

ОбъЕДИНЕННЫй ИНСТИТУT ядерных

 Исследований

 Исследований
 дубна

M.Dineykhan* Kh.Namsrai*

E2-88-557

NONLOCALITY AND STOCHASTIC QUANTIZATION OF FIELD THEORY

Submitted to "International Journal of Theoretical Physics"

[^0]
1. Introduction

In recent years, interest has significantly increased in the study of stochastic processes and nonlocal (or extended) objects fields;this is due to the fact that it has been possible, first, to establish an intimate conneotion between the theory of stochastic processes and quantum physics $1-5 /$, where earlier references can be found, and second, to construct unified theory of all types of elementary particle interactions inoluding gravitational force $/ 6-10 /$. The former $1 s$ known under the general name of stochastic quantization of systems. There are different approaches to desoription of stochastic processes, which formally coinoide with quantum phenomena. Among these the attraotion of the stochastic quantization method proposed by Parisi and $w u^{/ 11 /}$ is that it has succeeded in reducing quantum field theory to a gaussian stochastic process called the Langevin equation, which usually runs in an auriliary "fifth-timen. Other direotions are being developed in the investigation of nonlocal-extended objects. Some of them have been originally arisen from intrinsic problems of local quantum field theory like the ultraviolet divergences, the problems of electron self-energy, eto. To solve these problems it is usually assumed that idealized conoopt of the locality may be violated at small distanoes and some static charaoteristics of elementary particles must be described by nonlocal values with distributions over space, for example, oharge and mass of the particle may be presented in the form

$$
e=\int d \vec{r} \rho_{e}(\vec{r}) \quad, \quad m=\int d \vec{r} m(\vec{r}) .
$$

On the other hand, mathematically it means that Dirac δ function distribution should be changed by nonlocal distribution of the types (for detail, see Efimov $/ 12 /$)

$$
\begin{equation*}
\delta^{(4)} \Rightarrow K(x)=\sum_{n=0}^{\infty} \frac{c_{n}}{(2 n)!}\left(\square \ell^{2}\right)^{n} \delta^{(4)}(x) \tag{1,1}
\end{equation*}
$$

or for the wave function of the particle

$$
\begin{equation*}
\phi(x) \Rightarrow \varphi(x)=\int d^{4} y(x-y) \phi(y) \tag{1,2}
\end{equation*}
$$

($\phi(x)$ is local field), i.e., elementary particles may be understood as a spread-out (or nonlocal) objects with some dinension ℓ of length (see Fig.1).

Figure 1.
Illustration of local and nonlocal objects depending on the dimension of space: a) local objeot; b) spreadmout (extended) object ball, bag, etc.) in the three dimensional case; o) extended object (string) in the one-dimensional case.

It should be noted that from pure geometrical point of view, relativistic invariant desoription of extended objects is possible only in the one dimensional case, i.e., relativistic dymamics for string may be successfully constructed. Nevertheless, from field point of view, relativistic invariant construction of interaction picture between nonlocal objects of types (1.2) is also achieved due to relativistic invariant properties of nonlocal distributions (1.1). In the last case, basic peculiarity of introducing nonlocality (1.1) is that it leads to change of the partiole propagator, for example, for scalar particle:

$$
\begin{equation*}
\Delta(x-y)=\langle 0| T\{\phi(x) \phi(y)\}|0\rangle \Rightarrow \tag{1.3}
\end{equation*}
$$

$$
\Rightarrow D(x-y)=\langle 0| T(\varphi(x) \varphi(y)\}|0\rangle=\frac{1}{\left(2 \pi H_{i}\right.} \int d^{\prime} \rho e^{-i \varphi(x-y)} \frac{V\left(\rho^{2} \rho^{2}\right)}{m^{2}-\rho^{2}-i \varepsilon}
$$

where $V\left(\rho^{2} l^{2}\right)$ is the Fourier transform of nonlocal distribution $K(x)$.

In this paper, we present method of introducing nonlocality (1.1)-(1.3) into stochastic quantization soheme within the framework of Langevin and $S_{\text {chwinger-Dyson }} / 13,14 /$ formalisms (for detall, see Bern et al. $13,14 /$). The se two equivalent formulations describe quantum field theory in d-dimensions by means of markovian stochastic processes in ($d+1$) dimensions via a regularized Parisi-Wu-Langevin equation and by datmensional prescription via regularized Sohwinger- $^{\text {cha }}$

Dyson equations, respectively. We assume that the noise term in these equations plays double role in the theory; it controls the quantum behaviour of the theory and at the same time it carries nonlocality in stochastic equations. Further, we show that scheme obtained by such a way is equivalent to the nonlocal theory with regularized propagator of the type of (1.3).

An outline of the present paper is as follows. Sec. 2 introduces the noniooality into the ($d+1$)-dimensional Langevin formulation for the scalar theory. In Sec. 3 we discuss the equivalent d-dimensional regularized $S_{\text {chwinger-llyson equations, and their more-or-less con- }}$ ventional weak coupling expansion. Sec. 4 is devoted to introduction of nonlocality into gauge theory and to reformulation of gauge-covariant Langevin systems in ($\mathrm{d}+1$)-dimensions, for which we derive the regularized Lengevin-Feynman rules. These rules are applied in Sec. 6 to a computation of the one-100p gluon mass in QCD_{4}. As sketched in ref. due to Bern et al. $14 /$, the mass is zero, providing an explicit check of gauge-invarianoe of this order for entire analytic regulators. Sec. 7 deals with the stmplest gauge theory scalar electrodynamics. This last section has preparative character in order to generalize our prescription to the nonabelian theory and the sertous scholar may be advised to begin with this case.
2. Nonlocal Gaussian Noise and Regularized Lengevin Systems for the Scalar Theory
2.1. Nonlocal Noise

We oonsider the markovian Parisi_Wu Langevin system for a d-dimensional theory of a scalar local field $\phi(x)$ with Euolidean action s

$$
\begin{equation*}
\dot{\phi}(x, t)=-\frac{\delta S}{\delta \phi}(x, t)+\eta(x, t) \tag{2.1}
\end{equation*}
$$

where t is additional fictitious "fifth-time" variable, x are d-dimensional Euclidean coordinates and $\eta(x, t)$ is the usual local Gaussian noise satisfying the following condition

$$
\begin{equation*}
\langle\eta(x, t) \eta(y \tau)\rangle_{\eta}=2 \cdot \delta(t-\tau) \delta^{d}(x-y) . \tag{2.2}
\end{equation*}
$$

Now question arises how to introduce nonlocality into this stochastic equation in order to obtain equivalent stochastic formulation for the nonlocal field $\varphi(x)$ (1.2) with propagator (1.3) in the Euclidean metric. We assume that the noise term in (2.1) carries nonlocality only and by analogy with (1.2), in this oase, it takes the form

$$
\begin{equation*}
\eta(x, t) \Rightarrow M(x, t)=\int(d y) K(x-y) \eta(y, t), \tag{2.3}
\end{equation*}
$$

where $(d y)=d^{d} y$, and $K(x)$ is nonlocal distribution investigated in detail by Bftmov $112,15 /$. The nonlocal distribution $K(x-y)=K_{x y}(a)$ that multiplies the noise is a function of the Laplacian

$$
\begin{equation*}
\square_{x y}=\int(d z)\left(\partial_{\mu}\right)_{x z}\left(\partial_{\mu}\right)_{z y} \tag{2.4}
\end{equation*}
$$

$$
\left(\partial_{\mu}\right)_{x y} \equiv \partial_{\mu}^{x} \delta^{d}(x-y)
$$

which guarantees that $K_{x y}(a)=K_{y x}(a)$. We will choose here a wide class of distributions

$$
\begin{equation*}
K_{x y}(a)=\sum_{n=0}^{\infty} \frac{c_{n}}{(2 n)!}\left(a l^{2}\right)^{n} \delta^{d}(x-y) \tag{2.5}
\end{equation*}
$$

for which the ordinary Parisi-Wu equation is regained in the limit $\ell \rightarrow 0$, 1.e., $K_{x y}(a) \underset{l \rightarrow 0}{ } \delta^{d}(x-y)$.

2.2. Nonlocal Distributions

We see that the function (2.5) is the generalized form of the well-known local Dirac δ-function. As usually, its space-time properties are investigated in the Minkowski spacemime with metrio $g_{\mu \nu}=\left(g_{\infty}=-g_{11}=-g_{z z}=-g_{73}=1 ; g_{\mu \nu}=0, \mu \neq \nu\right)$ and depends essentially on the sequence of coefficients C_{n} (generally speaking, they are compex numbers). We say that the generalized function (2.5) is given in some test function space if for any $f \in \mathscr{U}$ the funotional

$$
\begin{equation*}
(K, f)=\int d^{*} x K(x) f(x)=\left.\sum_{n=0}^{\infty} \frac{c_{n}}{(2 n)!} \rho^{2 n} a^{n} f(x)\right|_{x=0}<\infty \tag{2.6}
\end{equation*}
$$

is well-defined, i.e., the obtained series converges absolutely.
Passing to the momentum space in (2.6), we obtain

$$
\begin{equation*}
(K, f)=\int d^{4} p \widetilde{K}\left(\rho^{2} \ell^{2}\right) \widetilde{f}(\rho)<\infty \tag{2.7}
\end{equation*}
$$

where

$$
\tilde{K}\left(\rho^{2} \rho^{2}\right)=\sum_{n=0}^{\infty} \frac{C_{n}}{(2 n)!} l^{2 n}\left(\rho^{2}\right)^{n}
$$

and $\tilde{f}(\rho)$ is the Fourier transform of $f(x)$. In other words, the ceneralized function (2.5) is given on \mathscr{U} if series (2.8) defines
the function $\widetilde{K}\left(p^{2} \ell^{2}\right)$ for all ρ^{2} and the integral (2.7) converges for any $f(x) \in \mathscr{U}$. Both conditions (2.6) and (2.7) are equivalent.

As shown by Efimor ${ }^{15 /}$, basic physical prinoiples such as unitarity, causality dictate that as a Fourier transform of (2.5) entire analytic function should be chosen. Further, $\widetilde{K}(z)(2.8)$ are oniy in the class of distributio Z with a finite order of growth entire functions of the variable \mathcal{Z} with a finite order of growth $\infty>\rho \geqslant 1 / 2$ and which decrease rapidly enough when $z=\rho^{2} \rightarrow-\infty$ (in the Euolidean direction).

In the Euclidean domain of the variable ρ^{2} for the Fourier

$$
\begin{aligned}
& \text { In the }(2.8) \text {, the Mellin representation }
\end{aligned}
$$

$$
\begin{equation*}
\tilde{K}\left(-p_{F}^{2} l^{2}\right)=\frac{1}{2 i} \int_{-\beta+i \infty}^{*+i \infty} d \xi \frac{w(\xi)}{\sin \pi \xi} l^{2 \xi}\left(m^{2}+p_{E}^{2}\right)^{\xi} \tag{2.9a}
\end{equation*}
$$

$$
\begin{aligned}
& \text { or } \\
& V\left(-p_{E}^{2} l^{2}\right)=\left[K\left(-\rho_{e}^{2} l^{2}\right)\right]^{2}=\frac{1}{2 i} \int_{-\beta+i \infty}^{-\beta-i \infty} d \xi \frac{V(5)}{\sin \pi \xi} l^{2 \xi}\left(m^{2}+\rho_{E}^{2}\right)^{\xi} \\
& (1<\beta<\eta) \\
& \text { 1s 'valld. The form of functions } W(\xi) \text { and } U(\xi)
\end{aligned}
$$

1s'valld. The form of functions $W(\xi)$ and $U(\xi)$ depends on the form of the function $K\left(-P_{E}^{2} l\right)$. For example, if

$$
\begin{equation*}
V_{1}=\frac{\left(m^{2} l^{2}\right)^{2}}{(\sin m l / m l-\cos m l)^{2}}(\sin b / b-\cos b)^{2} b^{-4}, \quad K_{2}=(\sin b / b)^{2} \tag{2.9c}
\end{equation*}
$$

$$
V_{2}=(\sin b / b)^{4} \quad, \quad V_{3}=\exp \left(-b^{2}\right)
$$

$$
V_{4}=2^{s} \cdot \Gamma(1+s) J_{s}(b) / g^{s}
$$

Where $J_{s}(u)$ is the Bessel function for some given value $S>0$ and $b=\left[\left(m^{2}+p_{E}^{2}\right) \mathscr{l}^{2}\right]^{1 / 2}$, then

$$
\begin{align*}
& v_{1}(x)=9 \cdot 2^{4+2 x}\left(2 x^{2}+7 x+5\right) / \Gamma(7+2 x) \tag{2.9~d}\\
& w_{2}(x)=2^{1+2 x} / \Gamma(3+2 x) \\
& v_{2}(x)=2^{3+2 x}\left(2^{2 x+1}-1\right) / \Gamma(5+2 x) \\
& v_{3}(5)=1 / \Gamma(1+5) \\
& v_{4}(x)=\frac{\Gamma(1+5)}{2^{2 x} \Gamma(1+x) \Gamma(1+5+x)}
\end{align*}
$$

The physical meaning of form factors $V\left(-p_{E}^{2} \rho^{2}\right)$ consists of changing the form of potentials between interacting fields (for example, the Coulomb and Yukawa laws) at small distances and in making the theory finite in each order of the perturbation series of the theory of coupling constant (Efimor 15 / and Namarai $/ 4 /$). The question about a possible undque choice of the form-fators was discussed by Efimov $/ 15 /$ (see also Papp, $/ 16 /$). Efimov $/ 15 /$ has shown that the objeots constructed by distributions $K(x)(2.5)$ are apread out (nonlooalized) over space. Thus, the relativistio invariant distributions $K(x)$ give a correot description of extended objeots. In this oase, roughly speaking, the parameter ℓ may be identified with the size of an extended object (a particle).

Our next goal is in introducing such type of the nonlocality into stochastic equations. We now turn to this problem.
2.3. Regularized Langevin Systems for the Soalar Theory

With the assumption (2.3), equation (2.1) acquires now the following form

$$
\begin{equation*}
\dot{\phi}(x, t)=-\frac{\delta S}{\delta \phi}(x, t)+\int(d y) K(x-y) \eta(y, t) \tag{0}
\end{equation*}
$$

Suoh type of expression (2.10) gives rise to realize our programe mentioned in a previous work (Namsrai/4/). We notioe that our stochastic prescription using entire analytio regulators including exponential ones may be teohnically superior and useful for nonperturbative analysts, which appeared already in a paper due to Doering $17 /$ using the soalar prototype regulator desoribed by Bern et al. $/ 13 /$. As in the usual local stochastic formulation, our prescription for the " nonlooal Euolidean Green functions of the theory

$$
\begin{equation*}
\langle F[\phi(\cdot)]\rangle=\lim _{t \rightarrow \infty}\langle F[\phi(\cdot, t)]\rangle_{\eta} \tag{2.11}
\end{equation*}
$$

completes the oomputational soheme.
Aocording to Bern et al. $13 /$ the method expounded in this seotion is easy to be generalized for a looal symmetry, which will be disoussed in Seotion 5. In this oase, the only ohange in the soheme is the replaoement of Laplaoian by oovartant Laplacian in $\mathrm{E}_{\mathrm{q}} \mathrm{s} .(2.1)$ (2.5)
and (2.I0).

