

объединенный
 ИНституT
 ЯдерНых
 исследовании
 дубна

E2-88-428
S.V.Goloskokov

SPIN EFFECTS IN QCD
AT LARGE DISTANCES

Submitted to "Ядерная физика"

Great interest in the investigation of the spin role in high energy collisions aroused from the discovery of large apin effecto in different reactions ${ }^{\prime \prime}$. This problem is very important because the perturbative $Q C D$ leads to the quark helioity conservation $/ 2 /$. In this case the spin-flip and nonflip amplitudes obey the condition

$$
\begin{equation*}
\frac{\left|T_{f e_{i p}}\right|}{\left|T_{\text {non }-f e_{i}}\right|} \sim \frac{m}{\sqrt{S}} \tag{I}
\end{equation*}
$$

However, this result is not valid at small $|t|$ because the perturbative theory is not true here. The nonperturbetive methods of QCD, e.g. QCD sum rules $/ 3,4 /$, are not developed for the objects dependent on several kinematic variables. So the study of small angle scattering can now be based on different model approaches $/ 5,6$ / Note that in some models developed for elastic scattering the spin effect appeared which did not disappear as $S \rightarrow \infty / 7 /$ (see also /8/). In this case the spin-filp amplitude for the t-channel exchange with vaouum quantum numbers must have a component growing with S. This paper is devoted to the investigation of this problem.

In $Q C D$ the vacuum exchange is associated with the exchange of a two-gluon objeat $/ 9 /$. We would like to note that the quark-quark interaction is very important in high energy hadron reactions at low momenta transfer. This conclusion can be drawn from good agreement with the experiment of the additive quark model $/ 10$ and from the diffraction dissooiation experimental data $/ 11$.

In $/ 12 /$ the $q q$ spin-non-flip scattering was examined in the model with taking into account some nonperturbative properties of QCD. Here we shall investigate the spin effeots in high energy quark-quark scattering at fixed $|t|$. It will be shown without using the perturbative the ory that in the helicity-flip amplitude the terms growing as S appear. And we obtained for the ratio

$$
\begin{equation*}
\frac{\left|T_{f e_{i p}}^{q q}\right|}{\left|T_{n m-f l i p}^{q q}\right|} \sim \frac{m \sqrt{|t|}}{a^{2} \ln s / s_{0}} \tag{2}
\end{equation*}
$$

were the consistent quark mass m is approximately equal to the hadron mass, the dimension of the quantity a is m^{2}. The l_{s}, term in the denominator (2) arises from the logarithmic suppression of the spin-flip amplitude. The ratio (2) turne into (1) at large $/ t /$ because $a^{2} \sim|t|$ when $|t| \rightarrow \infty$.

We shall cheok the existenoe of the terms growing as S in the spin-llip amplitude in some diagrams of the perturbative theory too.

In the Appendix, some spin-flip and spin-non-flip matrix elements in the symmetrio system whioh is oonvenient for the oalculetions are written.

Let us infestigate the leading asymptotic term of the quarkquark soattering amplitude. In calculation we shall use the following representations for the quark and gluon propagator for the space-like momenta (without the color indices)

$$
\begin{align*}
& \hat{G}^{q}(p)=i(\hat{p}+m) G\left(-p^{2}\right) \tag{3}\\
& G_{\alpha \beta}^{g}(q)=-i g_{\alpha \beta} F\left(-q^{2}\right)
\end{align*}
$$

In the region we are interested in, the momenta p^{2} and q^{2} are small and we do not use any ooncrete form for the functions $F\left(-q^{2}\right)$ and $G\left(-p^{2}\right)$. We suppose only that these functions are deoreasing as a power at large p^{2} and q^{2}.

The form of the gluon propagator is conformed to the FermiFeinman gauge. This is convenient because the ghosts are absent in the investigated aiagrams.

In what follows we shall calculate the imaginary part of the quark-quark amplitude in the region $S \rightarrow \infty, t-f i x e d$. For diagram, fig. 1, we obtain:

$$
I_{m} T_{1}=\frac{g^{4}}{(2 \pi)^{6}} \int d^{4} k d^{4} \ell \delta\left[(p-k)^{2}-m^{2}\right] \delta\left[\left(p^{1}+l\right)^{2}-m^{2}\right] F\left[-(k+r)^{2}\right]
$$

$\times F\left[-(k-r)^{2}\right] F\left[-(\ell+r)^{2}\right] F\left[-(l-r)^{2}\right] N^{\lambda \mu, \nu \sigma} J_{m} \Gamma_{\lambda \mu, \nu \sigma}(K, \ell, r)$.

