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INTRODUCTION 

The functional integral approach to first-quantized string 
theoxyl11 relies on classicallY defined quantities. For instance. 
all random trajectories, over which the functional integration is 

performed, belong in topological sense to the same surface; put it 
differently, quantum fluctuations do not produce cuts in the world 
sheet. This invariance of contour is a characterizing feature of a 
first-quantized theory. 

One is therefore entitled to ask about the classical probabili­
ty for the existence of topologies for which the world sheet des­
cribes interactions among strings. These sheets are surfaces with 
cuts on the boundaries: these are cuts proper for open strings and 
holes for closed ones. 

That this is not a trivial question is sUggested by the case of 
classical relativistic particles, where topologies with lines cros­
sing each other are infinitelY unlikely in space-time dimensions 

/2/ •greater than two

We find that a similar result --the vanishing probability for 
the existence of world Sheets describing the crossing of two or more 
strings (equivalently, world sheets with cuts)-- holds for classical 
bosonic strings in dimensions 0 equal or greater than three. 

This is a general conclusion: All theories of classical bosonic 
strings, the interaction of which is based on joining and splitting, 
are free (in D~ J). The superstring case introduces no additional 
features. 

At the same classical level, it is interesting to look next in­
to the possibility of other interactions (i.e., interactions E21 
through jOining and splitting). 

A no-interaction theorem already known to be true for classical 
particles/J1 can then be generalized to strings. The avoidance of 
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such a theorem selects a class of theories --namely those with a co­
variant gauge fixing-- for which direct interactions between strings 
can exist. Such a theorem does not generalize --at least in a straight­
forwardly way-- to superstrings and we do not consider them in the 
following. 

We finally discuss the significance of our results for the first ­
quantized theory, showing that interacting strings cannot be proper­
l~ derived by an underlying classical picture. Instead, the interac­
t:10n must be put in by hand. postulating the desired topologies. Such 
a result weakens the appeal of the first-quantized approach and ad­
vocates the seCOnd-quantized theory as the most appropriate one. 

JOINING AND SPLITTING OF STRINGS 

The classiCal probability for a collision (between particles or 
strings) to occUr is given by the ratio of volumes of phase space of, 
respectively, the initial conditions for which the particles/strings 
do meet and the total volume of available initial conditions. 

According to this definition, collisions--but for particular cho­
ices of space-time dimensions-- have vanishing probability of taking 
place because at least one of the canonical variables is constrained 
to a finite part of phase space. 

This result is readily understood considering first two point 
particles: Their free world lines are straight and "always" meet in 
space-time 0 = 2. The only possibility for them not to collide is 
to have exactly the same momenta; the phase space is thus constrained. 

Adding an extra dimension ( 0 = J) makes the probability to va­

nish, the extra dimension providing for each line that meets the 

other world line an infinity of lines that do not. 


Strings are a little subtler. For a finite mutual separation 

they have a finite probability of meeting in D = J, their interac­

tion defining a world segment. However, the strings never meet for 

asymptotic initial conditions. Were they infinitely extended, this 

probability would have been one. 


This result is more easily visualized in terms of rigid and 

non-rotating stricks and rings, their world sheets being straight 

strips. 
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In D = 4, strings, even for finite separations, have a vanish­
ing probability to collide. Were they infinitely extended, this pro­
bability would have been one again. In this case. the locus of their 
intersection is in general only one pointl 

The vanishing probability for collisions between two (EQ! infi ­
nitely long) strings comes from the constraints in phase space that 
their initial conditions have to satisfy in order for them to meet. 
",or example. in the rest frame of the first string. for any initial 
poBition of the second one. all components of its momentum --except 
one-- belong to a finite volume of phase space. 

Jlinally, in D~ 5 even infinitely long strings never collide. 

aence, an ideal gas of classical relativistic bOSQnic strings 
does n.ot interact in D:2: J. Moreover, an open string r~ever closes 
and v;tce versa. 

Collision here means joining of strings and, by time reversal, 
splitting as well. Accordingly. dubious cases like open strings clos­
ing by two internal points can be solved by time reversal. 

O!BBR INTERACTIONS 

Within a classical Hamiltonian approach·, onCe collisions are 
ruled out, one is left with two possibilities: Either an interaction 
carried by an infinite number of additional degrees of freedom (a 
field) or by an action at a distance. 

Whereas for particles an interaction by way of fields is a na­
tural choice, the hope for strings to be the only fundamental cons­
tituents rests precisely on the non-existence of such a field. This 
leaves, at least at the classical level, only action-at-a-distance 
interactions. 

