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I. Introduction

It is generally accepted that there are two main difficulties in
constructing the theory of strong interactions. The first one is
connected with the large quark-gluon coupling constant for a small
momentum transfer. The second one concerns the quantization of non-
Abelian infrared-diverging theories and the definition of the struc-~
ture of their physioal vacuum. In /1,2 there was perceived one more
problem in establishing a theory of hadrons. It consists in the non-
understanding of the principles for constructing an S-matrix in which
the asymptotic states are bound states.

In describing the atomio speotra in QED one explicitly supposes
an advantage of the Coulomb gauge and the time axis of quantization
chosen in the atom rest frame. A change of the gauﬁe or of the quanti-
zation axis affects the theoretical results /3,41 which turn out to
be invariant only with respect to simultaneous gauge and relativistic
transformations /1,5 .

In 516 there was proposed a minimal quantization method for gauge
theories based on an explicit solution of the constraints. It gives a
motivation for the technlque of describing bound states in QED and
leads fo an unambiguous construction of the relativistic S-matrix for
bound states /1 « The principles for the construction of such an S~
matrix are the explicit solution of the Gauss equation for the gauge
field time component A,= (A+m) as well as the choice of the quanti-
zatlon axis Ny parallel to the differentiation operator for the
total coordinate of the bound state. An extension of these quantiza-
tion principles to QCD with increasing potential was suggested in
/2/. Such a potential occurs naturally in the lowest perturbation
order if one takes the non-normalizable solution of the Gauss
equation.

The relativistic generalization of the potential approach con-
sists in changing the "direction® of the Coulomb field so that it
moves together with the particles whose bound states it forms. This
is achleved by transforming the nonrelativistic Bethe-Salpeter kernel
into a relativistic one according to

K(x)=¥-X VIRV E(x,) —> KTx4x" = ¥2- 8 Vx4 8 (1)




with

P = e xR plxn), xhe e x! st et
It is shown in r2/ that the low-energy limit of bound state interac-—
tion corresponds to a localization of the bound state wave functions
with respect to the relative coordinate, and that such a localiza-
tion is equivalent (for the properties of the solutions of the
Bethe~Salpeter equation) to a localization of the increasing poten-
tial. Therefore, in the low—energy limit the latter is replaced by a
4—quark Nambu - Jona — Lasinio potential / with definite dependence
on the vector 7“‘. H

Kl =70 %0y - w
rt

4 g5t
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where f 23 is a parameter which is fixed by the masses of the low-
lying resonances,

This paper is devoted to the investigation of the Nambu — Jona —
Lasinio model of the type (I). Thereby the diff7rence to other modern
treatments of the Nambu -~ Jona - Lasinio model lies not only
in the matrix structure (1) but also in an exact calculation of the
energy dependence in order to investigate the reasons for the appea-
rance of tachions in the QCD low—energv exnansinn - Furthermare.
the P-4, V-T, and S-V mixings have been exactly teken into account.
They occur automatically by solving the Bethe - Salpeter equation
with the help of projection operators on the particle and antiparticle
states., '

The paper 1s organized as follows., In Sect.2 we define our model

and solve the corresponding Bethe - Salpeter équation. The mass
spectrum for the low-lying mesons is discussed in Sect.3., This is

followed in Sect.4 by the determination of the Pion decay constant.
Sect.5 contains the conclusion. Some of the details concerning the
rewriting of the Bethe — Salpeter equation by means of projection
operators and the normalization of the Bethe ~ Salpeter wave
function are shifted to the Appendix.

2. Bethe — Salpeter equation and its solution
/2/

Let us consider the action

S ssﬁ'ee+sint @

with

Sree” !2.£ te [d*x [ 'h ¢33(X)ﬂ' -1 {dYy G, (x-y) ¢'i (y) G,,,i(y-x)]d)j;(x) (3)

and 3 "
St = T 2 0"t (G, D" )

Here the following notations have been introduced. The meson field
is given by .