We will further follow Bern et al. $13,14 /$ everywhere and obtain explicit weak ooupling expressions for the equation (2.10). First oonsider simpler oase

$$
\begin{equation*}
S=\int(d x)\left[\frac{1}{2}(2 \phi)\left(q_{\mu} \phi\right)+\frac{1}{2} m^{2} \phi^{2}+\lambda(\phi)\right] \tag{2.12}
\end{equation*}
$$

To solve the equation (2.10) with (2.12) and calculate oorrelation funotions in the free case, it is convenient to introduoe the free Green funotion $G(x, t)$ which satisfies

$$
\frac{\partial}{\partial t} G(x, t)-\left(a-m^{2}\right) G(x, t)=\delta^{2}(x) \delta(t)
$$

with the initial oondition

$$
G(x, t)=0, \quad t<0 .
$$

This equation easily solved to give the explicit expressions for G :

$$
\begin{equation*}
G(x, t)=\theta(t) \int(d \rho) \exp \left[-i p x-\left(\rho^{2}+m^{2}\right) t\right] \tag{2,13}
\end{equation*}
$$

where $(d \rho)=d^{\phi} \rho /(2 \pi)^{d}$. Thus, for (2.12) the integral formulation of the system ($2 . I_{0}$) is

$$
\phi(x, t)=\int(d y) \int_{-\infty}^{t} d t^{\prime} G\left(x-y, t-t^{\prime}\right) \iint\left(d x_{r}\right) K_{r x_{r}}(a) \eta\left(x, t^{\prime}\right)-\lambda^{\prime}\left(\phi\left(y, t^{\prime}\right)\right] . \quad \text { (2.14) }
$$

Here λ^{\prime} is the first derivative of the potential and we have employed the teohnioal devioe of ohoosing $t_{0}=-\infty$, so that the system has equilibrated at any finite fifth-time. The integral equation may be iterated to any desired order (Parisi and $\mathrm{F}^{/ 11 /}$) as

$$
\begin{equation*}
\phi(x, t)=\int_{i} G_{x i}\left(K_{\eta}\right)_{i}-\int G_{x v} \lambda^{\prime}\left(\int_{i} G_{i z}\left(K_{i n}\right)_{2}-\int_{i} G_{r z} \lambda^{\prime}\left(\int_{3} G_{23}\left(K_{\eta l}\right)_{3}-\ldots\right)\right) \tag{2.15}
\end{equation*}
$$

where it is used oompaot notation

$$
\begin{align*}
& G_{x+1} \equiv G\left(x-x_{r}, t-t_{r}\right), \tag{2.16}\\
&\left(K_{\eta}\right)_{r} \equiv \int(d y) K_{x, y}(a) \eta\left(y_{t}, t_{1}\right), \\
& \int_{x} \equiv \int\left(d x_{r}\right) \int d t_{x} .
\end{align*}
$$

Aooording to Bern et al. $/ 13 /$ for oonorete oalculation purpose it is oonvenient to represent this iteration by Langevin "tree diagrams",
as shown in Fig. 2 for the explioit choioe $\lambda=g \phi^{3} / 3$. In these diagrams, eaoh line corresponds to Langevin Green funotion (2.13), and its arrow represents its rotarded property, while the cross at the end of a line represents a nonlocal form-factor (or regulator) times a noise factor

F1g. 2.
Langevin tree diagrams through $O\left(g^{2}\right)$ in the nonlooal stochastic soheme.
In the nonlooal stochastic soheme, the tree diagrams may be suocinotly sumarized in a simple set of Langevin tree rules, as shown for this oase in Fig. 3.

$$
\begin{aligned}
(x, t) & =G\left(x-x^{\prime}, t-t^{\prime}\right) \\
\longrightarrow \rightarrow & =-\frac{1}{2} g \\
\longrightarrow & =K \eta
\end{aligned}
$$

Fig. 3.
Langevin tree rules for the nonlocal stoohastio quantization theory.
Using Eqs. (2.2), (2.13) and (2.15), we easily obtain oorrelation funotions for the free oase $g=0$:

$$
\begin{aligned}
& D\left(x-y, t_{1}-t_{2}\right)=\left\langle\phi\left(x, t_{1}\right) \phi\left(y, t_{2}\right)\right\rangle_{y}= \\
& =2 \iint\left(d x_{1}\right)(d y) \int_{-\infty}^{\min \left(t_{1}, t_{2}\right)} d r G\left(x-x_{1}, t_{1}-\tau\right) G\left(y-y_{1}, t_{2}-r\right) \cdot \int\left(d z_{n}\right) K_{x, z_{r}}(a) K_{y_{1} z_{1}}(\square) .
\end{aligned}
$$

Taking into aooount the following obvious equalities

$$
\int\left(d z_{1}\right) K_{x z}(a) K_{x, y}(a)=\int(d q) V\left(-q^{2} l^{2}\right) \exp [-i q(x-y)]
$$

and
$\int_{-\infty}^{\min \left(t_{1}, t_{2}\right)} d \tau \exp \left\{-\left(t_{1}-\tau\right)\left(\rho^{2}+m^{2}\right)-\left(t_{z}-\tau\right)\left(\rho^{2}+m^{2}\right)\right\}=\frac{\exp \left[-\left(t_{0}-t_{2}\right)\left(\rho^{2}+m^{2}\right)\right]}{2\left(m^{2}+\rho^{2}\right)}$
we get

$$
\begin{equation*}
D_{E}(x-y)=\lim _{t_{1} \rightarrow t_{2}} D\left(x-y, t_{1}-t_{2}\right)=\int(\phi) e^{-\dot{\varphi}(x-y)} \frac{V\left(-\rho^{2} \ell^{2}\right)}{m^{2}+\rho^{2}} \tag{2.17}
\end{equation*}
$$

whioh is Just nonlocal Buolidean Green function (1.3) for the scalar theory. Here we have used definitions

$$
K_{x y}(a)=\int(d \rho) e^{-i p(x-y)} K\left(-\rho^{2} \rho^{2}\right) \quad, \quad V\left(-\rho^{2} \rho^{2}\right)=\left[K\left(-\rho^{2} \rho^{2}\right)\right]^{2}
$$

This result may be also obtained by using diagranmatio representation for the Langevin system. Thus, as a specifio example, the zeroth order momentum space nonlocal two-point funotion, shown in Fig.4, oontains two looal Langevin Green functions in the combination

$$
\begin{align*}
& D_{12}^{l}(\rho)=2 \cdot V\left(\rho^{2} \rho^{2}\right) \int_{-\infty}^{t_{1}} d t_{3} \int_{-\infty}^{t_{2}} d t_{4} G_{n}(\rho) G_{2 \mu}(\rho) \delta\left(t_{3}-t_{4}\right)= \tag{2.18a}\\
& \left.=V\left(-\rho^{2} \rho^{2}\right) \Delta_{\rho}^{-t} \exp \left[-1 t_{1}-t_{2} / \Delta_{\rho}\right]=D_{\rho}\right) \exp \left[-1 t_{1}-t_{2} \mid \Delta_{\rho}\right]
\end{align*}
$$

where we have introduced

$$
\begin{aligned}
& D(p)=V\left(-p^{2} \rho^{2}\right) \Delta_{p}^{-1}, \quad \Delta_{p}=p^{2}+m^{2} \\
& G_{i j}(p)=\theta\left(t_{i}-t_{j}\right) \exp \left[-/ t_{i}-t_{j} / \Delta_{p}\right]
\end{aligned}
$$

Fig. 4.
Langerin line with a oontraction in the nonlooal oase.
The result for the nonlooal free propagator is therefore
$\left\langle\phi\left(x_{1}\right) \phi\left(x_{x}\right)\right\rangle^{(\phi)}=\int(d \rho) e^{-i \phi\left(x_{-}-x_{1}\right)} D_{x_{\infty}}^{\prime}(\rho)=\int(d \rho) e^{-i \rho\left(x_{1}-x_{2}\right)} \frac{V\left(-\rho^{2} l^{2}\right)}{m^{2}+\rho^{2}}$
or

$$
\left\langle\phi_{P_{1}} \phi_{2}\right\rangle^{(0)}=V\left(p_{1}^{2} P^{2}\right) \Delta_{P}^{-r} \delta^{d}\left(\rho_{1}+p_{2}\right)=D\left(\rho_{1}\right) \bar{\delta}^{d}\left(\rho_{1}+p_{2}\right) .
$$

where

$$
\begin{equation*}
\overline{\delta^{d}}\left(\rho_{1}+\rho_{2}\right) \equiv(\pi)^{d} \delta^{d}\left(\rho_{1}+\rho_{2}\right) ; \phi(x)=\int(d \rho) \phi_{p} e^{-i p x} . \tag{2.18a}
\end{equation*}
$$

In general, each line with a cross (oontraotion) in a Langevin diagram is represented by a factor $D_{12}^{\prime}(\rho)$ which includes a factor
$V\left(-\rho^{2} \rho^{2}\right)$. In this connection, it should be noted that product of generalized functions $K_{x y}(a)$ may be understand as contraction operation only. For example,

$$
\begin{equation*}
K_{z y}^{2}(a)=\int(d x) K_{z x}(a) K_{x y}(a) \tag{2.19}
\end{equation*}
$$

or

$$
\square_{x y}^{2}=\int(d z) \square_{x z} \square_{z y}
$$

etc.
For further assimilation of calculation experience, we consider ϕ^{3}-theory and calculate the nonlooal first-order three-point function (Fig.5)

Langevin threempoint diagrams in nonlooal stochastic ouse.

Let

$$
\lambda(\phi)=g \phi^{3} / 3!
$$

In this concrete case, iteraction solution (2.15) takes the form in the momentum representation

$$
\phi(x, t)=f(d p) e^{-i p x} \tilde{\phi}_{p}(t)
$$

where

$$
\begin{align*}
\tilde{\phi}_{p}(t)= & \int\left(d x^{\prime}\right) \int_{-\infty}^{t} d t^{\prime} e^{i p x^{\prime}} G_{t^{\prime}}(\rho)\left\{\int(d y) K_{x^{\prime} y}(a) \eta\left(y, t^{\prime}\right)-\frac{\lambda}{2} \int\left(d x_{1}\right) \times\right. \\
& \int_{-\infty}^{t^{\prime}} d t G\left(x^{\prime}-x_{1}, t^{\prime}-t_{1}\right) \int\left(d y_{1}\right) K_{x x}(a) \eta\left(y_{1}, t_{1}\right) \int\left(d x_{2}\right)^{*} \\
& \left.=\int_{-\infty}^{t_{0}^{\prime}} d t_{2} G\left(x^{\prime}-x_{2}, t^{\prime}-t_{2}\right) \int\left(d y_{2}\right) K_{x_{2} y_{2}}(a) \eta\left(y_{2}, t_{2}\right)\right\} . \tag{2.20}
\end{align*}
$$

To calculate $\left\langle\phi_{A} \phi_{\beta_{2}} \phi_{\beta}\right\rangle_{c}^{(1)}$ for connect cited diagrams we use the following approximation

$$
\left(a_{x}-\frac{g}{2} b_{x}\right)\left(a_{y}-\frac{g}{2} b_{x} \times\left(a_{z}-\frac{g}{2} b_{2}\right)=a_{x} a_{y} a_{z}-\frac{9}{2}\left(b_{x} a_{x} a_{z}+b_{1} a_{x} a_{z}+b_{x} a_{x} a_{y}\right)\right.
$$

and the Gaussian noise property
$\left\langle\eta\left(x_{1} t_{1}\right) p\left(x_{2} t_{2}\right) \eta\left(x_{3} t_{3}\right) p\left(x_{1} t_{n}\right)\right\rangle=4\left(\delta^{d}\left(x_{1}-x_{2}\right) \delta\left(t_{1}-t_{2}\right) \delta^{d}\left(x_{3}-x_{4}\right) \delta\left(t_{3}-t_{4}\right)+\right.$
$\left.+\delta^{\delta}\left(x_{1}-x_{1}\right) \delta\left(t_{1}-t_{3}\right) \delta\left(x_{2}-x_{4}\right) \delta\left(t_{2}-t_{4}\right)+\delta^{d}\left(x_{1}-x_{4}\right) \delta\left(t_{1}-t_{4}\right) \delta^{d}\left(x_{2}-x_{3}\right) \delta\left(t_{2}-t_{3}\right)\right]$.
After integration over t_{i} and x_{i} variables, we have

$$
\begin{align*}
& \left\langle\phi_{p} \phi_{\beta} \phi_{\beta}\right\rangle_{\text {comer }}^{(1)}=-g \int \alpha_{r}\left(G_{o r}\left(\varphi_{1}\right) D_{b_{r}}^{\ell} \varphi_{2}\right) D_{b_{r}}^{(}(\beta)+D_{\text {or }}^{\prime}\left(\varphi_{1}\right) G_{a r}\left(\rho_{2}\right) D_{B_{r}}(\beta)+ \tag{2.22}\\
& \left.\left.+D_{o r}^{(} \varphi_{1}\right) D_{0 r}^{p}\left(Q_{2}\right) G_{o r}\left(P_{3}\right)\right] \bar{\delta}^{d}\left(p_{1}+P_{2}+P_{3}\right) .
\end{align*}
$$

Taking into account explicit forms (2.18a) and (2.18b) for $D_{i j}^{\prime}(\rho)$ and $G_{i j}(\rho)$ functions and carrying out some algebraic operations, we get

We note that in the presence of the form factor, the 100 p in Fig. 6

$$
\begin{align*}
\left\langle\phi_{p}\right\rangle^{(t)} & \left.=-\frac{1}{2} g \int d t_{1} G_{01} \varphi\right) \int(d k) D_{11}^{l}(x) \bar{\delta}^{-\alpha}(\rho)= \tag{2.24}\\
& =-\frac{1}{2} g \Delta_{p}^{-1} \bar{\delta}^{d}(\rho) \int(d k) D(k) \quad, \quad D(k)=V\left(k^{2} \rho^{2}\right) \Delta_{k}^{-1}
\end{align*}
$$

Langevin tadpole diagram in the noniooal stoohastio soheme.

Is not the proper vertex of (2.23) times a nonlocal propagator. This indicates some peculiarity of the effective d-dimensional action of the theory, which will be discuased in Secs. 3,4.

3. Nonlooal Schwinger-Dyson Equations

3.1. Derivation of the $S D$ Equations

The regularized Sohwinger-Dyson (SD) equations with meromorphic regulators were used in stoohastio quantization soheme due to Bern et al. ${ }^{113,14 / \text {. We generalize here their results for a wide olass of }}$ nonlooal distributions, Fourier transforms of which are entire analytio funotions of the type (2.9a). It is shown that a simple d-dimensional SD formulation depends oruoially on the Markovian property of the soheme at the stoohastic level. It turns out that this property does not ohange in our oase.

We begin with the Langevin system (2.10) and (2.12). Let $\mathcal{F}[\phi]$ be any equal fifth-time funotional of the field ϕ, then its η-average evolves in fifth-time acoording to

$$
\begin{equation*}
\frac{d\langle F[\phi]\rangle_{\eta}}{d t}=\left\langle\int(d x) \frac{\partial \phi(x, t)}{\partial t} \frac{\delta F[\phi]}{\delta \phi}\right\rangle_{\eta} . \tag{3.1}
\end{equation*}
$$

To transform this equation, we use the looal white noise identity

$$
\begin{equation*}
\left[\eta(y, t)+2 \frac{\delta}{\delta \eta(y, t)}\right] \exp \left[-\frac{1}{4} \int d \tau \int(d x) \eta^{2}(x, t)\right]=0 \tag{3.2}
\end{equation*}
$$

Whioh expresses the Markovian property of our soheme and is easily verified by taking differentiation of $\exp \left[-\frac{1}{4} \iint\left(t c(d c) \eta^{2}(x, t)\right]\right.$ with respeot to $\eta(y, t)$. Thus, multiplging (3.2) by any functional $F[\Phi]$ and integrating it over η, we get
$\int_{-\infty}^{\infty} d \eta\left[\eta(y, t)+2 \frac{\delta}{\delta \eta(y, t)}\right] \exp \left[-\frac{1}{4} \iint d \tau(d x) \eta^{2}(x, t)\right] F[\phi]=0$.

