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1. Supers~rings in the covaniant formulation/ 1/ (both the Green 
- Schwarz (GS) and heterotic ones) have a beautifUl geometric inter­
pretation as the D = 2 nonlinear 6 - models with the D • 10 su­
perspaces <N .. 2 or N = 1) as target manifolds/2 ,31. Nontrivial 
interaction terms entering into the covariant superstring action and 
needed for its equivalence to the corresponding light-cone gauge one 
are nothing else than the generalized Wess - Zumino - Witten (WZW) 
terms/21. Thus there reveals a profound affinity between superstrings 
and ordinary D = 2 WZW 6 - models/4 •5/ which opens new horizons 
for thinking about the geometry governing the superstring dynamics. 

Unfortunately, for the GS superstring this exciting analogy is 

somewhat obscure in what concerns the WZW term. As distinct from the 
case of ordina:;-y 6 - models, this term cannot be directly construct­
ed out of the Cartan 1-form defined on theN "' 2 D .. -+{) Poincare 
supertranslation algebra which is usually assumed to be the underly­
ing algebra of GS superstring. Its construction is rather tricky, 
which makes it difficult, e.g., to generalize the GS action to more 
complicated situations. 

In the present letter, we demonstrate th~the analogy between 
the GS superstring and the D_ = 2 WZW G - models can be completely 
restored 'provid~d one starts with the product of two N = 1, D =10 
supertranslation groups as the symmetry group. The WZW term is const­
ructed out of the corresponding Cartan 1-forms in entirely the same 
way as for ordinary chiral fields. lf = 2 supersymmetry of the action 
is guaranteed due to a specific choice of the target maniforld. We 
deduce a zero-curvature representation for the GS superstring equa­
tions of motion which suggests their classical integrability in an 
arbitrary gauge and irrespective of the topology of a w~rld sheet. 
The local fermionic supersymmetry inherent to the GS action11 •6/ 
proves to be realized as a gauge symmetry of the zero-curvature con­
dition. 

2. The two-dimensional WZW ~ -models can be described in terms 
of the matrix field U ( S 0 

, f, i. ) taking values in some group 

2 

(supergroup) G with generators TM • The generic 6 - model action 
is as follows 

A"'-~~ tl2 ~ f-3' f}a.~ <wo.. w~)1 'iN -

~f )J3~ c,AE'>C < WA [We,,Wcl)]L 
v 

(1) 

Here 

M M -1( '0 7 r ( ) 
Wa.. = Wa._ T = u ~) 'P'!.a.. LA- ' 

(2) 

are left-invariant Cartan's 1-forms, Gt)A are their extension to a 
three-dimensional region v with boundary aV as the D = 2 
space-time' >l and ~ are coupling constants. so." is a Rieman­
nian metric on 'J\1 . Two constant matrices p..!"~ =:(TNT14)rr 
figuring in the definition (1) specify a patterff'of breaking t:he i:l­
variance under the right group multiplications U (fi.) ~ U(f. )UR. If 
the averages<· ... ) are chosen to coincide with the cyclic operation 

t'C{. .. }C St'l.1._ ... \ for supergroups), then P{1 r"'J aNf.-1, the 
right invariance is unbroken and one is faced with the familiar case 
of principal chiral field E5 -model. In other cases, e.g. when the 
target manifold is a homogeneous space of G- , matrices pNM do 
::._~~ !'::i!!':~ "t":: ~~~ '_'!.:!"1..2. "':: '.:':!:e~ t=l!'!_ry. +~~ ,...; t?;h+ i MVAl'"; Rnt"'A i .q nAf>ARRRl"'i 1 V 

broken. Just this situation occurs for superstrings. 
NM P11 comes from the standard A severe restriction on matrices 

WZW condition 

~Q_o = c!Q2. (3) 

Q 3 = <w 1\ ! w)l! , c:u = wAJ~A, <4> 
where Q ~ is a two-form. For the principal chiral field 6 -models 
the condition (3) is always satisfied. Nontrivial examples of WZW 
terms for other target manifolds including some homogeneous group 
spaces have been~ven in/7(. We will demonstrate here that the GS 
action provides one more important example of this kind. 

