"(xi.-.ZjJ (5.J) 
t\/ 

in the usual non7ooal quantum field theory (for example, see Efimov 
/12/ and Namsrai 4/ ) are now given by 

<F[A(-)J) = Ifm (F[I/(- ,)1:)])'" ' 	 (5.4) 
i-..,. co 

where PrAJ is t!llY equal fifth-time functional (produot) of the gauge 

field 4-0.('1)' In particular, nonlocal propagator for the photon 

field 4«,z) in (5.J) takes the form 

n0 	 (£"; ( -,;o(~-y) 1[(-jJ ZfV 
~ ~jI(.r-y)=<Olr(4«.:r)/Iy(y)/O) =~IT) )d;e j/Z 

in acoordance With the nonlocal theory. Here, form factor k((;o~tV 
is given by formula (2.9b) with m =0. 

Our notation in (5.1) is usual 

it; ell L'Ci rtl (] ~.-:l A" f"ICA i cS'= /fj{tI:r.)'I'II(Z) '!'vf:t) ~ r;" == r;. A;, - 0-'''''1' -;j. /1'1' 4,., . 
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In this paper we use the following covariant derivative 

d"'= cf«t'g + q/.Ile'd c 
I" '?' c? I" 

In (5.1) we have chosen to add to a Zwanziger gauge-fixing term 
d. 'IIZ' Z'" ":1/1'"i'< ' which we will specify (/5 0( = U· for computational 

purposes. As shown below, gauge-invariant quantities do not depend on 
the gauge-fixing for the nonlocal case. The nonlocal distribution 

Mal ~ "'.:ty (4.1 is a function of the covariant Laplacian 

Ll~ = j(tlz){r;j.);; (oj. )z~ 
(5.5)

J at Ja? fl;/
(~J.x:)' = '?< (:t) () (.r-y) 

so that 
vir. ill
I\!~ (LJ) = K;y (LJ). 

In the weak coupling limit the Langevin equation (5.1) is the 
equivalent integral formulation 

t: f ~ 

1I,.t((~t) =.i!t I(aY) G; {r-y, i-t'J [U~ (y, t:J + 
 (5.6) 

+f Yv~y,t:; +j(a) Ky~(A)fvc(z,t') j, 
where 

/'" ell pot/}, r.-ij>rx-y) 
u}1J.1 (~'-Y, t-t'j = 0 c:I(t-tJj{ttJ;) e .. 

(5.7) 

)t [[ //Jle-I'l(t-t') L 7'Z(t-tJ1ot.j
I"liy/ + l"ytjJJe ~ is the Langevin Green function, which is determined by usual 

procedure: 

c;::(-z;i) =I PIf7;iJ C(~f) + LI'II C;'r~f)j . 

Here ~v (LI"~) is the standard transverse (longitudinal) projection 
operators; in the momentum space they take the form 
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7;11 (K) 'E ~II - ~A')t / K~ .l 

Ll'v (K) ::: f~ /KZ. 
In (5.6) we have defined the interaction terms 

(5.S)Jt7/= -;f.fIc<l(~(11/11/) - (~A"C)1/+ (;}',4/)Il,/'] 

-It/A:'l cneIfo"~e~,( 
) 


(5.9) 

Y,,' =!.f~.I/lq'(J./lJ, 

The former arises from the action and last term is due to the 
Zwanziger one. In expression (5.6) we have also employed the techni
cal device of choosing io=-oo , so that the system has equilibra
ted at any finite fifth-time 

A method of form factor expansion in powers of the coupling 
constant plays an important role in proof of gauge invariance of the 
nonlocal stochastic quantization theory. As a fir,t ,teP in this 

4expansion we write in accordance with Bern et al. 1 

(5. IO)Ll;~ =J'~)'t' +I(;;J~~ +1'2(1;);:. 
where the regulator "vertices" r, and t; are defined as 

(;-;);: =tJ""/~,.1/{.r) +1uC(-X)q:) J"'(.%-y) ; (5.lla) 

I III "Z£t1IfIl'!.L"It! AII'! e n' 
11;),z), =C J J /T,,(,zJ/ju(.:L) 0 (x-y). (5.llb) 

In (5.11) the derivatives ~~ act on everything to the right. 
Further, for any distribution of the type of (2.5) we may 
write down the following expansion rule 

1/'" . r e... .,1" r en. (21l {llil_ " 
1\ "'"y (A) -f;';l(Z~! (Ll~'y) =~ (3Ji 0 D~'y + 
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+t, ~i;-)rrlz)!j(;;)':; +f?(Iz):;JD~;-t.n + 

I C.. ZI1-"( 2 RC _ d 1'1-2 "'" +~£{2J.lt Y(tU,J{tIZz)j (;;)~ZJI,J2;? ilzz 11(/,-0+... y 

flRI (.r, d rV(f) ,)"741// 
= 0 A':;;y (0) +:Z!J{t!c,)(<<4) ' /I.~Zt (O)(/;JZZz rlqy(O) + 

(5.12) 

+~<1j (O)(!;)z;i K~~(O)J+/!1rh)(~)" 

r (f) af III (t) I 7 
xl KrZt(a)l;;)~?zllrif(O) +h'.n;(O)(C)Zq Kz.y (O)J -I

f zt ,J. r )/w - ,tfC ,II cI U
+6 j'J(r!?,j(vi'Z) l ~Zt (0) (;;/Zi?z /7l'zq (O){;;J;,U<; /7r~y(lJ) -t-

LJ )tfC K{Zj cf LI+ I7xZt (0) (;; r,.lz ZZz.l (aJ (1;)4Zy /7ZtY (a) -I

L / • , rK U - cf va) ]
+ rT,xz, (0) (C/Zt?z /lZz.ij (OJ (/1')~ AZ+,Y (a) + 


-I- ••• 

Here the Fourier transforms of generalized functions 
are given by 

7!,-itlO 


J.//.. l:!Zj == -t-Jclt: ~(.I)_ (pzt")J' . 