Integration by parts in η gives

$$
\int_{-\infty}^{\infty} d \eta \exp \left[-\frac{1}{4}\left[\int d \tau(d x) \eta^{2}(x, t)\right]\left[\eta(y, t)-2 \frac{\delta}{\delta \eta(y, t)}\right] F(\phi]=0\right.
$$

from which it follows the formal definition

$$
\begin{equation*}
\eta(y, t)=2 \frac{\delta}{\delta \eta(y, t)}=2\left((d z) \frac{\partial \phi(z, t)}{\partial p(y, t)} \frac{\delta}{\delta \phi(z, t)}\right. \tag{3.3}
\end{equation*}
$$

for any funotional $F(\phi]$. Now it is neoessary to define $\partial \phi(x, t) / \partial(y, t)$ $\partial \phi(x, t) / \partial \eta(y, t)$. For this, using the Langevin equation and its free solution, we obtain

$$
\begin{align*}
& \frac{\partial \alpha(x, t)}{\partial p(y, t)}=\frac{\delta}{\delta p(y, t)} \int(d x) \int_{-\infty}^{t^{\prime}} d t^{\prime} G\left(x-x^{\prime}, t^{\prime}-t^{\prime}\right) f(d z) K_{x^{\prime} z}(a)\left(\eta\left(z, t^{\prime}\right)=\right. \tag{3.4}\\
& =\int(d x) \int_{-\infty}^{t} d t^{\prime} \int(d p) e^{-i\left(x^{\prime}-x^{\prime}\right) p} G_{t t^{\prime}}(\rho) K_{x y}(\square) \delta\left(t-t^{\prime}\right)=\theta(o) K_{x y}(a)=\frac{1}{2} K_{x y}(a)
\end{align*}
$$

Further, acoording to equalities (3.3) and (3.4) we get a chain rule into $\delta / \delta \phi$

$$
\begin{align*}
& \int(d y) K_{x y}(a) \eta(y, t)=2 \int(d y) K_{y y}(a) \int(d z) \frac{\partial \phi(z, t)}{\partial p(y, t)} \frac{\delta^{\prime}}{\delta \phi(z, t)}= \tag{3.5}\\
& =\int(d y) K_{x y}(a) \int(d z) K_{y z}(D) \frac{\delta^{\prime}}{\delta \phi(, t)}=\int(d z) K_{x z}^{2}(\Delta) \frac{\delta^{\delta}}{\delta \phi(z, t)},
\end{align*}
$$

where by definition (2.19)

$$
K_{x y}^{2}(a)=\int(d z) K_{x z}(\square) K_{z y}(\square)
$$

or

$$
\int d z K_{x z}(a) K_{z y}(a)=\int(d \rho) V_{\left(p^{2} p^{2}\right)} e^{-i p(x-y)} \equiv K_{x y}^{2}(a)
$$

Finally, taking into aooount (2.10), (3.1)-(3.5) we arxive at the definition for the regularized $S D$ equations

$$
\begin{equation*}
\left.\frac{d}{d t}\langle F[\phi]\rangle_{\eta}=\left\langle\int(d x) /-\frac{\delta S}{\delta \phi(x)}+\int(d y) k_{x y}^{2}(\Delta) \frac{\delta}{\delta(x y)}\right] \frac{\delta F[\phi]}{\delta \phi(x)}\right\rangle_{\eta} \tag{3.6}
\end{equation*}
$$

or, at equilibrium

$$
\begin{equation*}
\left\langle\int(d x)\left[-\frac{\delta S}{\delta \phi(x)}+\int(d y) K_{x y}^{2}(a) \frac{\delta}{\delta \phi(y)}\right] \frac{\delta \mathcal{C}(\phi]}{\delta \phi(x)}\right\rangle=0 \tag{3.7}
\end{equation*}
$$

Further, following Bern et al. $/ 13 /$ and choostng

$$
F[\phi]=\exp \left[\int(d x) J(x) \phi(x)\right]
$$

the Schwinger form of these equations may be easily obtained

$$
\begin{equation*}
\int(d x) \mathcal{J}(x)\left[-\frac{\delta S}{\delta \phi(x)} /_{\phi \rightarrow \frac{\delta}{\delta J}}+\int(d y) K_{x y}^{2}(D), \mathcal{Z}(y)\right] Z(J)=0 \tag{3.8}
\end{equation*}
$$

where $\quad Z(J)=\left\langle\exp \left(f(\operatorname{cx})\left\{x x^{(x)}\right)\right\rangle\right.$ is the vacuum-tonvacuum
generating funotional.
As shown below, the Schwinger-Dyson equations, plus some boundary condition which requires the permutation symmetry of Euolidean Bose time-ordered product, e.g.,

$$
\begin{gather*}
\left\langle\phi_{1} \phi_{2}\right\rangle=\left\langle\phi_{2} \phi_{1}\right\rangle \tag{3.9}\\
\vdots: \vdots:
\end{gather*}
$$

are equivalent (at least in weak coupling limit) to the Langevin formulation at equilibrium.

It is oonvenient to stuay the $S D$ equations (3.7) in momentum space. Making use of the definitions (2.18b), (2.18d) and simple relations

$$
\frac{\delta}{\delta \phi(x)}=\int(\alpha \rho) e^{i p x} \frac{\delta}{\delta \phi_{p}} ; \frac{\delta F[\phi]}{\delta \phi(x)}=\int(\alpha) e^{i \phi \times} \frac{\delta F[\phi]}{\delta \phi_{f}} ; \quad \frac{\delta \phi_{p}}{\delta \phi_{p}}=\bar{\delta}^{d}(\rho+q)
$$

we have the following identities
$\int(d x)\left(\partial^{2}-m^{2}\right) \phi(x) \frac{\delta F[\phi]}{\delta \phi(x)}=-\int(d \rho)\left(\rho^{2}+m^{2}\right) \phi_{p} \frac{\delta F\left[\phi_{p}\right]}{\delta \phi_{p}} ;$
$\left.\int(d x) \int(d y) K_{x y}^{2}(a) \frac{\delta^{2} F[\phi]}{\delta \phi(y) \delta \phi(x)}=\int(d \rho) \sqrt{\left(-\rho^{2} \rho^{2}\right.}\right) \frac{\delta^{2} F(\phi]}{\delta \phi_{p} \delta \phi_{p}}$,
etc. From which it is easily verified by a functional chain rule

$$
\begin{equation*}
\left\langle\int(d \rho) \Delta_{\rho} \phi_{\rho} \frac{\delta F}{\delta \phi_{p}}\right\rangle=\left\langle\int(d \rho) V\left(-p^{2} l^{2}\right) \frac{\delta^{2} F}{\delta \phi_{p} \delta \phi_{p}}-\right. \tag{3.10}
\end{equation*}
$$

where we have ohosen the interaction

$$
\lambda(\phi)=g \frac{\phi^{N}}{N^{\prime}}
$$

As a first trivial example, with the boundaxy condition (3.9) we compute the regularized free two-point function. Setting and choosing $F=\phi_{3} \phi_{2} \quad E q$. (3.10) becomes

$$
\begin{equation*}
\left\langle\phi_{\rho_{1}} \phi_{\beta_{2}}\right\rangle^{(0)}=\bar{\delta}^{\alpha}\left(\rho_{1}+p_{2}\right) D\left(\rho_{1}\right) \quad ; \quad D(\rho)=V\left(\rho^{2} \rho^{2}\right) \Delta_{\rho}^{-1} \tag{3.11}
\end{equation*}
$$

This result is the correct nonlocal free propagator, in agreement with the Langevin result (2.180).

3.2. Iterative Procedure for the Nonlocal 5D Equations

To compute some n-point funotions for any desired order of ooupling constant g within the $S D$ equations terative method of Eq. (3.10) should be given. This procedure was done by Bern et al. $11 \frac{9}{3}$,14/ In our case with nonlocal form factors, their result is automatically transmitted. For example, it is not difficult to cheok in analogy with the formula (3.11) that $\left\langle\phi_{/} \phi_{\beta_{2}} \ldots \phi_{\rho}\right\rangle^{(0)}$ yields the usual Wiok expansion, as products of nonlocal free propagators (3.11). Moreover, in the first order of g it corresponds to the regularized vertex

$$
\begin{equation*}
\Gamma\left(p_{1} \ldots p_{N}\right)=\left\langle\phi_{R} \ldots \phi_{P_{N}}\right\rangle^{(1)}=\bar{\delta}^{d}\left(\sum_{i=1}^{N} P_{i}\right) \prod_{i=r}^{N} D\left(p_{i}\right) \frac{(-g) \sum_{i=1}^{N}\left[D\left(p_{i}\right)\right]^{-1}}{\sum_{j=1}^{N} \Delta P} \tag{3.12}
\end{equation*}
$$

For $N=3$ the result agrees with \mathbb{E}_{q}. (2.23).
Iterative chain rule may be obtained using Eq. (3.I0). For illustration of this, we consider ϕ^{3} - theory ($N=3$). First, setting $F(\phi)=\phi$ in $\mathrm{B}_{\mathrm{q}} .(3.10)$, we get

$$
\begin{equation*}
\left\langle\phi_{p}\right\rangle=-\frac{g}{2} \Delta_{p}^{-1} \iint\left(d k_{1}\right)\left(d k_{i}\right) \delta^{-1}\left(\rho-k_{1}-k_{2}\right)\left\langle\phi_{k_{1}} \phi_{k_{2}}\right\rangle \tag{3.13}
\end{equation*}
$$

in turn $\left\langle\phi_{k_{k}} \phi_{k_{2}}\right\rangle$ is given by the formula

$$
\begin{align*}
& \left\langle\phi_{k_{1}} \phi_{k_{2}}\right\rangle=\bar{\delta}^{d}\left(k_{1}+k_{2}\right) D\left(k_{1}\right)-\frac{\phi}{2}\left(\Delta_{k}+\Delta_{k_{2}}\right)^{-1} \iint\left(\phi_{1}\right)\left(d q_{2}\right) \times \\
& \times\left[\bar{\delta}^{d}\left(k_{1}-q_{1}-q_{2}\right)\left\langle\phi_{k_{2}} \phi_{q_{1}} \phi_{q_{2}}\right\rangle+\bar{\delta}^{d}\left(k_{2}-q_{1}-q_{2}\right)\left\langle\phi_{k_{1}} \phi_{z_{1}} \phi_{q_{2}}\right\rangle\right] \tag{3.14}
\end{align*}
$$

Further, assuming $F[\phi]=\phi_{h} \phi_{k} \phi_{\beta_{3}}$ in E_{q} (3.10), we obtain

$$
\begin{align*}
& \left\langle\phi_{n} \phi_{2} \phi_{3}\right\rangle=\left[2\left(\Delta_{n}+\Delta_{R_{2}}+\Delta_{\beta}\right]^{-1} \delta^{\alpha}\left(\phi_{p}+\rho_{2}\right) V\left(p_{p} p^{2}\right)\left\langle\phi_{s}\right\rangle+\operatorname{cgchic} \text { perm. in }\{\rho\}\right]- \tag{3.15}\\
& -\frac{1}{2} g\left(\Delta_{p}+\Delta_{R}+\Delta_{\beta}\right)^{-1} \iint\left(d k_{1}\right)\left(d k_{2}\right) \cdot \int \delta^{d}\left(p_{1}-K_{1}-k_{2}\right)\left\langle\phi_{\beta_{2}} \phi_{3} \phi_{k_{1}} \phi_{k_{2}}\right\rangle+ \\
& + \text { cyelic perm in }[\rho\}]+\ldots
\end{align*}
$$

where definition $\left.\left\langle\phi_{p} \phi_{p_{2}}\right\rangle=\bar{\delta}^{d} \rho_{1}+p_{2}\right) \Delta_{p_{1}}^{-1} V\left(-p_{1}^{2} l^{2}\right)$ is used.
Using the zeroth order result ${ }^{\prime \prime}$ (3.11) for D_{3}, the first order tadpole graph (Fig.6) may be immediately obtained from (3.13) and (3.14),

$$
\begin{equation*}
\left\langle\phi_{p}\right\rangle^{(1)}=-\frac{1}{2} g \frac{\bar{\delta}^{d}(\rho)}{m^{2}} \int(d k) D(k) \tag{3.16}
\end{equation*}
$$

In agreement with the Langevin result (2.24). After taking next approximation in E_{q}. (3.13), expression (3.16) acquires the form

$$
\begin{aligned}
\left\langle\phi_{p}\right\rangle^{(2)}= & -\frac{1}{2} g\left\{厶_{p}^{-1} \bar{\delta}^{d}(\rho)\left(d k_{r}\right) D k_{1}\right)-g \Delta_{\rho}^{-1} \int\left(d k_{1}\right)\left(d q_{r}\right)\left(d \phi_{2}\right) \times \\
& \left.\times \bar{\delta}^{d}\left(\rho-k_{1}-q_{1}-q_{2}\right)\left(\Delta_{k_{1}}+\Delta_{\rho-k_{1}}\right)^{-1}\left\langle\phi_{k_{1}} \phi_{\theta_{1}} \phi_{g_{2}}\right\rangle\right\} .
\end{aligned}
$$

Finally, in order to compute the $O\left(g^{2}\right)$ one-loop, contribution to the two-point function (Fig.7) we take into acoount second term in (3.14) and put in it the disconneoted part of (3.15) with
$\left\langle\phi_{g_{2}} \phi_{g_{2}} \phi_{1,} \phi_{k_{2}}\right\rangle_{g_{k}}^{(0)}=\left\langle\phi_{,} \phi_{k_{1}}\right\rangle\left\langle\phi_{夕_{2}} \phi_{k_{2}}\right\rangle+\left\langle\phi_{\theta_{2}} \phi_{k_{2}}\right\rangle\left\langle\phi_{k_{2}} \phi_{k_{1}}\right\rangle=$

$$
=D\left(Q_{1}\right) D\left(q_{2}\right)\left[\delta^{d}\left(q_{1}+k_{1}\right) \bar{\delta}^{d}\left(q_{2}+k_{2}\right)+\bar{\delta}\left(q_{1}+k_{2}\right) \bar{\delta}\left(q_{2}+k_{1}\right)\right],
$$

where the subscript on the right q, K means to keep only those oontributions in which \mathcal{G}^{\prime} 's contract with K's.

Fig. 7.
One-loop two-point function in the nonlocal stochastio scheme.

As a result of a little algebra we obtain

$$
\begin{equation*}
\Pi(\rho)=\frac{1}{2} g^{2} \frac{\Delta(\rho)}{\Delta(\rho)} \int(d k) D_{k}, D(\rho-k) \frac{\left(V^{-1} \Delta_{k}+\left(v^{-1} \Delta_{\rho-k}+\left(v^{-1}\right)_{\rho}\right.\right.}{\Delta_{k}+\Delta_{\rho-k}+\Delta_{\rho}} \tag{3.17}
\end{equation*}
$$

Which is the usual local loop when $\ell \rightarrow 0$.
Thus, the $S D$ equations (3.7) or (3.13)-(3.15) may be solved iteratively, in this manner, to any desired order of g. However, the procedure is inoreasingly tedious. To simplify this prescription, Bern et al. $13,14,18 /$ have developed a systematio set of Schwinger-Dyson-Feymman rules instead. We mention that construotion of any expressions of the type of (3.17) acoording to these rules, requires more efforts than the usual Feymman diagrammatic correspondence.

Finally, for further oomputational purpose we present here oonorete method of calculation of the expression (3.17). Explicit form of whioh is

$$
\begin{align*}
& 7(\rho)=\frac{1}{2} g^{2}\left(m^{2}+\rho^{2}\right)^{-2} \int(d k)\left(3 m^{2}+k^{2}+\rho^{2}+(\rho-k)^{2}\right]^{-1}\left(V\left(\rho^{2} \rho^{2}\right) V\left(-(\rho-k)^{2} \rho^{2}\right) x\right. \\
& x\left(m^{2}+(\rho-k)^{2}\right)^{-1}+V\left(-\rho^{2} \rho^{2}\right) V\left(-k^{2} \rho^{2}\right)\left(m^{2}+k^{2}\right)^{-1}+ \tag{3.18}
\end{align*}
$$

$\left.+\left(m^{2}+\rho^{3}\right)\left(m^{2}+k^{2}\right)^{-1}\left(m^{2}+(\rho-k)^{2}\right)^{-1} V\left(-k^{2} \rho^{P}\right) V\left(-(k-\rho)^{2} \rho^{2}\right)\right]$.

First, oonsider the second term of (3.18) in the oase of d=6 dimensions. By using the Mellin representation (2.9b) for $V(z)$ and the general Feyman paranetric formula

$$
\left.\begin{array}{rl}
b_{1}^{\mu_{1}} \ldots b_{n}^{-\mu_{n}} & =\frac{\Gamma\left(\mu_{1}+\ldots * \mu_{n}\right)}{\Gamma\left(\mu_{1}\right) \ldots \Gamma\left(\mu_{n}\right)} \int_{0}^{1} d \alpha_{1} \ldots \int_{0}^{1} d \alpha_{n} \delta\left(1-\sum_{i=1}^{n} \alpha_{i}\right)
\end{array}\right]+\alpha_{r}^{\mu_{1}-1} \alpha_{2}^{\mu_{2}-1} \ldots \alpha_{n}^{\mu_{n}-1}\left[\sum_{j=1}^{n} \alpha_{j} b_{j}\right]^{-\mu_{1}-\mu_{2}-\ldots-\mu_{n}} .
$$

$$
\begin{align*}
& \text { we get } \\
& \Pi^{(z)}(\rho)=\frac{g^{2}}{4} \frac{V\left(p^{2} \ell^{2}\right)}{\left(\rho^{2}+m^{2}\right)^{2}} \frac{\pi^{3}}{(2 \pi)^{6}} \frac{1}{2 i} \int_{-\beta+i \infty}^{-\beta i \infty} d y \frac{v(y)}{\sin \pi y} \frac{\Gamma(-1-y)}{\Gamma(1-y)} \ell^{2 y} f(y), \tag{3.19}
\end{align*}
$$

where

$$
\begin{gathered}
f(y)=\int_{0}^{1} d x(1-x)^{-y} A^{1+y} \\
A=-\frac{1}{4} p^{2} x^{2}+\rho^{2} x+\frac{3}{2} m^{2} x+m^{2}(1-x) .
\end{gathered}
$$

Further, by shifting the contour of integration to the right we can reduce this integral to aeries and taking into account the main asymptotios we have

$$
\begin{gathered}
\nabla^{(2)}(\rho)=\frac{g^{2}}{8}\left(m^{2}+\rho^{2}\right)^{-2} \frac{\pi^{3}}{\left(2 \pi^{6}\right.}\left[\sigma \rho^{-2}+\left(\frac{5}{6} \rho^{2}+\frac{5}{2} m^{2}\right) v(o) \ell n \mu^{2} l^{2}\right] \\
\sigma=\lim _{x \rightarrow-1} \nu(x) /(1+x)
\end{gathered}
$$

here we have assumed that function $V(x)$ has zero at the point $X=-1$ and $V\left(\rho^{*} \ell^{2}\right) / \rho^{2} \rightarrow 0=1$ for the external momentum variable P^{2}. Moreover, in (3.19) we use the Γ-function properties

$$
\Gamma(1+x)=x /(x), \quad \Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x} .
$$

First and seoond terms in (3.20) correspond to calculations of: residues at points $y=-1$ and $y=0$, respectively. It is clear that $\eta^{(\prime)}(\rho)=\nabla^{(x)}(\rho)$. Similar oalculations can be carried out for the third term in (3.18) and the result is reduced to the follewing formula

$$
\begin{equation*}
\nabla^{(3)}(\rho)=-\frac{g^{2}}{2^{9} \pi^{3}} \frac{v(0)}{m^{2}+p^{2}} \ln \mu^{2} l^{2} \tag{3.21}
\end{equation*}
$$

In (3.20) and (3.21) $U(1)=f$ which follows from the normalization condition $V(0)=1$, and μ is an arbitrary parameter with dimension of mass.
4. Renormalization Prescription and the Three-Point Funotion in Nonlooal SD Formalism

A renormalization program in the regularized $S D$ formalism has been first discussed by Bern et al. $13 /$. For the nonlocal oase, their result is immediately repeated. However, some essential differenoe appears when countertexms in the Lagrangian function are constructed. In the nonlocal stochastic theory counterterms are finite, sinoe we do not assume $\ell \rightarrow 0$ at the end of calculations. It means that parameter ℓ of the theory remains everywhere, in particular, in its action. Thus, our scheme is an action regularization, beoause at the same time for the Green functions explicit divergence does not occur in the effective d-dimenaional action of the theory.