Here $J_{m} \Gamma_{\lambda \mu, v \sigma}$ is the 1maginary part of the $g g$ amplitude, m is the constituent quark mass
$N^{\lambda \mu, \nu \sigma}=\bar{u}(p-r) \gamma^{\lambda}\left(\hat{p}-\hat{K^{2}}+m\right) \gamma^{\mu} U(p+r) \times \bar{U}\left(p^{\prime}+r\right) \gamma^{\nu}\left(\hat{p}^{\prime}+\hat{e}+m\right) \gamma^{\sigma} u\left(p^{\prime}-r\right)$.

Fig. 1.
Exchange of a two-gluon-object
between quarks

The integration in (4) can be done in the 11 ght -cone vartables $/ 2 /$

$$
P=\left(P_{+}, P_{-}, O_{\perp}\right) ; \quad P_{+}=P_{0}+P_{z} ; \quad P_{-}=P_{0}-P_{x} ;
$$

$$
k=\left(x P_{+}, k_{-}, k_{+}\right) ; \ell=\left(y P_{+}, \ell_{-}, \ell_{\perp}\right) ;
$$

$$
\int d^{4} k d^{4} \ell=\frac{1}{4} \int d x d y d\left(p_{+} K_{-}\right) d\left(p_{+} \ell_{-}\right) d K_{+} d l_{\perp}
$$

Integrating over $d y$ and $d\left(\rho_{+} K_{-}\right)$we have

$$
\begin{gather*}
J_{m} T_{1}=\frac{g^{4}}{4 S(2 \pi)^{6}} \int_{\alpha / s}^{1-\beta / s} \frac{d x d K_{1} d e_{+}}{(1-x)} F_{+}^{(1)} F_{-}^{(1)} F_{+}^{(2)} F_{-}^{(2)} x \tag{5}\\
\times \int d\left(p_{+} \ell_{-}\right) N^{\lambda \mu, v 6} J_{m} \Gamma_{\lambda \mu, v_{\epsilon}} \mid \widetilde{y},\left(\widetilde{p_{+} K-}\right)
\end{gather*}
$$

where

$$
\begin{aligned}
& \tilde{y}=\frac{m^{2}+\ell_{+}^{2}}{S} ;\left(\widetilde{P_{+} K_{-}}\right)=m^{2}+r_{\perp}^{2}-\frac{m^{2}+K_{\perp}^{2}}{(1-x)} \\
& F_{ \pm}^{(1)} \simeq F\left(\frac{1}{(1-x)}\left[x^{2} m^{2}+\left(K_{\perp} \pm(1-x) r_{\perp}\right)^{2}\right]\right) \\
& F_{ \pm}^{(2)} \simeq F\left(\left(\ell_{\perp} \pm r_{\perp}\right)^{2}\right)
\end{aligned}
$$

The region near the upper X-1imit does not contribute to the integral (5) beoause the functions $F_{+}^{(1)}, F_{-}^{(4)}$ are decreasing. So we shall consider the region

$$
\begin{equation*}
0<x<(1-c), c \text {-fixed } \tag{6}
\end{equation*}
$$

In which the gluon-gluon amplitude is far from the asymptotio regime. Really all the gluon momenta squares are negative and small. The kinematic variables of Γ are not very large too:

$$
\begin{gathered}
\tilde{t}=t \\
\tilde{S}=(k-\ell)^{2} \simeq x\left[\left(\widetilde{P_{+}}, \underline{K_{-}}\right)-\left(\widetilde{P_{+}+}\right)\right]-\left(K_{\perp}-e_{1}\right)^{2}
\end{gathered}
$$

where $\left(\tilde{P_{+}} K_{-}\right)$is determined in (5), variable ($\rho_{+} \ell_{-}$) can have poles at $X=0$ and $x=1$ (see (17)). But in the region (6) $\widehat{S} \ll S$.

Let us investigate (5) in the general form. We must find the terms growing as S^{2} in the numerator of (5) in order to obtain the behaviour $\sim S$ in $J m T_{1}$.