1\ (-,0./ Zt . ...:. SlJ17r.1 r )

-r'CO 
(5.13)1J,-iDO 

KCff-,ozt'v= i-Jdj- :Z:: s r;ztVs / 
11+(00 -> 

-A.-i ... 
K(2~ 1t<)= -!-J~ ~cr) J::'(r-/I r ztZI :!

("/, Z'.:S .so,,!! ~ ~ './V ./
-;;*.ao 

28 

and for the operator ~y(LJ)=(a.l£tV-lcr"r:z_Y) we have 

II~ (oj = -J(o/) i7r;rev e-'i'(.7-)l) 
(5.14) 

#rlll'V = f /lf~2. 
With the form factor expansion (5.12) for any desired order it 

is not difficulty to iterate the integral equation (5.6) for the 
Langevin field 

.- (5.15)4 !i;] = J;elm4("')ff'] 

up to arbitrarily high order as well. As the example, the result for 
the form factor ~(~) in d=4 dimensions takes the form: 

4')'(.7, fJ:L
of 

dt'(tIy) r;.~((.z':Y, tot)jrtlzJ ~ (4J g/rz, t') (5.160.)j 

dt) t al f (,)1 I v(~)1/ft (.7,f)==_Ldt'(r/y) c,.;(:r';Y, tot} IIVv (Y,t:J +OT {>' (y,i:)-f

(5.l6b) 
+tf(Jz)[K~a);;(A(o!JIltO) +/I(IJ)!;(AI, ,I(((t/3J.hzf;c(z, i'j ; 

i:

""a)a: ,I (-111' / a/ /1A/"«)( ~ 1/(01


/til c.x,t./ -I",/fl((fy)Gi-,d::t'-y,t-t}Z/fllv (y,t-'j-l-;t III (y,t'j+ 

+J(tIz)[f{K(t.(O)t;(ll'''jlltq) +#(a)I;(/I('JK(I)(O)) + 

+f (KttaJ r;(11('1-/(0) -I- fi(O);;(AI'I)r°(n)) + 

+f(JlfO)I,(ll'Ma) !;(Atr9)f/{{J) -I

+ )iro)!;?few);:(ZrO)!;(Il~M0) + 
(5.16c) 

. " + #ro)!;U('JIlrO)(;(,1(V K(2)(O}j,z" rvC(Z,t') J. 
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Here, product of operators in (5.16b) and (5.16c) should be under
stood as contraction operation between them [see, the formula 
(5.12)J. 

We note that more useful at arbitrary order is the equivalent 
description in terms of Langevin tree graphs, which are easily 
derived from EqS. (5.6) or (5.16). For this purpose, the tree
graphical expansions of the form f,ctor should be given, that is the 
same as It was done by Bern et ale 14/ for the concrete regulator 
[R(A)]cX~ =()"f[f- iJ./IIl};/y . In the nonlocal theory the Langevin tree 
graphs through CI(cr9 are shown in Fig.IO. These diagrams may be 
constructed to all orders using the Langevin tree rules given in 
Fig.9. 

Propagators: 
ql not -/'(I,-t,j -fz{~tJJ 

a p..... ! =~" (f,~-tz)=&(t,-t,.)o f~.rff)e +Ll"'lfJe 
t,~fz

f4 JJ 

i a f'-'r I = Juit;" Ort, -tz) K'(-;,</.'J
/~ ~tl 

t =d"'~v ttt,- f l ) KlOtjlzl'j//: p.... ·I:zjI
fI. 

a p.. f =JI¥(J;" &t,-tz) K(Z)r-,oztV 
i,;-------; tz 

t:I p"" I tot'~v' !rt,- tz) fir/I')
t _-..J....--_fz.
'J-l j) 

Vertices 

-;: __ "';;;;;1 ----- -=.1= 

=-==X = ----){ qq,= ---:l( 
f"
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, 

~ 
1i1J 

; R~ '" 

~ c 
f3 

• Ie:
=-/rJ[{f,-A~cr;jI +(~-&f~" +(;$ t,~~1J

ill/Ie r. n £ J I.I/"Ie
-2« IlY'i~4M. -(4)jI~ =WI''Jd t;q,'A;!V ; 

I c 

= - fZIf""'IC(I"(~c£J - ~ J;a) + 

+f"C'lMt(ctvi;f -~j~) + 

,p/" cln ']_ alcel
+1 "1 (ir~ -~"Jlj') =~~j' / 

I " 

;_'!: ~t::' ~ = --1---- = ___L = = --1- == 
f:. f" 

a 

I'

c~ ~~ g
E'~=0 ~~~~ 

II f «Y 
C1 

v = 1"" f -----{ 
= t(""'f"t.{l' £ =;: alccI.....:j T :r 'J'~ 18f 2 "M'Pf 

Fig.9. 

