


1. Introduction

Conformally invariant field theories are of use in & wide range
of phenomena. Conformal models in two dimensions are of particular
intereat as they constitute 8 field-theoretical bagis of strings and
superstrings. They describe possible string compactifications, pro-
vide explicit field realizations of Virasoro and auper-Virasoroc al-
gebras, make 1% easy to establish a correspondence between the string
theory and the d=2 statistical systems, etc. 1 « The geometric struc-
ture of thege models is expected to encode the characterigtic featu-
res of the geometry underlying string and superstring dynamics and
go it degerves thorough analysis.

Many aspects of d=2 field theory are well modelled by ite d=1
prototype, that ig the guanium mechanica. In particular, the theories
of a point particle and a superparticle were intensively studied for
the lagt years, with fecusing on their similarities with the string
and superstring theories, A goocd deal of attention was paid to super-
symmetric quantum mechanice which has interesting applications in its
own right 2/. In view of the important role of conformal field theory
it seems instructive to apply to studying ccnformal/3/ and superconfor-
mal /4,57 mechanicg ag thege provide the simplest examples of such a
theory. They reveal emusing analogies with the specisl cless of d=2
conformal models, the Liouville and super-Liouville ones, The latter
have profound implications in string and superstring theoriesls'
and enjoy remarkable geometric properties, such as full integrability.

In the pioneer paper by de Alfarc, Fubini and Furlan/3 ag well
as in the subsequent papers 445 devoted tc supersymmetric versions
of conformal mechanics the main emphesis was made on quantum-mechani-
cal aspects of thege models (spectrum, %the structure of Hilbert space,
etc, ). At the same time, their geometric basice were not understood
in full generality even at the classical level. Such an understanding
might be conducive both to achieving a deeper insight into the geo-
metry of d=2 conformal theories (e.g., the Liouville and super-Liou-
ville ones) and to constructing higher U guperextensions of con-
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formal mechanics ‘. Up to now, only the Ne2 and N=4 superconformal me-

chanics have been constructed /4’5/. A manifestly invariant superfield
off-ghell formulation was given only for N=2 case/4/.

In the present and forthcoming papers we propose & universal geo-
metric framework for treating conformal mechanics and its superconfor-
mal extensions. These systems will be shown to be related to the geo~
degic motion on group manifeolds of d=1 conformal and superconformal
groups., The basis of our consideration is the covariant reduction me-
thod developed sarlier by two of us’sl in application to the d=2 Licu-
ville-type systems, It proved to be an effective tool for algorithmic
construction of higher K superextensions of the Licuville equation
and was recently used to set up a new wide class of d=2 puperconfor-
mal sigma-models with the Wess-Zumino action’9’1o/. Geometrically, this
method amounts to singling out certain finite~dimensional geodesic hy-
pergurfaces in infinite—dimensional coget manifolds of d=2 conformal
and superconformal groups. The Liouville and super-Liouville equations
naturally emerge ms the most essential conditions among those speci~
fying these hypersurfaces. To put the method in force, one merely needs
to know the struciure relations of the corresponding da2 superconfor-
mal algebra.

The equations of conformal apd superconformal mechanics are gene-
rated when applying the same techniques to the group spaces of d=1
conformal and superconformasl groups. These groups are finite dimensio-
nal so all the thinge go simpler than in the d=2 cage, This makes it
possible to understand more clearly the geometric meaning of covariant

reduction.

In the present paper we give an account of our approach by the
simplest example of bosmonic (N=0) conformal mechenice. Cur considera-
tion will be purely claessic. Supergymmetric case will be treated in
the fortheoming paper where we will construct off-ghell superfield
formulations of N=4 puperconformal mechanics.

The meatter is organized as follows. In Sect, 2 we interpret con-
formal mechanice in terms of Cartan's 1-forms on the parameter space
of d=i1 conformal group S0(1,2) subject to a kind of covariant reduc-
tion. In Sect. 3 we explain the geometric meaning of this procedure
and prove that the equation of conformal mechanice defines a clese of
geodesicas on the group manifold. A simple geometric method of integra-
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By N we mean the number of real spinor generators.



ting this equation is also presented. It admits a straightforward

extengion to more complicated cases including the supersymmeiric one,
In the Appendix we establish the relation with the customary

description of geodegics in terms of the meitric on the manifold.