In what follows we shall calculate the amplitude with spin flip in the upper quark line. The matrix elements with the positive helicities in the lower quark line can be caloulated with the help of E_{q}. (A. I)

$$
\begin{align*}
N_{1}^{v \sigma} & =\bar{U}^{(+)}\left(p^{\prime}+r\right) \gamma^{\nu}\left(\hat{p}^{\prime}+\hat{\ell}+m\right) \gamma^{\sigma} u^{(+)}\left(p^{\prime}-r\right) \simeq 4 p^{\prime \nu} p^{\prime \sigma}+ \tag{7}\\
& +2\left(p^{\prime \nu} \rho^{\sigma}+\rho^{\nu} p^{\prime \sigma}\right)+2 i \varepsilon^{v \sigma \delta \rho} \ell_{\delta} p_{\rho}^{\prime}
\end{align*}
$$

It oan be shown that the main contribution to the amplitude (5) as $S \rightarrow \infty$ comes from the first term in (7)

$$
\begin{equation*}
N_{i}^{v \sigma} \simeq 4 p^{\prime \nu} p^{\prime \sigma} \tag{8}
\end{equation*}
$$

Let us ohoose the gluon-gluon amplitude in (5) In the following general form:

$$
\begin{align*}
& \operatorname{Jm}_{\lambda \mu, \nu \sigma}=g_{\lambda \nu} g_{\mu \sigma} \Gamma 1+g_{\lambda \mu} g_{\nu \sigma} \Gamma 2+g_{\nu \mu} g_{\sigma \lambda} \Gamma 3+ \\
& +g_{\nu \sigma} a_{\mu} \tilde{a}_{\lambda} \Gamma 4+g_{\lambda \mu} b_{\sigma}{\tilde{b_{\nu}} \Gamma 5+g_{\mu \sigma} c_{\lambda} \tilde{c}_{\nu} \Gamma \sigma+}_{+g_{\mu \nu} d_{\sigma} \tilde{d}_{\lambda} \Gamma^{\prime} 7+g_{\sigma \lambda} f_{\mu} \tilde{f}_{\nu} \Gamma 8+g_{\lambda \nu} h_{\mu} \tilde{h}_{\sigma} \Gamma g+}^{+j_{\lambda} j_{\mu}^{\prime} \tilde{j}_{\nu} \tilde{j}_{\sigma} \Gamma 10+\varepsilon_{\lambda \mu \nu} \Gamma 11 .} .
\end{align*}
$$

Here the vectors $a-j$ are linear combinations of vectors k, C, r. The functions Γ_{i} have not large variable S in the region (6) because, as mentioned previously, Γ is far from the asymptotic behariour here.

The term leading as $S \rightarrow \infty$ in the matrix element (5) looks as follows:
$N=N^{\lambda \mu, V \sigma} J_{m} \Gamma_{\lambda, N_{6}}=4 \bar{U}(P-r)\left[\hat{P}^{\prime}(\hat{P}-\hat{K}) \hat{P}^{\prime}(\Gamma 1+\Gamma 3)+\right.$
$+\gamma_{\mu}(\hat{p}-\hat{K}+m) \gamma^{\mu}\left(P^{\prime} b\right)\left(P^{\prime} \tilde{b}\right) \Gamma 5+\left(P^{\prime} \tilde{c}\right) \hat{c}(\hat{p}-\hat{K}+m) \hat{P}^{\prime} \Gamma \sigma+$
$+\left(p^{\prime} d\right) \hat{\tilde{d}}(\hat{p}-\hat{K}+m) \hat{p}^{\prime} \Gamma 7+\left(p^{\prime} \hat{f}\right) \hat{p}(\hat{p}-\hat{K}+m) \hat{f} \Gamma g+$
$\left.+\left(p^{\prime} h\right) \hat{p}^{\prime}(\hat{p}-\hat{k}+m) \hat{h} \Gamma g+\left(p^{\prime} \tilde{j}\right)\left(p^{\prime} \tilde{j}^{\prime}\right) \hat{j}(\hat{p}-\hat{k}+m) \hat{j}^{\prime} \Gamma / 0\right] u(p+r)$.

It is not difficult to calculate the helicity amplitudes from (10). For example, we obtain for the first matrix structure in (10), using (42.3):

$$
\begin{align*}
& \left\langle\hat{p}^{\prime}(\hat{p}-\hat{k}) \hat{P}^{\prime}\right\rangle_{++}=S^{2}(1-x) \tag{11}\\
& \left\langle\hat{p}^{\prime}(\hat{p}-\hat{k}) \hat{p}^{\prime}\right\rangle_{+-} \simeq m \Delta S(1-x)
\end{align*}
$$

Just this matrix structure is in the simplest quark-quark diagrams With the two gluon exohange in the t-channel. We see that for these diagrams helicity is oonserved.