For completeness, within the $S D$ equations we present here renormalization procedure due to Bern et al. $11 /$ for the nonlocal oase. Thus, the nonlocal SD equations

$$
\begin{equation*}
\left\langle\int(d x)\left[\frac{\delta S_{0}}{\delta \phi(x)}-\int(d y) K_{x y}^{2}(\square) \frac{\delta}{\delta \phi(y)}\right] \frac{\delta F}{\delta \phi(x)}\right\rangle=0 \tag{4.1}
\end{equation*}
$$

involve the unrenormalized field $\phi(x)$ and the bare Lagrangian \mathcal{C}_{0} whose parameters we now denote as M_{0} and g_{0}. The tusual renormalized field is $\phi_{R} \leq Z_{\phi}^{-1 / 2} \phi \quad$ by means of which renormalized Green functions $F\left[\phi_{k}\right]$ are constructed. Assuming the faot that the $S D$ equations homogeneous in $\delta / \delta \phi$, we have the nonlooal SD equations

$$
\begin{equation*}
\left\langle\int(d x)\left[\frac{\delta\left(S_{R}+S_{c r}\right)}{\delta \theta_{R}(x)}-\int(d x) K_{x_{y}}^{2}(\sigma) \frac{\delta}{\delta \phi_{k}(x)}\right] \frac{\delta F\left[\phi_{k}\right]}{\delta \phi_{k}(x)}\right\rangle=0, \tag{4.2}
\end{equation*}
$$

where $S_{0}=S_{R}+F_{T}$ is the usual textbook breakup into the renormalized Lagrangian and the counterterm Lagrangian. Renomalization procedure formulated as uaually is based on the construotion of the total Lagrangians, for example, in the case of ϕ^{3} theory we have explicitly

$$
\mathcal{L}_{R}=\frac{1}{2} \phi_{R}\left(-a+m^{2}\right) \phi_{R}+\frac{g}{3!} \phi_{R}^{3}
$$

$$
\mathcal{L}_{C r}=\frac{1}{2}\left(Z_{\phi}-1\right) \phi_{R}\left(-a+m^{2}\right) \phi_{R}+\frac{1}{2} \delta m^{2} \phi_{R}^{2}+\frac{g}{3!}\left(Z_{g}-1\right) \phi_{R}^{3}
$$

where

$$
g=Z_{\phi}^{3 / 2} y_{0} / Z_{g} \quad, \quad m^{2}=m_{0}^{2}-\delta m^{2} / Z_{\phi}
$$

Following Bern ot al./13/ we oompute here three-point vertices in the nonlocal theory using the iterative method presented in the previous seotion for the $S D$ equations. For this purpose, continue iterative prooedure carried out in seo.3.2 up to the $O\left(g^{3}\right)$-order for $\left\langle\phi_{A} \phi_{\beta} \phi_{A}\right\rangle_{c m n}$. After simple but tedious caloulations, we have
$\left\langle\phi_{P_{1}} \phi_{R_{2}} \phi_{A_{3}}\right\rangle=-\frac{1}{2} g \rho \iint\left(d x_{1}\right)\left(d x_{2}\right)\left\{-\frac{g}{2} \bar{d}^{d}\left(\rho-x_{1}-x_{2}\right)\left(\Delta_{x_{1}}+\Delta_{k_{2}}+\Delta_{\beta_{2}}+\Delta_{B_{3}}\right)^{-1} x\right.$

$$
\begin{align*}
& \times\left[4 \sum_{1}+2 \Sigma_{2}+4 \Sigma_{4}+2 \sum_{5}+\sum_{6}+2 \sum_{4}\left(\rho_{2} \leftrightarrow \rho_{3}\right)+\right. \tag{4,5}\\
+ & \left.\left.2 \sum_{5}\left(\rho_{2} \leftrightarrow \beta_{3}\right)+\sum_{6}\left(\rho_{2} \leftrightarrow \beta_{3}\right)\right]+\left(\rho_{1} \leftrightarrow \rho_{2}\right)+\left(\rho_{r} \leftrightarrow \rho_{3}\right)\right\}+M_{1}+M_{2},
\end{align*}
$$

where

$$
\rho=\left[\sum_{j=1}^{3} \Delta_{\rho}\right]^{-1} ;
$$

$\sum_{i}\left(k_{1}, \alpha_{2}, p_{2}, p_{3}\right)=-\frac{1}{2} g \int(d q)\left(d q_{2}\right)\left(d s_{i}\right)\left(d s_{2}\right) \bar{\delta}^{d}\left(x_{1}-q_{1}-q_{2}\right)\left[\Delta_{i}+\Delta_{q_{2}}+L_{z_{2}}+\Delta_{p}+\Delta_{\beta}\right]^{-1} \sigma_{i}$

$$
\begin{equation*}
i=1,2,3 ; \tag{4,6}
\end{equation*}
$$

$\left.\sum_{j}\left(k_{1} k_{2} p_{2} p_{3}\right)=-\frac{1}{2} g \int\left(d q_{1}\right) d q_{2}\right)\left(d s_{1}\right)\left(d_{2}\right) \sigma_{j} \bar{\delta}^{d}\left(p_{2}-q_{1}-q_{2}\right) \times$

$$
\times\left[\Delta_{q_{1}}+\Delta_{q_{2}}+\Delta_{x_{1}}+\Delta_{k_{2}}+\Delta_{p}\right]^{-1}, \quad j=4,5,6 ;
$$

here:

$$
\begin{aligned}
& \sigma_{1}=\bar{\delta}^{-}\left(q_{1}-s_{1}-s_{2}\right)\left\langle\phi_{s_{1}} \phi_{s_{2}} \phi_{\xi_{2}} \phi_{k_{2}} \phi_{2} \phi_{p_{3}}\right\rangle^{(0)}, \\
& \sigma_{2}=\sigma_{7}\left(\phi_{1} \leftrightarrow k_{2}\right) ; \quad \sigma_{3}=\sigma_{2}\left(k_{2} \leftrightarrow p_{2}\right), \\
& \sigma_{4}=\bar{\delta}^{d}\left(\phi_{1}-s_{1}-s_{2}\right)\left\langle\phi_{1} \phi_{s_{2}} \phi_{2} \phi_{k_{1}} \phi_{k_{2}} \phi_{R_{3}}\right\rangle^{(0)}, \\
& \sigma_{5}=\sigma_{4}\left(q_{1} \leftrightarrow k_{2}\right) \quad ; \quad \sigma_{6}=\sigma_{5}\left(k_{2} \leftrightarrow p_{3}\right) .
\end{aligned}
$$

In turn, terms $M_{i}(i=1,2)$ are given by the following formula

$$
\begin{aligned}
& M_{1}=-g \rho \bar{\delta}^{\alpha}\left(\rho_{1}+\rho_{2}+\rho_{3}\right)\left\{\left[\left(q_{2}+\Delta_{\beta}\right)^{-1} V\left(p_{2}^{2} l^{2}\right) /\left(p_{3}\right)+\left(p_{2} \leftrightarrow \rho_{3}\right)\right]+\left(\rho_{1}+\rho_{2}\right)+\left(\rho_{1}+p_{1}\right)\right\}, \\
& M_{2}=\left(-\frac{q}{2}\right)_{\rho}^{2} \int\left(d k_{1}\right)\left(d k_{2}\right) \gamma_{1}\left\{\int\left(d q_{q}\right)\left(d q_{2}\right) \gamma_{2} \bar{\delta}^{d}\left(\rho_{1}-k_{1}-k_{2}\right) \bar{\delta}^{d}\left(k_{1}-q_{1}-q_{2}\right) \times V\left(-\varphi_{1}^{2} \ell^{2}\right) x\right. \\
& \times\left[-\frac{q}{2} \int\left(d s_{1}\right)\left(d d_{2}\right)\left(H+H\left(q_{2} \leftrightarrow \rho_{2}\right)+H\left(q_{2} \leftrightarrow \rho_{3}\right)+N+N\left(q_{2} \leftrightarrow \kappa_{2}\right)+N\left(q_{2} \leftrightarrow \rho_{3}\right)+\right.\right. \\
& \left.\left.\left.+L+L\left(q_{2} \rightarrow k_{2}\right)+L\left(q_{2} \leftrightarrow p_{2}\right)\right)+\left(q_{1} \leftrightarrow q_{2}\right)\right]+\left(k_{1} \rightarrow k_{2}\right)\right\} .
\end{aligned}
$$

Here

$$
\begin{aligned}
& \gamma_{1}=\left(\Delta_{k_{1}}+\Delta_{k_{2}}+\Delta_{R_{2}}+\Delta_{\beta}\right)^{-1} \\
& \gamma_{2}=\left(\Delta_{q_{1}}+\Delta_{q_{2}}+\Delta_{k_{2}}+\Delta_{\beta}+\Delta_{\beta_{3}}\right)^{-1}
\end{aligned}
$$

$H=\bar{\delta}^{\bar{d}}\left(q_{1}+K_{2}\right)\left[\Delta_{2}+\Delta_{\beta}+\Delta_{q_{2}}\right]^{-1} \delta^{d}\left(q_{2}-s_{1}-s_{2}\right)\left\langle\phi_{s_{1}} \phi_{2} \phi_{\beta_{2}} \phi_{R_{3}}\right\rangle^{(0)}$,

$$
\begin{gathered}
N=2 \delta^{-\alpha}\left(\varphi_{1}+p_{2}\right)\left[\Delta_{k_{2}}+\Delta_{q_{2}}+\phi_{3}\right]^{-1} \bar{\delta}^{d}\left(q_{2}-s_{1}-s_{2}\right)\left\langle\phi_{s_{1}} \phi_{s_{2}} \phi_{k_{2}} \phi_{3}\right\rangle^{(0)}, \\
L=N\left(\rho_{2} \leftrightarrow \rho_{3}\right) .
\end{gathered}
$$

Main asymptotics of (4.5) may be easily oalculated by the same method as it has presented in previous seotion. We are interested only in alvergent parts in the expression (4.5). For example,term Σ_{4} has the form

$$
\begin{aligned}
\Sigma_{4}= & \left.8\left(-\frac{q}{2}\right)^{3}\left(m^{2}+\rho_{3}^{2}\right)^{-1}\left(m^{2}+\rho_{2}^{2}\right)^{-1} \rho \delta^{d}\left(\rho_{1}+p_{2}+p_{3}\right)\right](d q) \frac{V\left(-q^{2} \rho^{2}\right)}{m^{2}+q^{2}} \frac{1}{2}\left(m^{2}+\rho_{2}^{2}+\rho_{3}^{2}\right)^{-1} \times \\
& \times\left\{\left[\Delta_{q}+\Delta_{q-2}+\Delta_{R}+\Delta_{p}\right]^{-1}-\left[\Delta_{q}+\Delta_{q-p_{3}}+\Delta_{p_{3}}+2 \Delta_{2}\right]^{-1}\right\}
\end{aligned}
$$

where we have used the usual Wiok expansion for σ_{4} in (4.6) in acoordanoe with (3.11). Integration over $d^{6} q$ is eastly oarried out by the same prescription presented for obtaining leading terns of twonloop funotion $\Pi(\rho)$ (3.18). After some elementary oaloulations, main asymptotios are reduced to the following formula

$$
\begin{aligned}
\Sigma_{4}= & -\frac{g^{3}}{2^{4} \pi^{3}}\left(m^{2}+\rho_{2}^{2}\right)^{-1}\left(m^{2}+\rho_{3}^{2}\right)^{-1}\left(2 m^{2}+\rho_{2}^{2}+\rho_{3}^{2}\right)^{-1} \rho^{x} \\
& \times\left\{2 \sigma \rho^{2}+\left[\frac{11}{6}\left(\rho_{2}^{2}+\rho_{3}^{2}\right)+7 m^{2}\right] \ln \mu^{2} \ell^{2}\right\} .
\end{aligned}
$$

Remain terms in (4.5) are calaulated in the same manner. Acoording to Bern et al. 113 obtained results may be classified within the differgnt types of diagrams, shown in Fig. 8 (for detail see Bern et al. $13 /$).

c)

a)

Fig.8. Nonlocal diagrams.
a) One-loop two-point functions. b) "Pure" three-point vertices that are infinite as $\quad \ell \rightarrow 0 \quad$ o) Three-point functions with a loop on the extermal lines. Cyclic permutations of the external lines must also be included. a^{\prime}), b^{\prime}) and c^{\prime}) correspond to their counterterm diagrams, respectively.

Final results are given in Tables 1 and 2. Comparing the sum of the loop diagrams in Table 1 with the sum of the counterterm diagrams in Table 2, we determine the renormalization oonstants

$$
\begin{align*}
& Z_{\phi}=1+\frac{1}{3} \frac{g^{2}}{2^{3} \pi^{3}} \ln \mu^{2} l^{2} \tag{4.7}\\
& Z_{g}=1+\frac{g^{2}}{2^{2} \pi^{3}} \ln \mu^{2} l^{2} \\
& \delta m^{2}=\frac{g^{2}}{2^{8} \pi^{3}}\left[\sigma \rho^{-2}+\frac{5}{3} \ln \mu^{2} l^{2}\right]
\end{align*}
$$

Table 1
--_Deagram Ieadiag terms in sum of one-Ioop diagrams
$8 a$

8b

8 c valid for any regulators $V\left(-\rho^{2} \ell^{2}\right)$ if, in their final expressions for loop diagrams, coefficients $\frac{1}{3} \Lambda^{2}$ and $\ln \left(\Lambda^{2} / \mu^{2}\right)$ should be changed by $\sigma \rho^{-2}$ and $-\ln \mu^{2} \rho^{2}$, respectively.

