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1. Superstrings in the covaziant formulation“/ (both the Green
- Schwarz (GS) and heterotic ones) have a beautiful geometric inter-
pretation as the D = 2 nonlinear © - models with the D = 10 su-
perspaces (N = 2 orN= 1) as target ma.nifoldsla'3/. Nontrivial
interaction terms entering into the covariant superstring action and
needed for its equivalence to the corresponding light-cone gauge one
are nothing else than the generalized Wess - Zumino - Witten (WZW)
terms 2 « Thus there reveals a profound affinity between superstrings
and ordinary D = 2 WZW & - models 495/ whicn opens new horizons
for thinking about the geometry governing the supersiring dynamics.

Unfortunately, for the GS superstring this exciting analogy is
somewhat obscure in what concerns the WZW term, As distinet from the
cage of ordinary & - models, this term cannot be directly construct-
ed out of the Cartan 1-form defined on the N = 2 D a.10 Poincare
supertranslation algebra which is usually assumed to be the underly-
ing algebra of GS superstring. Its construction ia rather tricky,
which makes it difficult, e.g., to generalize the GS action to more
complicated situations.

In the present letter, we demonstrate that the analogy between
the GS superstring and the ) = 2 WZWN & -~ models can be completely
restored‘providéd one starts with the product of two.hf = 1,I) =10
supertranslation groups as the symmetry group. The WZW term is const-
ructed out of the corresponding Cartan 1-forms in entirely the same
way a3 for ordinary chiral fields. IJ = 2 supersymmetry of the action
is guaranteed due to & specific choice of the target maniforld. We
deduce a zero-curvature representation for the GS superstring equa-
tions of motion which suggests their classicel integrabilitiy in an
arbitrary gauge and irrespective of the topology of & world sheet.
The local fermionic supersymmetry inherent to the GS action t
proves to be realized as a gauge symmetry of the zero-~curvature con-
dition. )

2. The two-dimensional WZW¥ é -models can be described in terms
S
of the matrix fieid u (5 , g“' ) taking values in some group

(supergroup) G with generators "M . The generic & - model action
is as follows

A-=- ngvdzg J%'g“g<wa_wé>z -

- 4p 4% "ol 0y

(1)

Here

o=l T =U™() 3z L(8) (@)

are left-invariant Cartan's 1-forms, COA are their extension o a
three-dimensional region V with boundary ?V as the T =2
space-time, X and é are coupling constants, is a Rieman-
nian metric on J\ . Two constant matrices PTNC"'[ E(‘T’”'T’”),——F
figuring in the definition (1) specify & patterfi’cf breaking the in-
variance under the right group multiplications U(g)—,a(g)([RIf
the averages <> are chosen to coincide wi%lnthe cyclic operation
t{{}( s{:'LE"l for supergroups), then PZ,E ~ SNM’ the
right invariance is unbroken and one is faced with the familiar case
of principal chiral field & -model. In other cases, e.g., when the
target manifold is a homogeneous space of G— , matrices pN do
nct roduce *o the unit anes Aand the right invarianca ia neceasarily

broken. Just this situation occurs for superstrings.

.

NM
A severe restriction on matrices pﬁ comes from the standard
WZW condition

SRa = dR2 ) (3)

Qa3 =XWA ‘{w>ﬂ >a)=wAOR’5A> )

where Qz is a two-form. For the principal chiral field & -models
the condition (3) is always satisfied. Nontrivial examples of WZW
terms for other target manifolds including some homogeneous group
spaces have been given in/7(. We will demonstrate here that the GS
action provides one more important example of this kind.

Recall that the ratio of constants X , @ in eq. (1) is strict-

ly fixed by requiring conformal invariance. This fixing is achieved
already at the classical level by imposing extra local symmetries on
the action (1): the Kac - Moody symmetry in the case of ordinary WZW

& - models 8 and the fermionic gauge one in the superstring case/ ’
QAR .