Langevin tree rules using nonlocal form factors. 
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A
(D)1l 

=~i'" 

1/(1)4 _ ~,,/ .;=« .r==="
i I' - -~~ + -~---iC + ~--~ 

gZ{:)R. = +~+-<7~ 

+«+·~+~-E 

+~-<= +~--<;+~ " " 'X 

c~~_~c ~-~ 

r-: 
"k 	

,I-: 
~-~ ~~ ~-~ 

Fig. 10· 

Langevin tree diagrams through O(j'lJ in the nonlocal 
stochastic scheme. 

32 

As a trivial example, we obtain the zeroth order two-point 
function. From the solution (5.16a) it follows in accordance with 
local noise property (5.2) 

A
(O)Q (0)1 Jr. -ij'(:r-y)/ JW~ 

( i'< rx,f)tt ry,t) =0' )rJI)t? ( 7;.,(fJ+d.L,.."r,) T (5.17) 

or 	using the Langevin tree diagram shown in Fig. II 

"", t~ 

D;t(,P;t"fz) = {[~[~ ~;(;>A-t.r) r;~c~ tz-4) &'6-tt ) W('zt) 
cJ .J. J 2 1:,-1:,. Th Zpair _ -jJt(/:/-<l. L -f -Q('j dill') . 


=0 L-r;"V'J6! +d 'I',,(pJe p2 


The result for the nonlocal free gluon propagator is just (5.17) 
Other free nonlocal Green functions are constructed according 
to the usual Wick expansion in terms of the result (5.17) 

~~ 

Fig.ll. 

A simple contraction for the nonlocal theory with 

form fac~or V(-pzla;. 


In the next section, we. apply these Langevin equations and 
their rules for the nonlooal stochastic quantization theory to the 
computation of the one-loop gluon mass. 

6. 	Vanishing Gluon Mass in the Nonlocal Stochastic 

Quantization Theory 


Verification of gauge invariance in nonlocal stochastic quanti 
zation scheme with arbitrary form factors is crucial for its further 
developments. We will verify in this section that the QCD4 gluon mass 
remains zero at the one-loop level, with any form factors vrrjP2t' 
or K (-,zf2). Our step to study this problem is following. First, 
we construot expressions 
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17(1/ (OQ. A(f)' \ 
I ~v (:;C'-y) = (~(:r;t-) II (y,t) /'1 

and 

IIlal /1(2)tl /1(0)/ 

1"1',; rz....Y)=( /'I;" (:r;t)/'III {JI,t»f 

by using equations (5.16). ~econd, with these obtained formulas, 
we sketch corresponding diagrams. It turns out that there are 47 
distinct Langevin graphs in the two-point function at order ~~ 
where diagrams trivially related by symmetry are not included in 
the caunt. As a particular case (Bern's et al. /14/ ) it is seen that 
only 10 make nonzero contributions to the mass renormalization, 
while only 2 contribute to the wave function and gauge parameter ol 
renormalizations. 

According to Bern et al./14/ we have found it convenient to 
group 47 diagrams into four classes (see diagrams sketched in 
Figs. 12-15) of which only the first class contributes to the wave 
function and 0( -renormalizations, and only the first two classes 
contribute to the mass renormalization. The third class contribu
tes only to the finite part of the vacuum polarization, which will 
not be considered in this paper, while the diagrams in the fourth 
class vanish identically. 

The structure of diagrams shown in Figs. 12-15 is similar 
with those considered by Bern et al./14 / • Therefore, we do not 
discuss thelll in detail and indicate only some their peculiarities. 
For example, the diagrams shown in Fig.12 contain only (Zwanziger 

Yang-Mills vertices, no form factor vertices, while 
the diagrams (Fig.13) contain at least one r: or r; regulator 
vertex, and provide the additional gl uon mass contributions nee.:ied 
to cancel the contribution of the ordinary graphs (Fig.12). We hotice 
that for this class of diagrams, contributions to wave function or 

o! -renormalizations are absent. The diagrams, shown in Fig.14, 
also contain regulator vertices, but contribute only to the finite 
part of the vacuum polarization. Finally, the group of diagrams 
(Fig.15) vanishes identically. Some (the tadpole loops) of them 

f alcvanish as usual by anti symmetry. The remaining diagrams 
vanish due to the (fifth-time) retarded property of the Langevin 
Green functions, which contribute a factor of &(f,-fz)t}rr;z-t,j=O 
to each diagran. 

:14 

~ 
<L) 

~ 
.' 
cJ 

Fig.12. 

"Ordinary!! nonvanishing Langevin diagrams in nonlocal 
stochastic quantization scheme. 

+~~ 
a) 

~-~ + ~-~ 
~ 

C ' +~-~ 
. \;,~ '- -~- '-~ ~ 

~---~ 

d) 

Fig.13. 

Diagrams with nonlocal regulator vertices that also 


Contribute to gluon mass. 