The attraction of our approach is that the nonlocal scheme is unitary in the presence of the analytic regulator (for detail, see $\mathbb{B}_{\text {fimov }} / 12 /$). In our case, supplementary singularities caused by regulators do not exist and analytio properties of any diagrams are conserved at finite value of momentum variables P^{2}. While for meromorphic regulators like Pauli-Villars regularization procedure, analytic properties of diagrams are broken and it in turn leads to some difficulties in proof of analyticity and unitarity of the regularized theory with these types of regulators. In last case, one
expects that unitarity is regained as the regularization is removed $\Lambda \rightarrow \infty$ at which of course, singularities (poles) are displaced at infinity.
5. Nonlocal Stochastio Quantization of Gauge Pields

At first alght, majority of physicists think that stochastic quantization method appears to be no more than an amusing alternative to conventional hamiltonian, path integral and action formulations. It turns out that this method has given birth to a number of new ideas and is very useful to understand many problems of the field theory in light of its present developments, As mentioned by Bern et al. $/ 14 /$ these developments are Zwanziger's gaugemixing (2wanziger $/ 19 /$; Floratos et al. $/ 20 /$), large-N quenching and large-N master fields (Alfaro and $S_{a k i t a}{ }^{\prime 217}$, Greensite and Halpern $/ 227$), stochastic stabilization (Greensite and Halpern ${ }^{23}$), stochastic regularization (Bern et al. $14 /$; Nemi and WiJewaedhama ${ }^{24 /}$;

Table 2

Diagram

Leading terms in sum of counterterm diggraras

8a'

$$
-\left(\delta m^{2}+(Z \phi-1)\left(p^{2}+m^{2}\right)\right)\left(\rho^{2}+m^{2}\right)^{-2}
$$

$8 b^{\prime}$

$$
-g(\eta-1)\left[\left(p^{2}+m^{2}\right)\left(p_{2}^{2}+m^{2}\right)\left(p_{3}^{2}+m^{2}\right)\right]^{-1}
$$

$$
g\left[\left(\rho^{2}+m^{2}\right)\left(p_{2}^{2}+m^{2}\right)\left(\rho_{3}^{2}+m^{2}\right)\right]^{-1}\left[\left(\rho_{1}^{2}+m^{2}\right)^{-1} x\right.
$$

$$
\left(\delta m^{2}+\left(Z_{\phi}-1\right)\left(p_{1}^{2}+m^{2}\right)+\left(p_{2}^{2}+m^{2}\right)^{-1}\left(\delta m^{2}+\left(Z_{\phi}-1\right)\left(p_{2}^{2}+m^{2}\right)\right)+\right.
$$

$$
\left.+\left(\rho_{3}^{2}+m^{2}\right)^{-1}\left(\delta^{2}+\left(Z_{\phi}-1\right)\left(\rho_{3}^{2}+m^{2}\right)\right)\right]
$$

Breit et al., $/ 25 /$, Namiki and $Y_{\text {ananaka }} / 26 /, \mathrm{Bern}^{/ 27 /}$), the QCD_{4} maps which run in ordinary time (Glanison and Kalpern $/ 28 /$; Bern and Chan/29/) and numerical applications of the Langevin equation in lattice gauge theory (Hamber and Heller $/ 30 /$; Batrouni et al. $131 /$). For review see Namsrai $/ 4 /$ and Migdal $/ 3 /$, where earlier references concerning this problem are cited.

To intmace nonlocality into stochastic quantization formalism
for gauge fields we follow Bern et al. $14 /$. Our procedure is the same as it was done by these authors. However, our method is more general and deals with any form factors of the type $V\left(p^{2} f^{2}\right)$.

5.1. Nonlocal Langevin Systems for Gauge Theory

Nonlocal Parisimu Langevin system for $\operatorname{SU}(\mathbb{N})$ Yang-Mills theory in a-dimensions is given by

$$
\begin{equation*}
\dot{A}_{\mu}^{a}(x, t)=-\frac{\delta S}{\delta A_{\mu}^{a}}(x, t)+d_{\mu}^{a b} Z^{b}(x, t)+\int(d y) K_{x y}^{a b}(\Delta) \eta_{\mu}^{b}(y, t) \tag{5.1}
\end{equation*}
$$

where looal noise satisfies the following relation

$$
\begin{equation*}
\left\langle\eta_{\mu}^{a}(x, t) \eta_{\nu}^{b}\left(y, t^{\prime}\right)\right\rangle_{\eta}=2 \delta^{a b} \delta_{\mu \nu} \delta\left(t-t^{\prime}\right) \delta(x-y) \tag{5.2}
\end{equation*}
$$

and $K_{x y}^{08}(\Delta)$ is nonlocal distribution discussed in previous sections. Accoraing to the equilibrium hypothesis, the nonlocal Euclidean Green functions detemined by vacuum expectation values of products of fields

$$
\begin{equation*}
\langle F[A(\cdot)]\rangle_{0}=\left\langle A_{\nu}\left(x_{1}\right) \ldots A_{\mu}\left(x_{n}\right)\right\rangle_{0}=\prod_{i \neq j} D_{\nu \sigma}\left(x_{i}-x_{j}\right) \tag{5.3}
\end{equation*}
$$

In the usual nonjocal quantum field theory (for example, see Efimov $12 /$ and Namsra1 ${ }^{1 / 4 /}$) are now given by

$$
\begin{equation*}
\langle F[A(\cdot)]\rangle=\lim _{t \rightarrow \infty}\langle F[A(\cdot, t)]\rangle_{\eta} \tag{5.4}
\end{equation*}
$$

where $F[A]$ is any equal fifth-time functional (product) of the gauge field $A_{\mu}^{a}(\eta)$. In particular, nonlocal propagator for the photon field $A_{\mu}(x)$ in (5.3) takes the form

$$
D_{\mu \nu}^{0}(x-y)=\langle 0| T\left(A_{\mu}(x) A_{\mu}(y) / 0\right\rangle=\frac{i y^{\mu \nu}}{(2 \pi)^{4}} \int d^{4} p e^{-i p(x-x)} \frac{V_{0}\left(-p^{2} p^{2}\right)}{\rho^{2}}
$$

in accordance with the nonlocal theory. Here, form factor $V\left(-\rho^{2} \ell^{2}\right)$ is given by formula (2.9b) with $m=0$.

Our notation in (5.1) is usual

$$
S=\frac{1}{4} \int(d x) F_{\mu \nu}^{a}(x) F_{\mu \nu}^{a}(x), F_{\mu \nu}^{a} \equiv \partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{u}-g f^{\mu} b_{\mu} A_{\mu}^{b} A_{\nu}^{c}
$$

In this paper we use the following covariant derivative

$$
d_{\mu}^{u l}=\delta^{a b_{\partial}}+g f^{u b c} A_{\mu}^{c}
$$

In (5.1) we have ohosen to add to a Zwanziger gauge-fixing term $c_{\mu}^{\prime \prime} Z^{\ell}$, which we will specify as $\alpha Z^{\alpha}=\partial \cdot \mathcal{A}^{a}$ for computational purposes. As shown below, gauge-invariant quantities do not depend on the gauge-fixing for the nonlocal case. The nonlocal distribution
$K_{x y}^{a f}(\Delta)$ is a function of the covariant Laplacian

$$
\begin{align*}
& \Delta_{x y}^{a b}=\int(d x)\left(d_{\mu}\right)_{x z}^{a c}\left(d_{\mu}\right)_{z y}^{c b} \\
& \left(d_{\mu}\right)_{x y}^{a b}=d_{\mu}^{a b}(x) \delta^{d}(x-y) \tag{5.5}
\end{align*}
$$

so that

$$
K_{y x}^{b a}(\Delta)=K_{x y}^{a b}(\Delta)
$$

In the weak coupling limit the Langevin equation (5.1) is the equivalent integral formulation

$$
\begin{align*}
A_{\mu}^{a}(x, t) & =\int_{-\infty}^{t} d t^{\prime}(d y) G_{\mu \nu}^{a b}\left(x-y, t-t^{\prime}\right)\left[W_{\nu}^{b}\left(y, t^{\prime}\right)+\right. \tag{5.6}\\
& \left.+\frac{1}{\alpha} Y_{\nu}^{b}\left(y, t^{\prime}\right)+\int(d z) K_{\nu z}^{b c}(\Delta) H_{\nu}^{c}\left(z, t^{\prime}\right)\right]
\end{align*}
$$

where

$$
\begin{align*}
& G_{\mu \nu}^{a b}\left(x-y, t-t^{\prime}\right)=\delta^{a b} \theta\left(t-t^{\prime}\right) \int(d \rho) e^{-i p(x-y)} \tag{5.7}\\
& \times\left[T_{\mu \nu}(\rho) e^{-p^{2}\left(t-t^{\prime}\right)}+L_{\mu \nu}(\rho) e^{p^{2}\left(t-t^{\prime}\right) / \alpha}\right]
\end{align*}
$$

is the Langevin Green function, which is determined by usual procedure:

$$
G_{\mu k^{\prime}}^{a b}(x, t)=\delta^{a b}\left[T_{\mu \nu} G^{T}(x, t)+L_{\mu \nu} G^{L}(x, t)\right] .
$$

Here $T_{\mu \nu}\left(L_{\mu \nu}\right)$ is the standard transverse (Iongitudinal) projection operators; in the momentum space they take the form

$$
\begin{aligned}
& T_{\mu \nu}(K) \equiv \delta_{\mu \nu}-K_{\mu} K_{\nu} / K^{2} \\
& L_{\mu \nu}(K) \equiv K_{\mu} K_{\nu} / K^{2}
\end{aligned}
$$

In (5.6) we have defined the interaction terms

$$
\begin{align*}
& W_{\nu}^{b}=-g f^{k d}\left[\partial_{\beta}\left(A_{\beta}^{c} A_{\nu}^{d}\right)-\left(Q_{\beta}^{c}\right) A_{\beta}^{d}+\left(\partial_{N} A_{\beta}^{c}\right) A_{\beta}^{d}\right]- \tag{5.8}\\
& -g^{2} f^{b d} f^{c n e} A_{\beta}^{n} A_{N}^{e} A_{\beta}^{d} ; \\
& Y_{\nu}^{b}=g f^{B d} A_{\nu}^{d}\left(\partial \cdot A^{c}\right) \tag{5.9}
\end{align*}
$$

The former arises from the action and last term is due to the Zwanziger one. In expression (5.6) we have also employed the technical device of choosing $t_{0}=-\infty$, so that the system has equilibrated at any finite fifth-time

A method of form factor expansion in powers of the coupling constant plays an important role in proof of gauge invariance of the nonlocal stochastic quantization theory. As a first gtep in this expansion we write in accordance with Bern et al. 14 /

$$
\begin{equation*}
\Delta_{x y}^{a b}=\delta^{a b} \square_{x y} \ell^{2}+g(\sqrt{+})_{x y}^{a b}+g^{2}\left(\Gamma_{2}\right)_{x y}^{a b} \tag{5.10}
\end{equation*}
$$

where the regulator "vertices" Γ_{1} and Γ_{2} are defined as

$$
\begin{align*}
& \left(\Gamma_{1}\right)_{x y}^{a b}=l^{2} f^{a b c}\left(\partial_{\mu}^{x} A_{\mu}^{c}(x)+A_{\mu}^{c}(x) \partial_{\mu}^{x}\right) \delta^{d}(x-y) ; \tag{5.11a}\\
& \left(\Gamma_{2}\right)_{x y}^{a b}=l^{2} f^{a m m} f^{n b c} A_{\mu}^{m}(x) A_{\mu}^{e}(x) \delta^{d}(x-y) \tag{5.11b}
\end{align*}
$$

In (5.11) the derivatives ∂_{μ}^{x} act on everything to the right. Further, for any distribution of the type of (2.5) we may write down the following expansion rule

$$
K_{x y}^{\infty b}(\Delta)=\sum_{n=0}^{\infty} \frac{c_{n}}{(2 n!!}\left(\Delta_{x y}^{\infty b}\right)^{n}=\sum_{n=0}^{\infty} c_{n} \ell^{2 n} \delta^{a b} \square_{x y}^{n}+
$$

$$
\begin{align*}
& +\sum_{n=0}^{\infty} \frac{c_{n} l^{2 n-z}}{(2 n)!} \int(d z)\left[g\left(\Gamma_{1}\right)_{x z}^{a b}+g^{2}\left(\Gamma_{z}\right)_{x z}^{a t}\right] \square_{z y}^{n-t} \cdot n+ \\
& +\frac{1}{2} \sum_{n=0}^{\infty} \frac{c_{n}}{(2 n)_{1}} l^{2 n-4} \int\left(d z_{r}\right)\left(d z_{2}\right) g^{2}\left(\Gamma_{r}\right)_{x z_{1}}^{a c}\left(l_{1}\right)_{z_{i} z_{2}}^{\delta t} \Delta_{z_{2} y}^{n-z} n(n-1)+\ldots= \tag{5.14}\\
& =f^{a b} K_{x y}(a)+\frac{f}{z} g\left(d z_{1}\right)\left(d z_{2}\right)\left[K_{x z}^{(a)}(a)\left(C_{1}\right)_{z z_{2}}^{a b} H_{z y}(a)+\right. \tag{5.12}\\
& \left.+H_{x z_{1}}(a)\left(I_{1}\right)_{z, z_{2}}^{a b} K_{z_{2} y}^{(q)}(a)\right]+\frac{1}{2} g^{2} \int\left(d z_{1}\right)\left(d z_{2}\right) \times \tag{5.15}\\
& x\left[K_{x z_{1}}^{(v)}(a)\left(I_{z}\right)_{z_{z}}^{a b} H_{z_{y} y}(a)+H_{x z_{1}}(a)\left(/_{2}\right)_{z_{z}}^{a b} K_{z_{2} y}^{(v)}(D)\right]+ \\
& \left.+\frac{1}{6} g^{z} \int\left(d z_{1}\right) X d z_{2}\right)\left[K_{x z_{1}}^{(z)}(D)\left(l_{1}\right)_{z z_{2}}^{a c} H_{z_{2} z_{3}}(a)\left(l_{1}\right)_{z_{3} z_{4}}^{c b} H_{z_{4} y}(D)+\right. \\
& +H_{x z_{1}}(\square)\left(\Gamma_{1}\right)_{z_{1} Z_{2}}^{a c} K_{z_{2} z_{3}}^{(z)}(a)\left(\Gamma_{1}\right)_{z_{3} z_{y}}^{c b} H_{z_{4} y}(D)+ \\
& \left.+H_{x z}(a)\left(I_{1}\right)_{z_{i} z_{2}}^{a c} H_{z_{2} z_{3}}(a)\left(I_{1}\right)_{z_{2 y} z_{y}}^{c 8} K_{z_{2} y}^{(a)}(a)\right]+ \\
& +\ldots \\
& \left.+H_{x z_{1}}(D)\left({ }_{1}\right)_{z_{1} z_{2}} K_{z_{2} y}(D)\right]+\frac{1}{2} g^{2} \int\left(d z_{i}\right)\left(d z_{2}\right) \times \\
& x\left[K_{x z_{1}}(a)\left(I_{z}\right)_{a z_{z}}^{a b} H_{z y}(a)+H_{x z_{1}}(a)\left(/_{2}\right)_{z z_{z}}^{a b} K_{z_{2} y}^{(v)}(a)\right]+ \\
& +\frac{1}{6} g^{2} \int\left(d z_{1}\right) K\left(d z_{2}\right)\left[K_{2 z_{1}}^{(a)}(D)\left(/ I_{2}\right)_{z_{2} z_{2}}^{a c} H_{z_{2} z_{3}}(a)\left(/ C_{1}\right)_{z_{3} z_{4}}^{c b} H_{z_{4} y}(\square)+\right. \\
& +H_{x z_{1}}(a)\left(l_{1}\right)_{z_{1} z_{2}}^{a c} K_{z_{2} z_{3}}^{(z)}(a)\left(\Gamma_{1}\right)_{z_{3} z_{4}}^{a b} H_{z_{4} y}(a)+ \\
& +H_{x z}(D)\left(/_{1}\right)_{z_{2} Z_{2}}^{a C} H_{z_{2} z_{3}}(a)\left(I_{1} \int_{z_{3 y} z_{y}}^{88} K_{z_{2 y} y}^{(a)}(a)\right]+ \tag{5.16b}\\
& +\ldots
\end{align*}
$$

