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1. Intreduction

The recent development of auperstring theory has led to
reconsidering basic ideas on the quantization of relativistic
particle theories and even to reformulating classical ones. In the
modern approach (see Refs.[1,2]) one atarts from a gauge-like

formulation of the relativistic particle theorya’4

in which
constraints, such as p2 + mz= 0, p =0, etc., play a role of
(Buper)gauge symmetry generators.' In the hamiltonian formalism,
which 1is eguivalent to the first-order lagrangian one, the
constraints are introduced by use of Lagrange multipliers, and the
Hamiltonian for one particle is a 1linear combination of the

constraints.
For example, the Lagrangian describing relativistic epinless
particles may be written asl
Ly = P, - 10y ® + ), (n

where t 18 an evolution parameter, 0<t<l, the dot denotes the

parameter derivative, dﬁ q“ = q“(t) = (qo,q‘,...,qm_n) are the

D-dimensional Minkowski space coordinates of the particle, pu are

the conjugate momenta, and 1(t) is the Lagrange multiplier. Thie

Lagrangian is equivalent to the reparametrization invariant one,3
L = 2@@%/1 - 1,

r2. 12

from which one obtains the usual Lagrangian L = -m(-q°) All

three Lagrangians give the equivalent equations of motion.

In our notation Greek/Latin charactere are used for Fermi/Bose
variables; qu(t) are the coordinates; p“(t), momenta, (“(t) are
anticommuting space-time vectors; u=20,1,...,(D~1), and we

usually suppress these space-time indices.
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However, the first one 1is the simplest to quantize, because
powerful methods for gquantization of systems with constraints in
extended phase spaces are available (see,e.g.,Refe.[1,2,4,51).
Instead of reparametrization symmetry this Lagrangian has &,
gauge-like symmetry
sp = 0, 6a = f(t)p, 61 = (1), (2)
where the transformation of the canonical variables is generated
by the constraint g = (p° + mY),
sp = [f(t)g,pPl,, = 0, 6q = [f(t)&g.al,, = f(t)p. (3)
For fixed t, thies defines the one-dimensional (translation)
subgroup, T, of the linear canonical group which preserves
Lorentz invariance and leaves g unchanged. The transformation of
1(t) is of different nature, it compensates the terms in OSL
resulting from the t-depedence of f. Thus, it is natural to view
1(t) as an abelian gauge potential over the base 0<t<1. As the
base is one-dimensional there is no corresponding gauge field but
there exists a natural gauge invariant. As 6LCI = ;[f(pz = mz)]'
the action corresponding to the Lagrangian (1) 1is invariant if

£(0)= £(1)= 0. It follows that the integral
4

1, = [ dt 1(%) (4)
o

is invariant (1  is obviously the proper-time interval betwen the
final and initial positions of the particle, q(1) and q(0)). Thus
the abelian gauge group T‘ ig subdivided into gauge orbits
enumerated by the parameter 1.

To completely specify the dynamics one has to add a proper
gauge-fixing condition. For example one may identify the parameter

t with the time coordinate of the particle, q° = t, or choose the

I

: : : 5 .
Fradkin-Vilkovisky gauge condition, 1 = 0. In the first gauge all
variables are physical but the Lorentz invariance is lost; in the
second one, ghost wvariables should be added allowing

for

compensating unphysical variables while preserving manifest

Lorentz invariance.l_s

For massless particles one can easily rewrite the Lagrangian

(1) in a manifestly gauge form,6
Ly = iw:cwl - M, (5)

L tp,»a,1s € =io, A=1to, o =ilo -~ o),
where T means transposition, and o, are the Pauli matrices. In
Eq.(S) we have dropped the term i(pq)., which does not influence
the equations of motion. It determines only the boundary coditions
f(0)= 0, f(1)= 0, and including them in the definition of the
gauge group we may leave it aside. Now the gauge transformation
(3) can be written in the standard form

S¥ = F¥, &A =F + [F,A1 = F + FA - AF, (6)
where the matrix F is obtained from A by simply substituting f(t)
for 1(t). Due to the abelian nature of the gauge group T‘ the term
[F,A]l, in this simple model, is zero and is written for later use.

Having a gauge theory, it is natural to ask what is its ungauged
version. In this case the answer 1is very simple: take the
Lagrangian (we will call it "rudimentary")

L, = 29'c(o, - H ¥ = 2(pa - ap) - 0%, (7)
where H. = o, and find its rigid linear symmetries. These
obviously are given by

&% = F¥; CF + F'C = 0, [F,H1 =0, (8)

and so the matrix F coincides with the matrix of the gauge

transformation considered above. Now the general procedure of




gauging can be applied. One substitutes 1(t) for f(t) in F, call
this new matrix A, and substitutes (0' - A) for 0‘ in Eq.(7).
Absorbing the constant matrix H. into A by redefining A,
(A + Hl)+ A, one obtains the gauge Lagranian (935).