&';r'. Wt

1 6/_



3. Let us show that the GS a.ct:.on/ 1/ corresponds to a W & -
model with G =G*® G? G' and G being two mutually commuting N =1,
D = 10 Poincare supertranslat:.on groups,

o
An elementU(g)i )G.G‘and the corresponding left-invariant Car-
tan 1 - forms are as follows

u(s 34) UL($ )3L)UZ(§ 31) (5)
W(s*, 59 =enp i[5 29(2)P + 0()QL TS,

J i,2 (no summation over ,]!)
W(s)% u(s)swazwima—ﬁt(gw“‘p* +wial )=
g=1
_LZ[~(9 x4 19 e*[’/‘e«‘)pa + ?a.@*‘*Q‘*]
where the generators (P‘} Q ) obey the relations*
{Q"" Qﬁ‘} "‘F’( % +P/4. é;}) ’
* pt ¥ * i
[RE,PA1=[R PF1=[RS Ql1=o, (®)
t 2 ii
PL-4(PiRY) , ¢B (%9

The T = 10 Lorentz group is resgarded as an outer automorphism group

acting on vector/A V,X ... and spinord 2 Y ... indices of ge-
nerators. It is worthwhlle to point out that the superalgebra (8) pos-
sesges neither 80(2) nor S0(1.1) automorphisms.

(7)

Left action of (3 on elements u(6) induces the standard N = 1
supertranslations in two N= 1, D = 10 superspaces(:ll‘/' 64") 5
(x¥,0%*)

et > I/ LE} [7/“ 9}?' QJF-) 9}?+ éJP (9

For what follows, it will be crucial that the G1® 62 transformations
(9) look as the N = 2 BSupersymmetry when applied on the coordinates
(9:/*_ M | e 9}“) parametrizing the homogeneous space

Vle use the standard D = 10 conventions [—7/‘ (X/L) CJJP—
..Izl" T:LP YV » Where Xl" are the D = 10 D:Lrac matrices,
CsP_-CIF' is the charge conjugation matrix and /‘V= diag(1,-
Treeey =1), e} are 32 - component Majorana ~ Weyl spinors.

G-"@G—z/e_ where (3~ is an abelian subgroup with the generator
p,;_ . Indeed,

2 . . . . .

3 *
while P+ generatts ordinary D = 10 translations. The generator P;
is zero on the set (SC'A 60“”') so the (N = 1) & (N = 1) super-
algebra (8) is reduced to the N = 2 supertranslations algebra as far
as this superspace is concerned. Thus the latter can be identified
with N =2 D= 10 superspace. An important consequence of these
observations is that the G1 ® G° left-invariant @G =~ model action
will be automatically N = 2 supersymmetric if the target manifold
is chosen to be G' ® G/G”., The latter option amounts to requiring
the action to be invariant under the right gauge G~ - transformations

W(e)> U ®epa ORI WEOpEOR ]

. . . 2 i k x
¥ st + 590" y 12
W w7 +55Q (s)éi(e’g,) PP_ ) (12)
Now we are prepared to formulate the principles which unambiguo-
usly lead to the GS covariant superstring action as that of the WZW
S - model.

i. The @ - model action is constructed on the supergroup
G=6 ® c? by the generic formula (1).

ii. The terget menifold is taken to be G' ® G°/G”, i.e. the
action respects invariance under transformations (11), (12).

iii, The three~form entering as a density in the WZW term obeys
the standard condition (3).

ive The action gives rise to the correct kinetic terms, that is
of the second order in the time derivative for bosons and of the -
first order for fermions.

These natura]; requirements identify the & -model action with
the GS superstring one modulo the gauge fermionic symmetry. The proof
goes as follows., One starts from the action (1) with Wa. given by
eq. (7) assuming for a moment that the matrices P_”M have a most
general form allowed by Lorentz invariance and Grasamann parlty

<P/«.pp>‘u Qfmpry )< &i> O7<Q°LQg>T i djbq': (13)



(the coupling constants X R are assumed to be included into the
defim.tlon of these matrices). The condition iv demands ¢ = 0 as
CL"} may appear only in the bilinear part of the action (1) and
would result in kinetic terms containing two time derivatives of fer-
mion fields. Then the conditions ii), iii) yield '

P%i:MIC :) , Pfifi=4eﬁ(:i i) , (14)

1 22
fri=zP -

2 ii
Thus the eight original parameters P‘T% have been reduced to the
two independent ones 1> I‘ « The é;tion is written eventually

[z
¢
+8§S‘P5 AP (w:ﬂ+w2ﬂ)95(w;ﬂ_wgﬂ).

