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INTRODUCTION

The functional integral approach to first-quantized string
theory/1/ reliea on classically defined quantities. For instance,
all random trajectories, over which the functional integration is
performed, belong in topological sense to the same surface; put it
differently, quantum fluctustions do not produce cuis in the world
gheet. This invarisnce of contour is & characterizing feature of a
firast-~quantized theory.

One ia therefore entitled to ask about the classical probabili-
iy for the exisitence of topologies for which the world sheet dea-
cribes interactions among sirings. These sheets are surfaces with
cuta on the boundaries: these are cutis proper for open sirings and
holes for closed ones.

That this is not & trivial question is suggested by the case of
clagsical relativistic particles, where topologies with lines cros-~
ging each other are infinitely unlikely in space~time dimensions
greater than two 2 .

We find that a similar result --the vanishing probability for
the existence of world sheets describing the crossing of two or more
strings (equivalently, world sheets with cuts)-~ holds for classical
bosonic atrings in dimensions D equal or greater than three.

This is a general conclusions All theories of classical bogonic
strings, the interaction of which is based on joining and splitting,
are free (in D = 3). The supersiring case introduces no additional
features.

At the same classical level, it is interesting to look next in-
to the possibility of other interactions (i.e., interactions not
through joining and splitting).

A no-interaction theorem already known to be true for classical
particles 3 can then be generalized to strings. The avoidance of
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such & theorem selects & class of theories --namely those with a co~-
variant gauge fixing-- for which direct interactions between strings
can exist.Such & theorem does not generalize --at least in & streight-
forwardly way~-- to superstrings and we do not consider them in the
following,

We finally discuss the significance of our results for the firat-
quantized theory, showing that interacting sirings cannot be proper-
ly derived by &n underlying classical picture. Instead, the intermc-
tion must be put in by hand, postulating the desired topologies. Such
a result weakens the appeal of the first-quantized approach and ade
vocates the second-quantized theory as the most appropriate one.

JOINING AND SPLITTING OF STRINGS

The classical probability for a collision (between particles or
strings) to occur is given by the ratic of volumes of phase space of,
respectively, the initisl conditions for which the particles/strings
do meet and the total volume of available initiml conditions.

According to this definition, collisions--but for particulsr cho-
ices of space~-time dimensions-- have vanishing probability of taking
place because at least one of the canonical varisbles is constrained
to a finite part of phase space.

This result is readily understocod considering firast two point
particles: Their free world lines are straight and "always" meet in
space~time D = 2. The only possibility for them not to collide is
to have exactly the same momenta; the phase space is thus constrained.

Adding an extra dimension ( D = 3) makes the probability to va~
nish, the extra dimension providing for each line that meets the
other world line an infinity of lines that do not.

Strings are a little subtler. For a finite mutual seﬁaration
they have a finite probability of meeting in D = 3, their interac-
tion defining a world segment. However, the sirings never meet for
asymptotic initial conditions. Were they infinitely extended, this
probability would have been one.

This result is more easily visualized in terma of rigid and
non-rotating stricks and rings, their world sheets being siraight
strips. )

in D = 4, strings, even for finite separations, have & venish-
ing probability to collide. Were they infinitely extended, this pro-
bability would have been one sgain, In this csse, the locus of their
intersection is in general only one point!

The vanishing probability for collisions between two (not infi-
nitely long) stirings comes from the constraints in phase space that
their initial conditions have to satisfy in order for them to meet.
For example, in the rest frame of the first string, for any initisal
position of the second one, 8ll components of its momentum --except
one-~ belong to a finite volume of phase space.

Pinally, in D 25 even infinitely long strings never collide.

Hence, an ideal ges of classical relativistic bosguic strings
does not interact in D > 3. Moreover, an open string never closes
and vice versa. *

Collision here means joining of strings and, by time reversal,
splitting as well. Accordingly, dubious cases like open strings clos-
ing by two internal points can be solved by time reversal.

OTHER INTERACTIONS

Within a classical Hamiltonian approach., once collisions are
ruled out, one is left with two possibilities: Either an interaction
carried by an infinite mumber of additiounal degrees of freedom (a
field) or by an action at a distance.

¥Whereas for particles an interaction by way of fields is & nae-
tural choice, the hope for strings to be ithe only fundamental cona=-
tituents rests precisely on the non-existence of gsuch a field, This
leaves, at least at the classical level, only action-at-a-distance
interactions.

Claasical string theories based on such direct interactions are
severely restricted by imposing the world-sheet condition (WSQ).
Such a WSC is understood in the following sense.

Manifest covarience naturally realizes the Poincare invariance
of the Hamiltonien mechanics of & bosonic string. However, manifest

/

*
For & non-Hamiltonian point of view, see ref./4/and/2
particles, and ref./5/ for strings.
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covariance is not necessary and Poincare invariance does not coincide
with it: Poincare invariasnce only states the equivalence between dif-
ferent observers; manifest covariance requires that all quantities

be four-tensors {(namely, linear representations of the Poincare
group ).

What is particulaxly desirable in manifest covariance is that,
without any further assumptions, at the same time Poincare algebra
is represented in phase space by Poisson brackets and each point
of the trajectory swept out by the string trensforms like a space-
time event: the world sheet.

The existence of such a world sheet nicely agrees with our phy-
sical intuition.

Whenever covariance is not manifest, while Poincare algebra can
8till be represented in phase space, the existence of & world sheet
does not follow any longer and it muat be enforced., The dynamical
variables span in this case a nonlinear reprebentation of the Poin-
care group.

This additional requirement -~the WSC-- led for relativistic par-

ticles in the form of a world line condition(WIC)to a rather Burprig-

ing no-interaction theorem, about the mutual incompatibility among
canonical formalism, interaciions and ILC/9 .