We have found another behaviour for the $\Gamma 5-\Gamma 10$ structures. Here we show this for the $\Gamma 5$-term. Taking into acoount the wave function equation we have

$$
\begin{align*}
& \left\langle\gamma_{\mu}(\hat{p}-\hat{k}+m) \gamma^{M}\right\rangle \simeq\langle\hat{p}+\hat{\kappa}\rangle \\
& \langle\hat{p}+\hat{k}\rangle_{++}=2 p^{2}+2(p k)=a^{2} \tag{12}\\
& \langle\hat{p}+\hat{k}\rangle_{+-}=m \Delta(1+x)
\end{align*}
$$

$$
b=\alpha K+\beta \ell+\gamma r
$$

the following equation is valid

$$
\begin{equation*}
\left(P^{\prime} b\right) \simeq \alpha\left(p^{\prime} k\right)=\frac{\alpha S x}{2} \tag{13}
\end{equation*}
$$

As a result we obtain for the $\Gamma 5$ matrix elements:

$$
\begin{aligned}
& \langle\ldots \Gamma 5\rangle_{++} \sim a^{2} S^{2} x^{2} \Gamma 5, \\
& \langle\ldots \Gamma 5\rangle_{+-} \sim m \Delta S^{2} x^{2}(1+x) \Gamma 5 .
\end{aligned}
$$

So there are the terms growing as S in both the spin-non-flip and spin-flip amplitudes. The matrix elements from other structures have a behaviour similar to (14). All helicity-filp matrix elements are proportional to x^{2}. But some helicity-non-nilp matrix elements do not vanish at $x=0$. As a result

$$
\begin{align*}
& \langle N\rangle_{++} \sim S^{2} a^{2} f_{1}(x, \Delta) \tag{15}\\
& \langle N\rangle_{+-} \sim m \Delta S^{2} x^{2} f_{2}(x, \Delta)
\end{align*}
$$

Usually the functior f_{1} has the following form near $x \rightarrow 0 / 13 /$

$$
f_{1}(x, \Delta) \sim_{x \rightarrow 0} \frac{\ln ^{k} S x}{x} \varphi_{1}(\Delta)
$$

The funotion f_{2} must have a similar behaviour. The integration in (5) in this oase near $x=0$ leads to the following asymptotic behariour for the helidity amplitudes

$$
\begin{align*}
& \left\langle\operatorname{J}_{m} T_{1}\right\rangle_{++} \sim a^{2} S(\ln S)^{k+1} \varphi_{1}(\Delta), \\
& \left\langle\operatorname{Jm} T_{1}\right\rangle_{+-} \sim m \Delta S(\ln S)^{k} \varphi_{2}(\Delta) . \tag{18}
\end{align*}
$$

So we conolude that the contribution growing as S must take place in the helloity-flip amplitudes conneoted with the two-gluon-object exchange in the t-channel. They are suppressed with respect to the helicity-non-filp amplitudes.

Fig. 2. Ladder diagram which contributes to the spinuflip amplitude.

Now we cannot perform some quantitative $Q C D$ caloulations in this region. But Fe can demonstrate the appearance of similar terms by using the diagrams of perturbative QCD.

The simplest diagram of the fig. 1 type with the complicated matrix structure (9) ia the ladder diagram with the gluon oross-beam (fig.2). In this case we have

$$
\begin{align*}
& \int d\left(p_{+} l-\right) J_{m} \Gamma_{\lambda \mu, \nu \sigma}^{(2)}=\frac{\pi g^{2}}{x}\left\{g_{\nu \lambda} g_{\mu \sigma} t^{2}+g_{\nu \sigma}(d+r)_{\mu}(d-r)_{\lambda}+\right. \\
& +g_{\mu \lambda}(u+r)_{\sigma}(u-r)_{\nu}-g_{\mu \sigma}\left[(t+2 r)_{\lambda}(u-r)_{\nu}+(t+2 r)_{\nu}(d-r)_{\lambda}\right]_{+} \\
& +g_{\mu \nu}(u+r)_{\sigma}(d-r)_{\lambda}+g_{\sigma \lambda}(d+r)_{\mu}(u-r)_{\nu}- \tag{17}
\end{align*}
$$