Recall that the ratio of constants ~ , ~ in eq. (1) is strict­
ly fixed by requiring conformal invariance. This fixing is achieved 
already at the classical level by imposing extra local symmetries on 
the action (1): the Kac- Moody symmetry in the case of ordinary WZW 
e{ - models/B/ and the fermionic gauge one in the superstring case/1 •61. 

flit'\. ... ---~3--~·,~:,~-. 
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J. Let us show that the GS action/1/ corresponds to a WZW E5 -
model with G = GL® G

2
, G1 and G"\eing two mutually commuting N =1, 

1) = 10 Poincare supertranslation groups. 

An element U(~~t1)E.Gand the corresponding left-invariant Car­
tan 1 - forms are as follows 

(5) U(S01 $i),., Ui(So1~t)U2.(~o)~i)' 
uJ(soJ~i)=0tfti[~ x:i.P(~)P) + eJ.ct(~)Q~ 1~, (6) 

j = i 2, (no summation over j I) 

u-\s)'d~ U(i.)~wo.. =W~+W~ =~i(~w~pf +~ctG~)= 
~ • • • d • • J (7) 

o i~JW~x'" + co~~~r~~lPf + ?.._8i"'Q! 
where the generators ( PJ-

1 
Q o<. ) obey the relations* 

{Q~;>Q~J ==-f7:;,(~+ ~ij,+Pj. r.;1i)' 
[ ~±, P} J = [ p?± J P: J = [ Pr± 'o! J = o, 

)'l ~ Jt )A ' ~ - 0. -i. 

(8) 

p± = A:.(p<L ± Pz) 6 iJ _ ( 1.. o) 
The f) = 10 Lorentz groun is regarded as an outer automorphism group 
acting on vector p., V , A ••• and spinoro(,~, "¥ ••• indices of ge-
nerators. It is worthwhile to point out that the superalgebra (8) pos­
sesses neither S0(2) nor S0(1.1) automorphisms. 

Left action of G on elements U(6) induces the standard N 

supertranslations in two N = 1, D = 10 superspaces(x.l/' 8"'c() 
2. ci..) ) ' ( x1.J<-) e . . . . .6 

xJt<-~ x:}t-+ i.E}olrJ;.eH'· 'e,H\.~ ea-r+ Edr--- (9) 

For what follows, it will be crucial that the G1 ~ G2 transformations 
(9) look as the N = 2 supersymmetry when applied on the coordinates 
( xf<- = x&? +x..~fL 'eJoc) parametrizing the homogeneous space 

*we use the standard D = 10 conventions P~ = (¥~<-):_ c!.ij> = 
= tz.,u.vr:_~ 

1 
\) , where ~f'- are the D = 10 Dirac matrices, 

c,j!>:.- c., a .is the charge conjugation matrix and Qf 11 = diag( 1 ,-
1, ••• , -1) 1 eJ-ol are 32 - component Majorana - Weyl spinors. 
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' 
G~ as> G-2./G- where G- is an abelian subgroup with the generator 

pp_ • Indeed, 

11 • 2.. i al rT!< ej.f> 
;:c_r-~ x.f<- +1.-Z E"" I ~.r e}r-~ el-~ + E)·f' 

' 
( 10) 

.} :.f. 

while P,;! generates ordinar_YoLD = 10 translations. The generator p_; 
is zero on the set ( :x;P? 6J ) so the (N = 1) ~ .(N = 1) super­
algebra (8) is reduced to the N = 2 supertranslations algebra as far 
as this superspace is concerned. Thus the latter can be identified 
with N = 2 D = 10 superspace. An important consequence of these 
observations is that the G 1 ® G2 left-invariant c;5 - model action 
will be automatically N = 2 supersymmetric if the target manifold 
is chosen to be G 1 ® G2 /G-. The latter option amounts to requiring 
the action to be invariant under the right gauge G- - transformations 