Ne-1 « a

¢.=Y Zi¢
i 2 ’
a=1

where A" are the Gell-Mann matrices satisfying
b
tr(AﬂAh) - Z&ﬂ

and N; denotes the number of flavours. Ne 1s the colour number.
Gm, means the Green funotion for a quark with constituent mass mi=
L -

. Y
Ua-m;)Gm = 6 (X‘Y).
Furthermore the short-hand notation

T (6,)" = tr [d'%d%...d%, G, (x, x) By (x) >

oo 4. - . . .
T e Wi ) . u”':,,(xn-t'xn)(pi‘h(xn)
has been used.
The Schwinger -~ Dyson equation corresponding to the action (2)-
(4) reads

m. =m,: + =
t % (Zl‘)3 z+m

with W,: as the bare quark mass and L = the ultraviolet cut-off

parameter. Performing the integral leads to

(- ?hi—l,'). )

=
r 'h'-"ll

This relation linking the parameters M and L with the masses my
and My; will be of importance in our further considerations.

We will calculate the bound state masses with the help of the
Bethe -~ Salpeter equation in the ladder a.pprox:l.ma.tion/12 . For
further purposeswe need the plane wave expansion of the bcund state
field

.
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where
=2

@, ={M; +

is the bound state energy and
—p
P=(0,,P)

the total momentum. On the other hand the Fourler transform of ¢(x)
is given by the relation

JUES]

Then the Bethe — Salpeter equation for the wave function '"  has
the form (cf. appendix)

TR = (LY G ke rtRG,, (- Ty

H

“4Wﬂe : ©

with the quark propagator

G (p)=

P it mnc *

~m;
: /11/
Using standard methods this equation for the l6-component

spinor re decouples into equations for lower—component splnors

(for more details look to appendix). It can be solved by means of
the decomposition

FH=F7+-&-FH
My

iS5 5 R (e B BOVE e, PW;’:';) .
H

£=1,2.

Now to study the meson mass spectrum it 1s enough to consider
—
the bound states at rest, P = 0, In this case,one has

H_ H
r ‘ﬁ*’zrz ) (8)
Pi=rsLs« Tl e x¥iy « ¥ALY ) #e12, =123

S H ’ 247,

5 P Y_¢ A .
where rg‘ﬂ, v =r5) tl =¥; ' ri -f‘-b"s) and the Bethe~ Salpeter
equation (7) decouples 1into four sets of two algebralc equations
for the quantities L: and L} ¢

il = CILy +BL; (o)
pily= DI +BILY, I=S,PV,A
(LIlE Lt.,, f” I=V,A) i=4|2»3).

The expressions for the coefficients 51 ’ C[ , and D! are gilven
in Table 1. There are employed the following short-hand notations:

Table 1. Coefficlents BY , CI, and D' in the system of equations
(9) for 1I=5,P,V,A

B! ct | DY

My A (M) | (me-m) A + B | (my-my) A (M)
My F(My) [Imsm ) F(My)+ p (myemy) F (M)

My F (M) [(m+ m) F(My) ¢ 2373 |(mgem) F(M,)+P/3
MyAMY [ (m-m) AMY+ 2573 | (my-m) A(M) +f/3

> << O NI

A(MH) z m1°‘1(MH) - mZ“Z(M“) )
F(Mu) = m1°(4(Mn)+ mz“z(MH)y

where &, , o «and fS denote the integrals

4 1 1
%y (My) = 5 frzxﬁ E, TEvE) - Mivie

z)

¢ Ky 1s obtained from o« by interchanging the indices 1 and 2),

1
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k(AL K
PMy = j‘(2\ (E )(E,*E,)"-Mﬁﬁs

EinK‘Hn? ,i=1,2.

‘3 can be expressed by means of o<, and &, @
2
B(My)= b (2- Tt - fot) + [(ME-3mi-m2) ok, (M)
(Mg -3mi-mi)w, (M]/2 .

The system (9) of homogeneous algebraic equations obeys an
unamblguous solution 1f

(CF-p)(DF-f) - (3H)?*=0, (10)

with

: I
In general, B? ’ CI, and D are complex quantities. To determine
the mass spectrum it 1s, nevertheless, sufficlent to concentrate
instead of (I0) upon the equation for the ansolute value:

| CT-2IIDE - 121 - IRFIZ=0 . .
) (11/

3. Mass spectrum for low-lylng mesons

In this paper we want to restrict ourselves to the calculation
of the masses for the low-lylng mesons, l.e. we conslder the case of
equal quark masses

m,= =m, =M
with
mz/ Lz < 1 .