In constructing gauge theories by using the gauging procedure
we usually have some freedom - one may add to the gauged
Lagrangian some gauge invariant terms. In this model the term
—gl(t)m2 can be added to the Lagrangian (5) as it gives the gauge

1

X X 2
invariant term 2

lom in the action. A more elegant way of
introducing the mass term consists in adding one more euclidean
dimension to the phase space. Constructing the Lagrangian (5) in
(D+1) dimensions and performing the dimensional reduction simply
by setting q"h‘)= O one observes that bm’” = 0. Denoting
ED’” = m we obtain the massive theory (1).

The final question 1is: what is the meaning of the ungauged
Lagrangian? With the Minkowski metric it has no reasonable
physical interpretation, at least at the gquantum level. However,

if we reduce the phase space to the euclidean one by setting

qo = 0, po = 0 the resulting Lagrangian will make sense. It is the
Lagrangian of the m = 1 nonrelatitivistic particle with the
coordinates qn and momenta pn, N = l,..aeD-1.

The crucial observation of Ref.&5 is that the above reasoning

relating the gauge Lagrangian to the nonrelativistic one,

L = p & - g
o~ an zp Dn’

can be reversed to construct the relativistic particle Lagrangian
corresponding to a given nonrelativistic Lagrangian. One starts
with the galilean invariant Lagrangian LNI' extends the

nonrelativistic phase-space coordinates q",ph to the relativistic

L

7] s ;
ones, q ,pu, and writes the rudimentary Lagrangian L_ which is the
R

Oilncare invarian 1 n Thel near c nic
P t extensio of L . n all 1i a anonical
(

Lorentz invaria t) symmetries of L can easily be found by using

Eq.(8), and the gauge potential A can be constructed. The

usefulness of this observation consists in the possibility of

performing all these steps for more complicated theories. As it
has been demonstrated in Refs.[7-9], this way one can obtain
theories of spinning relativistic particless’a, bosonic and

fermionic strings, as well ;s some other relativistic theories,
starting from corresponding nonrelativistic theurieslo and then
applying the described procedure.

2. Gauging Canonical Transformations

Here we present a general formulation of our approach to
gauging linear canonical symmetries. We start from some reasonable
nonrelativistic Lagrangian for N particles with cartesian
coordinates q?(t) moving in the (D-1)-dimensional euclidean space
(n=1,..,(D-1);3 i =1,...,N)).

To describe the spin degrees of freedom of the particles we
follow the ideas of Ref.10 and introduce some Grassmann variables,
(a(t). We only treat here the Grassmann variables transforming as
vectors and scalars under rotations; the relativization of
theories with Grassmann spinors is a more complicated matter. Thus

consider a collection

o n
= & I}y r=1,...,R; s = 1,...,5,

where n is the vector index, and tﬂ are scalars. In the

one-particle case the numbers R and S specify the spin content of

the particle. For example, R = 1, S = 0 corresponds to a massless

] : : 1 . :
particle with spin 3 to describe a massive particle one scalar
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variable has to be added (R =1, S = 1). In what follows we only

n : s
1 . Note that in the N-particle
use the vector Grassmann variables {r o
case the spin variables are not attached to individual particles,
this is similar to the description of spin on strings.
Now we write a nonrelativistic Lagrangian
= pha, - ieme - ) (9)
LNI - piqi.n Izrzrn w!(p'q'z
which is galilean invariant and bilinear in dynamical variables p,
2

q 4 Extending the variables to the D-dimensional Minkowski
N .
space we immediatly obtain the Poincare invariant rudimentary
Lagrangian ) .
- pHq. - zgHe - s b (10)
Ly = P9, ztrtr“ R (Prasl
Note that the meaning of the parameter t is essentially different
for these two Lagrangians. In the nonrelativistic theory, one can
interpret t as the galilean time variable while in Eq.(10) each
. ° . : <
particle has its own "time", qi, and t is some arbitrarily chosen
evolution parameter. Recall that we always take O<t<l so that
are the initial and
(pi(OJ.qt(O),{r(O)) and (pi(lj,qi(l),{r(li)
final positions of the system in the superspace (p“qi,{).
. . : ; . - ite
Having a bilinear Hamiltonian ﬂ; it is not difficult to rewri

L in the matrix form (7). One only has to extend the definitions

of ¥ and C in Eq.(95),

—iozﬂ o
¢ = [p,a,¢1, C= NE (11)
vour 0 —il
where 0 =0__= 6 i is the wunit matrix in the r-indices.