35 



~+---o-~ 

~~ +~r~+ 
/"'~-" + ~~-~ 

"""'''---; 

~"~+~-~

" ./ ' ..... _.-'. 

~--~ + ~--~~ 
'~-.-' 

~--o--+~-~ 


~+~--<>-~ 


~-~ + """""'----I." -. __ /'>--,"""",,,,,,,", 

Fig.l4. 

Diagrams with nonlocal regulator vertices, which are finite 
as 1-0. 
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~~~-~ 

~~~ + ~~<:>-~~ 

~---c~ + ~--o--"*~ 

/==i-,,
.vvV'---~~·'VV'I.---o--~ + 

~~+L+~ 
L--+~L+j--+-~ 

L_~ +,,",",,-__L~~__ ~ + 3-~-_ o 

~-, t==K--, ~ 
~l-.,r "'lr-C,#J ~.. . \ ~~ + """"-__ -' ~ + ~__ ~~r::)I::::i""'--

Fig.l5· 
Diagrams that vanish identically in nonlocal stochastic scheme. 
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In order to compute exp1ioit oontributions to renorma1ization 
mass oorreotion due to diagrams shown in Figs.12 and 13 we study 

11"{ <A(f)<t /1(1)/ >expressions r '/t,;(Z-yJ = /71" (z,t) /7v (y, t)? • Thus, taking into 
aocount the formula (5.16b) it is easily seen that explicit contribu
tion from diagram 12c is oa10u1ated by using the following formula 

n"'/ ra. ",I 
I II''' (z-y) = <L.I" (z,tJ L-jI r-y, tJ >1 ' (6.1 ) 

where 

<t -91.:1:" tUl,~ t' /' ..r;. (:Z; tJ~l~':Hf_ .Ittfrcl;O(tI;?){~) e t;;.1"1 fit, t-t'} x 

/"Ie/l i/., n" flAI <1tec rrC~ I 
x<';',oC' (;J, t~t,) !I, {1{f'J 0 r;tIfjJrfi} fI~'Ifl WA/J) f..;rfly (/j) t - tz) x 

x !((1j'f:,J t ~~;s&t'-tz) (fivlt')1!11J'IJ +fir;t!JK(~i'YJ)}K 

X ?tit0, If) tz,~'0)it) . 
l' 

q,lfC rr(7,es 
Here explioit form of vertioes U:U'1'19 (/1 ,A) fJ.,) and It "v,f,o 
is sketohed in Fig.9. Majority of terms in (6.1) corresponds to some 
finite and zero-diagrams shown in Fig.14 and 15. Further, according 
to the formula (5.2) we make noise oontraotion in (6.1), perform the 
fifth-time integrations, separate term giving contribution in 
aooordanoe with diagram 120 and integrate over momelltum variable with 
form factor V?-f' 2t'). Thus, after some tensor a1gel)ra, we obtain 
explicit 1ead,ing value for this diagram near p ",0 as 

n lll - .1(1'''';1(1",,, L LI ' /.5£ l l P zlZ
11'1",,0) _. J /b"z /#13(1')(2 "I'JljJ/tltj< , 

where 

Llt'l i/J = ['l/tl r;>J -1-<;( Lj<;B (pJJ;;-2. 
Truncation near ;0=0 is aooomplished by removal of the factor. 

We see that this term gives oontribution to the wave junction renor

ma1ization only. Now we study diagrams which give contribution to the 

gluon mass renorma1ization. 
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Contribution to mass renorma1ization due to diagram 1211. arises 
from oentraotion result between second term for (5.16c) and A~Q)~::r;t) 
in (5.1611.): 

f t' ,:, 

~"~ (,0)= feb' f&lll f0*0/.) C;;·(!)f-t'j!l(t-t'.)f}(t'-r:) I( 

I' -"" -"" -

{PJ("'1'eijfl , I , 01 (lltfepX{/I' , )
Xl () (j LJ.£/z(fz,t-f,JLJp,1I if, t-7:..I +0 0 LJy'f, tA, i-i, x 

X L1~1I ~ t!'r) +J'''''rL1;',df,,t!or) LJ~f, (,1, f'- f,,)] x 

z z I~/q, /1fJ:f!? 
X W-Att) Vi-;rt'Y W/,f,.fzfJ f 

I -t;>t -tf~ u/ 1f,1'fIKi! 

where Ll.f,.,(~tJ ~(p)e +L.flt'f')e and "~j?fz.& 
are presented in Fig.9. After some elementary caloulation, we get 

n"'{ j""",(11/'111 'Z 3i-<:! l ,(, V{:ftt'J
l/?v(,PJ - .T! Ll""It/JJ 4 vtfJJ(rr/3 )(1) ri . 

Infraviolet divergenoe in this term is oaused by zero mass of gluon 
field. Assuming 1'- '1'+ E result reads 

.,f f' &lAII1( ,,- Z ( (- 3(J 3+0( I . (6.2)
17,.,,' r;>J = J! LJ)'t tf» ~..~J /l:"i - F ~:; 

:!"w", £1'",,, pillA!
Here for SU(N) .T 0 -rr • 

Now we caloula.te oorreot:\.ons to the gluon mass renormalization 
due to diagrams shown in Fig.i2b and Fig.13a, whioh ,re calculated by 

using oon1raction of first terrI! in (5.16c) with A:;' (:r,fJ. 