2., Conformal mechanics and the nonlinear realization
of group S0(1,2)

We begin with recalling the basica of conformal mechanics. It
is defined by the equation 3 (We congider the one~component cese)

S =v*h | [fA=om?, [g]= e (2.1)

winich followe from the action
1 + z -
Sz lal@ -5l , Wl=em (2.2)

The system {2.1), (2.2) respects invariance under transformations
of the d=1 conformel group 350{1,2)

St =a+dt+ct®=f(t)
Sp)= 45

where a,é,c are, respectively, infinitesimal parameters of d=1 tran-
slation { L.; ), dilatation{ [.o) end conformal boost{Ll.;} . The ge-
nerators L., form the algebra $0(1,2) ~ S&(2,R):
L[Ln}Lm]:(h*Yh)Lna-m)‘ n,m=-4,01 (2.4)
(The simplest representation of Ln is via Faulil metrices,
Li_‘_:% (T3 L’E’?-) . Lo“::,_t— 72 ), This notation demonstrates that
§$0(1,2) is 8 finite-dimensional prototype of d=2 conformal (i.e., Vira-
soro) algebra (and enters into the latter as a maximal subalgebral,
Our aim is to relate the system (2.1), (2.2) to the geometry of
group S0(1,2). It will be convenient to choose the following para-
metrization of this group:
E.x‘L.,_ cx2f, N t.'lelo
g (3t ocr oca) = €7 FgtF g,
Nonlinear SO(1,2} traneformations in the spece of parsmeters {xl'}are
induced by left multiplications of group element (2,5).

(2.3)

(2.5)

9 (a,6,¢) §lt 0 2) g ) 2tfa), e



Sact = a = bact «cfet)= £ (22

i i
gxa _ "21;5 (.I‘,‘) - _]c (3('-‘)3!‘.2 (2.7)
S = §'(xy).
1.3
. 1 2L . .
It is seen that X° and £ transform just as the gquantities t

and f in eqe. (2.3). In what follows, this will allow us to identi-
fy both seta. The property that the line submanifold {CC‘} is cleosed
under the @ction of 80(1,2) is related to the fact that x! paramet-
rizes the left coset of 50(1,2) over the subgroup with generators
Log L] L o *

The local geometric properties of group manifold {x} are
apecified by the left-invariant Cartan 1-forms:

4749 = tw" L, (2.8)

3

-
w-—l - e d‘a.:i
wo
w

1

dx3 - 2x2dxd (2.9)
0% doc? « (a2)*dxt]

which are nothing else than the S0(1,2) convariant differentials of
coordinates, The invariant line element dS* is constructed from
these forms. Representing Ln by Pauli matrices and choosing an app-
ropriate normalization, 45% can be written as

= - {:r- (g‘cl 3 a"dﬁ) = ew-lwu-’%wofﬂ":
= adxidx? - § (dx?)* + 222 dxioed
=9 dxidxd

Let us now identify i with the time £ and consider an arbit-
rAryY curve in {x‘}

(2,10}

gzt x=x(d) , xt=xN(E). (2.11)
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Now the group S0(1,2) is parsmetrized by the time £ and the Goldstone
fields X*(¢) , X3(4) which specify the embedding of the curve in[x‘]
and correspond to the conformal boost and dilatation, respectively.
Thus we are left with the nonlinear realization ull of d=1 confor-
mal group. At this stage, it is convenient to pass to the quantities
with physical dimension ([t]=cm ,[x*1=em™, [23]zcm® ), meking use of
the automorphism of the algebra (2.4) L., —=fL. ., , [,—§*[,  ,

L— L.,_, where § ip an arbitrary constant (i% can be dimensionful).

So far, our consideration was purely kinematical; the ¢ ~depen—

dence of fields 2¢*(£), ¢*(4) was unresiricted. Just as in the cese of
nonlinear realization of the d=2 conformal group /8/, the dynamics
arises as a result of impoging the coveriant reduction conditions on
coordinates {t , oc?(¢}, xa(f)] . This reduction proceeds in general
ag followa/e’ « One gets equal to zero all the Cartan forms except for
those belonging %o some gubalgebra of the initial algebra. In the d=2
case puch a gubalgebra wasg chosen to be eilther So {1,2) or the algebra
of d=2 Poincard group. For the corresponding dilaton field there ap-
peared, respectively, either the ILiouville equation ¢r the free mass-
lese one. In the present case, we will perform the reduction to a sub-
algebra with the one generator

R, = Lo, +mtl,, . (2.12)

One may check thet this generator corresponds to compact $0(2) sub-
algebra of SO (1,2). Thus we impose the constrainte

3_143 = 3;43!! = (W™ R, (2.13)

that amount te the set of Pfaff's equations

i .3 2

wl=0 = Fx°=z-x {a)
} . 223 (2.14)

Wr=mwi = e + (x2)? = mie . {b)
The first one is kinematical, it covariantly expresses the Goldetone
field 2% as the derivative of the dilaton, thereby realizing the in-
verse Higga phenomencn /14/. Indeed, it follows from the transforma=-
tion lews (2.7) that XC* traneforms just as é—:'c“ . On subsgtitution

of the expression for X% into eq.(2.14b) the latter becomes
- -2xt
x? + & () = 2mc @ (2.15)

which is essily recognized as the equation of conformal mechanics
z 3
(2.1) after identifying Q)= @ * ¥, Y= m?