U1(~)~ U,~.(~)exp[i aP(~)P; 1,Uz(!:)~le(,)exp(-f(l(s)p; 1 > , 11 > 

w±_ ~w~ + ~ ()aa~-<(~)j;,i.c~3)l-}Cp; . <12> 

Now we are prepared to formulate the principles which unambiguo­
usly lead to the GS covariant superstring action as that of the WZW 
6 - model. 

i. The ~ - model action is constructed on the supergroup 
G = G1 ~ G2 by the generic formula (1). 

ii. The target manifold is taken to be G1 ~ G2/G-, i.e. the 
action respects invariance under transformations (11) 1 (12). 

iii. The three-form entering as a density in the.WZW term obeys 
the standard condition ()). 

iv. The action gives rise to the correct kinetic terms, that is 
of the second order in the time derivative for bosons and of the . 
first order for fermions. 

These natural requirements identify the ~ -model action with . . 
the GS superstring one modulo the ga~ge fermionic symmetry. The proof 
goes as follows. One starts from the action ( 1) with Wa._ given by 
eq. (7) assuming for a moment that the matrices f>~~ have a most 
general form allowed by Lorentz invariance and Gras~iiiann parity 

< t $ _ iJ <P.i.Qj.) _ <Qi QJ-'- =C 0 ii Pr-Pj) fr,n-2.PIIPr,lf ' /A- al - o' oL ~/I,li "'!' ~-'I,!I (1J) 
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(the coupling constants ~ , ~ are assumed to be included i!l.to the 
de~~nition of these matrices). The condition iv demands 9t~= 0 as 
q:J may appear only in the bilinear part of the action (1) and 

would result in kinetic terms containing two time derivatives of fer­
mion fields. Then the conditions ii), iii) yield 

ij. /. 0 (i 1..) pt.}_ 4 o_ (-i PI =·H-I i i ") [ - {..!! -1. ~) ' ( 14) 

.L Z2 
lr ii = 4 PI,ff .• -)- l..J 

Thus the eight original parameters ~Ii have been reduced to the 
two independent ones l I , f.. j . The ~ction is written eventually 

asA = lr) t$~~a~(Wd+Wz~)(~f +W~r) + 
~v (15> 

0 \ t3 Af>C( tf- 2~) ( ! t ) + C[~ c;t $ C WA +(..JA (}~ Wcf -Wet- . 
Now one has to pass in the WZW term to integration over 0 V using 
the property that locally Q ~ = J. Q 2. (here important is the identi­

ty for D = 10 '?( - matrices Pt~ l)'~,ft- + cyclic ( ol , f> , 't )= 
= 0). As a result, one arrives at the GS superstring covariant ac­
tion, up to a freedom in choosing the value of "lH / li 
A= li ~ Jl~t~~aB(i)a:t? +iZ'~a.eirt@ )(a,x,k + i..~.IJ~eilf_eJ)-

~v J=i f=i (16) 

-i{!f caf,(JaX~+±?.~aF}pf4eJ)(f;_ ~ge~eef:j~ej..)}. 
[J J=l IC,~-1 

The genuine GS action possessing local fermionic symmetry arises at 

t ff / e 1 = 2111• 

Thus we see that the correct ~ - model interpretation of GS 
superstring should be baaed on the supergroup G 1 ® G2 and,in ac­
cord with the condition ii), target space of 6 -model coincides 
with N = 2, D = 1 0 super apace ( X.P(,; ) , eJol (f.)) • There remains 
a trace of original G1 ~ G2 group structure in the WZW term. As 
is seen from eq. (15), this term essentially involves the 1- form 
~ -W~ associated with generator p;;. . We wish to point out once 

more that, starting with the Cart an form W defined on the N = 2, 
D = 10 supertranalation algebra, it is impossible to write the GS 
superstring WZW term according to the generic~ -model formula(1). 
Note that the obvious reason why the internal 80(2) symmetry inherent 
to N = 2 superalgebra is broken in the GS action/1-J/ is the absence 
of such a symmetry in the underlying superalgebra (8). 
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4. It is of interest to rewrite the GS superstring equations of 
motion and transformations of fermionic gauge symmetry in manifestly 

geometric terms of Cartan's forms. 