Corresponding expressions take the form 

f, i' 

!h;:'(,OJ= l~la't~£dI,J(+) VI/tJV(-r,l1/It)6tt-t')B(il..f,)6'(t-t,)( 

(6.3)L1;~ (8,t!.t;) Ll~"<lJ t-t)LJ~G" ,/Lt-t,) L1,.4j. if-!- .. t'- t,)· 

u/l/nm "111$ 
YV~ II, {("f-" ,jl,) I~f,).,r-f, d-J-I')?) 
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http:caloula.te


and 

14;; t;;J={lcf'aivtjrrJr) 11:fr(ot-3) Vi-;tJK(1NJ x 

(6.4)
t (I/(tt')J(1,ztJ +/ltftJK('f-fl{V j + 4~p V(plt~ .t 

~ /((-rtVflrrfr;K{'(-ltJ]lliT),fj'j 4v(,P) 

respectively. In (6.') integration over fifth-time variables should 
be carried out, after which this expression is reduced to analogous 
formula for ~;~ 0) in (6.4): 

Il;: r,J =cf~l.(];Mjll'fh!J).~f)If+ *}£A,jrqf) Vf..ftlJ= 
(6.5) 

.fIatAI 1 rS+3ct} () f . 
= () 1"1 ~"fj'JLlwt/) --v- i2 1hZ 

By definition (5.lJ) for the form factors K(i)(-,;rIV it is 
easily seen that first term with K(O(""jJltJ in (6.4) goes to 
zero at the limit 1'2..-,.0 and main asymptotic of its second term is 
constant, so that third term gives the following leading term 

os O'as;Vi~ e-Zj
/4,.vo /jO) = 16"z L1,.v,;t;')LJw 9') [-~ . (6.6) 

Analogously, contributions to the mass renormalization in QCD4 
due to diagrams shown in Fig.l'b,c,d are calculated by using 
contraction of third, fourth and fifth terms in (5.16c) with 

J1(;I(~,t) • Corresponding result reads 

qS J~h£~ I4-jIIT tjoJ = /b,,2 LlI',,9'J.L1y;;rrf) J/i-/tYllr/tJ /i! x 

(6.7a)'11-/00 

J{ [ W(:'2) W(2) (rJ,. w:(y) if-y) [y/2Y 
2 2, j. ~ Sll1lfy /,(2-y) 

-I+i<><> 
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1&",:t;'J = - ~:l'rL1l"jI~J4rt;'J[;)/1VipttJIIvrt~ (6.7b) 

os _ J"~t zA l 1 u.f(-2).Ilrl'rr{f) - 16,,~ AI"JlsPJ/J4) Wt C} flt/'Ij /2 (6.7c) 

In obtained expressions (6.2), (6.5)-(6.7) truncation near l= 0 is 
accomplished by removal of the two factors Aci.P(p),all sum of resul
ting in these diagram. I B oontributions is zero, so the gluon remains 
massless in this order for the nonlooal stochastic quantization 
theory with arbitrary form factors. This generalizes the regularized 
soheme proposed ~ Bern et al./14/ • 

Thus, nonlooal method presented here for Langevin Schwinger
Dyson formalisms of stoohastic quantization gives ultraviolet fini
teness to all orders for gauge theory Green funotions in d dimen
sions and ensures its gauge invarianoe. The latter is aohieved by 
using the oovariant Laplaoian function (in whioh the gauge-fixing 
term is absent) in the oonstruction of the theory. In our oase, the 
nOnlooal distribution l.;.y (a) is translation invariant and so that 
a gauge-oovariant parallel transport of the looal noise guarantees 
the gauge oovarianoe of the regularized Langevin system under the 
looal d-dimensional gauge transformation (for detall, Bee Bern et al. 
114/ ): 

"a tll-"
Aid.r,~J =9 12 (~) 41' (:z;tJ 

nil ra; i) =?i> fY~.xJ f,'(a; -I).tt< 7" -' 

K
a' «Il' tl' iT'I' ~y (tl) ~.Q rz)Q .(YJ Kxy (Ll), 

where 11r:1:) tf SO(Nl-l) 18 the adjoint representation of SU(N). 

7. Soalar Eleotrodynamios 

For oonorete oomputational purpose, we present the method of 
eleotrod1D&mics construction of charged spinless particles and 
illustrate the extension of the soheme to inolude mather multiplets. 
As in Yang-Mills, the basio idea is that gauge-invariance is main
tained by choosing eaoh form faotor as a funotion of the oovariant 
derivative in the relevant representation. 

The nOnlooal and Zwanziger gauge-fixed Langevin system for 
scalar eleotrodynamios (SED) takes the form 
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• J'S1 (z,t) = - J'~ (~,t) +9-Z(~t) +frely) lGcycoJIj. (y. f) (7.1a) 

