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1. Introduction 

Conformally invariant field theories are of use in a wide range 
of phenomena. Conformal models in ·two dimensions are of particular 
interest as they constitute a field-theoretical basis of strings and 
superstrings. They describe possible string compactifications, pro­
vide explicit field realizations of Virasoro and auper-Viraeoro al­
gebras, make it easy to establish a correspondence between the string 
theory and the d=2 statistical systems, etc./11. The geometric struc­
~ure of these models is expected to encode the characteristic.featu­
ree of the geometry underlying string and superstring dynamics and 
eo it deserves thorough analysis. 

Many aspects of d=2 field theory are well modelled by its d=1 
prototype, that is the quantum mechanics. In particular, the theories 
of a point particle and a auperparticle were intensively studied for 
the last years, with focusing on their similarities with the string 
and superstring theories. A good deal of attention was paid to super­
symmetric quantum mechanics which has interesting applications in its 
own right/21. In view of the important role of conformal field theory 
it seems instructive to apply to studying conformal/)/ and superconfor­
mal / 4 , 5/ mechanics as these provide the simplest examples of such a 
theory. They reveal amusing analogies with the special class of d=2 
conformal modele, the Liouville and super-Liouville ones. The latter 
have profound implications in string and superstring theories/G,7/ 
and enjoy remarkable geometric properties, such as full integrability. 

In the pioneer paper by de Alfaro, Fubini and Furlan/3/ as well 
as in the subsequent papera/4,5/ devoted to superaymmetric versions 
of conformal mechanics the main emphasis was made on quantum-mechani­
cal aspects of these models (spectrum, the structure of Hilbert apace, 
etc.). At the same time, their geometric basics were not understood 
in full generality even at the classical level. Such an understanding 
might 
~tcy 
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be conducive both to achieving a 
of d=2 conformal theories (e.g., 
ones) and to constructing higher 

deeper insight into the gee­
the Liouville and super-Liou­

N auperextenaiona of con-



formal mechanics1 >. Up to now, only the N~2 and N•4 superconformal me­

chanics have been constructed /4,5/. A manifestly invariant superfield 
off-shell formulation was given only for N=2 caae/4/. 

In the present and forthcoming papers we propose a universal geo­
metric framework for treating conformal mechanics and ita superconfor­
mal extensions. These systems will be shown to be related to the geo­
desic motion on group manifolds of dc1 conformal and euperconformal 
groups. The basis of our consideration is the covariant reduction me­
thod developed earlier Qy two of ue/B/ in application to the da2 Lieu­
ville-type systems. It proved to be an effective tool for algorithmic 
construction of higher N auperextensione of the Liouville equation 
and was recently used to set up a new wide class of d=2 euperconfor­
mal sigma-models with the Wees-Zumino action/9 , 101. Geometrically, this 
method amounts to singling out certain finite-dimensional geodesic hy­
persurfaces in infinite-dimensional coset manifolds of d=2 conformal 
and euperconformal groupe. The Liouville and super-Liouville equations 
naturally emerge as the most essential conditions among those speci­
fying these hyperaurfaces. To put the method in force, one merely needs 
to know the structure relations of the corresponding d=2 auperconfor­
mal algebra. 

The equations of conformal and superconformal mechanics are gene­
rated when applying the same techniques to the group spaces of d=1 
conformal and superconfor.mal groups. These groups are finite dimensio­
nal so all the things go aLmpler than in the d=2 case. This makes it 
possible to understand more clearly the geometric meaning of covariant 

reduction. 
In the present paper we give an account of our approach by the 

simplest example of bosonic (N=O) conformal mechanics. Our considera­
tion will be purely classic. Supers,ymmetric case will be treated in 
the forthcoming paper where we will construct off-shell superfield 
formulations of B=4 superconfor.mal mechanics. 

The matter is organized as follows. In Sect. 2 we interpret con­
formal mechanics in terms of Cartan•s 1-forms on the parameter space 
of d=1 conformal group 50(1,2) subject to a kind of covariant reduc­
tion. In Sect. 3 we explain the geometric meaning of this procedure 
and prove that the equation of conformal mechanics defines a class of 
geodesics on the group manifold. A simple geometric method of integra-

1 ) By N we mean the number of real spinor generators. 
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ting this equation is also presented. It admits a straightforward 
extension to more complicated cases including the superaymmetric one. 

In the Appendix we establish the relation with the customary 
description of geodesics in terms of the metric on the manifold. 