Thue, we have derived eq.{2.1), starting with the group space of
50(1,2) where SC(1,2) is realized by left shifts and further consirai-
ning covarient differentials of coordinates by egs. {2.14). The geo-
metric meaning of this procedure will be clarified in Sect. 3. Here
we would like to note that one might choose & more general combina-
tion of S0(1,2) generators than im eq. (2.12)

R, = L., +mL, +2dLo- (2.16)
Then, instead of egs.(2.15), one would have the more general set of
equations
3
WO = 2o Wt => FxPz ot rdE (e)
2'14‘
9y o , . e ( )
Wt = m*d = 2%+ (oY =m*L . (v)

Substitution of eg.(2.14'a) into (2.14'b) ylelds again eq. (2.15),
now with m*z= m2-o?* : _
3

v ()2 (mi-dt) e . (2.17)

So, for c£2< fh* we have the standard conformal mechanics while for

o >.n{1 we get the "hyperbolic" version of eq.(2.1)/ / For %= m?
the equetion reduces to the free one. These three different situations
correspond to three possible nonegquivalent ocovariant reductions of
the manifold{:t.]. Indeed, it ie & simple exercise to check that the
generators (2.16) with the parameters mr At  varying within the
above three domains cannot be related to each other by any S0(1,2)-
rotatinn and so belong to different‘grbits in the group epace of
50(1,2). Actually, the term~ Loin Rb cen alwayas be removed by a
proper S0(1,2) rotation :

t.:-!L,
R - L it (l’hz 0(?') Lo,{ -— e "’- R e ¢ (2,‘18)
that amounts to & constant right shift of ﬂ(oc‘ a? a?) a8
dol Ly

G (e*, X2 2c3) = (X4 ) :Jc3)€ =>

T = x? + o e

(2.19)

In terme of X%, £ , o¢® , the set (2.14') looks just as (2.14),
with mi=im?—-u? . Different types of covarient reduction are thus
apasociated with three nonequivalent one dimensionsl pubalgebras of

SO (1,22



L_g_ + h’lz'l—l+_1, ) L-t _mzL*i 3 L"‘i * (2-20)

Recall that the first subalgebra is $0(2) while the second one is
s50(1,1). As will be shown in Sect. 3, these three patterns correspond
to three nonequivalent classes of geodeaics on 80(1,2).

To close this Section, we present & simple invariant first-order
action for the system (2,14) in terms of differential 1-forms (2.9}

‘S = -;—zg[w“ Lmrwt] =
e (2.21)

»

| Wy . - x™(¢)
—;FJJi[ex{t)I_xz(H*(ma)z]‘*mlex }

Varying % yields eq.(2.14a). Inserting this constraint back into
eq.{2.14b) brings .the latter into the standard second-order form

(2.1) (with Q@) = 29‘1 8y,

3. Geometric interpretation

Let us explain the geometric meaning of constrainta (2.14). We
will digcuse the reduction toc -S0(2) subalgebra (2.12), keeping in
miné the relation (2.18) and the fact that the generators of other
possible reduction subalgebres (listed in eq.(2.10}) follow from
R, (2.12) either by substitution m-—>Lim or by putting m=0,

Differential forms (2.9), being covariant differentials of
50(1,2)~coordinates el » 8pecify infinitesimal shifte of O::" along three
independent directiom in [I‘} The constrainta (2.14) restrict this
motion to the shift along & curve generated by the right action of
abelian gubgroup with generator R. . Indeed, solving eq.(2.13) for

3,, (f , x(¢), .’.'C’(t)) , we find that the most general molution is

STy (Lo +mil
gk ('[2;932, xs) = 30 (ct CZJ C’) e ( 1 1)’
where Ci are integration constants and
. _an3
dr = X gy (3.2)

It is easy to argue that eq.{3.1) defines & geodesic on the ma-
nifeld {oc;-}. It is known/w/ that the geodesic motlion on the coset or
group manifolds is generated by the right action of the group on the
coset elements, In the group space, any such element specifies m
point whence some geodesic grows. The geodesic ag a whole is restored
by multiplying this fixed element from the right by an element of cer-

(3.1}



tailn ebvelian subgroup having 28 the group parameter the natural para-
meter along the curve (the group is assumed to be taken in the expo-
nentia) parsmetrization).The choice of this subgroup fixes the tan~—
gent to the geodesic at the origin. Thus, the geodesic on a group
space is completely defined by choosing an initial group element and
some one-parameter aubgroup eacting on the former element from the
right. :

The formula (3.1) ideally fite in this general scheme. To prove
that the 50{1,2)-element (3.1) defines a geodesic, we merely need to
show the identity of ¢ with the natural parameter § . Inserting
eqa.(2,14) into the definition {2.10) and taking sccount of eq.(3.2)
one gets

-ex?
dS% = 2miwiw = am*E  (J8)%-

= ot (dT)F = =wm

(3.3)

itee. T actually coincides with & (up to a constant ghift and
rescaling).