Here the Fourier transforms of generalized functions are given by

$$
\begin{align*}
& K\left(\rho^{2} l^{2}\right)=\frac{1}{2 i} \int_{-\beta+i \infty}^{-\beta-i \infty} d \xi \frac{w(\xi)}{\sin \pi \xi}\left(\rho^{2} l^{2}\right)^{\xi} \\
& K\left(\rho^{(1)}\left(l^{2}\right)=\frac{1}{2 i} \int_{-\beta+i \infty}^{-\beta-i \infty} d \xi \frac{w(\xi)}{\sin \pi \xi} \xi\left(\rho^{2} l^{2}\right)^{\xi}\right. \\
& K\left(\rho^{2} l^{2}\right)=\frac{1}{2 i} \int_{-\beta+i \infty}^{-i \infty} d \xi \frac{w(\xi)}{\sin \pi \xi} \xi(\xi-1)\left(\rho^{2} l^{2}\right)^{\xi} \tag{5.160}
\end{align*}
$$

fiven by
and for the operator $H_{x y}(\square)=\left(\Delta_{x} l^{2}\right)^{-\prime} \delta^{d}(x-y)$

$$
H_{x y}(a)=-\int(d \rho) H_{\left(p^{2} e^{2}\right) e^{-i p(x-y)}}
$$

$$
\tilde{H}\left(\rho^{2} \rho^{2}\right)=1 / \rho^{2} \ell^{2} .
$$

With the form factor expansion (5.12) for any desired order it is not difficulty to iterate the integral equation (5.6) for the Langevin field

$$
A_{\mu}[\eta]=\sum_{m=0}^{\infty} q^{m} A_{\mu}^{(m)}\left[q^{m}\right]
$$

up to arbitrarily high order as well. As the example, the result for the form factor $K(\Delta) \quad$ in $d=4$ dimensions takes the form:

$$
\begin{aligned}
& A_{\mu}^{(0) a}(x, t)=\int_{-\infty}^{t} d t^{\prime}(d y) G_{\mu v}^{a b}\left(x-y, t^{\prime}-t^{\prime}\right) \int(d z) K_{z y}(a) \eta^{6}\left(z, t^{\prime}\right) ; \\
& A_{\mu}^{(v)}(x, t)=\int_{-\infty}^{t} d t^{\prime}(d y) G_{\mu^{\prime}}^{a b}\left(x, y, t^{\prime}\right)\left\{H_{\nu}^{(0) b}\left(y, t^{\prime}\right)+\frac{1}{\alpha} \gamma_{v}^{(0) b}\left(y, t^{\prime}\right)+\right. \\
& +\frac{1}{2} \int(d z)\left[K^{(t)}(a) / \Gamma_{1}\left(A^{(a)}\right) H(a)+H(a) / \Gamma_{1}\left(A^{(a)}\right) K^{(1)}(\square)\right]_{x z} Q_{\nu}^{C}\left(z, t^{\prime}\right) ; \\
& A_{\mu}^{(2) a}(x, t)=\int_{-\infty}^{t} d t^{\prime}(d y) G_{\mu}^{a t}\left(x-y, t-t^{\prime}\right)\left\{W_{\nu}^{(0)}\left(y, t^{\prime}\right)+\frac{1}{\alpha} Y_{\nu}^{(1) b}\left(y, t^{\prime}\right)+\right. \\
& +\int(a z) L \frac{1}{2}\left(K^{(t)}(a) / r\left(A^{(o)}\right) H(a)+H(a) \Gamma_{r}\left(A^{(0)}\right) K^{(0)}(a)\right)+ \\
& +\frac{1}{2}\left(K^{(1)}(a) / C_{2}\left(A^{(0)}\right) H(a)+H(a) / 2\left(A^{(0)}\right) K^{(1)}(a)\right)+ \\
& +\frac{1}{6}\left(K^{(2)}(a) C_{1}\left(A^{(0)}\right) H(a) I_{1}\left(A^{(2)}\right) H(a)+\right. \\
& +H(a) / C_{1}\left(A^{(0)} K^{(2)}(a) /_{1}\left(A^{(0)}\right) H(a)+\right. \\
& \left.\left.+H(a) \Gamma_{r}\left(A^{(0)}\right) H(a) \Gamma_{r}\left(A^{(0)}\right) K^{(z)}(a)\right]_{y z}^{b c} \eta_{\nu}^{c}\left(z, t^{\prime}\right)\right\} . \\
& \left.+H(a) \Gamma_{r}\left(A^{(0)}\right) H(a) \Gamma_{r}\left(A^{(0)} K^{(z)}(a)\right]_{y z}^{b c} \eta_{\nu}^{c}\left(z, t^{\prime}\right)\right\} .
\end{aligned}
$$

(5.16a)

Here, product of operators in (5.16b) and (5.16c) should be understood as contraction operation between them $[$ see, the formula (5.12)].

We note that more useful at arbitrary order is the equivalent description in terms of Langevin tree graphs, which are easily derived from Eqs. (5.6) or (5.16). For this purpose, the treegraphical expansions of the form factor should be given, that is the same as it was done by Bern et al. 14 / for the concrete regulator $[R(\Delta)]_{x y}^{a b}=\delta^{a d}\left[\left(-\Delta / \Lambda^{2}\right]_{x y}^{-1}\right.$. In the nonlocel theory the Langevin tree graphs through $O\left(g^{2}\right)$ are shown in Fig. IO. These diagrams may be constructed to all orders using the Langevin tree rules given in Fig. 9.

$$
\begin{aligned}
& \text { Propagators: }
\end{aligned}
$$

$$
\begin{aligned}
& t_{1} \stackrel{\rho \rightarrow \theta_{\mu}}{a} t_{2} \quad=\delta^{a b} \delta_{\mu} \delta\left(t_{1}-t_{2}\right) K\left(-\rho^{2} \ell^{2}\right) \\
& t_{1} \frac{\rho \rightarrow \nu}{\rho} t_{2} \quad=\delta^{a b} \delta_{\mu \nu} \delta\left(t_{1}-t_{2}\right) K^{(1)}\left(-\rho^{2} \rho^{2}\right) \\
& t_{1}^{a} \stackrel{p \rightarrow-\infty}{L} t_{2} \quad=\theta^{a d} \delta_{\mu \nu} \delta\left(t_{1}-t_{2}\right) K^{(z)}\left(-p^{2} \ell^{2}\right) \\
& t_{1}^{a}-p_{\mu}^{a}-t_{\nu} t_{2} \quad=\delta^{a t^{2}} \delta_{\mu} \cdot \delta\left(t_{1}-t_{2}\right) H\left(p^{2} \ell^{2}\right)
\end{aligned}
$$

Vertices

$$
\begin{aligned}
& \sim=\sim=\sim \neq 1 \\
& \longmapsto=\sim=-x=--x \equiv \eta_{\mu}^{a}
\end{aligned}
$$

$=-\frac{i}{2} f^{a k} g\left[\varphi \rho_{1} \rho_{\beta} \delta_{\mu \nu}+\left(\rho_{2}-\rho_{3}\right)_{\mu} \delta_{\beta v}+\left(\rho_{3}-\rho_{1}\right)_{\nu} \delta_{\mu \beta}\right]-$ $-\frac{i}{2 \alpha} f^{\alpha k_{c}}\left[\left(\rho_{\beta}\right)_{\beta} \delta_{\mu \mu}-\left(\rho_{2}\right)_{\nu} \delta_{\mu \mu}\right] \equiv W_{\mu \mu \beta}^{a k c}\left(\rho_{1}, \rho_{2} ; \rho_{3}\right) ;$

$$
\begin{aligned}
= & -\frac{g^{2}}{6}\left[f^{a d n} f^{c d n}\left(\delta_{\mu \beta} \delta_{\nu \rho}-\delta_{\mu \rho} \delta_{\mu \beta}\right)+\right. \\
& +f^{a c n} f^{b d n}\left(\delta_{\mu \nu} \delta_{\beta \rho}-\delta_{\mu \rho} \delta_{\mu \beta}\right)+ \\
& \left.+f^{a d n} f^{c b n}\left(\delta_{\mu \rho} \delta_{\nu \rho}-\delta_{\mu \nu} \delta_{\beta \rho}\right)\right]=W_{\mu \nu \beta \rho}^{a b c d}
\end{aligned}
$$

$$
\equiv \Gamma_{r}^{a k \beta}=i g f^{a k c}\left(\rho_{1}-P_{3}\right) \delta_{\mu \beta}
$$

Fig.9.
Langevin tree rules using nonlocal form factors.
$A_{\mu}^{(0) a}=\cdots \sim=x$

Fig.IO.
Langevin tree diagrams through $O\left(g^{2}\right)$ in the nonlocal stochastic scheme.

As a trivial example, we obtain the zeroth order two-point function. From the solution (5.16a) it follows in accordance with local noise property (5.2)

$$
\begin{equation*}
\left\langle A_{\mu}^{(0) a}(x, t) A_{\nu}^{(0) b}(y, t)\right\rangle=\delta^{\alpha a b} \int(d \rho) e^{-i \rho(x-y)}\left(T_{\mu \nu}(\rho)+\alpha L_{\mu^{2}}(\rho)\right) \frac{V\left(-\rho^{2} \rho^{2}\right)}{\rho^{2}} \tag{5.17}
\end{equation*}
$$

or using the Langevin tree alagram shown in Fig. II

$$
\begin{aligned}
& D_{\mu \nu}^{a b}\left(\rho ; t_{1} ; t_{2}\right)=2 \int_{-\infty}^{t_{1}} d t_{3} \int_{-\infty}^{t_{2}} d t_{4} G_{\mu \rho}^{a c}\left(\rho, t_{1}-t_{3}\right) G_{\nu \rho}^{R}\left(\rho, t_{2}-t_{4}\right) d\left(t_{3}-t_{4}\right) V\left(-\rho^{2} \psi^{2}\right)= \\
& =\delta^{a b}\left[T_{\mu \nu}(\rho) e^{-\rho^{2}\left(t_{1}-t_{2}\right)}+\alpha L_{\mu \nu}(\rho) \rho^{-\rho^{2} \frac{t_{1}-t_{2}}{\alpha}}\right] \frac{V\left(-\rho^{2} \rho^{2}\right)}{\rho^{2}}
\end{aligned}
$$

The result for the nonlocal free gluon propagator is just (5.17) Other free nonlocal Green functions are constructed according to the usual Wick expansion in terms of the result (5.17)

Fig. 11.
A simple contraction for the nonlocal theory with form factor $V\left(-p^{2} \ell^{2}\right)$.
In the next section, we apply these Langevin equations and their rules for the nonlooal stochastic quantization theory to the computation of the one-loop gluon mass.
6. Vanishing Gluon Mass in the Nonlocal Stochastic Quantization Theory
Verffication of gauge invariance in nonlocal stochastic quantization scheme with arbitrary form factors is crucial for its further developments. We will verify in this section that the $Q_{4} C_{4}$ gluon mass remains zero at the one-loop level, with any form factors $V\left(-p^{2} l^{2}\right)$ or $K\left(-p^{2} \ell^{2}\right)$. Our step to study this problem is following. First, we construot expressions

$$
\Pi_{\mu \nu}^{a b}(x-y)=\left\langle A_{\mu}^{(v a}(x, t) A_{\nu}^{(1) b}(y, t)\right\rangle_{\eta}
$$

and

$$
N_{\mu \nu}^{a b}(x-y)=\left\langle A_{\mu}^{(2) a}(x, t) A_{\nu}^{(0) b}(y, t)\right\rangle_{\eta}
$$

by using equations (5.16). 'second, with these obtained formulas, we sketch corresponding diagrams. It turns out that there are 47 distinct Langevin graphs in the two-point function at order $\sim g^{\mathcal{E}}$ where diagrams trivially related by symmetry are not included in the count. As a particular case (Bern's et al. $14 /$) it is seen that only 10 make nonzero contributions to the mass renormalization, while only 2 contribute to the wave function and gauge parameter α renormalizations.

According to Bern et al. $/ 14 /$ we have found it corrvenient to group 47 diagrams into four classes (see diagrams sketched in Figs. 12-15) of which only the first olass contributes to the wave function and α-renormalizations, and only the first two classes contribute to the mass renormalization. The third class contributes only to the finite part of the vacuum polarization, which will not be considered in this paper, while the diagrams in the fourth class vanish identically.

The structure of diagrams shown in Figs. 12-15 is similar with those considered by Bern et al. ${ }^{1 / 4 /}$. Therefore, we do not discuss them in detail and indicate only some their peculiarities. For example, the dlagrans shown in $\mathrm{F}_{1} \mathrm{~g} .12$ contain only ($\mathrm{Z}_{\text {wanziger }}$ gauge-fixed) Yang-Mills vertices, no form factor vertices, while the diagrams (Fig.13) contain at least one Γ_{f} or Γ_{2} regulator vertex, and provide the additional gluon mass contributions needed to cancel the contribution of the ordinary graphs ($F_{i g .12 \text {). We notice }}$ that for this class of diagrams, contributions to wave function or
α-renormalizations are absent. The diagrams, shown in Fig.14, also contain regulator vertices, but contribute only to the finite part of the vacuum polarization. Finally, the group of diagrams (Fig.15) vanishes identically. Some (the tadpole loops) of them vanish as usual by $f^{a b c}$ antisymmetry. The remaining diagrams vanish due to the (fifth-time) retarded property of the Langevin Green functions, which contribute a factor of $\theta\left(t_{1}-t_{2}\right) \theta\left(t_{2}-t_{1}\right)=0$ to each diagran.

"Ordinary" nonvanishing Langevin diagrams in nonlocal stochastic quantization schere.

Diagrams with nonlocal regulator vertices that also contribute to gluon mass.

Fig. 14.
Diagrams with nonlocal regulator vertices, which are finite as $\ell \rightarrow 0$.

Fig. 15.
Diagrams that vanish identically in nonlocal stochastic scheme.

In order to compute explicit contributions to renormalization mass correction due to diagrams shown in $F 1 g s .12$ and 13 we study expressions $\Pi_{\mu \nu}^{a b}(x-y)=\left\langle A_{\mu}^{(N a}(x, t) A_{\nu}^{(1)}(y, t)\right\rangle_{\eta}$. Thus, taking into account the formula ($5.16 b$) it is easily seen that explicit contribudion from diagram 12 c is calculated by using the following formula

$$
\begin{equation*}
\nabla_{\mu \nu}^{a b}(x-y)=\left\langle\sum_{\mu}^{a}(x, t) \sum_{\nu}^{b}(-y, t)\right\rangle_{?} \tag{6.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \sum_{\mu}^{a}(x, t)=\int_{-\infty}^{t} d t^{\prime} \int_{-\infty}^{t^{\prime}} d t_{1} \int_{-\infty}^{t^{\prime}} d t_{2} \int\left(d p_{1}\right)\left(d p_{2}\right)\left(d \rho_{3}\right) e^{-i p_{1} x} G_{\mu \mu_{1}}^{a a_{1}}\left(p_{1}, t-t^{\prime}\right) x \\
& { }^{x} G_{\beta \delta}^{e n}\left(\rho_{2}, t^{\prime} t_{4}\right) K\left(p_{2}^{2} c^{2}\right) \bar{\delta}^{d}\left(\rho+\rho_{2}+p_{3}\right)\left[V_{\mu+\beta \theta}^{a e c}\left(\rho_{1} P_{2} \beta_{3}\right) G_{\theta \rho}^{c s}\left(\rho_{3}, t^{\prime}-t_{2}\right) \times\right.
\end{aligned}
$$

$$
\begin{aligned}
& \times \eta_{\delta}^{n}\left(p_{2}, t_{1}\right) \eta_{l_{p}^{5}}^{\left(p_{3}, t_{2}\right)} .
\end{aligned}
$$

Here explicit form of vertices $W_{\mu, \beta \theta}^{a, e c}\left(\rho_{1}, \beta_{2}, \beta_{3}\right)$ and $\Gamma_{1, p \beta}^{a, e s}$ is sketched in Fig.9. Majority of terms in (6.1) corresponds to some finite and zero-diagrams shown in Fig. 14 and 15. Further, according to the formula (5.2) we make noise contraction in (6.1), perform the fifth-time integrations, separate term giving contribution in accordance with diagram 120 and integrate over momentum variable with form factor $V\left(-\rho^{2} \ell^{2}\right)$. Thus, after some tensor algebra, we obtain explicit leading value for this diagram near $\quad \rho=0$ as

$$
\Pi_{r}^{a f}(p)=-f^{a m n} f^{8 m n} \frac{g^{2}}{B n^{2}} \Delta_{\mu \beta}(\rho)\left(\frac{5}{2} \delta_{\beta \nu} \rho^{2}\right) \ln \mu^{2} \ell^{2}
$$

where

$$
\Delta_{\mu \beta}(\rho)=\left[T_{\mu \beta}(\rho)+\alpha L_{\mu \beta}(\rho)\right] \rho^{-2}
$$

Truncation near $\rho=0$ is accomplished by removal of the factor. We see that this term gives contribution to the wave function tenormalization only. Now we study diagrams which give contribution to the gluon mass renormalization.