2. Conformal mechanics and the nonlinear realization 
of group S0(1,2) 

We begin with recalling the basics of conformal mechanics. It 
is defined by the equation /3/ (We consider the one-component case) 

i (t) = r· ;, LVll cm·2 l PJ = <.m0 
) OJ= ) , (2.1) 

which follows from the action 

S - i J [ . • ~· J - ~'~' Jt. (g J - s• (2.2) 

The system (2.1), (2.2) respects invariance under transformations 
of the da1 conformal group S0(1,2) 

'it = () .. /,t -+ cl:.' = J (t) 
(2.3) 

a fCtl = i j. w 
where ajb)c are, respectively, infinitesimal parameters of d:1 tran­
slation ( L_1 ) , dilatation( L.o) and conformal boost ( L .. 1 ) The ge­
nerators Ln form the algebra$0(1,2) """'-' Si.(2,R): 

(2.4) 

(The simplest representation of L n is via Pauli me trices, 
L:t1 := f ('t:t + l. t'l) , L 0 = k f:l ) • This notation demonstrates that 

S0(1,2) is a finite-dimensional prototype of d:2 conformal (i.e. Vira­
aoro) algebra (and enters into the latter as a maximal subalgebra). 

Our aim is to relate the system (2.1), (2.2) to the geometry of 
group S0(1,2). It will be convenient to choose the following para­
metrization of this group: 

9( , ) 11 ix'L,eix'L'"e'x'Lo :x: x' x 3 = e- . 
) ) 

( 2. 5) 

Nonlinear 50(1,2) transformatiops in the apace of parameters{;cLJare 
induced by left multiplications of group element (2.5). 

(2.6) 
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II I H (x') -} (x')::c> (2.7) 

S"'x' = .f'(x'). 

i.x,3 
It is seen that XJ. and ez transform just as the quanti ties £ 

and J in eqs. (2.)). In what follows, this will allow us to identt­

fy both sets. The property that the line submanifold { x1j is closed 

under the action of S0(1,2) is related to the fact that x:t paramet­

rizes the left coset of S0(1,2) over the subgroup with generators 

L.t , L o 
The local geometric properties of group manifold { Xtj are 

specified by the left-invariant Cartan 1-forms; 

-x' 
uT' = e dX 1 

u.l'' 

J:r3 - 2:r.2 Jx1 

ex'LJx• + cx•)'Jx'J 

(2.8) 

(2 .9) 

which are nothing else than the 80(1,2) convariant differentials of 

coordinates. The invariant line element Jsl is constructed from 

these forms. Representing L n by Pauli matrices and choosing an app­

ropriate normalization, Jsz can be written as 

- f.r- ( f'J ~ r·n) = 2 ur' w''- ~ w'w' = 

::: ;<dx'Jx'-- f (J:x:.')" + 2x'-dx1dx 3 = 
= ~ij d:x'J:x:l . 

(2.10) 

Let us now identify :X-1 with the time t and consider an arbi t­

racy curve in (::X:~ • 

f.- x'-- J x'=x'(l) ) 
x• = x'(t). (2.11) 
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Now the group S0(1,2) is parametrized by the time t and tbe Goldstone 
fields X2.(i) , :X:3(t:) which specify the embedding of the curve in[xi..J 
and correspond to the conformal boost and dilatation, respectively. 
Thus we are left with the nonlinear realization/11 - 13/ of da1 confor­
mal group. At this stage, it is convenient to pass to thequantities 
with physical dimension ([1:]=c.tn, (X?.]::crn·t, lx3J.::onc ), making use of 
the automorphism of the algebra (2.4)L_i~JL.J , L.:t~r.tLH, 

L
0
---+ Lo where J is an arbitrary constant (it can "be dimeneionful). 
So far, our consideration was purely kinematical; the f -depen­

dence of fields x'(t), X 3(l) was unrestricted. Just as in the case of 
nonlinear realization of ihe d=2 conformal group /B/, the d;Yn.amics 
ariSes as a result of imposing the covariant reduction conditions on 
coordinates f i. J X 2(t) 1 Xl(t)] • This reduction proceeds in general /8! as follows • One sets equal to zero all the Cartan forms except for 
those belonging to some subalgebra of the initial algebra. In the d=2 
case such a subalgebra was chosen to be either So (1, 2) or the algebra 
of d=2 Poincar~ group. For the corresponding dilaton field there ap­
peared, respectively, either the Liouville equation or the free mass­
lese one. In the present case, we will perform the reduction to a sub­
algebra with the one generator 

Ro=L_,+rn•L.~- (2.12) 

One may check that this generator corresponds to compact S0(2) sub­
algebra of SO (1 ,2 ). Thus we impose the constraints 

(2.13) 

that amount to the set of Pfaff's equations 

f.i.~::x2. 