Classical string theories based on such direct interactions are 
severely restricted by imposing the world-sheet condition (WSC). 
Such a WSC is understood in the following sense. 

Manifest covariance naturally realizes the Poincare invariance 
of the Hamiltonian mechanics of a bosonic string. However. manifest 

• /4/ /2/lor a non-Hamiltonian point of view, see ref. and for 
particles, and raf./5/ for strings. 
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covariance is not necessary and Poincare invariance does not coincide 
with it: Poincare invariance only states the equivalence between dif­
ferent observers; manifest covariance requires that all quantities 
be four-tensors (namely, linear representations of the Poincare 
group). 

What is particularly desirable in manifest covariance is that, 
without any further assumptions, at the same time Poincare algebra 
is represented in phase space by Poisson brackets/61 and each point 
of the trajectory swept out by the string transforms like a space­
time event: the world sheet. 

The existence of such a world sheet nicely agrees with our phy­

sical intuition. 


Whenever covariance is not manifest, while Poincare algebra can 
still be represented in phase space, the existence of a world sheet 
does not follow any longer and it must be enforced. The dynamical 
variables span in this case a nonlinear representation of the Poin­
care group. 

This additional requirement --the WSC-- led for relativistic par­
ticles in the form of a world line condition(WLC)to a rather sUXpris­
ing"no-interaction theorem, about the mutual incompatibility among 
canonical formalism, interactions and WLcl9/ • 

This result is easily generalized to bosonic strings. At the 
same time, the experience gained in the case of particles/71 can be 
used in finding appropriate conditions apt to circumvent it. 

wsc 

We begin by defining the WSC for a bosonic string in a gauge be­
longing to the orthonormal family. Such a condition is here enforced 
rather than deduced because we are interested in non-manifestly co­
variant gauges (e.g.: light-cone). 

Reparametrization invariance of the string gives us two const­

raints: 


7Tl. X Il-,K1 :; to 	 (1) 

k:l.:: rr· >< / I 	 (2) 

where Xr(l",<r) and rrf"(l-,() are the canonical variables andX'!l4-J(, 

.. 


) 


J 


Therefore, the Hamiltonian is a linear combination of k, and 
k~ with arbitrary coeffic1ents/9/ • To determine these two coeffici ­

ents, one must add two more constraints (gauge fixing): 

-'l. I = 	 ""iT - 'f, 0) 

\-I,X - 'Y~,--'l.. ). := (4) 

where h is a fixed vector and Gr = const. in an orthonormal gauge. 

The time independence of these gauge fixings determines the two 
unknown coefficients in the Hamiltonian. Note that only 411 is ex­
plicitly time dependent. The WSC is thenl 

'dJlt.h; iX"',K,J h -£X"Jk,.l[~'"' tX~k"lc:'l.tllL,(~} (5) 
lJl.t,i<, 

where c;~ ("" , b .. 1, ••• , 4) is the inverse matrix of the Poisson 
brackets among constraints and gauge fixings: C:: b '. UJ2..,Kdf' 
Gr generates an infinitesimal Poincare transformation. 

.J 

The left-hand side of Eq.(5) is the reparametrization of the 
world sheet necessary for the phase-space Poincare transformations 
to coincide with the usual geometrical ones. The WSC is the require­
ment for $~ and J~ to exist. Por the free case, they can always 
be found, namely the WSC is always satisfied. In a manifestely cova­
riant formalism this is also true ( J?- .. J6" .. 0); only a lliill-manifest­
ly covariant gauge fixing requires an additional reparametrization in 
order ~the gauge fixing to be preserved under a Poincare transfor­

mation. 

In the interacting case the WSC leads to a no-interaction theo­

rem. 

THE TllEOREJI 

We now prove such a theorem. We consider only two strings inte­
racting by means of a potential depending on the relative position. 
The WSC is now: 

'1'C:'b2X~)Jk'.. J$<\..) + ~ X~J,k(OlJJ ~6("lJ ': 
(6) 

= - f G) .11.. Jc :'., 1X ~I I kJ, J ' 
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where ~. 1,2 identifies the string and an index between parenthes­

es is not summed; 
2 ,tIkl :: 71,1) , X Ci I J k3 ::: 7r('J t X,,) + II 

(7) 
I 1 I I 

4­I<l. -= 7Ti.1) • X p .) / k ... = IT(1) t XC,) V 
and 

I . 
...l).., -= '2 h· ex,,) - XI.') --1. ~ -= i It· ( 7\",,) ­

(8) 

-'l'l = f h· (XC,) T X.,,} - (1' ; .fl4 ,. i It. (rr,.) + 7f(l,) .. 1' 

are the constraints generalizing the one-string case, V being the 
interaction potential. 