Contribution to mass renormalization due to diagram 12a arises from contraction result between second term for (5.160) and $A_{\nu}^{(\mu)}(x, t)$ in (5.16a):

$$
\begin{aligned}
& \Pi_{2_{\mu \nu}^{*}}^{a b}(\rho)=\int_{-\infty}^{t} d t^{\prime} \int_{-\infty}^{t^{\prime}} d t_{1} \int_{-\infty}^{t^{\prime}} d \tau\left(d \rho_{2}\right) G_{\mu \beta}^{a \alpha_{1}}\left(\rho, t-t^{\prime}\right) \theta\left(t-t^{\prime}\right) \theta\left(t^{\prime}-\tau\right) x \\
& \times\left\{\delta^{\alpha m} \delta^{e b} \Delta_{\rho_{\rho_{2}}^{\prime}}^{\prime}\left(\rho_{2}, t^{\prime}-t_{1}\right) \Delta_{\rho_{2} \nu}^{\prime}\left(\rho, t^{\prime}-\tau\right)+\delta^{m e} \delta^{* \ell} \Delta_{\rho_{\rho} \rho_{3}}^{\prime}\left(\rho_{2}, t^{\prime}-t_{1}\right) \times\right. \\
& \left.\times \Delta_{\rho_{2} \nu}^{\prime}\left(\rho, t^{\prime}-\tau\right)+\delta^{m \delta^{\prime}} \delta^{n t} \Delta_{\rho_{1} v}^{\prime}\left(\rho, t^{\prime}-\tau\right) \Delta_{\rho_{2} \rho_{1}}^{\prime}\left(\rho_{2}, t^{\prime}-t_{2}\right)\right\} \times \\
& \times V\left(-\rho_{2}^{2} \ell^{2}\right) V\left(-\rho^{2} \ell^{2}\right) W_{\rho_{1} \rho_{2} \rho_{3}}^{a_{1} m+},
\end{aligned}
$$

where $\Delta_{\rho \beta}^{\prime}(p, t)=T_{g \beta}(p) e^{-t p^{2}}+L_{\rho \beta}(p) e^{-t p^{2} / \alpha}$ are presented in Fig.9. After some elementary calculation, we get

$$
/_{z_{\mu \nu}}^{a b}(\rho)=-f^{a m n} f^{m m} g^{2} \Delta_{\mu \beta}(\rho) \Delta_{\beta \nu}(\rho)\left(\frac{3+\alpha}{4}\right) \cdot 3 \cdot \int(d q) \frac{V\left(-q^{2} p^{2}\right)}{q^{2}}
$$

Infraviolet divergence in this term is caused by zero mass of gluon field. Assuming $q^{2} \rightarrow q^{2}+\varepsilon$ result reads

$$
\begin{equation*}
\Pi_{2 \mu v^{\prime}}^{a b}(\rho)=f^{a n m} f^{\beta_{n n}} g^{2} \Delta_{\mu p}(\rho) A_{a v}(\rho) \frac{1}{16 \pi^{2}}\left(-\frac{30}{l^{2}} \frac{3+\alpha}{4}\right) \tag{6.2}
\end{equation*}
$$

Here for $\operatorname{su}(N) \quad f^{a m m} f^{b m n}=\delta^{a b} N$.
Now we calculate corrections to the gluon mass renormalization due to diagrams shown in Fig.12b and Fig. 13a, which are calculated by using contraction of first term in (5.160) with $A_{\nu}^{(0) l}(x, t)$.
Corresponding expressions take the form

$$
\begin{aligned}
& \Pi_{3 \mu \sigma}^{a s}(\rho)=16 \int_{-\infty}^{t} d t^{\prime} \int_{-\infty}^{t^{\prime}} d t t_{1}(d p) V\left(p^{2} \rho^{2}\right) V\left(-(p-p)^{2 q^{2}}\right) \theta\left(t-t^{\prime}\right) \theta\left(t^{t}-t_{1}\right) \theta\left(t-t_{1}\right) \times \\
& \Delta_{\mu \nu_{2}}^{\prime}\left(p_{1}, t^{\prime}-t_{1}\right) \Delta_{\mu \nu}^{\prime}\left(\rho, t-t^{\prime}\right) \Delta_{\mu_{\sigma}}^{\prime}\left(p_{1}, t-t_{t}\right) \Delta_{\beta, \rho_{r}}\left(\rho-p_{1}, t^{\prime}-t_{1}\right) . \\
& W_{\nu \beta, v}^{a n m}\left(-\rho, p-p_{1}, p_{1}\right) W_{\nu_{2} \rho_{1}, \lambda_{1}}^{\text {mas }}\left(-p_{1}, p_{1}-\rho, p\right)
\end{aligned}
$$

$$
\begin{align*}
& \nabla_{4 \mu \sigma}^{a s}(p)=2 g^{2} \delta^{a s} N l^{2} \int(d q)\left\{\frac{q, q}{2 q^{4}}(\alpha-3) V\left(-q^{2} b^{2}\right) K\left(-p^{2} \phi^{2}\right) x\right. \\
& \left.x\left[H\left(q^{2} q^{2}\right) K^{(t)}\left(p^{2} q^{t}\right)+H\left(q^{2} l^{2}\right) K(i) \cdot q^{q^{2}}\right)\right]+\frac{4 q q_{1}}{q^{2}} V\left(-p^{2} \varphi^{2}\right) \times \tag{6.4}
\end{align*}
$$

$$
\left.\left.\times K\left(-q^{2} l^{2}\right) H\left(\varphi^{2} l^{2}\right) K(1),-q^{2} l^{2}\right)\right\} \Delta_{\sigma \lambda,(\rho)} \Delta_{\mu \nu}(\rho)
$$

respectively. In (6.3) integration over fifth-time variables should be carried out, after which this expression is reduced to analogous formula for $\Pi_{4 \mu \nu}^{a s}(\rho)$ in (6.4):

$$
\begin{gathered}
\Pi_{3 \mu \sigma}^{a s}(\rho)=\delta^{a b} N g^{2} \Delta_{\mu \nu}(\rho) \Delta_{1, \sigma}(\rho)\left[\frac{5}{4}+\frac{3 \alpha}{4}\right] \delta_{\nu d_{1}} \int(d q) \frac{V\left(-q^{2} f^{2}\right)}{q^{2}}= \\
=\delta^{a b} N g^{2} \Delta_{\mu \nu}(\rho) \Delta_{\nu \sigma}(\rho)\left[\frac{5+3 \alpha}{4}\right] \frac{\sigma}{l^{2}} \frac{1}{16 \pi^{2}} .
\end{gathered}
$$

By definition (5.13) for the form factors $K^{(i)}\left(-p^{2} \ell^{2}\right)$ it is easily seen that first term with $K^{(1)}\left(-\rho^{z} \rho^{2}\right)$ in (6.4) goes to zero at the $11 \mathrm{mit} \rho^{2} \rightarrow 0$ and main asymptotio of 1 ts second term is constant, so that third term gives the following leading term

$$
\begin{equation*}
\Pi_{\mu \mu \sigma}^{a s}(\rho)=\frac{\delta^{a s} N g^{2}}{16 \pi^{2}} \Delta_{\mu \nu}(\rho) \Delta_{\psi \sigma}(\rho)\left[-\sigma l^{-2}\right] \tag{6.6}
\end{equation*}
$$

Analogously, contributions to the mass renormalization in QCD_{4} due to diagrams shown in Fig.13b, c, d are calculated by using contraction of third, fourth and fifth terms in (5.160) with
$A_{j}^{(0)}(x, t)$. Corresponding result reads

$$
\begin{gather*}
\Pi_{s \mu \sigma}^{\alpha s}(\rho)=\frac{\delta^{\sigma s} \mu^{2}}{16 \pi^{2}} \Delta_{\mu \nu}(\varphi) \Delta_{\nu \sigma}(\rho) V\left(-\rho^{2} l^{2}\right) H\left(\rho^{2} \ell^{2}\right) \frac{1}{l^{2}} x \\
\times\left[\frac{w(-2)}{2}-\frac{w(-2)}{2 i} \int_{-\beta+i \infty}^{--i \infty} d y \frac{w(y)}{\sin \pi y} \frac{\Gamma(y)}{\Gamma(2-y)} \varepsilon^{y} l^{2 y}\right. \tag{6.7a}
\end{gather*}
$$

$$
\begin{align*}
& \eta_{\gamma \mu \sigma}^{a s}(\rho)=\frac{\delta^{\Omega a s} N^{2}}{16 \pi^{2}} \Delta_{\mu \mu}(\rho) \Delta_{\omega \sigma}(\rho) V\left(\rho^{2}() H\left(\rho^{2} f^{2}\right) \frac{w(-2)}{\ell^{2}} .\right. \tag{6.70}
\end{align*}
$$

In obtained expressions (6.2), (6.5)-(6.7) truncation near $\ell=0$ is accomplished by removal of the two factors $\Delta \alpha \beta(p)$, all sum of resulting in these diagram 's contributions is zero, so the gluon remains massless in this order for the nonlocal stochastic quantization theory with arbitrary form factors. This generalizes the regularized scheme proposed by Bern et al. ${ }^{1 / 14 /}$.

Thus, nonlocal method presented here for Langevin $S_{\text {chwinger- }}$ Dyson formalisms of stochastic quantization gives ultraviolet finiteness to all orders for gauge theory Green functions in d dmensions and ensures its gauge invarianoe. The latter is aohieved by using the covariant $\mathrm{L}_{\text {aplaiaian function (in which the gauge-fixing }}$ term is absent) in the construction of the theory. In our case, the nonlocal distribution $K_{x y}(\mathbb{D})$ is translation invariant and so that a gauge-covariant parallel transport of the local noise guarantees the gauge covariance of the regularized Langevin system under the local d-dimensional gauge transformation (for detail, see Bern et al. /14/):

$$
\begin{aligned}
& \dot{A}_{\mu}^{a}(x, t) \Longrightarrow \Omega^{a b}(x) \dot{A}_{\mu}^{b}(x, t) \\
& \eta_{\mu}^{a}(x, t) \Longrightarrow \Omega^{a b}(x) \eta_{\mu}^{\prime}(x, t) \\
& K_{x y}^{a b}(\Delta) \Longrightarrow \Omega^{a a^{\prime}}(x) \Omega^{a b^{\prime}}(y) K_{x y}^{a b^{\prime}}(\Delta)
\end{aligned}
$$

where $\Omega(x) \in S O\left(N^{2}-1\right) \quad$ is the adjoint representation of $S U(N)$.
7. Scalar Eleotrodynamios

For conorete computational purpose, we present the method of electrodynamics construction of charged spinless particles and illustrate the extension of the scheme to include mather multiplets. As in $Y_{\text {ang-Mills, the basic }}$ idea is that gauge-invariance is maintained by choosing each form factor as a function of the covariant derivative in the relevant representation.

The nonlooal and $Z_{\text {wanziger }}$ gauge-fixed langevin system for scalar electrodynamios (SED) takes the form

$$
\begin{align*}
& \dot{A}_{\mu}(x, t)=-\frac{\delta S}{\delta q_{\mu}}(x, t)+\partial_{\mu} Z(x, t)+\int(d y) K_{x y}(a) \eta_{\mu}(y, t) \tag{7.1a}\\
& \dot{\phi}_{(x, t)}=-\frac{\delta S}{\delta \phi^{*}}(x, t)+i e \phi(x, t) Z(x, t)+\int(d y) K_{x y}(\Delta) \eta(y, t) \tag{7.1b}\\
& \dot{\phi}^{*}(x, t)=-\frac{\delta S}{\delta \phi}(x, t)-i e \dot{\phi}^{*}(x, t) Z(x, t)+\int(d y) K_{x y}\left(\Delta^{*}\right) \eta^{*}(y, t) \tag{7.10}
\end{align*}
$$

where local noises satisfy the usual relations

$$
\begin{align*}
& \left\langle\eta_{\mu}(x, t) \eta_{\nu}\left(y, t^{\prime}\right)\right\rangle=2 \delta_{\mu} \delta\left(t-t^{\prime}\right) \delta^{d}(x-y) \\
& \left\langle\eta^{*}(x, t) \eta\left(y, t^{\prime}\right)\right\rangle=2 \delta\left(t-t^{\prime}\right) \delta^{d}(x-y) \tag{7.2b}
\end{align*}
$$

Here

$$
\begin{equation*}
S=\int(d x)\left[\frac{1}{4} F_{\mu} F_{\mu \nu}+/\left(\partial_{\mu}-i e A_{\mu}\right) \phi /^{2}\right] \tag{7.20}
\end{equation*}
$$

is the usual Euclidean action of SED constructed by using local fields $A_{\mu}(x, t)$ and $\phi(x, t)$. In contradistinction to nonlocal quantum field theory ($E_{\text {fimov }} / 12, \dot{15 /}$), interaction $I_{\text {agrangian in }}$ (7.20) is local. The appropriate covariant Laplacian for the charged solar fields are

$$
\begin{array}{ll}
\Delta_{x y}=\int(d z)\left(D_{\mu}\right)_{x z}\left(D_{\mu}\right)_{z y}, & \left(D_{\mu}\right)_{x y}=\left(\partial_{\mu}^{x}-i e A_{\mu}(x)\right) \delta^{d}(x-y), \\
\Delta_{x y}^{*}=\int(d z)\left(D_{\mu}^{*}\right)_{x z}\left(D_{\mu}^{*}\right)_{z y}, & \left(D_{\mu}^{*}\right)_{x y}=\left(\partial_{\mu}^{x}+i e A_{\mu}(x)\right) \delta^{d}(x-y)
\end{array}
$$

and we will choose $\alpha Z=\partial A$ as above.
Further, to check the finiteness and gauge-invariance of system we compute, as in Sec.6, the $d=4$ one -1000 photon mass using Langevin techniques. We first need the integral form of the Langevin system

$$
\begin{gathered}
A_{\mu}(x, t)=\int(d y) \int\left(d t^{\prime}\right) G_{\mu \nu}\left(x-y, t-t^{\prime}\right)\left[-i e \phi^{*}\left(y, t^{\prime}\right)\left(\vec{\partial}_{\nu}-\bar{\partial}_{\nu}\right) \phi\left(y, t^{\prime}\right)-\right. \\
-2 e^{2} \phi_{\left.\left(y, t^{\prime}\right) \phi\left(y, t^{\prime}\right) A_{\nu}\left(y, t^{\prime}\right)+\int(d z) K_{x y}(D) \eta_{\nu}\left(z, t^{\prime}\right)\right]}
\end{gathered}
$$

$F_{1 g}$. 16 .
Expansion of the charged scalar form factor in the nonlocal stoohastic soheme.

Having expanded the form factor, an essentially standard (Parisi and $W^{/ 11 /}$; Bern et al. $1.4 /$) iterative procedure allows the expansion of the Langevin solution

$$
\begin{gather*}
A_{\mu}[\eta]=\sum_{m=0}^{\infty} e^{m} A_{\mu}^{(m)} \tag{7.8}\\
\phi(\eta)=\sum_{m=0}^{\infty} e^{m} \phi^{(m)}, \phi^{*}(\eta)=\sum_{m=0}^{\infty} e^{m} \phi^{*(m)} \tag{7.9}
\end{gather*}
$$

to any desired order. For the photon mass oomputation, the relevant results with the form faotor $K^{\prime \prime}\left(p^{2} l^{2}\right)$ are

$$
\begin{aligned}
A_{\mu}^{(0)}(x, t) & =\int(d y) \int_{-\infty}^{t} d t^{\prime} G_{\mu \nu}\left(x-y, t^{\prime}\right) \\
e A_{\mu}^{(1)}(d x) K_{z y}(a) \eta\left(z, t^{\prime}\right) & =\int(d y) \int_{-\infty}^{t} d t^{\prime} G_{\mu \nu}\left(x-y, t^{\prime} t^{\prime}\right)\left[-i e \phi^{*(0)}\left(y, t^{\prime}\right)\left(\overrightarrow{0}_{\nu}-\dot{\partial}_{\nu}\right) \phi^{(0)}\left(y, t^{\prime}\right)\right]
\end{aligned}
$$

$e^{2} A_{\mu}^{(2)}(x, t)=\int(d y) \int_{-\infty}^{\frac{t}{t}} d t^{\prime} G_{\mu \nu}\left(x^{2}-y, t-t^{\prime}\right)\left[-i e^{z} \phi^{*(t)}\left(y, t^{\prime}\right)\left(\overrightarrow{a_{\nu}}-\delta_{\nu}\right) \phi^{(0)}\left(y, t^{\prime}\right)-\right.$ $\left.-i e^{2} \phi^{*(\theta)}\left(y, t^{\prime}\right)\left(\vec{\alpha},-\tilde{D}_{v}\right) \phi^{(4)}\left(y, t^{\prime}\right)-2 e^{2} \mathcal{A}_{2}^{(0)}\left(y, t^{\prime}\right) \phi^{*(0)}\left(y, t^{\prime}\right) \phi^{(0)}\left(y, t^{\prime}\right)\right]$
and

$$
\phi^{(0)}(x, t)=\int(d,) \int_{-\infty}^{t} d t^{\prime} G\left(x-y, t-t^{\prime}\right) \int(d z) K_{y 2}(a) \eta\left(z, t^{\prime}\right)
$$

$e \phi^{(t)}(x, t)=\int(d y) \int_{-\infty}^{t} d t^{\prime} G\left(x-y, t-t^{\prime}\right)\left\{-i e\left[A_{\mu}^{(0)}\left(y, t^{\prime}\right) \partial_{\mu} \phi^{(0)}\left(y, t^{\prime}\right)+\right.\right.$ $\left.+\partial_{\mu}\left(A_{\mu}^{(0)}\left(y, t^{\prime}\right) \phi^{(0)}\left(y, t^{\prime}\right)\right)-\frac{1}{\alpha} \phi^{(0)}\left(y, t^{\prime}\right) \partial_{\mu} A_{\mu}^{(0)}\left(y, t^{\prime}\right)\right]+$ $\left.\left.+\frac{e}{2} \int(d z) / H(a) \Gamma_{1} K^{(t)}(a)+K^{(t)}(a) / i H(a)\right]_{y z} \eta\left(z, t^{\prime}\right)\right\}$.

Such expansions may be represented diagramatically to all oxders as Langevin tree graphs, show $/ \frac{14}{14}$ Fig.17.