The equations of motion following from the action (15} can be 

written as 

"') [ ~g ( .L l.. ) b; a.B 1. ] 
a a... P+ WB? +w8,.. - l~ c. ?J~r = o, (17a) 

oagf i. ..t ) .;. if> 
I+ t Wgr- +l..J 8r- P~;J ... J a.. = 0 ( 17b) 

'1a...[P~"{w81. +Wt )+ [ff £..a.8wf ]=o 
/'<-- ~ li t7)' ) ( 18a) 

ag( 1 Z ) .U 2A P fN4 + w8 P~ · r...u' = o - <1;"- jl'< o(..! a. ) ( 18b) 

I J.j-t Zff) { :i L ) J.. cJ;, 1j( Zj( V, 1. 2t )=o Ta.t=l4Ja.. +-rNa.. \.w~,_+Wef --;z:fla.6@ tWc+-Wt;~UJJr+~'f ~19) 

where 
- I /) \ 

P:b = r-3 ~a(;~ ~ \~~) ~ag (20) 

One should also add to the system (17)-(19) the Maurer - Cartan equa-
tiona 

1a..fA){- r;, t..JI/ = z z cu~o( r:P u>~ , 
(21) 

l':l jo< j.ol 
"a.tJ' - ~t,IAJ 0.. = 0 . 

The equations (17)-(19), (21) put together are equivalent to the ori­
ginal equations GS/ 1/ (with fj;f[l = 2) and can be regarded as a 
generalization of the Cartan form representation of the equations of 
ordinary WZW nonlinear~- models/9/. 

The transfor~tions of local fermionic symmetry/ 1
•
6/ leaving in­

variant the action and the equations of motion at {g~el = 2 are rep­
resented through the Cartan forms as 

-J.h ~zu wr-+wr-=o, 

W'""iol.- patr J. ,_/- )~oi.f>T'l ~H(~o ~:I.) 
- + tkl~Jt +vv~r;v I fS a. ;;. )c:> ' 

(22) 
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rv2oL- p_«~>r,.,J.. ,,,.2.) ,rlol.P 17,1<_ 'CE:l.g(.~o :!.,{) 
~ - _ (W~ +CNg~ C. I jf Q c> J J 

where ~a.(~)are transformation parameters and we have introduced 
the left-invariant variations 

( u.J T1 a(uj) = ~ t;}!-P/ + i r;ioLai (23) 

and assumed eq. (19) to be fulfilled (it is easy as well to write 
the transformation of the D = 2 metric gdg ). 

5. Surprisingly, the GS superstring equations written in the 
form (17), (18) admit a zero-curvature representation at tff;'f] = 2. 
These amount to the integrability conditions 

[L~J.~l =[L;_,L.~]=o' (24) 

where 

1 L ':l - 1 2. pBc; J.j-( l.f!) .i 1ol. ,-11. 
wa..=ua-1.-J\.Cag + lWc+tJc! RjA -2.A.Ula.. PoL, 

(25) 
2 • 2 gcf J.){ ..z.f<)ot- ~<>~ ,..;z La= !Ja.. +Z.;( Ca.l, F:_ ltJc +t.Jc ""-!< -2.A.fAJa.. i:>o~. _, 

~ . . . . . , .. .. ··-·---- . (o1: ~~! 
,J'L .J.~ Clo ~.}J~\,;I,r.LO..J. ,lJCio.LOo!Ut;;: 1.1~.&. U..U.U. ".&..I.C e),C.&..U:i.I..._.VU6.,;, \. • -r ,- ,:.._ / ' ( R;., $ j_) constitute two isomorphic mutually (anti)commuting 

superalgebras 

[R;,R~]=R~vJ ,cR;,s!]=(rr)!S~ ,is~,s;)=- r~R;<26) 
(the same relations hold for R~ , S! ). Note that the relations 
(26) are not closed, the generator ~} ~] cannot be set equal to 
zero and it produces new generators wifen commuted with R ~ and s~, 
so the complete zero-curvature representation superalgebra is likely 
infinite-dimensional. However, only the second and third relations in 

(26) actually appear in the commutators (24) and just these ones are 
crucial for proving integrability. It is worth mentioning that the 
original superalgebra (8) can be consistently regarded as a contrac­
tion of (26). 