X.• + (x.")" 

(a) 

(b) 
(2.14) 

The first one is kinematical, it covariantly expresses the Goldstone 
field ~~ as the derivative of the dilaton, thereby realizing the in­
verse Higgs phenomenon 1141. Indeed, it follows from the transforma­
tion laws (2.7) that X~ transforms just as ~ i:. 3 

• On substitution 
of the expression for JtL into eq.(2.14b) the latter becomes 

which 
(2.1) 

-2x3 

x' + t (x')' 2m 2 -1! (2.15) 

is easily recognized as th~ equation of conformal mechanics 
after identifying J(t) = e"'i.XYtJ, OL= t'h2. • 
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Thus, we have derived eq.(2.1), starting with the group space of 

S0(1,2) where S0(1,2) is realized by left shifts and further constrai­

ning covariant differentials of coordinates by eqs. (2.14). The geo­

metric meaning of this procedure will be clarified in Sect. ). Here 

we would like to note that one might choose a more general combina­

tion of S0(1,2) generators than in eq. (2.12) 

(2. 16) 

Then, instead of eqe.(2.15), one would have the more general set of 

equations 

-2X 3 

=:;;-- x • + ex•)• = m•-e 

(a) 

(b) 

(2.14') 

Substitution of eq.(2.14'a) into (2.14'b) yields again eq. (2.15), 

now with tn~= rJlZ.-o(2 : 

(2.17) 

So, for o(2..( fn2 we have the standard conformal mechanics while for 

d.. 2.. > fn' we get the 11 hyperbolic" version of eq. (2.1 / 3/. For «2.:: ;:;. ' 

the equation reduces to the free one. These three different situations 

correspond to three possible nonequivalent covariant reductions of 

the manifold {xLJ • Indeed, it is a simple exercise to check that the 

generators (2.16) with the parameters r;..2. , c1..2.. varying within the 

above three domains Cannot be related to each other by any S0(1,2)­

rotatinn and so belong to different orbits in the group space of 

S0(1 ,2). Actually, the term"' Loin Ro can always be removed by a 

proper S0(1,2) rotation : 

(2 ,18) 

that amounts to a constant right shift of ~ (x.L.J X 2
1 X 3

) as 

"" i.t:i. L ... ~ 
9 (x', X~ x 3) = ~ (X

1
1 x 2

1 X3) e => 
"" .. -x3 
x • = :x' + "" e . 

(2.19) 

In terms of.£~, 1:. , x3 , the set (2.14') looks just as (2.14), 

With rrll.:::: f); z- ot 2 • Different types of covariant reduction are thus 

associated with three nonequivalent one dimensional subalgebras of 

50(1,2)1 
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L +m•L L -m•L L -i. +i. ) -1. .,. :1. ) -1 ~ 
(2.20) 

Recall that the first subalgebra isS0(2) while the second one is 

.so(1.1). As will be shown in S.eot. 3, these three patterns correspond 

to three nonequivalent classes of geodesics on S0(1,2). 

To close this Section, we present a simple invariant first-order 

action for the system (2.14) in terms of differential 1-forms (2.9) 

(2.21) 

Varying ~2 yields eq.(2.14a). Inserting this constraint back into 

eq.(2.14b) brings.the latter into the standard second-order form 
(2.1) (with J(i) = etx'(t) ). 

3. Geometric interpretation 

Let us explain the geometric meaning of constraints (2.14). We 

will discuss the reduction to..S0(2) eubalgebra (2.12), keeping in 

mind the relation (2.18) and the fact that the generators of other 

possible redUction subalgebras (listed in eq.(2.10)) follow from 

Ro (2.12) either by substitution m~i..m or by putting m2.==-0. 