• J:s' 
¢(X,t) =- 8<1-* (z,t) +ie¢rx,t)Z(:x;t) +jrtly)Kx),(L1)f(y,t) (7.lb) 

..lit' JS ..;f '7 (" I V / A- ;f 
<p ~,i)= - tf'¢ (:z,f)-te¢>(~;f)LJ:z;t) +)("Y)A~yl LJ ') f ~t) # (7.1c) 

whore local noises satisfy the usual relations 

(~r;"tj?v rY, t') >= 2 <tv tf{t-() tf~.:r-y) (7.2a ) 

(,/,r:r.;t) ffY, f~1 ) 2 O(t-t'j J"'r.:r-y) . (7.2b) 

Here 

s ~J(dx)lt;:;,;~v 7- /(~ -ie~)<f/zj (7.2c) 

is the usual Euclidean aotion of SEn constructed by using local 
fields Ar (:r,I:) and ¢fZ; -1:) • In oontradistinction to nonlocal 
quantum field theory (EfjJl1ov/12,15/ ), int eraction Lagrangian in 
(7.2c) is local. The appropriate covariant Laplacians for the 
oharged soalar fields are 

LI.TY -=j{tlz){l).),xz (~j.y (?lhy =q.""-ie1«:.t})cFr.:<-y) ) 
(7.J )

lJ:y ~FtlZ){~~)xlJll)zy ) (If):¥y = f?:f:+ie/J;.(Z)) J'1z-y) 
and we will ohoose 0( 2~(}A as above. 

Further, to check the finiteness and gauge-ilrrariance of 
system we compute, as in Sec.6, the d=4 one-loop photon mass 
using Langevin teohniques. We first need the integral form of the 
Langevin system 

f .... _ 

~ (X;t)=jre/y!/!dr') c;'..rI-Y, t-t,) !-ie¢ty,t') (1),; -tJl',j.p(y, t') 
(7.4 ) 

- 2e2c/;cy, t')¢(y,f'j A-ry, t') +jrdz) lIx-y{D) f., (2', t') ] 
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.,. 
¢r:c.t) =j(tlyjjdt' (;(.:<-y, -I:-t,) fiel?-ry.-r'J?" ¢!y, t'}

(7.5) 
- ie~ (1- (y,t!) rky, r')) +ie :. ¢ty, f')'~+ (y, t'} 

2-e t/ry,t'J1Jy,t')4«y,t') +jlz) ~(4J" prz:t'jJ 
with a similar equation for ¢/" • Here 

c;;,.. (Z..y, I-t') = (J(t- t'jf{rlly:/t(X-Y17;r,)ef1'(t-t~4-.(p)e-p'{f-t:)/O<j (7. 6a) 

C(2"-y, tot') = t}(t-tJjrtlf'}e-f(X-Y}eXfJ !-tjJl+"lj(t-t'J} (7.6b) 

are the photon and scalar Langevin Green functions, respectively. 
The first step in a weak coupling expansion of (7.4) and 

(7.5) is the expansion of the charged scalar form faotor to the 
desired order which is given by the formula (5.12) in Sec.5. 

~e!-e 

(r,x: ~ (I,hy = -i (fj..;r:IJ.(~f) +/1;.(1, t)?X)rl'1:r-y) It 
(7.7) 

(1;):; ~ (IlJy = - ~(:r;01--(:r;i)J'i.r-y) 12 

should be changed. As usual, in (7.7) the derivatives act on every
thing to the right. This expression may be continued to all orders as 
shown in Fig.16. In the figure, in accordance with the diagrams 

Kc<) K(:t.)
(Fig.9) each specific lines correspond to form factors K ) J 

and H(fzt~ and wavy lines correspond to gauge fields, wlUle 
the three-,four- and five-point vertices represent I; and r.; 
respectively. The filled arrows ( ....) denote the retarded 
property of the Langevin Green functions, while the other arrows 
( ~ ) track the direction of the charge flow on a scalar lines. 
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K(IJ) = + .--1--,.- + ----L + 

+ --{.- + -~--f- + -.-U-.- + 

+ --)--!-l>--L ~_~_t_>-_+ 
Fig. 16. 

Expansion of the oharged soalar form faotor in the nonlooal 
stoohastio soheme. 

Having expanded the form faotor, an essentially standard 
(Parisi and WU/ll/j Bern et al./14/ ) iterative prooedure allows the 
expansion of the Langevin solution 

A [,1]=Ee''lt",j (7.8) 
,. 11'}&" ,. 

¢(,!)=Eenl<p(m) c,6 (.7) = E em ¢ ~(WI) (7.9) 
",eo 11'&0 

to an,y desired order. For the photgn mass oomputation, the relevant 
results with the form faotor K(')(rtj are 

t 
A),°)(:z;t)-j{tly!itlt'o/vrZ-y, t-tJj(flz) K:,ra)fv (,7, t') (7. lOa) 

t-
A(f) •t d r f /ffo) _ ...) ]e,'I" (.z,O-Jrc!y))':lI'f::jtIi(x-y,t-t1 -ie¢ ry.tJ(&-()" ¢(/1iy,tV (7.1Ob) 

- .... 
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tt) f:e 24 r:d') = fly)!rJt' q.",(z-y.{-t')fir?¢>#('fy,tJll-a)¢/O?Y, t1