To mimic the proof given in ref./8/ for particles, we separate 
Eq. (6) in two parts: 

[xt, kr", J[tC:'(4)J(\(,o) ~ ~~'" J:= - f&,12.. JC;;..,1 XC) I k~JJ (9) 

and 

I X~)I k,,3 f C~f Jr(.J) :: - ~ G- ,J2 .. j c~~ lX(~),k~}' (10) 

where f = J, 4 and we use the orthogonality betWeen tXtl J t Jand 

fX ' k l to isolate the o-reparametrlzation in Eq. (9).
(~I, ~ J 
Eq. (10) is analogous to the WLC for two particles and it is 

only satisfied either when the interaction V is equal to zero or 

when JlA --the gauge fizing-- are Poincare invariant. 

The proof from this point does not differ from the two-particle 
case, to which we refer/71• 

INTERACTIONS CONSISTENT WITH WSC 

The previous theorem shows that only for the free strings the 
WSC can be preserved independently of manifest covariance. In the 
interacting case, this is only possible if Eq. (8), where the evolu­
tion parameter is singled out, is manifestly covariant {i.e., the 
ve ctor . 1'1 must be identified wi th p::. Ja(j [ 71",.) .. rr/» J ) • 
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Por the free bosonic string this was already suggested by Rohr­
lich/9/, providing a consistent quantum theory in any dimension. In 
this case, however, theHamiltonlan is not one of the ten generators 
of the Poincare group/7/. 

A more general gauge fixing, that also allows interactions, is 
the proper-time one/10/. This is not a canonical gauge fixing because 
it is defined using the lagrangian multipliers. 

CONCLUSIONs QUANTUM SIGNIFICANCE 

The vanishing probability for a collision between two strings 
shows that string theory cannot be interpreted as the first quanti­
zation of a model desQribing joining and splitting of classical 
strings. 

In the interacting case, the absence of an underlying classical 
mechanics implies that the topologies of the world sheet over which 
the integration is performed must be postulated. Such a definition 
singles out topologies with a zero probability to exist at the clas­
sical level. 

3
A similar problem would arise if one wanted to rewrite ~ field 

theory as the first-quantized version of particles interacting by J­
body collisions. 

Whether such a result is a real drawback or just a semantic prob­
lem it will depend on the interpretation one wishes to attach to the 
functional integral: Quantum extension of a classical picture or tech­
nical device to produce the correct amplitudes. 

A more natural way to preserve the joining-splitting picture 
would be to interpret strings as quantum excitations of a second-quan­
tized field. In this approach, strings meet because they are fields; 
fields, permeating the entire space, always interact through "colli­
sionsR • There are no world sheets, only Peynman-like diagrams. 

Still, it would be wrong to depict the classical limit as the 
mechanics of joining-splitting strings. We know that the classical 
limit is a theory of particles and fields in mutual interaction. A 
way toward properly defining such a limit may be in terms of an action 
at a distance between strings, in one of the manifestly covariant ga­
uges previously discussed. 
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nenaMOTTe B.~ ~a66pHKegu M. E2-88-41O 
TeopeMa 0 HeB98HMOAeAcTBHH KnaccuqecKHX 
6090HHHX CTpYH H ee KBaHTOBoe 9HaqeHHe 

UOKa9aHo, qTO B npOCTpaHcTBax pa9MepHOCTeA TPH H BNme 
KnaccuqeCKHe 6090H~e CTPY~ He o6be~HHmTCH H He pac~e­
DnHmTCH. 3TO AOKa9aHHoe HaMH YTBep~eHHe COCTaBnHeT qaCTh 
Teope~ 0 HeB98HMOAeAcTBHH. PaCCMOTpeH TaKEe KBaHTo~ 
cnyqaA. 

Pa60Ta BYnOnHeHa B na60paTopHH TeQpeT,KqeCKOA ~9HKH 
OIDIH. 

~~ lUlei••j.a,........at .CCHAOII..... llJ6aa 1888 
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We show that, in dimensions equal or 
three, classical strings do not join or 

greater than 
split. This is 

part ~f a no-interaction theorem that is also proved. 
The quantum theory is considered. 
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