. 11
To treat particles and strings in a background field one has
to relax the last requirement. We hope to discuss the

corresponding extension of our approach in future.

Performing straightforward calculations one can then derive the
supermatrix H- corresponding to any given Eilinear super form ﬂa.
To obtain all supersymmetries of the Lagrangian Ln we may use
Eq. (8), remembering the standard rule for transposing
supermatrices. Denoting the independent parameters of the obtained

symmetry transformation matrix F by f and pa (bosonic

and
a

fermionic, resp.), the matrix of the gauge potential, A, is
obtained by substituting lﬂ and Aa for fa and L into A. Our
formulation of the theory is completed by writing the gauge
Lagrangian in the form (5).

Any theory obtained in this way 1is Poincare invariant by
construction and can be quantized by applying one of the standard
methods. However, its physics interpretation requires studying the
structure of its gauge group, which depends on 2;. To have a
better insight into this matter we present another method of
constructing the gauge Lagrangian corresponding to L-.

All linear canonical symmetries of Ln can be obtained by using
the generating function of supercanonical transformations,

EX = [G,X]s'., G =% fng +r L3 0 (12)
where SPB means the super—Poisson brackets and ga/Pa is the
complete set of bosonic/fermionic bilinear Poincare invariant

products of the dynamical variables p,q,f,

9, = PP, P (a.- a;s (tr‘{rzl,---. P, =P L (a- qjl,---
The (super)canonical symmetries of Ln’ which correspond to Eq.(8),

are represented here in the form

ép = ~8G/dq, &q = 8G/8p, SF = id“G/ar, s% = [G,%,1__ =0, (13)

where L means the left derivative with respect to the grassmanian

variable ¥. The last condition in Eq.(13) defines a subgroup of



the linear (super)canonical group depending on our choice of ﬂa.
The gauging procedure starts with considering time-dependent

parameters, f(t), p(g), of this symmetry subgroup. The variation

of L. under the localized transformation (12) is easy to calculate

(remember that in our notation alis the total t-derivative)
sL, = ol[ paG/dp + ﬁ{a“s/a{ -G ] + t8G/af + pdG/dp - (14)

The first term determines the boundary conditions for f(t),p(t)
and other terms can be cancelled if we add to L- the linear
combination of the generators,

- L1 (8)g (pya8) - EA(t)r, (pya,8) = - J¥CA¥, (15)
a

a

where ¥ and C are defined in Eqg.(11). The transformation law for
the gauge potentials 1, A can be found without using the matrix

representation of A; one simply requires that the variation of La'

which is Ln plus (15), is zero. The transformations obtained in
this way are identical to (6), and both constructions of the gauge
theory are completely equivalent. As the theory is Poincare

invariant the evolution of the centre-of-mass coordinates
@=2%a, P=gop (16)
is defined by Eq.(l), the gauge group being T’. The relative
motions are described by completely decoupled equations depending
on N-1 relative coordinates, and Grassmann variables.
The simplest relativistic gauge theories correspond to
nonrelativistic interactions which are velocity- and

spin-independent. Then there exist at least N mutually commuting

bosonic generators (this is shown in the next section) and R
mutually commuting fermionic generators, e.g. p = Pf (they also
r »
commute with bosonic ones; "commuting" is defined through SPB in
8

classical theory and through graded commutators in quantum

theory). Adding N+R mutually commuting gauge-fixing conditions one
can in principle eliminate unphysical quantities t, y:, {o and
r

express the time components of momenta, p?, in terms of p?. All
models of free particles and strings treated in Refs.[6-7] are of
this sort, and here we hold to this simplifying restriction.

To understand it better consider the gauge formulation for N
free spinless relativistic particles. Then we have exactly N
constraints, p?, generating the gauge group UT and corresponding
to independent reparametrizations of the individual world-line
trajectories. For N coupled particles, N mutually commuting
generators play the role of these reparametrizations but they are
imbedded in the full gauge group as its Cartan subgroup.