Then the integral o =K,=2 can be easily calculated ylelding

o s (2 - 2" arctgz ™) 2.0, Qe
M 2L 4‘ ,4/2(,&1 4+|'Zl”z 2 -)] 0
o ( H)—“—-i[in 112172 RLjf, 2<U,

(12v)

where Z=‘f'mz/M:"1.
With the help of (12) and (5) one obtalns from (11) the masses for
the X,6, ¢, and @, mesons.

In the case of the X ~ meson.we suppose M:‘ 4m? and according
to (128_.) there occur no complexities. The corresponding mass rela-
tion reads

Mp=2me] -3mt il e2n?]/(Mn2h o), @D

It 1s to be seen that the pion appears as Goldstone particle

( My = 0 for Mmy=20 ), and thus our theory includes spontaneous

breakdown of chiral symmetry. Taking My = 140 MeV and m = 315 MeV

as input parameters relation (13) is used to obtaln values for the

cut-off parameter L in dependence on the bare quark mass m,¥.
The result i1s given in Table 2,

Table 2, Dependence of the cut—off parameter L on the bare
quark mass m, for Mg =140 MeV and m=15 Mev
m, (MeV) 2 | 3 4 ] 5 |6
L Mew 1600 | 1200 1000 l 850 | 725

l | !

For the remaining masses we suppose the condition bm? < M;
to be fulfilled. Like it follows from (12b), o contains an imagi-
nary part. So the equation for the ¢ - meson mass 1s given by
C%(Ma) - ]| D8 (Hs) - | o

km? | X (M2 .

2
Mg =

Concerning the determination of M.. and H,,' let us begln with some
remarks. For equal constituent quark masses there is no S~V mixing
beoause of 8= D€« 0 , Therefore for I =& the system (9) reduces
to only one equation. Owing to B9 =0 1t decouples for I=a,
into two 1ndepende;1t equations . To obtain a consistent solution
for the eigenvalue Mg, we have to set 1% =0 . Then the mass rela-
tions for Mg and M¢1 are of the common form

M = bm? Rek (Mo -1+ [41 2 - (M -4m®)* (Tman (M)*1 ¥ @2)

Y In deriving (13) we have already taken into account the
relation H: << 4y o

7



with 1= ¢, a, and

. 1 for I=¢,
'FI 9/" for I-Q.1

The results of the calculations of Mg, Mg, and Mg, are pre-
sented in the Figure.Taking again Mg =140 MeV and m = 315 MeV
the best fit 1s obtained for
L=1350 MeV, It corresponds to

% m,=2.6 MeV and yields Mg=

g;’:L = 640 MeV, Mq =770 Mev) and

= Ma,= 1140 MeV, Furthermore, the
12001 Ma, equation for M¢ has no

any solution 1f Mj< é#m?2,

So Ms is restricted from below
10001 by Mg= 2m = 630 MeV what corres-
ponds to L = 1494 MeV, This fixes
the value H¢'= 1225 MeV as upper

8sooL limit for the axial-vector meson
B M
$ mass.
- Mo 4, D
600 - - - ~ - . etermination of the Pion
1200 1400 1600 decay .constant
[AY PSYA] . PN
LSy, Accoraing to (8J the bethe-

Salpeter wave function for the
Fig. Masses of the 6 , €, pseudoscalar vector with the
— d @4 mesons according to 1
??4) and (15) in dependence plon at rest, ? (M O) !
on the cut-off parameterl . 1s given by T L1 +¥, l’,L,.
The corresponding Bethe - Salpeter

equation has the form

N g2 LT = CF(MQLT + BEMOLT,
UM, 2 LT = DU (ML +BYMLY,

where
B (M) = Zmae*(My) My,
CT (Mg = 4Ny (1- o) +aet (MM
DT (M)= #m2ae? (My)

and

2 (M) = 4N x (M),

Here as difference to (9) we have included the constant factors N,
and tref=4,

The Plon decay constant is defined by the axial-~vector coupling
in the second term of the action (3) which we denote by S}'“z « The
corresponding pseudoscalar part reads

(M= T [T J(LH+ DMLY « ZBEMALEL é

This representation follows immediately from the equations(AS)-(A7)
of the appendix. So the term of interest 1s

B (M) h’n th 15 m 2e? LT*Mt L‘:.'

yielding x*
- 7
Fe=maelll |
To calculate F, the normalization of the Pion wave function
Yo LT" is required, It follows from the normalization condition
(4 7) for the lower—~component Bethe -~ Salpeter wave functions which

for the naeudnsealar seectnr is given hy

1 9 3
ia—Pm m(&)‘ =1

x
with % = [3F.