Now one has to pass in the WZW term to integration over ’aV using
the property that locally Q‘b—dgz (here important is the identi-
ty for D= 10 ¥ - matrices ["/; ["ys pot cyclic (ot , P, ¥ )=
= 0). As a result, one arrives at the GS superstring covarlant ac=-
tion, up to a freedom in choosing the value of lu /e

A={: H‘ {J—Qg“g(%x"nZ?ae}f’/‘eJ) W +1;939”F9}

“A =Ll Felg et + o) (wh W) +
W

(15)

(16)
_ .2 e i .
—i-%_’ 5a@(9ax/‘ o1 jZ:]i?aQJV’“Q'})(%jLL?gQ ds T 9’)} ,

The éenuine GS action possessing local fermionic symmetry arises at
bi /L1 =20,

Thus we see that the correct 6’ ~ model interpretation of GS
superstring should be based on the supergroup G @ (}2 and,in ac~
cord with the condition ii), target space of 6’ -model coincides
with N =2, D= 10 superspace (xﬂ(g) 94‘"(:.)). There remains
a trace of original ¢ ® G2 group structure in the WZW term. As

is seen from eq. (15), this term essentially involves the 1- form
-w associated with generator P— . We wish to point out once

more tha.t, starting with the Cartan form () defined on the N = 2,

D = 10 gupertranslation algebra, it 1s impossible to write the GS
superstring WZW term according to the generic & - model formula(1).
Note that the obvious reason why the internal S0(2) symmetry inherent
to N = 2 superalgebra is broken in the GS action -3 is the absence
of such a symmetry in the underlyirgg superalgebra (8).

4, It is of interest to rewrite the GS superstring equaiions of
motion and transformations of fermionic gauge symmetry in manifestly
geometric terms of Cartan's forms.

The equations of motion following from the action (15) can be
written as '

- 1 : .
?a_[P:e’(w:’/t*wzp)_ %aagwe/c]: o, (178)
P+a€(w61/_4,+w;‘/‘f)l—,°‘/‘; wf =0 , (17b)

ab
%P2 (‘de;j )"’ ZI/ wgi,,]’ o, (18a)

a 1 2 2
P_g(wé/a+w8/()r,o{} wafézo) (18b)

A
Tog = (W& +wa)(w6ﬂ+w5ﬁ) 19,69 W *Wa)(w/ Hi )=0(19)

where

. NN\

“Fgtes(f)es o)
2\ {1

One should also add to the system (17)-(19) the Maurer - Cartan equa-

tions jF’

P - ?;w _sza)& o

21

The equations (17)-(19), (21) put together are equivalent to the ori-
ginal equations GS 1 (with f_ﬁ/e_i = 2) and can be regarded as a
generalization of the Carten form representation of the equations of
ordinary WZW nonlinear G - models J .

The transformations of local fermionic symmetryh's/ leaving in-
variant the action and the equations of motion at f,’, 7 = 2 are rep~
resented through the Cartan forms as

w /‘( + wz/" O »
QL? P:G(w;( +w;)C“FF é‘eia_g(go,g,‘) , (22)



w* (&)e/‘_+605/‘,) ¥y HEEDE

where 3?} (g)are transformation parameters and we have introduced
the left-invariant variations

(i s(ui) = £ 077 137G

and assumed eq. (19) to be fulfilled (it is easy as well to write
the transformation of the D = 2 metric g? ).

5. Surprisingly, the GS superstring equations written in the
form (17), (18) admit & zero-curvature representation at Zj//gj = 2.
These amount to the integrability conditions

D_“ci)L\ie,‘_[ :[Lﬁ,l—f’g]=o 2 (24)

where
LY =2, -iA*Eg PE (Y. /‘),Q/‘—zx “Su |

: (25)

LA = 00 +i2Eag P )R -2 002
e /pi. g‘f\

1B @ SpeULLIal paiausves Gua LS §EelAVOIS [ s ’
(Q/,L So(. ) constitute two isomorphic mutually (anti)commuting
superalgebras

[Ru,Ry]= RW [Re,8e1=(7 )] 85 48,859 =- fuRis o

(the same relations hold for Fai( E;j ). Note that the relations
(26) are not closed, the generator FZ% v cannot be set equal to
zero and it produces new generators when commuted with Fa and E;d:
so the complete zero-curvature representation superalgebra is likely
infinite-dimensional. However, only the second and third relations in
(26) actually appear in the commutators (24) and just these ones are
crucial for proving integrability, It is worth mentioning that the
original superalgebra (8) can be consistently regarded as a contrac-
tion of (26).