Differential forms (2.9), being covariant differentials of 

S0(1 ,2)-coordinatea .x,L., specify infinitesimal shifts of x,L along three 

independent directiom in {x.LJ. The co~atrainta (2.14) restrict this 

motion to the shift along a curve generated by the right action of 

abelian subgroup with generator Ro • Indeed, solving eq.(2.13) for 

~R ( t 
1 

X 2 (t.)) X 3 (t)) , we find that the most general solution is 

~R (t, x', x') = So ( c~ c', c') eit'(l) (L_,+m'L,~ (3.1) 

where C l are integration constants and 

d't = €-x'<t) df. . 
• 

(3.2) 

It is easy to argue that eq.(3.1) defines a geodesic on the ma­

nifold { xiJ. It is known/l5/ that the geodesic motion on the coset or 

group manifolds is generated by the right action of the group on the 

coset elements. In the group space, any such element specifies a 

point whence some geodesic grows. The geodesic as a whole is restored 

by multiplying this fixed element from the right by an element of cer-
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tain abelian subgroup having as the group parameter the natural para­
meter along the curve (the group is assumed to be taken in the expo­
nential parametrization).The choice of this subgroup fixes the tan­
gent to the geodesic at the origin. Thus, the geodesic on a group 
space is completely defined b.Y .choosing an initial group element and 
some one-parameter subgroup acting on the former element from the 
right. 

The formula (3.1) ideally fits in this general scheme. To prove 
that the S0(1,2)-element (J.1) defines a geodesic, we merely need to 
show the identity of 1: with the natural parameter S • Inserting 
eqs.(2.14) into the definition (2.10) and taking account of eq.().2) 
one gets 

ds' = 
-2X 3 

2rn•w-•w-j = 2rn•e (Jt)'= 
(3.)) 

i.e. t' actually coincides with S (up to a constant shift and 
rescaling). 

Expression (3.1) provides the general solution to the constra­
ints (2.14) and, hence, to the conformal mechanics equation (2.15) 
(or (2.1)) which is equivalent to the set (2.14). So we have shown 
that this equation describes a class of geodesics on the group 
S0(1 ,2), with choosing the coordinate xi: i as a parameter along 
the geodesic. For these geodesics ciS 1"70, so they can be called 
"time-like" ones. Two other types of geodesics on 80(1,2), which are 
obtained by the reduction to two other subalgebras among those listed 
in (2.20), correspond, respectively, to dS 1< 0 and JS2

=. 0 .Thus they 
are "space-like" or "light-like".- In the latter case (it is described 
by the free l"'n'l.= 0 version of e-q. (2.15)) IS I cannot serve aa an evo­
lution parameter, while 1: or f still can. In the Appendix we es­
tablish the explicit relation to a more familiar description of geo­
desics in terms of the metric 9~j introduced by eq. (2.10). 

The geometric approach allows us to render a transparent meaning 
to the procedure of integrating eq.(2.1). It is reduced now to find­
ing out the explicit expressions for the original variables {X~ J in 
terms of entries of the on-shell matrix ().1). The constant factor 

9o entering into eq.(J.1) actually involves only two independent 
integration constants which parametrize the coset S0(1,2)/S0(2). The 

third one can always be absorbed into a redefinition of ~ 
convenient to choose go as 
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~o = eic'L_< eic'L •. 

Substituting into eq. (3.1) the expression for 9~ ( t 1 X~ X 3) 

(2.5) one finds 

c' 
t = C1 

+ * e t9(mt') 
-c' 

:x• = e .!!! sin (2~»t') 
2 

x.' = c• - 2 ln w£ (~»t) 

(3.5) 

that yields the explicit parametrization of geodesic in terms of pro­
per time Z (or S ). In accord with the geometric interpretation of 
eq.(J.1) given above, we have (the use was made of eq.(J.J)~ 

Jl:: - i c' t (s:o) = c• d$ ls:o -(lm e 
-c' :;.e (3.6) 

x.' (s=o) = c' 

whence it follows that the constants c1, C3 parametrize an ini tiel 
point on the geodesic. We also see that, up to an unessential resca­
ling, the coupling constant n1 defines the components of the tan­
gent vector to the geodesic at this point. 

It is a simple exercise to extract from eqs.(3.5) the general 
solution of eq.(2.1) 

where 

!:x:'(t) • 
Jet)= .e: = -v:4 (1 -r ~ t)' +A-'m•l', 

• 
-c' B =- c'm•e . 