Then, with the help of (16) we obtain the normalization condition only
for the Pion wave function:

-2 (LK;)Z=1
with
2. L2 %P = g% e M (S hpetea 2. L)
f L% 9% . PaM LA TT M,’;( ks e’
so that b l-’fm‘/H:%,
‘0'
. Ly =N

and finally

Fe=mee?/ = 4mi N (My).

With o<(M;) given by (12a) and N =3 we recieve for m=315 MeV and
L =1350 MeV as numerical value

F.:= 98 MeV,
for some more values see Table 3.

9



Table 3, Dependence of the Pion decay constant on the cut—off
parameter L  for My =140 MeV, wn =315 MeV and N, =3

(MeV) I000 f IIOO § 1200 | 1300 | 1400 § 1500 1600

(MeV) | 80.0)84.1 | 88.2 | 91.5 | 94.5 | 97.2 | 99.7

5. Conclusion

Within the Bethe -~ Salpeter approach for a QCD-motivated
Nambu ~ Jona ~ Lasinio model we determined the masses for the low-
lying mesons. Thereby, in contrary to the usual procedure we did not

expand in energy. So our results (12) for o (M) are exact in the
limit m%<<[* yielding an imaginary part in the case #m* < M§ »
i.,e. for the 6,9, and a, mesons.In our treatment no tachions/1°/
appear at least in the Pion sector. Furthermore, we want to stress
that within our approach 21l mixings have been taken into account
from the very beginning by using an adequate decomposition of the
Bethe ~ Salpeter wave function. For equal quark masses the S~V mixing
disappears, and we have the P-A and V-T mixings in the form

Li" "lILf , I=RVv

I- Ct‘f"l gx
1 Y = Dr-ﬁ} "

The obtained results are in good agreement with experiment.
Concerning the a, mass they support the last data.For the best over-~
all fit (L=1350 MeV) the mass M,, 1is given by 1140 MeV and it is
generally restricted from above by 1225 MeV, Furthermore, we have
calculated the Pion decay constant. For the cut—off parameter with
the value L=1350 MeV we obtained F = 93 MeV.

Appendix

1. Bethe -~ Salpeter equation with the help of projection operators
on particle and antiparticle bound states

The Bethe - Salpeter equation for bound states in the ladder
approximation corresponding to the action (2)=(4) 1s in momentum
space represented by

Q(P) = _;_2 j(dz‘::)"x‘: (jm(b]{)Q(?)ﬁml(K‘IﬂT", (4 1)

10

where PF denotes the total bound state momentum. Now let
us introduce the Bethe - Salpeter wave function ['H which is con-
nected with the field ¢ by the relation
= [d% g1 H (k-
QB =[5 60 (e DPMPI G, (k- ).
Inserting this expression for @ into (A 1) we receive the Bethe —
Salpeter equation for the wave function I , formula (7).
To obtain equations for lower-component Bethe —Salpeter wave
functions it is necessary to define the projection operators for the
two particles (a=1,2) /11

AL (

-

K)=(1£S5 9,)/2

and
NO(R) = (12 S2¥,)/2
with -
qt2 - m, t K %t
" a Eq (K)

E ) ={k*+m}

By means of these operators the propagator E.h [k) can be represen—
- %
ted in the following manner:

& K= 1

~ Mg, KBy - Ky Vi -mg+ i€

(a2

AR A‘t’u())
( Ko “En.(f’ tie ko*-Eg(E)-te 0

,( A2 (K) A& K) )
0 + P
Ko -EaK)+ie  KetEg(K)-it ! -

After inserting (A4 2) into (7) and performing the integral over K,
with the help of the formulae

11



+00 .
[a-g +i61(b+g ti6] a+bt {8 7

-00

+ 00

4
de _ =
~S¢b [a-cifllbee i8]

one obtains (for ]’"'(Mﬁ,a) )

A THM) A PIK)
Ex(K) - My-ie (4 3)

‘LrHlM - _4__ SK(
M H) (zm)3 Sd

A T MDA S ()
ET(E)* M“’:e ?

where

E-(K) = E,(K) + E,(K) .

