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Recently, the geometrical approach to the ten-dimensional
supersymmetric Einstein-Yang-Mills theories draw much attention/1_5/.
While studying the supersymmetric string theories this approach is
so powerful, that it can be considered as a new method for obtaining
the effective action/2 « The two complete sets of constraints/1_3/
are considered in the usual version of D=10 N=1 supergravity.

By solving Bianchi identities after having imposed these constraints
we are led to the on-shell formulation. In the papers/1’6/ all the
equations of mation and supersymmetry transformations were derived
in zero order of the strinﬁ-tension parameter,

In a series of papers 4-6/ a superspace formalism was estab-
lished for the dual version of the D = 10 N = 1 supergravity-
-Yang-Mills theory. Now we know that for the massless fields in
type I or heterotic superstring, corrections up to o(ju)( o' is
the slope parameter) to the D = 10 N = 1 superspace supergravity-
=Yang-Mills theory can bév;mbedded in the A-tensor and F - tensor

- supercurrents, These supercurrents appear in the constraints for
torsions and Yang-Mills field strength tensors, respectively and,
after solving the Bianchi identities, show up in the field equations
and supersymmetry transformations. However, the complete solution to
these Bianchi identities are still lacking, In this short paper
we'll make up this gap.

In the papers/4/, for the set of Bianchi identities (see/G/
for notation)
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the on-shell constraints were presented
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Antisymmetric tensor field N,,. is essentially dual to the
seven-form N@,‘
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and our normalization convention is such that
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In deriving these cor}s;t/:raints Bianchi identities up to the engineer-~
ing dimension D = 1 are utilized and only one D = 3/2 identity

is used in computing curvature (12) (this is equation (1) with
indices (o, b, c34d)).

In the rest of this work we'll deal with the D = 3/2 and
D = 2 Bianchi identities for (1) and (4) which lead to the equations
of motion. The pure Yang-Mills sector, i.e. equations (3), was trea-
ted in the previous paper/7/, where the role of the f -tensor super-
current in (10) was clarified. On the other hand, (2) is a conse-
quence of (1), end hence, does not lead to new information.

An interesting point is that the only way a string correction
alters the gravitational sector is the medification of the A-tensor
supercurrent in (14). In (7) and (11) A - tensor appears after
solving the D = 1 Bianchi identities, We start with D = 3/2 Bianchi
identities
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Using constraints (5), (7), (8), (9), (12) and (13) in (17)
we derive the equation
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This equation should be used in deriving the equations of motions
from the Bianchi identity (18).
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Multiplying equation (18) by &, G ) and (6 )As@i) .
three different projections can be extracted
By pluging in our set of constrainty and producing a rather
involving algebra, finally we derive the subgravitino equation of
motion
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the Rarita-Schwinger equation
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and slightly different projection of this equation
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But still we are not finished with the D = 3/2 Bianchi identities.

Acting by on the left-hand side of the subgravitino
equation (20) and using the commutation relation for the covariant
derivatives, it is easy to derive
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Now one can see that by using equation (14), we are led to the
dilation equation of motion
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Now we are ready to turn to the D = 2 Bianchi identities. The
first one
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and the second one
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The Riccl tensor can be calculated by multiplying (27) by
(G;)“, 6‘5)\5 . After very tedious calculations we derive
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The last step we'll take here is the derivation of the Einstein
equations., With the Ricci tensor in hend this is the straightfor-
ward procedure and finally we come to
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This equation completes the set of equations of motion. The
only thing we have to do in order to derive the explicit form for
the new D = 10 N = 1 supergravity-Yang-Mills theory is to substi-
tute for the temnsor A, which implies the superstring corrections,
and perform involving but straighforward calculations. The explicit
form for this tensor supercurrent is given in 8 +« Due to the progress
achieved in censtructing the four-dimensional superstring theories/g/,
the compactification problem of this theory to four dimension deser-
ves utmost interest. We'll proceed along these lines in our
future investigations.

In closing we wish to acknowledge S.J.Gates,Jr. for valuable
discussions ana suggestions. The author is grateful to E.Ivanov,
V.Kedyshevsky and V.,0gievetsky for taking interest in the work,
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