(3.7) 

o.a) 

Any other form of the solution is reduced to (3.7) by a redefinition 

of integration constants. 
One may check that the general solution (3.7) is invariant under 

the action of the 30(2)-subgroup generated by 

(3.9) 
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~'.f(t) =!f. (tl guJ- J.UJfUJ = o · 
J.(t)= a{1...-eti + A-'('"''..-B'}L') · 

(3.10) 

(3.11) 

Thus, there occurs the dynamical spontaneous breaking of S0(1,2) to 
SO (2) cC R /3/. This phenomenon has a simple interpretation in terms 
of geodesics. The generator R is related to R,.(2.12) via the SQ_(1,2)­
rotation by the element ~o (3.4) 

R ::.k13.[L_,+rn•L,H;'. 
So, the left action of exp{i.aRJ on g. (x.1.)x.2.)x)) (3.1) merely 
results in the shift of proper time 't: by an amount a A-J , without 
affecting the shape of geodesic, X.::('t') ~ X..:(t'+OA-1

). In other words, 
the left action of exp [La R J generates the shift along a given geo­
desic. The action of SC(1,2)/S0(2)- transformations changes the integ­
ration constants and a~ transforms one geodesic into another. 

It is worthwhile to note that the integration of eq.(2.1) can be 
also viewed as a reparametrization of the group spAce of S0(1,2). In­
deed, let us choose from the beginning a different parametrization of 
S0(1,2) 

. c'L · c'L ·z- (L + rn•L ) · ~ (:x.', x', x') = ~ (c', c~ Z') = e' ., .e.' 0 e' -< ' 

Then eqa.(3.5) give the relation between the two equivalent paramet­
rizatione of 50(1,2). The Cartan forms in this new parametrization 
are as follows 

- c3 
/.. i ur' = e d c'cos (2,7:) + ;(; Jc3 5in(u,r) + ;;;-.w· 

One is free to impose the constraints (2.14) in any parametrization. 
It is easy to check that in terms of new variables these constraints 
ere reduced to 

J c' 
.J'l:' =o => 

< ' c 'e are constants (3.12) 
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Express-ing Cit · c3 via original variables, one obtains two first 

integrals of eq.(2.1) (it is convenient to pass to the variables A 
and B given by (J.s))2 l, 

AW= (~-t~)'+'g':i'; B(t)=j(~-§t)-'f:t 
(3.13) 

• • 
A=B=O· 

Note that the variables C'{f), C. 3(t) , t: (/:) are in a sense analogous 

to the action-angle variables ~f two-dimensional integrable systems. 

We would like to mention that the one more way of solving eq. 

(2.1) is to reduce the latter to tbe harmonic oscillator equation. 

Introducing f=g-J.and going to the proper time 1: by eq.(3.2) one 

may rewrite (2.1) as 

J•o N 

_.:l + m•o =0. 
J't'l. j 

Solving this equation and expressing t in terms of t from the 

first-order eq.(3.2) one arrives again to the expression (3.7). 

4. Conclusions 

In this paper we have demonstrated that the covariant reduction 

method proposed originally for unified geometric description of the 

Liouville-type systems in two dimensions/S,9/, equally applies to 

da1 systems, i.e. the models of particle mechanics. The foundations 

of the method can be clearly understood when looking at the d=1 case. 

The simple example we have analyzed here in detail is mostly of il­

lustrative character, though it perhaps would be of some interest to 

see what are the implications of this geometric picture in the quan­

tum case. The actual power of the covariant reduction approach will 

be demonstrated in our forthcoming paper where this technique is 

applied to N•4, d•1 superconformal group SU(1,1/2) to construct a 

manifestly invariant superfield formulation of N=4 superconformal 

mechanics. 

It ia worth mentioning that the model we have considered belongs 

to a wide class of completely integrable d=1 systems. The list of 

corresponding potentials can be found, e.g., in the review by Olsha­

netsky and Perelomov / 161. An interesting task is to reproduce in 

2 ) Note that 
quantities by the 

the energy 1-1 = (~)'+ ~· 
simple formula 

H =A-'[,'+ B']. 

II 
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our approach the remaining potentials from this list (and, perhaps, 
to discover the unknown ones), starting with a nonlinear realization 
of an appropriate group and imposing the covariant reduction constra­
ints on the relevant Cartan 1-forms. Also, it would be desirable to 
understand the relationship with the general method of integrating 
these systems which has been proposed by two authors cited above. 
The method is based on relating the equation associated with a given 
integrable potential to the free (or geodesic) motion on a certain 
higher dimensional auxiliary space. So it bears some formal analo­
gies to ours. We would like to emphasize once again that the main me­
rit of our scheme should be seen in its algorithmic character. One 
chooses the group and the covariant reduction subgroup (the latter 
can be in general nonabelian), after that all the things (deducing 
the relevant mechanical system and finding out its general solution) 
go straightforwardly. The question to be answered is, of course, 
whether all the d=1 integrable systems can be obtained in this way. 