3. Gauge Theory of N Harmonically Coupled Particles

Now we apply our general approach to constructing relativistic
gauge models for N particles coupled by bharmonic forces. To
simplify the presentation we mainly treat here only spinless

particles. Then the natural rudimentary Lagrangian is

L =-pa - 2pp - 2v.(a-q)% v =v. , v. =o0. (17)
2 i 2 T J

R s i} b il
The most general Lorentz invariant linear canonical transformation

is defined by the generating function

1 1 1T
s _— ot _t ¥ (18)
G = Z3,PP; P95t S0 T Y e ™

where a =a_., ¢ . =c¢ , a,b,c are the NxN matrices of the
ij hi8 iy it

corresponding parameters. The rudimentary Lagrangian is invariant

under the canonical transformations generated by G,

Sp, = -86/dq, Sa = 86/dp; or, S¥ = c'e"G/ow, (19)
N

if 6&; = 0. This condition is equivalent to the linear equations



for the parameter matrices

[V,al = 0, [VY,b] =0, b'=-b, c =-Va, (20)
where V‘l‘i is equal to v_Lj for i=j and —Vﬁ is the sum of i-th row
of v. The equations (20) leave in G not less than N mutually
commuting generators as can be readily seen.

The physics content of the gauge Lagrangian, which can now be
constructed by applying our general procedure, crucially depends
on the coupling constants VU' If VU S for all 1i,j, the
nonrelativistic version of Ll describes the system of N identical
particles with pair harmonic couplings. The gauge group in that
case is T‘ x U‘ x SUN_‘. This can be shown with the aid of the
general formulae (18),(20). However, as far as we are going to
gauge all linear canonical symmetries of the rudimentary
Lagrangian, we are free to use any canonical coordinates related
to the original ones by any linear canonical transformation. It is
obviously convenient to use the centre-of-mass coordinates defined
in the nonrelativistic N-particle problem. Thus we introduce the
centre—nf—mass. coordinates G,y_[ and momenta P,zi, i=1,...,N, so
as to diagonalize Ll:

“o = PQ - ipz M zi;’i - izi.zi, - iy_\y_‘. (21)
where we set Vg ¥ 1, for brevity.

Applying now our general recipe for gauging one can obtain,

after straightforward but tedious calculation, that

L PQ + P | 2 2. 1 o p2 _ 2, _
- = PQ zy, zlo(F’ + M7) 21‘(z_Lz_L + y'_.y,l P me)
1.8 1,a
= 29 + P =
p ,”_(z_lz‘i yiyj) zli.j(zi.yj zjy,t], (22)
= 8 N—‘l
1° =1 = T [
i i’ ‘}.:‘1_“ . ln ljv'.'

Here the constraint coupled to lo generates T‘, the one coupled to

1’ generates U‘, and the others give the algebra of SUN . The
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constraints coupled to 1:,‘ generate its Cartan subalgebraj;
together with two abelian costraints related to T‘ and U‘ they
form N mutually commuting generators of the full gauge group. In
writing (22) we have used the freedom to add parameters l"lz and mz
to the abelian generators; likewise, the term Pz in the
U‘—generator, commuting with all constraints can be removed or
multiplied by an arbitrary number. If the pair couplings were not
identical, i.e. v,L‘i depended on i,j, the SUN_! symmetry would be
broken.? Note that the gauge group for two particles is T‘ x U‘.
To obtain the corresponding Lagrangian from (22) one simply has to
set z = vy; = 0, i>2, and keep the first two constraints.
Spinning particles can be treated similarly. Here we only write
the gauge Lagrangian for two particles with spin one half
La - PQ + pél B —:. tvér - ilopz - i]’(pz * qz) -
= A‘(F{‘) - )\z(P{z) = ilzt‘{z: (23)

where the notation for the relative coordinates has been changed,

he)
1]
N
o

i

= y‘. This is written for massless particles and zero
total mass. To include mass dependence one should use the trick of
dimensional reduction explained in Introduction. One may notice
that the relative motion is completely decoupled from spin degrees
of freedom. This fact is a consequence of our simplifying
assumptions on the rudimentary Hamiltonian. Anyway, the model (23)
is too simple to be applied to interesting physics which requires

inclusion of velocity-dependent (spin-orbit) forces as well as

For the choice v, _ =6 . + & &+ 8 &6 , which defines
ij fi-j] .t ANt i1 N

a closed "discrete string", the gauge group is, for even N,

8
T xU x (U x SU)", where n = (N - 2).
1 1 1 2 2

1



spin-dependent (spin-spin) forces. Such more general models can
also be treated by our method.

A most natural approach to quantizing the gauge theories of
coupled particles suggested above is the covariant BRST method.
Nevertheless, for physics applications, noncovariant gauges might
prove preferable. For two spinless particles (EQ.(23) with ¥ = 0)
one may choose the following gauge—-fixing conditions

G° = t, g% cos(t) - p® sin(t) = o.