$$
\left.-g_{\lambda \nu}\left[(d+r)_{\mu}(t-2 r)_{\sigma}+(u+r)_{\sigma}(t-2 r)_{\mu}\right]\right\}\left.\right|_{(\widetilde{p}+\widetilde{Q}-)}
$$

where

$$
\begin{aligned}
& t=k+e ; d=2 l-k ; u=2 k-l_{i} \\
& \left(\tilde{P}+e_{-}\right)=m^{2}+r_{\perp}^{2}-\frac{m^{2}+k_{\perp}^{2}}{(1-x)}-\frac{\left(k_{\perp}-e_{\perp}\right)^{2}}{x}
\end{aligned}
$$

Using (B) and the matrix elements (A.3) we oan calculate the main asymptotio term of this helicity-flip amplitude

$$
\left\langle\int d\left(p_{+} \ell_{-}\right) J_{m} \Gamma_{\lambda H, V_{G}}^{(2)} N^{\lambda_{\mu}, v_{6}}\right\rangle_{+-} \simeq \frac{\pi g^{2}}{x}\left(-8 m \Delta X^{2} S^{2}(1-x)\right)
$$

The obtained integral for the amplitude $\left\langle T^{(2)}\right\rangle_{+-}$has the form (5) Without singularity at $x=0$. In this case it has the asymptotic behaviour (16b) with $K=0$. The helicity-non-plip amplitude $/ 13 /$ has the form (16a).

The contribution with the 4-g vertex which occurs at the same order in g^{2} leads to the helicity conservation because it has only $\Gamma 1-\Gamma 3$ structures.

Fig. 3. Planar alagram with gluon exchange in the upper quark line.

Fig. 4. Nonplanar diagram with gluon exchange.

Let us now investigate diagrams of figs. 3,4 which are not similar in form to fig.I. Calculations analogous to the previous ones leads to the following expressions for the helioity-flip amplitudes

$$
\begin{equation*}
\left\langle\operatorname{Jm} T^{(3)}\right\rangle_{+-} \simeq \frac{\alpha_{9}^{3}}{(2 \pi)^{2}} \frac{1}{S} \int_{\alpha / S}^{1-\beta / S} \frac{d x d k_{1} d e_{1}}{x(1-x)} F_{+} F_{-} G_{+} G_{-} N^{(3)} \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& G \pm=G\left[(1-x) m^{2}+\frac{1}{(1-x)}\left(k_{\perp} \pm(1-x) r_{\perp}\right)^{2}\right] \\
& N^{(3)}=8 m \Delta x^{2} S^{2}(1-x)
\end{aligned}
$$

and

$$
\left\langle J_{m} T^{(4)}\right\rangle_{+-} \simeq \frac{\alpha_{2}^{3}}{(2 \pi)^{2}} \frac{1}{S} \int_{\alpha / 5}^{1-8 / s} \frac{d x d x_{+} d e_{1}}{x(1-x)} F^{(4)} G^{(4)} F_{+} F_{-} N^{(4)}
$$

Here

$$
\begin{equation*}
F^{(4)}=F\left(\frac{1}{(1-x)}\left[x^{2} m^{2}+\left(k_{\perp}+r_{\perp}(1-x)\right)^{2}\right]\right) ; \tag{20}
\end{equation*}
$$

$$
\begin{aligned}
& G^{(4)}=G\left[\frac{(1-x)}{x}\left(\ell_{1}-k_{1}\right)^{2}+\left(r_{\perp}+k_{\perp}-\ell_{\perp}\right)^{2}+x m^{2}-(1-x) r_{\perp}^{2}\right] \\
& N^{(4)}=4 m x(1-x) S^{2}\left[2 \Delta x+\left(\ell_{x}-\Delta\right)\right] .
\end{aligned}
$$

The functions F and G are determined in (3), $F \pm$ ooincide with functions $F_{ \pm}^{(2)}$ in (5). An extra ${ }^{\prime \prime}{ }^{\prime \prime}$ in (20) comes from the colour factor.

The helloity-non-flip contributions from the diagrams (fig. 3,4) were oalculated in $/ 3 /$

$$
\left\langle J_{m} T^{(3,4)}\right\rangle_{++} \sim a^{2} S \ln S \varphi^{(3,4)}(\Delta)
$$

Thus, the helicity-flip-amplitudes are suppressed logarithmioally as above. This permits us to conclude that when integrals (5), (19), (20) are oaloulated in the main logarithmio approximation the obtained helicity-flip amplitudes will be lost.