Now let us dwell on analogies with the Liouville equation which 
is the simplest d=2 completely integrable system. These analogies are 
far-reaching, despite the fact that in the Liouville case one deals 
with an infinite number of degrees of freedom. The latter circumstance 
manifests itself in that one starts with the infinite-dimensional 
d•2 conformal group. Respectively, there appear infinitely many Pfaff's 
equations of the type (2.14a)/B/. By these equations, the infinitely 
many fields parametrizing a coset of d=2 conformal group are expres­
sed via a single dilaton field. The latter is a direct analog of field 
X3(i:) • The Liouville equation arises analogously to eq. (2.14b). The 

da2 counterpart of d=1 reduction subalgebra S0(2) is the subalgebra 
S0(1,2) of the d=2 conformal algebra. Respectively, the Cartan form 
surviving the covariant reduction lives on that S0(1,2). Ae a conse­
quence of covariant reduction constraints and of the original Maurer­
-Cartan equations, the remaining form satisfies the standard zero cur­
vature condition that expresses the fact of complete integrability of 
the Liouville equation. 

The zero curvature conditions have no analog in the dc1 case 
because of lack of two-forms in one dimension. However, as we have 
seen, the first-order covariant reduction constraints can still be 
implemented and these have a transparent geometric meaning. Thus it 
seems that the covariant reduction scheme may bear a deeper relation 
to the concept of integrability than the conventional approach based 
on the zero curvature representation. It would be of interest to ex­
tend this scheme to other integrable d=2 systems, in particular to 
chiral fielfi models. We conjecture that the latter models are asso-
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ciated with geodesic hypersurfaces in group manifolds of Kac-Moody 

groups/17 I. ' 
As a final remark, we would like to stress that the results of 

this paper and of /B,gj demonstrate a close relation between the d~2 
and d~1 Liouville-type systems on the one hand and the intrinsic geo­

metry of d=2 and d=1 conformal groups on the other. Perhaps this fact 

deserves a special attention in view of recent growth of interest in 

the geometry of coset spaces of the d=2 conformal group in the con­

text of string field theory /1S, 191. A finite-dimensional toy model 

of the latter based on the group S0(1 ,2) was recently considered in 
/20/. 

Acknowledgements. We are greately obliged to A.Paahnev and V.Tkach 

for stimulating discussions. 

Appendix. Relation to the standard description of geodesics 

on 80(1,2) 

We start with the metric 9 ~J defined by eq.(2.10) 

(A,1) 

The equation of g~odesics corresponding to this metric is written as 

(A,2) 

X' 

Here IJ~ are Christoffel coefficients calculated by the standard 

rules of Riemann geometry. In components, eq.(A.2) amounts to the set 

:X•- x•±• ==o 
x.• +2x'x•±• + x•±.• +2(x')'±•.x• c=O 

X3 - 2:i:..~Xj - 2 x 2.::i:./'X. 3 ::: o. 

(a) 

(b) 

(c) 

(A,J) 

Let us show that any solution of eqs.(2.14) solves eqa. (A.}}. 
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Making change of variables S ~ X:l=-{: in eqs.{A.,J) and using eq., 
(J.J), it is easy to check that eq.(A.Ja) is satisfied identically. 
The rest of eqs.(A.J) is checked by using repeatedly eqs.(2.14). 

Conversely, one may get the set (2.14) as a result of partial 
integration of eqs.(A.J). 

Specializing to the 11 time-like" case d S~ ~ 0 , one readily 
obtains 

Jx1 _ {!_x' 
dS - }< 

-x' 
x' = £ xJ -}'• e 

2 3 
• "- J_ -;?.X. ~""·· + J._ (x."') - - 0 2 .......... '-1 -2.JJL-' 

(A.4) 

where }1 , }2.. are integration constants and the derivatives are 
taken with respect tot-:: x 1 • Upon identifying }2- = ol , m' = z.~t 
these equations coincide with eqs.(2.14'), (2.17) and so are equiva­
lent to eqs.(2.14). It is worthwile to emphasize that the coupling 
constant rn' appears as an integration constant in this scheme. 
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