A gtriking fact about the representation (24), (25) is that the
latter exists at the same value offj/ {7 = 2 which is selected by
fermionic gauge invariance. One may—verify that this invariance can
be realized as a kind of geuge transformations preserving (24)

Lj *"’Gj(s)l_é G:*'i(g) G:}(z;):ex‘p(i’Ide(S)S‘;),(z?)

To check this in the infinitesimal case, we have to put @ﬂ} 65) pro-
portional to jL(A)& given by eqs.(22) and to take into account the

equations of motion (17b),*“(18b). An interpretation of ordinary
stringg as integrable systems was discussed in/10 .

6. Finally, we would like to point out that the algorithmic
construction proposed in this paper applies not only to the case of
GS superstring. In principle, one may choose G1, G2 to be more
complicated supergroups, e.g., with the nonabelian even parts, and
set up superstring on curved supergroup manifolds analogously to
strings on group manifolds " » The interesting problems ahead are
to extend the above consideration to the GS superstring in an arbit-
rary curved D = 10 supergravity background 12 and to understand
in a full generality the implications of integrability property (24),
(25). In particular, one may wonder about the existence of an infini-
te set of conserved currents associated with the zero-curvature rep-
resentation (24). Furthermore, in yiew of an intimate relation bet-
ween this representation and fermionic gauge invariance, one mey ex-
pect an analogous property of classical integrability to hold for
all the other super- F)-braneq‘gqspecting such an invariance, e.g.
for the D = 11 supermembrane’ '/,

We are greatly obliged to V.I. Ogievetsky, C.N. Pope, A.S.Schwarz
and K,S. Stelle for interest in the work and valuable discussions,
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HcaeB A.Il., UsanoB E.A.
CurMa-MogenbHasa HHTepHpeTalHs CYNepCTPYHbI
I'puHa - liBapua

KoBapuaHTHOe peHcTBHE ONA cynepcTpyHsl ['puHa ~ [MlBapua
nocyienoBaTeIbHO BHIBOHHMTCS KaK pgericTBHe O-MogenH Becca -
3yMuHO — BuUTTeHa, acCCOIHHPOBAHHOE C MNpsMbIM IIPOH3BeOeHHeM
oByx N=1,D=10 rpynn cyneprpaHcnauuii Ilyankape. IlokasaHo,
yTo N=2 cynepcuMMeTpus OeHCTBHTENbHO CBf3aHa co crneuudu—
YeCKHM BrI6GOpOM MHOroob6pasus orobpaxeHusi. HalineHo mpencTaBH
JleHHe HyJIeBOH KDPHUBH3HBbI OJI INOJIeBbIX ypaBHEHHH CYyHNepCTpYHBI
I'puHa - llBapua, KoTopoe CIYXHMT yKasaHHeM Ha WX IOJIHYI0 HH—
TerpUpyeMOCTh HEe3aBHCHUMO OT TOIOJIOTHH MHPOBOH IIOBEPXHOCTH
CTDVHHI.
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Pa6oTa BnnonhHeHa B JlabopaTopnu TeopeTHdecKOoll QH3IHUKH
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On Sigma Model Formulation of Green - Schwarz
Superstring

The Green - Schwarz covariant superstring action is
consistently deduced as the action of the Wess — Zumino -
Witten o-model defined on the direct product of two N=l,
D=10 Poincaré supertranslation groups. N=2 supersymmetry
of the action is shown to be related to a specific choice
of the target manifold. We propose a zero curvative re-
presentation for the GS superstring field equations and
interpret the local fermionic supersymmetry of the GS
action as a gauge symmetry preserving this representation
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