A striking fact about the representation (24), (25) is that the 
latter exists at the same value offff;fli = 2 which is sele0ted by 
fermionic gauge invariance. One may verify that this invariance can 
be realized as a kind of gauge transformations preserving (24) 
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L~ ~ c)·(~)Lla. G~-yg), G}(~)=e)(r(i1PJ«(s)~~).<21> 
To check this i~ \he infinitesimal case, we have to put 1/jol..(~) pro­
portional to )... w.}oL. given by eqs.(22) and to take into account the 
equations of motion (17b),•(18b). An interpretation of ordinary 
string~ as integrable systems was discussed in/101. 

6. Finally, we would like to point out that the algorithmic 
construction proposed in this paper applies not only to the ease of 
GS superstring. In principle, one may choose G1 , G2 to be more 
complicated supergroups, e.g., with the nonabelian even parts, and 
set up superstring on curved supergroup manifolds analogously to 
strings on group manifolda/111. The interesting problems ahead are 
to extend the above consideration to the GS superstring in an arbit­
rary curved D = 10 supergravity background/ 12/ and to understand 
in a full generality the implications of integrability property (24), 
(25). In particular, one may wonder about the existence of an infini­

te set of conserved currents associated with the zero-curvature rep­
resentation (24). Furthermore, in yiew of an intimate relation bet­
ween this representation and fermionic gauge invariance, one may ex­
pect an analogous property of classical integrability to hold for 
all the other super· ~-brane~-~~specting such an invariance, e.g. 
for the D = 11 supermembrane1 '~1 • 

We are greatly obliged to V.I. Ogievetsky, C.N. Pope, A.S.Schwarz 
and K.S. Stelle for interest in the work and valuable discussions. 
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HcaeB A.IT., HBaHOB E.A. E2-88-474 
CHrMa-MOAenbHaR HHTepnpeTaQUR cynepcTpyHhl 
I)>HHa - illBapu;a 

KoBapHaHTHoe AeHCTBHe AnR cynepcTpyHhl fpHHa - lliBapu;a 
noCJieAOBaTeJtbHO BbJBOAHTCR KaK AeHCTBHe ~MOAenH Becca -
3YMHHO - BHTTeHa, accou;HHPOBaHHoe c npRMbJM npOH3BeAeHHeM 
ABYX N=l ,D=IO rpynn cynepTpaHCJIRIJ;HH ITyaHKape .. lloKa3aHo, 
qTo N=2 cynepCHMMeTpHR AeHCTBHTenbHo CBR3aHa co cneu;H~H­
qecKHM BbJ60pOM MHOroo6p33HR OT06pa.JKeHHR. HaH,qeHO npeACTaB 
JteHHe HyJteBOH KpHBH3Hbl AnR llOJteBbiX ypaBHeHHH cynepCTpyHbJ 
fpHHa - illBapu;a, KOTOpOe CJIY~T yKa3aHHeM Ha HX llOJIHYID HH­
TerpHpyeMOCTb He3aBHCHMO OT TOllOJIOrHH MHPOBOH llOBepXHOCTH 
CTpyHhl. 

Pa6oTa BhlllOJIHeHa B na6opaTOPHH TeopeTHqecKOH $H3HKH 
mum. 

llpeDpiDIT 061.e,tU1HeiOIOro IDICTHT)'Ta R,llepHhllt HCcneAOBaHHH. ,lly6aa 1988 

Isaev A.P., Ivanov E.A. E2-88-474 
On Sigma Model Formulation of Green - Schwarz 
Superstring 

The Green - Schwarz covariant superstring action is 
consistently deduced as the action of the Wess - Zumino -
Witten a-model defined on the direct product of two N=l. 
D=IO Poincare supertranslation groups. N=2 supersymmetry 
of the action is shown to be related to a specific choice 
of the target manifold. We propose a zero curvative re­
presentation for the GS superstring field equations and 
interpret the local fermionic supersymmetry of the GS 
action as a gauge symmetry preserving this representation 
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