This result is easily generalized to bosonic stringas. At the
same time, the experience gained in the case of particles can be
used in finding appropriate conditions apt to circumvent it.

wsc

We begin by defining the WSC for a bosonic string in a geuge be~
longing to the orthonormal family. Such & condition is here enforced
rather than deduced because we are interested in non-manifestly co-
variant gauges (e.g.: lighi-cone).

Reparametrization invariance of the string gives us two const-
raints: )
k1 = 7wt e x'? (1)
;
k:; = Tr-xX, (2)
»
where X' (2,0 ) and 77/*(2,6 ) are the canonical variables and X'sdx.

Therefore, the Hamiltonian is a linear combination of K, and
kK, with arbitrary coefficients/g/. To determine these two coeffici-
ents, one must add two more constraints (gauge fixing):

N, = hr-¥, (3)
N, = wWwx -2, (4)

=

where h is a fixed vector and Y = const. in an orthonormal gauge.

The time independence of these gauge fixings determines the two
unknown coefficients in the Hamiltonian. Note that only ), is ex-
plicitly time dependent., The WS¢ is then:

R0/ {x* k3 3 - {xtkalds - {x",l(.] C«ux’ls,G}a (5)
{le,K,}

where (:;: ( a,b=1,.ve, 4) ia the inverse matrix of the Poisson

brackets among constraints and gauge fixings: C_.‘&. a (éﬁ.‘,Kd)")

IS generates an infinitesimal Poincare transformation.

The left-hand side of Bq.(5) is the reparametrization of the
world sheet necessary for the phase-space Poincare trensformmtions
to coincide with the usual geometrical ones. The WSC is the require~
ment for Sa and g6 to exist. For the free cmse, they can always
be found, namely the WSC is always satisfied. In a manifestely cova-
riant formalism this is also true ( Ja= 56 = 0); only & non-manifest-
1ly covariant gauge fixing requires an additional reparametrization in
order for the gauge fixing to be preserved under & Poincare transfor-
mation.

In the interacting case the WSC leads to a no-interaction theo-
e,

THE THEOREM

We now prove such & theorem. We consider only two strings inte-
racting by means of a potential depending on the relative position.
The W3C is now:

/.T :‘05)((}:);}(“}5 (a)+§x(ilr}<(¢';56?‘) = )

= —{a,n3c i X0 kg



where o = 1,2 identifies the string and an index betiween parenthes-

es is not summed;

] ! 2
|<, = Ty Xy J k3 = TQU t Xy # 4
(7}
: :
k), = Thay * X ; k, = ﬂ'(i)f Xy + 4
and
Ln (X, = Xisy ) ' L (T~ Tnd
Ly o= 3 { ty (23 ’ "7.3-‘-2"" [0} (n (8)

LY, = 3{’" (’Q-)"‘Xu)}“‘f?\ ; ‘Q-d ’%»‘(W‘_)«pﬂ}.,)m'f

are the constraints generalizing the one-string case, V being the
interaction potential.

To mimic the proof given in ref.ja/ for particles, we separate
Eq. {6) in two parta:

{in kw} [f‘::@;g?‘w ¢ 56}»] == {Cﬁﬂn} C:;«)§X£;, kp;j (9)

and
§XC,,K‘32YC};; 5?“(-1) == §G,JZ,} C:ﬂ ixlz)/‘(P}' (10)

»
where F = 3,4 and we use the orthogonality between {Axaq'k;} and
ro to isolate the 6 -reparametrization in Eq. (9).
X{vl, P

Eq. (10) is anslogous to ithe WLC for two particles and it is
only satisfied either when the interaction v is equal to zero or

when ], --the geuge fixing-- are Poincare invarisat.

The proof from this point does not differ from the two~particle
case, to which we refer /.

INTERACTIONS CONSISTENT WITH WSC

The previous theorem shows that only for the free sirings the
WSC can be preserved independently of manifest covariance. In the
interacting case, this is only possible if Egq. (8), where the evolu-
tion parameter is singled out, is manifestly covariant (i.e., the
vector. h must be identified with P = [dg [+ Mu] )~

For the free bosonic string this was already suggested by Rohr~
lich’g/, providing & consistent quantum theory in any dimension. In
this came, however, the Hamiltonlan is not one of the ten generators
of the Poincare group 7 .

A more general geuge fixing, that also allows interactions, is
the proper~iime one « This is not a canonical gauge fixing because
it is defined using the lagrangian multipliers.

CONCLUSION: QUANTUM SIGNIFICANCE

The vanishing probability for a collision between two strings
shows that string theory cannot be .interpreted as the first quanti-
zation of & model describing joining and splitting of classical
strings.

In the interacting case, +the absence of an underlying classical
mechanics implies that the topologies of the world sheet over which
the integration is performed must be postulated. Such a definition
gingles out topologies with a zexro probability to exist at the clase
sical level.

3
A gimilar problem would arise if one wanted to rewrite ¢' field
theory as the first-quantized version of particles interacting by 3-
body collisions.

Whether such 4 result is a real drawback or just a gemantic prob-
lem it will depend on the interpretation one wishea to attach to the
functional integrel: Quantum extenaion of a classical picture or tech-
nical device to produce the correct amplitudes.

A more natural way to preserve the joining-splitting picture
would be to interpret strings as quantum excitations of a second-quen-
tized field. In this approach, strings meet because they are fields;
fields, permeating the entire space, always interact through "colli-
sions"., There are no world sheets, only Feymman-like disgrams,

5t111, it would be wrong to depict the classical limit as the
mechanics of joining-splitiing strings. We know that the classical
limit is & theory of particles and fields in mutusl interaction. A
way toward properly defining such a limit may be in terms of an action
at a distance between atrings, in one of the manifestly covariant ga-
uges previously discussed.
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