.<10 

_ie7.¢/f(~y,t1/i -"a)¢/'Py,t')-2e24/r"t')lj>#f.1y,t') 1',6'°1" t')1 (7. 100 ) 

and 

t 
(7.11~q/,,/:.c,t) =jr/y!idt't;(.:r-y, tot')y"z)K;z(oJ'l(Zi'J ~ 

t 

e1/fr:z;t)=jrtly)jrJt'G(X-y, t-f')I-ie[11/'ry,t1~¢/'?y, t'j + 
-"" 

/) 1//(0) ,...J(O) I ) I • .i(O) I /) /J (G) .L 'J"+ '?< I~ ry,t:J'f' ryJ') -;;r 'f' (y, tJ if' I'f/, (.Yt ~ 'J + 

(7.11b)+ljrlz)/MG)/;K(flo) +J!fID)!; f/rD)jyZ 1(2;t l

)]. 

Suoh expansions may be represented diagrammatioally to all orders 
as Langevin tree graphs, shoW7 in Fig.17. 

Aocording to Bern et ale 14/ these Langevin tree diagrams may 
be oonstructed to all orders from the simple set of momentum space 
Langevin tree rules shown in Fig.18. Finally, the diagrams of the 
n-point nonlocal Green functions are formed by contracting the trees, 
as usually aocording to Eqs. (7.a) and (7.2b). 

·t.5 



A (D) 


'I' = ~ )( 


AU) -cel1tc 

e'lA).tJ = ~+~+ 

+ -<=c 
.~ + ~--------~ ~~.. 

'" 
/Y

/ 

~. 


F1g.17. 
Langevin tree diagrams for photon field 1n the nonlooal 
stoohast10 soheme. 
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Propagators: 

P. II ,f "'/'(i,-f.) -,'(I,-tz )/o( 7 
t/~' = 4!1I1/', i,-tz) = &rt,-tz)t ~9')e +tl'vWe J 

t--"+-- = ---jIIo-<f- ::::: I""'rl1 J _J.)_ (') e-tI'l+m,)(I, ...tz) 

I tz 1:, tL L:ry-,., " - cI(i,-'6J 


,JI. II 
== ~,,&t,-tZ) k'r-;:lt)i, t. 

~, tz ~ d'{i,-tz ) K{-;lfV 


-t, tz = Ott, ... tz) K(fr-;/'l') 


l;-----t- = cJt/,-fzj /1(/'21')

z 

Vertioes 

~=~= to> = .......... --1>-- 'liE i 

~ - ~ - -- .... ---;l( -=1 

= --~~-:J<~ 0(; X - 'S ~*" 

x 
'" 

=~ 

",p 
/P e

q~=e(K"'f~ j /4-"'" = e(KI'j,t + ii:""~ 
JL "- ~ .... Ii:K 
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http:e'lA).tJ


q-
f- = e(KjJ}.. - -:- ~ ;J X =-e'dj..K

p 

K~ 

--;0... __I:p~~~-- --L+-t( ;:>- = e(K1'J,.. 

Fig.1B. 

Langevin tree rules for scalar electrodynamics in the 

nonlocal stochastic scheme. 


There are three types of diagrams (Fig.19) giving nonvanishing 
contributions to the zero-momentum vacuum polarization, in which we 
do not explioitly exhibit diagrams which are trivially related by 
symmetry. We now go to study these diagrams. First, to calculate 
corresponding oontributions, expression of ~~(z,i) should be 
found. In accordance with (7.4) its value in momentum representation 
acquires the following form~ 

~ ~' t' 

~(20 t) =2efdt'fdlf fchI. j(/;,){.I;!XfI}3) C;;~ if, i-f) )( 
-4110 ....00 -CQ 

4 b. 
(7.12) 

X GW' l'-izJK(11Z!ji[c!t:Jltffrtljq;) C~,t!.tf)(;1+IOv' " 

tI, -,f 

J( t 'W-~)O i/h~ il) C&r$1,tz-f3) GW,tl-"4)~ 


IlK(i1VK(-!lfJ[r1/f-2;?)0' -.:11J'Jf*(l/j,) ?t;f;lt'l)~(A,i3)+ . ~ ~ 
~Ldt.JJt"A-)C;f;lli'_t,)(2ft+~1(;1-1101' (f f!1/1V Jif;i-fj-fy)x 

J( Gj,S4..iz-z1) Kr1fl:J./(fk/tnK%o;n +rV'-;ltJlIr;!/tJJx 
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t' 

Kft;J,t,)'Z/~, t.,)ff!!;, i'l) - Jd4 C;~) tl_~) J( 

~ -~ 

-<I
~c"'I(fi,t'-t,) d' (jJ+A-/!-;SJ kf1ft'))((1ttVx 

it ~ r;r, if) 1*t/'z' t, ) '1(/1, f3) ]. 

Next, following the methods of Sec.6 and using contractions 
between A;fJ(:Z;f) ~d IIJ1)(JI,f) [II/')rz,i) and //:'J)(jI,i) ] one 
oan obtain the explicit value for diagrams, shown in Fig.19. 

Thus, the diagram 19a gives the follOwing oontribution to 
the photon mass renormalization 

~ -1;' t'

n;a:(pJ = -3~1dt:[~[~J"A)r;;f(,o>'-t') G;, {f,i!.t,)C0, t~fz)x 

J( Cf&) ,~ tz) G'vtf ~, t~ t,) J)s /((1N'JKr-;?1(/ 

~ -p -p ~ a) 

~ 
Cj~ 

Fig.19. 

Nonvanishing contributions to photon mass in the nonlooal 
stoohastio scheme. 