There are other diagrams with the gluon correotions to the vertex functions. They lead to the oontributions oontaining the anomalous magnetic moment of the quark μ_{q}. Stmple oaloulations show that these oontributions lead to the helicity-flip amplitude which is proportional to μ_{q}. It can be shown that the diagrams with gluons ooupled with the lower quark line (the overturned diagrams 3,4) do not contribute to the investigated matrix elements beoause they lead to the helicity-flip in the lower quark line.

We do not show the oolour factors here because their magnitudes are unimportant.

The analysis made in this paper shows us that the helicity-filp amplitudes not ranishing as $S \rightarrow \infty$ are conneoted with the gluon oontributions. Really the amplitude T_{+}- growing as S appears in the oase when the gluon line oouples the ralence quarks in the initial and final states. It contains the constituent quark mass as a dimensional parameter whioh is equal to the hadron mass in the
order of magnitude. Thus we can conclude that the arising effect is not extremely small. The quantitative calculations oannot be done now. However, it is possible that the nonperturbative methods of $Q C D$ will permit us to perform similar calculations in future.

The author expresses his deep gratitude to V.G. Kadyshevsky,
V. A. Matveev and A.N.Sissakian for the interest in the work and fruitful discussions.

Appendix

For caloulations of the matrix elements of the quark-quark scattering amplitudes

$$
q\left(p_{1}\right)+q\left(p_{2}\right) \rightarrow q\left(p_{3}\right)+q\left(p_{4}\right)
$$

the symetric system is convenient in which the sum of the quark momenta before and after soattering is directed along the \mathcal{Z}-axis:

$$
\begin{aligned}
& P=\frac{1}{2}\left(P_{1}+P_{3}\right)=\left(P_{0}, 0,0, P_{z}\right) \\
& P^{\prime}=\frac{1}{2}\left(P_{2}+P_{4}\right)=\left(P_{0}, 0,0,-P_{x}\right) \\
& r=\frac{1}{2}\left(P_{1}-P_{3}\right)=\frac{1}{2}\left(P_{2}-P_{4}\right)=\left(0, r_{x}, 0,0\right)=\left(0,-\frac{\Delta}{2}, 0,0\right) \\
& S \simeq 2\left(P P^{\prime}\right) ; P^{2}=P^{\prime 2}=m^{2}+\Delta^{2} / 4
\end{aligned}
$$

Where Δ is the momenta transfer.
We here write the main asymptotic terms of two helicity non-flip-matrix elements:

$$
\begin{align*}
& \bar{U}^{+}\left(p_{4}\right) \gamma_{\mu} U^{+}\left(p_{2}\right)=2 p_{\mu}^{\prime} \tag{1,1}\\
& \bar{U}^{+}\left(p_{4}\right) \gamma_{\mu} \gamma_{5} U^{+}\left(p_{2}\right) \simeq 2 p_{\mu}^{\prime}
\end{align*}
$$

Let us introduce the following definition

$$
\bar{U}^{s_{3}}\left(P_{3}\right) \hat{A} U^{s_{1}}\left(P_{1}\right)=\langle\hat{A}\rangle_{s 3, s i}
$$

where S_{1} and S_{3} are the quark helicities.

For the states without helioity flip we have

$$
\begin{align*}
&\left\langle\gamma_{\mu}\right\rangle_{++} \simeq 2 P_{\mu} ;\left\langle\gamma_{\mu} \gamma_{5}^{\prime}\right\rangle_{++} \simeq 2 P_{M} \tag{A,2}\\
&\langle 1\rangle_{++} \simeq 2 \mathrm{~m} .
\end{align*}
$$

The main asymptotio terms of the spin-filp matrix elements which are important in our oalculations look as follows

$$
\begin{gathered}
\left\langle\gamma_{0}\right\rangle_{+-} \simeq \frac{2 m \Delta}{\sqrt{S}} ; \\
\langle 1\rangle_{+-} \simeq \Delta ; \\
\left\langle i \varepsilon^{\alpha \beta \gamma \rho} a_{\alpha} P_{\beta}^{\prime} r_{\gamma} \gamma_{\rho} \gamma_{5}\right\rangle_{+\ldots} \simeq-2 m r_{x}\left(a \rho^{\prime}\right) ; \\
\left\langle i \sigma^{\lambda M} P_{\lambda}^{\prime} r_{\mu}\right\rangle_{+-} \simeq-2\left(\rho P^{\prime}\right) r_{x}=-s r_{x}
\end{gathered}
$$