Using the expressions for the projection operators this equation
can be rewritten in the form

R TH(My) - S(—fl;—, (ELSTEMMIES - 1M
M, LT, S - SN MMM
(ME-E2vie)” .

Now by inserting into this representation for the Bethe - Salpeter
wave function the decomposition (8) one receives after some algebra
the system (9).

12

2. Normalization of the Bethe -~ Salpeter wave function

The 16-component Bethe — Salpeter wave function is normalized
as follows?

¢ .
Z (L (ol TR (Roma M= 1. (ae

Here J% denotes the bound state energy. As one can see from (A 4)
a normalization is possible only beyond F = 0, To derive a norma-
lization condition for the lower—component Bethe - Salpeter wave
functions we consider the action (3) and make an expansion around
small values ( Py~ My ). Let us concentrate upon the term

Sroer= Ut (L2 A%yt (2o QMG (F-0TG(D),

-65' (ix)* emg 1

which 1s obtained from thke second part of the action (3) by means
of the Fourier transform (6). Using (A 2) it can be rewritten
analogously to (A 3) in the follawing manner:

¢ (K [ ARMOAR) | AERAK g ca
. o e [ Te @ TR e T

{reel

-]

ree 1

Now we expand the dominators in (A 5) around ( P, - H”). Then,

by taking into account
l?z 'M" - (PO_M")+"'

and introducing the notation ﬂ,=‘ﬂ} the equation (A 5) turms into

- N d*P ra-(p.Mmyd_
S:rcez = —.f{"gm[" (Ty-My) a],“]

K AOMEAE ARMORLR) g

r,
(" FL(R)-Dy-ie Er(K) + By -ie )

=M

Comparing this expression with (A 4) one recieves as normalization
condition for the lower—component Bethe - Salpeter wave functions

13



Ne 1 J?.. g
L My aPy (Zm)’*

3k (ALOPDIAE A RTUNE ,1
( E-(F)':P" -le ' ET(D "’yu‘;e )l (P) )1
(A 6

The integral in (A 6) is the same as in the Bethe - Salpeter equation
(A 3), so that one can use the results (9) on rewriting the Bethe -
Salpeter equation to obtain the normalization condition for the
quantities Lf in (8) explicitly. Finally, one gets

We Ot [V'B(L,)S

24

3.

4,
5e

6.
7.

8.
9.

1 I, I =
CHBMLE) "+ 2B (R‘)L’LZJIYM 1

My 0%, *
(A7)
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PaccMaTpuBaeTca HHIKOZHEpreTHUCCKHIY mpefien ypanuelMs
Bere-Connurepa 1A KBApK—aHTHUKBAPKOBOTO CBA3aIIOro co-
CTOfIHUA C DeNATHBHUCTCKHM sgapoM. [lokasano, 4YTo 3TOT mpepen
9KBHBAa/leHTeH AoKanHsauuH. noTeHuwana, T.e. Moaenn HamOy-
Hona-Jlasuno. Bes pasmoxeHHA 1O SHEPI'HH BLMHCIAETCA CHeKTp
Macc HUSKOReXamyX MeSOHOB C TOYHLIM yuetoM S-V, P-A u V-T
cMemnBaHKK. IonydyeHHne pesyneTaTh CPAaBHHBAKTCA C 3KCIEepH—
MEHTAaNnbHLMH HaHHEIMH .

PaGora BmnonHeHa B JlaGopaTopuH .TeopeTHuecko ¢usHUkH
OHAH .
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~with the experimental data.

Kalinovsky Yu.L., Kaschluhn L.,
Pervushin V,N,

The Low-Energy Limit of a Bilocal Meson
Lagrangian from QCD
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The low-cnergy limit of the Bethe-Salpeter equation
for quark—-antiquark bound states with a relativistic ker-
nel is considered. It is shown that this limit is equi-
valent to a localization of the potential which becomes
a special 4-quark Nambu-Jona-Lasinio one. The mass spect-
.xum of the low-lying mesons is calculated without expan-
ding in energy. Thereby the S-V, P-A and V-T mixings
are taken into account exactly. Furthermore the Pion de-
cay constant is determined. We received good agreement
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