According to Bern et al. 14/ these Langevin tree diagrams may be constructed to all orders from the simple set of momentum space Langevin tree rules shown in Fig.18. Finally, the diagrams of the n-point nonlocal Green functions are formed by contracting the trees, as usually aocording to Eqs. $(7, a)$ and $(7.2 b)$.

Fig. 17.
Langevin tree diagrams for photon field in the nonlocal stochastic scheme.

Propagators:

$$
\begin{aligned}
& \left.\mu_{t_{1}}^{\mu} \sim \sim_{t_{2}}^{\nu}=G_{\mu \nu}\left(\rho_{0} t_{1}-t_{2}\right)=\theta\left(t_{1}-t_{2}\right)\left[T_{\mu}(\varphi) e^{-p^{2}\left(t_{1}-t_{2}\right)}+L_{\mu} \mu \varphi\right) e^{-p^{2}\left(t_{1}-t_{2}\right) / \alpha}\right] \\
& \rightarrow \vec{t}_{1} \rightarrow t_{t_{2}}=\rightarrow t_{t_{1}}-t_{t_{2}}=G\left(\rho, t_{1}-t_{2}\right)=\theta\left(t_{1}-t_{2}\right) e^{-\left(\rho^{2}+m^{2}\right)\left(t_{1}-t_{2}\right)} \\
& \underset{t_{1}}{\mu}=\delta_{\mu \nu}^{\nu} \delta\left(t_{1}-t_{2}\right) K\left(-\rho^{2} \ell^{2}\right) \\
& \Longrightarrow t_{t_{2}}=\delta\left(t_{1}-t_{2}\right) K\left(-p^{2} \theta^{2}\right) \\
& \overline{t_{1}} \bar{t}_{2}=\delta\left(t_{1}-t_{2}\right) K^{(1)}\left(-\rho^{2} P^{2}\right) \\
& \overline{t_{1}} \cdots-\bar{t}_{2}=\delta\left(t-t_{2}\right) H\left(\rho^{2 l^{2}}\right)
\end{aligned}
$$

Vertices

~~~ロ \(=\rightarrow \rightarrow-\rightarrow=\rightarrow--\infty \equiv 1\)
\[
\begin{aligned}
& \Longrightarrow=\rightarrow x=---x \equiv \eta \\
& \Longrightarrow x=--\cdots x \equiv \eta^{*} \\
& \underset{\mu}{x} \equiv \eta_{\mu}
\end{aligned}
\]



Fig. 18.
Langevin tree rules for scalar electrodynamics in the nonlocal stoohastio scheme.

There are three types of diagrams (Fig.19) giving nonvanishing contributions to the zeromomentum vacumm polarization, in which we do not explicitly exhibit diagrans which are trivially related by symmetry. We now go to study the se diagrams. First, to calculate corresponding contributions, expression of \(A_{\mu}^{(2)}(x, t)\) should be found. In accordance with (7.4) its value in momentum representation acquires the following fom:
\(A_{\mu}^{(2)}(\rho, t)=2 e_{-\infty}^{2} \int_{-\infty}^{t} t^{\prime} \int_{-\infty}^{t^{i}} d t_{r} \int_{-\infty}^{t^{i}} d t_{2} \int\left(d \rho_{1}\right)\left(d \rho_{2}\right)\left(d \rho_{3}\right) G_{\mu \nu}\left(\rho, t-t^{\prime}\right) x\)
\(\times G\left(\rho_{2}, t^{\prime}-t_{2}\right) K\left(-p_{1}^{2} \varphi^{2}\right) \iint_{-\infty}^{t_{2}} d t_{3} \int_{-\infty}^{t_{2}} d t_{4} \int\left(d p_{4}\right) G\left(\rho_{1}, t^{\prime}-t_{1}\right)\left(p_{1}+\rho_{2}\right)_{\nu} \times\)
\(\times \bar{\delta}\left(p+p_{1}-p_{2}\right) \bar{\delta}^{d}\left(\rho_{2}-p_{3}-p_{4}\right) G_{8 \sigma}\left(\rho_{3}, t_{2}-t_{3}\right) G\left(\rho_{4}, t_{2}-t_{4}\right) \times\)
\(\times K\left(-\rho_{3}^{2} p^{2}\right) K\left(-p^{2} q^{2}\right)\left[\left(p_{3}+2 \rho_{4}\right)_{\delta}-\frac{1}{\alpha} p_{3 \delta}\right] \eta^{*}\left(\rho_{1}, t_{1}\right) \eta\left(p_{4}, t_{4}\right) \eta_{\sigma}\left(p_{3}, t_{3}\right)+\)
\(+\int_{-\infty}^{t_{2}} d t_{3} \int\left(d_{4}\right) G\left(\rho_{1}, t^{\prime}-t_{1}\right)\left(\rho_{4}+p_{3}\right)_{\rho}\left(p_{1}+p_{2}\right)_{\nu} \delta^{\bar{d}}\left(\rho+\rho_{1}-p_{2}\right) \delta^{\bar{d}}\left(p_{2}-p_{3}-p_{4}\right) x\)
\(\times G_{p \beta}\left(\rho_{3}, t_{2}-t_{s}\right) K\left(-p_{3}^{2} P^{2}\right) \frac{1}{2}\left[H\left(\rho_{2}^{2} l^{2}\right) K\left(p_{4}^{(i)} l^{2}\right)+K^{(1)}\left(-\beta^{2} l^{2}\right) H\left(\rho_{4}^{2} l^{2}\right)\right] x\)
\[
\begin{aligned}
& * \eta^{*}\left(\rho_{1}, t_{1}\right) \eta_{\beta}\left(p_{3}, t_{3}\right) \eta\left(p_{4}, t_{4}\right)-\int_{-\infty}^{t^{\prime}} d t_{3} G\left(p_{3}, t^{\prime}-t_{3}\right) \times \\
& * G_{\nu \beta}\left(p_{1}, t^{\prime}-t_{1}\right) \bar{\delta}^{d}\left(\rho+p_{2}-p_{1}-p_{3}\right) K\left(-p_{2}^{2} t^{2}\right) k\left(-p_{3}^{2} t^{2}\right) x \\
& \left.\times \eta_{\beta}\left(p_{1}, t_{1}\right) \eta^{*}\left(\rho_{2}, t_{2}\right) \eta\left(\rho_{3}, t_{3}\right)\right\}
\end{aligned}
\]

Next, following the methods of Sec. 6 and using contractions between \(A_{\mu}^{(1)}(x, t)\) and \(A_{\nu}^{(1)}(y, t)\left[A_{\mu}^{(2)}(x, t)\right.\) and \(\left.A_{\nu}^{(1)}(y, t)\right]\) can obtain the explicit value for diagrams, shown in Fig. 19.

Thus, the diagram 19a gives the following contribution to the photon mass renomalization
\[
\begin{aligned}
& T_{\mu \nu}^{(a)}(\rho)=-8 e^{2} \int_{-\infty}^{t} d t^{\prime} \int_{-\infty}^{t^{\prime}} d t_{1} \int_{-\infty}^{t^{\prime}} d t_{2} \int(d \beta) G_{\mu \rho}\left(\rho, t^{\prime} t^{\prime}\right) G_{\rho \beta}\left(\rho, t^{\prime}-t_{1}\right) G\left(\rho_{2}, t^{\prime}-t_{2}\right) \times
\end{aligned}
\]


Nonvanishing contributions to photon mass in the nonlooal stochastic scheme.

After integration over fifth-time variables and truncation near \(\rho=0\) which is accomplished by removal of the two \(\Delta_{\mu \rho}=\left(T_{\mu \rho}(p)+\alpha L_{\mu \varphi}(\rho)\right) \rho^{-2}\) factors, we obtain at equilibrium
where we have assumed \(V\left(-p^{2} \ell^{2}\right) / p^{2} \rightarrow 0=1 \quad\) by the nomalization condition and notation \(\sigma=\lim _{x \rightarrow-1} v(x) /(f+x)\). It is easily seen that
contributions corresponding to diagrams 19b, c are equal to each other,

Elementary integration over fifth-time variables gives in the
limst \(p \rightarrow 0\)
\[
\begin{equation*}
\Pi_{\mu \nu}^{(\phi)}(\rho)=-e^{2} \Delta_{\mu \rho}(\rho) \Delta_{\rho \nu}(\rho) \ell^{2} V\left(\rho^{2} l^{2}\right)(d q) \frac{q^{2} k\left(\varphi^{2} l^{2}\right) K^{(\theta)}\left(\rho^{2}\right) H\left(q^{2} l^{2}\right)}{m^{2}+q^{2}} \tag{7.14}
\end{equation*}
\]
or
\[
\nabla_{\mu \nu}^{(6)}(0)=\frac{e^{2}}{16 m^{2}} \frac{\sigma}{2 l^{2}}
\]

Finally, contribution corresponding to diagram 19d is
\[
T_{\mu t}^{(d)}(\rho)=-8 e^{2} V\left(-\rho^{2} E^{2}\right) \int_{-\infty}^{t} d t^{\prime} \int_{-\infty}^{t^{\prime}} d t_{2} \int_{-\infty}^{t_{k}} d t_{3} \int_{-\infty}^{t_{2}} d t_{4} \int(d q) G_{\mu \rho}\left(\rho, t-t^{\prime}\right) \times
\]
\[
\times(2 q+p)_{\rho} G\left(p_{1}, t^{\prime}-t_{4}\right) G\left(p+q, t^{\prime}-t_{2}\right)\left[(2 q+p)_{\delta}-\frac{1}{\alpha} p_{\delta}\right] \times
\]
\(\times G_{\delta \sigma}\left(p, t_{2}-t_{3}\right) G_{\sigma N}\left(p, t^{2}-t_{3}\right) G\left(q, t_{2}-t_{4}\right) V\left(-q^{2} \ell^{2}\right)\).
\[
\begin{aligned}
& \text { explicit value of which is given by } \\
& \eta_{\mu \nu}^{(b)}(\rho)=\Pi_{\mu \nu}^{(\alpha)}(\rho)=-4 e^{2} V\left(-\rho^{2} \ell^{2}\right) \ell^{2} \int_{-\infty}^{t} d t^{\prime} \int_{-\infty}^{\dot{t}^{\prime}} d t_{2}^{t} \int_{-\infty}^{t^{\prime}} d t_{3} \int(d \rho) G_{\mu \rho}\left(\rho, t-t^{\prime}\right) x \\
& \times G_{\left(\rho_{1}, t^{\prime}-t_{2}\right)} G\left(\rho+\rho_{1}, t^{\prime} t_{2}\right) G_{\beta_{\beta}}\left(\rho, t_{2}-t_{3}\right) G_{\nu \beta}\left(\rho, t^{\prime}-t_{3}\right)\left(\angle \rho_{1}+\rho\right)_{\rho} x \\
& \times(2 \rho+\rho), K\left(p_{0}^{2} l^{2}\right) K^{(t)}\left(-(p+p) l^{2}\right) H\left(p^{2} l^{2}\right) .
\end{aligned}
\]

Here some integrations over fifth-time variables and \(d / q\)
should be carricd out and the result reads to the limit \(p \rightarrow 0\)
\[
\begin{equation*}
l_{\mu \nu}^{(d)}(0)=\frac{e^{2}}{16 \pi^{2} L^{2}}\left[\sigma+2 m^{2} \ell^{2} \ln \mu^{2} \ell^{2}\right] \tag{7.15}
\end{equation*}
\]

The reader may easily verify that the sum of all contributions is zero, so the photon remains massless to this order for the nonlocal stochastic quantization theory, as it should be*

Acknowledgements
We are indebted to Professors V.G.Kadyshevsky, G.V.Efimov, and B. M. Barbashov for many helpful disoussions and suggestions.

\section*{References:}
1. Nelson E. Dynamical Theories of Brownien Motion, Princeton Univ. Press. Princeton, New Jersey, 1967.
2. Guerra F. Physics Reports, 1981, C77, p. 263-312.
3. M1gdal A. A. Uspekh. Phizich. Nauk (Sov.Journ), 1986, v.149, p.3-45 (In Russian).
4. Namsrai Kh. Nonlocal Quantum Field Theory and Stochastic Quantum Mechanics, D.Reidel Publ. Comp., Dordrecht, Holland, 1986.
5. Damgaard R., and Huffel H. Stochastic Quantization, World Scientific Pub. Co Pte. Ltd., Singapore, 1987.
6. Furlan G., Jengo R*, Pati J., and Sciama D. (eds.). Superstrings; Unified Theories and Cosmology, World Scientific Pub. Co Pte, Ltd. Singapore, 1987.
7. Green M. \(\mathrm{B}_{*}\), Schwarz J. H., and Witten E. Superstring Theory, Cambridge Univ. Press. Cambridge, 1987.
8. Chaichian M., and Nelipa N.F. Introduction to Gauge Field Theories, Springer-Verlag; Berlin, Heidelberg and New York, 1984.
9. Lai C. H. (ed) Gauge Theory of Weak and Electromagnetic Interactions (Selected Papers). World S Sientific Pub.Co Pte. Itd., Singapore, 1983.
10. Wali K. (ed.). Proceedings on the Eight Workshop on Grand Unification, World Scientific Pub. Co Pte. Ltd., Singapore, 1987.
11. Parisi G., and Wu Y.S. Sci.Sinica, 1981, 24, p. 483.
12. Efimov G. \(\mathrm{V}_{\text {. Problems of Nonlocal Quantum Field Theory, Energo- }}\) 1zdat, Moscow, 1985.
13. Bern 2. et al. Nucl. Phys., 1987a, B 284, p.1.
14. Bern 2. et al. Nucl. Phys., 1987b, B 284, p. 35.
15. Efimov G. V. Nonlocal Interactions of Quantized Fields, Nauka, Moscow.
16. Papp E. International Journ. of Theor. Physics, 1975, 15, p.735.
17. Doering C. R. Physical Review, 1985, D IO, p. 2445.
18. Bern 2. et al. Nucl. Phys., 1987c, B 284, p. 92
19. Zwanziger D. Nucl. Phys., B 192, p. 259, 1981.
20. Floratos E.G. et al. Nucl. Phys., 1984, B 241, p. 221.
21. Alfaro J., and Sakita B. Phys . Lett., 1983, 121 B, p. 339.
22. Greensite J., and Ealpern M. B. Nucl. PhYs., 1983, B 211, p.343.
23. Greensite J., and Halpern M. B. Mucl. Phys., 1984, B 242, p.167.
24. Niemi A.J., and Wijewardhana L. C. R. Annals of Phys., 1982, 140, p. 247 (N.Y.).
25. Bre1t J.D., Gupta C., and Zaks A. Nucl. Phys., 1984, B233, p. 61.
26. Namik1 M., and Yamanaka Y. Hadronio Journal, 1984, 7, p.594.
27. Bern Z. Nucl. Phys., 1985, B 251, p.633.
29. Claudson M., and Halpern M. B. Phys. Rev., 1985, D 31, p. 3310.
29. Bern Z., and Chan H.S. Nual. Phys., 1986, B 266, p.509.
30. Hamber H. W., and Heller U.M., Phys.Rev., 1984, D29, p.928.
31. Batroun1 G.G. et al. Phya.Rey., D32, p.2736, 1985.

Предложен метод введения нелокальности стохастическуо форнулмровку полевой теории в рамках уравнений Паншевена и 禀вингер-Дайсона. В зтих уравн ниях белый шум играет двойнуо роль: он контролирует квантовое поведение физических систем и одновременно вносит непокальность в теорию. Полученная таким образом схема полностью воспронзводит результаты нелокальной кеантованной теории поля. При этон лагранжиан взаинодействия н поля осташтся локальными. Представлены стохастические регуляризационные процедуры для скалярных и калибровочных полей, а также подробно изучена скалярная злектродин мика. В нашей схеме условия унитарности и градиентной инвариантностм виполнартея.

Работа выполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного кнститута ядерных исследовании. Дубиа 1888

\section*{Dineykhan M., Namsral Kh}

Nonlocallty and Stochastlc Quantlzation of Fleld Theory
Concept of nonlocallty is Introduced Into physics by means of stochastic context using Langevin and Schwinger-Dyson techniques. This allows us to reformulate finlte theory of quantum fleld, free from ultraviolet divergences, based on the stochastlc quantization method with nonlocal regulators. As a nonlocal regulator we choose any entlre analytic function in the momentum space, which guarantees that our regularlzation method for any theory of interest does not violate basic physical princlples such as unitarity ry of interest does ange Invarlance of the theory. Here we present regularlzacausality, and gauge Invarlance of the theory. Here we present regularlzation scheme for scalar, gauge and scalar electrodynamics theories. thematical prescrlption is similar to continum regularization method of quantum fleld
and his team.

The Investlgation has been performed at the Laboratory of Theoretlcal Physics, JINR.~~~


[^0]:    *Institute of Physics and Technology, Academy of Sciences of Mongolian People's Republic, Ulan-Bator, Mongolia