The matrix elements $\left\langle\gamma_{z}\right\rangle_{+-},\left\langle\gamma_{1}\right\rangle_{+-},\left\langle\gamma_{0} \gamma_{s}\right\rangle_{+-}$
and so on are suppressed as a power of S^{\prime}.
I_{t} is easy to see that the ratio

$$
\frac{\left\langle\gamma_{0}\right\rangle_{+-}}{\left\langle\gamma_{0}\right\rangle_{++}} \sim \frac{m \Delta}{S}
$$

is going to zero as $S \rightarrow \infty$ and the $Q C D$ quark-gluon vertex conserves the quark helicity.

1. Murushev 8. B. In: Proc. of the II Int. Workahop on High Energy Spin Physics. Protvino, 1984, p. 5.
Mrisch A.D. In; Proo. of the6-th Int. Symposium on High Energy
Spin Physics, Marse111e, 1984, p. C2-511.
2. Brodsky 3.J., Lepage G.P. Phys.Rev., 1980, V.D22, p. 2157.
3. Chetyrkin K. G., Krasnikov M. V., Tarkhelidze 4. 耳. Phys.Lett., 1978, 7.B76, p.83.
4. Shifman M.A., Vainstein 4. I., Zakharov V. I. Nucl. Phys., 1979, v. B147, Pp. 385,448.
5. Matveev V.A. Rapp, talk at the XVIII Int. conf. on सigh Energy Phys., Tb111si, 1976, Dubna, D1-10400, p. A5-34.
6. Kamran M. Phys. Rep., 1984, v. 108, p. 272.
7. Pumplin J., Kane G.L. Phys. Rev., 1975, v. D11, p. 1183. Solovier L. D., Shchelkachov 4. F. Particles and Nuclei, 2975, ४.6, p. 57.

Troshin 8. M., Tyurin N. E., Pis'ma Zh. Eksp. Theor. Fiz., 1976, V. 23, p. 716 .

Bourrely C., Soffer J., Wu T. T., Phys. Rev., 1979, V. D19, p. 3249. Goloskokov S. V., Kuleshov S.P., Seljugin O. V. Partioles and Nuclei, 1987, マ.18, p. 39.
8. Kopeliovich B.Z. In: Proc. of the Int. Symposium on Polarization Phenomena in High Energy Phys. Dubna, 1981, D1,2-32-27, p.97.
9. Low F.E., Phys.Rev., 1975, V.D12, p.163;

Muasinov S., Phys. Rev. Lett., 1975, Y. 34, p. 1286.
Gribov L. Y., Levin स. K. , Ryskin M. G. Phys.Rep., 1981, V.100,p.1.
10. Shelest V.P., Zinoviev G.M., Miransky V.A. Models of Strong Interacting Particles, Moscow, Atomizdat, 1975.
11. Smith A.M et al. Phys. Lett., 1985, v. Bi63, p. 267.
12. Landshoff P. V., Nachtmann 0. Z. Phys., 1987, c.C35, p. 405.
13.MoCoy B. M., Wu T. T. Phys.Rev., 1975, V.Dl2, p.3257. Nich H. T., Yao Y. P. Phys. Rev., 1976, v. D13, p. 1082.

Голоскоков С.В.

Спиновые эффекты в КХД на больших расстояниях
Вез использования методов теории возмущений КХД исследовано кварк-кварковое рассеяние при высоких энергиях. Показано, что обмен 2 g -состоянием в t-канале приводит к амплитуде с изменением спиральности, растущей как S, которая в качестве размерного параметра содержит массу составляющего кварка. Наличие таких членов в амплитуде с переворотом спина проверено на основе исследования диаграмм теории возмущений КХД.

Работа вьполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного института ядерных исследований. Дубна 1988

Goloskokov S.V.

E2-88-428

Spin Effects in QCD at Large Distances

The high-energy quark-quark scattering is investigated without using the QCD perturbative theory. It is shown that the two-gluon-object exchange in the t-channel leads to the helicity-flip amplitude growing as S which contains the constituent quark mass as a dimensional parameter. The existence of such terms in the spinflip amplitude is checked in some diagrams of perturbative theory.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Received by Publishing Department on June 15, 1988.