By solving the equations of motion in this gauge one can find

that it is t-independent if
I, = PTEMTVE =

Then the system is described in terms of the space components of
the coordinates and momenta and the evolution parameter is
identified with the centre-of-mass time. The quantization may
proceed in the standard way, and the spectrum of the internal
motions is simply that of the (D-1)-dimensional oscillator.
4. Discussion

Finally we will briefly summarize the motivation and results of
this letter as well as saome problems for future investigations
besides those mentioned above. The principal point is our proposal
to derive relativistic particle Lagrangian from nonrelativistic
ones by first extending the usual phase space to the relativistic
phase space and then gauging the rigid canonical symmetries of the
obtained (formally relativistic) rudimentary Lagrangian.

This approach has been proposed in Ref.6 using the example of
one particle with some hints that it can be of more general

nature. In Ref.7 it has been demonstrated to produce, in a direct

and clear manner, known reparametrization invariant relativistic

12

theories of free particles as well as bosonic and fermionic
strings. These results were presented in some detail and reviewed
in Ref.9?. In addition, the gauge Lagrangian for two and three
particle systems coupled by linear forces has been proposed.8 Many
previous attempts to construct a consistent and tractable model
for coupled relativistic particles failed, and there 1is a
wide-spread belief that it is even impossible to do ("no-go
theorems" ). This can partly be explained by complexity of
candidate reparametrisation invariant Lagrangians which we avoid
by using gauged canonical symmetries. But the main source of
difficulties certainly is the interaction potential. Most of the
previous attempts were addressed to arbitrary potentials.

Note that it is not advisable to eliminate the auxiliary
variables p,l1 from our gauge Lagrangian. [f one tried to do that
one would obtain a highly nonlinear Lagrangian L(q,d) which would
be extremely difficult to work with, even for three-particle case.

Thus the conceptual and practical advantages of our approach
are clear enough to motivate an attempt to apply it to N particles
which was first presented in our preprints, Refs.B8,9. In this
letter we bhave tried to give a concise presentation of the
approach and to clarify some conceptual points. We have
constructed the classical Lagrangians for spinless particles and
demonstrated how the spin variables could be included. The
available choice of gauge-fixing conditions allows one in
principle to quantize all constructed models. Up to now the author
has completed the first quantization for two and three particles
but presenting the results would require rather lenghty and

technical considerations. A very interesting unsolved problem is

13



the extensomn of our theory to nontrivial background fields, which
would allow to treat interactions of the bound states. However,
even first-quantized theory in the trivial background might have
interesting applications to bound states of light quarks.
Developing such ideas require a careful investigation of gauge
fixing and quantization of our model which is now in progress.
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Oununnon A.T. 1£2-88-663
Kanu6ponounan Mouens, onucuinaiomwasa N pelaTHUHCTCKUX
YACTULL, CBSI3AIILIX TUHCHHLIMM CHIIAMH

[TocTtpoena penaTHDUCTCKaa Mojenb N uacTui, CBANNLIX JIH-
HeMIILIMM CHIIaMHM, oclioBalHan Ha JIOKWIH3ALHHK JIMHEHHLIX KaHOlIHU-
YECKUX CUMMETpPHUIt MPOCTOTO (PYAHMEHTApIIOro) HepessiITHBUCTCKOro
JarpaHuaHa, (popMalibHO pacllUpelllioro Ha peATUBHUCTCKoe (a3o-
poe mnpoctpancTdo. Hobuil (xwnuOpoBoulblit) sarpalnpkual HlBapu-
aHTE@H OTHOCHMTEJILHO 11peo6pa3oBaHuii [1yalikape, raMUILTOIHAH HBIIA-
eTcA JIMHeiHOW KoMOHWHauMel CcBsi3ed NepBOro poja, 3aMKIYThIX
oTHocuTenbHo ckoGok ITyaccoHa W MOpoOXAAOLINX JIOKAJIH30BaHIHbIe
KaHOHWYeCKHe CcUMMeTpuH. JlarpaHkeBbl MHOMHTENIM 3THX CBA3EH

_ HHTepNpeTHpyITCA KaK ''KatnbpoBouHble mnoTeHumane!”. KpaTko

o6cyxnaerca GUKcalra KaluOpoBKHY N KBaHTOBaHHe,
Pabota BbimonHeHa B JlabopaTopuH TeopeTuyeckoil (HUIUMKH
Ousikn.

IMpenpuuT O6BenHHEHHOro HHCTUTYTA AXEPHLIX HcciegoBanwil. JyGHa 1988
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tained by applying the gauging procedure to _tpe_ linear c_anomcal
symmetries of a simple (rudimentary) nonrelativistic N-particle Lag-
rangian extended to relativistic phase space. The x.lew.(gal_lged) Lag-
rangian is formally Poincaré invariant, the Hamiltonian isa linear com-
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