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After integration over fifth-time variables and truncation near 
p =0 which is accomplished by removal of the two J!'f = (?:f~)+«LI"f~~-.t 

factors, we obtain at equilibrium 

0~)(O) = -PtJrrlrJ Wr lf9= -2e2 ()+nlt~tJl}('LZmZ+t;2 16'".z/z· (7.13) 

where we have assumed l!(;d'I'~""Q= 1 by the normalization conditi 
on and notation CJ = t", V(:r:}/(t+:x) • It is easily seen that 

x. ... -f 
contributions corresponding to diagrams 19b,c are equal to each other, 
explicit value of which is given by 

q,:IJrpJ = !7)'J{jJJ= -qezVitzt:J(zI:i;4_~4frr;fo.) ~(;,t-t')k 
tC~,t'--tz)Ctf+f,)t'-tz)Ct,(pJ t2 -4) CV;d/"i'-t-r) {.&-'?q +I'J " 

x (2A +p),r k'rt/tZj K(fr-(;J+l?jtV flr;ltlj . 

Elementary integration over fifth-time variables gives in the 

limit p.... O 

(I)~tI CjJJ = -e~f if)Ll.f {j1)!' V;7'~9 frelf) y...zA1-r'/jk'{'fttf9//(rt2 
Il ,)(' mt+ rt. (7.l4) 

or 
(I) (J • 

/?v (0) = 2tz 

Finally, contribution corresponding to diagram 19d is 

t- t' I-~ 1:. 

f7;~{jJJ = -,feZ l!(;tit2[dt:[clt~1d/=£df'l f(tlrJ~f (f, t-t~ )( 

1I(2t;+p-t (}0It'-t'l)G{j+f,t'..t~) [(Pr+pJ,r - :'I'.rJ J( 

xC.Ilr 0 t.-2}) Ccrv rp~ t~t.JJ Crr, te t~) Vr-fzfJ 

50 

Here some integrations over fifth-time variables and ~9 should 
be carried out and the result reads to the limit P"""O 

(tI) r / 	 (7.15)0 
11 

(0) L()+Lmz!t. &;tZ!2 • 

The reader may easily verify that the sum of all contributions 
is zero, so the photon remains massless to this order for the non
local stochastic quantization theory, as it should be. 
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AHHeHxaH 	 H.• HaMcpaH X. E2-88-557 
HenoKanbHOCTb H cToxacTH~ecKoe KBaHTOBaHHe tM3M~ecKMX noneA 

npeAno*eH MeToA BBBAeHHA HenOKanbHOCTH I CToxacTM~eCKYD ~nMpoeK1 
noneBOH TeoPMH B paMKax ypaBHeHMH naH*eBeHa M.aMHrep-~ACOHa. 8 3TMX ypaaHe 
HHRX 6en~H WYM MrpaeT ABOHHYD ponb: OH KOHTpOnMpyeT KBaHToaoe noa~HHe 
~HSH4ecKHX CHCTeM H OAHOBPeMeHHO BHOCHT HenoKanbHOcTb • TeOpMD. nonY~A 
TaKHM 06pa3OH cxeMa nonHOCT~ BocnpOM3BOAMT pe3ynbTaTw HenoKanbHOA KBaHTO
eaHHoH TeopHH nonA. npH 3TOM narpaH*HaH BsaHMOAeHCTIMA H nonA OCTaDTCA no
KanbHYMH. npeACTaBneH~ CToxacTH4eCKHe perynApM3a~HoHHWe npo~BAYpw AnA CKa
nRPHWX H KanH6poe04HWx noneH •. a TaKWe nOAP06HO M3y~eHa CKanApHaR 3neKTPQAMHa 
MHKa. B HaweH CXaMe ycnoBHA YHHTapHocTH H rpaAHeHTHOH HHBapHaHTHOCTH awnon
HAOTCR. 

Pa60Ta BwnonHeHa B fla60paTOPHH TeopeTH4ecKoH ~M3HKM OM~M. 

npenplIHT O61.eJllIHeHHoro IIHCTHTYTa /lAepHblx HCcneJlOB8.HHA. Jly6Ha 1988 

Dlneykhan 	H., Namsral Kh. E2-88-557 
Nonlocalltyand Stochastic Quantization of Field Theory 

Concept of nonlocal Ity Is Introduced Into physics by means of stochas· 
tic 	context using Langevin and Schwinger-Dyson techniques.Thls allows us to 
reformulate finite theory of quantum fl~ld, free from ultraviolet divergen
ces, based on the stochastic quantization method with nonlocal regulators. 
As a nonlocal regulator we choose any entire analytIc functIon In the mo
mentum space, whIch guarantees that our regularIzatIon method for any theo
ry of Interest does not violate basic physical principles such as unitarlty, 
causality, and gauge Invarlance of the theory. Here we present regulariza
tion 	scheme for scalar, gauge and scalar electrodynamics theories. Our ma
thematical prescription Is simIlar to continuum regularization method of 
quantum field theory with meromorphlcal regulators I~vestlgated by Bern 
and 	 his team. 

I The Invest Igatlon has been performed at the Laboratory of Theoretical 

PhysIcs, JINR. :1 
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