Expression {3.1) providea the general solution %o the constra-
ints (2.14) and, hence, to the conformel mechenice equation (2,15)
{or (2,1)) which is equivalent to the set (2.14). So we have ghown
that this equation describes a clase of geodesics on the group
50{1,2), with choosing the coordinate Xt = ¢ a8 & parameter along
the geodesic. For these geodesics ASZ;,O » 80 they can be called
"tlme-like" ones. Two other typea of geodesics on 50(1,2), which are
obtained by the reduction to two other eubalgebrae among those listed
in (2.20), correspond, respectively, to dS$*< 0 anda d$°= 0 ,Thus they
are "space-like" or "light-like", In the latter case (i1t im deacribed
by the free m*= 0 version of eq.(2.15))|51 cannot serve &8 an evo-
lution parameter, while T or £+ still can. In the Appendix we eg-
tablish the explicit relation to & more fsmiliar description of geo—
desics in terms of the metric 3q introduced by eq.(2.10).

The geometiric approach allows us to render a traneparent meaning
tc the procedure of integrating eq.(2.1). It is reduced now to find-~
ing out the explicit expressions for the original variables {ﬂti] in
terms of entrieas of the on-shell metrix (3.1). The constant factor

go entering into eq.(3.1) actually involves only two independent
integration constants which parametrize the coset $0{1,2)/50(2). The

third one can always be abeorbed into a redefinition of ¥ . It is
convenient to choose go [-Y:]



+~d P -
30 = e L QLCL”. (3.4)

Substituting into eq.{3.1) the expression for gli (f} :x:zj 1‘.3)
(2.5) one finds

C.’
t =ct+ke ég(m’l:’)
_C3 (305)
x= @ fu sin (2m?)

x*= 3 - 2 €n cos (mt)

thet ylelda the explicit parametrization of geodesic in terms of pro-
per time ¥ (or § ). In accord with the geometric interpretation of
eq.{3.1) given above, we have (the use was made of eq.{3.3)k

Jf - i <

t(s=0) = c* s ls=0 “i7m €
sz -c?

x?(s=0)= 0 < leo = Fe (3.6)
xS

x*(s=0)=c? "' = 5.0 = 0

whence it follows that the constanta Ci) c? pargmetrize an initisl
point on the geodespic, We alec pee that, up to an uneseential resca-
ling, the coupling constant m  defines the components of the tan-
gent vector to the geodesic at this point.

It is a simple exercise to extract from ege.(3.5) the general
solution of eq.(2.1}

£303(4) —
fw=L T ﬂ(ﬁ%—ﬂ“ Almt? (3.7)

*

where
c? a3 -3
A= @ +mr(cieS, B=-cim2e < (3.8)

Any other form of the solution is reduced to (3.7) by a redefinmition

of integration constants.
One may check that the general solution (3.7} ie invariant under
the action of the S0(2)-subgroup generated by

R =L+ Q%Lo + AT (mre 83 L, (3.9)



2Ue ()
fo(®)

Thug, there occurs the dynamicel spontaneous breaking of 30(1,2) te
so(2) «cR /3/. Thie phencomenon has a simple interpretation in terms
of geodesics. The generator R is related to R{z.12) via the 50(1,2)-
rotation by the element 30 (3.4)

R = A%gol Ly s mel] g2t

S0, the left action of axp{ia Rl on gg (2%, 22 23) (3.1) merely
resulte in the shift of proper time ¢ by an amount QA" , without
affecting the shape of geodesic, :c"(f)_-a-ac"'(ﬁ aA"). In other words,
the left action of exp{ia R} generates the shift along a given geo-
desic. The action of SC(1,2)/50(2) - tranaformations changes the integ-
retion constants and so. transforms one geodesic into another.

It is worthwhile to note that the integration of eq.(2.1) can be
alsc viewed as a reparametrization of the group space of S0(1,2). In-
deed, let us choose from the beginning a different paremetrization of
50(1,2)

L@ - BHbH =0 (3.10)
a{i*eﬁé{ + A2 (m* 4 B2) 42 (3.11)

el cel, T (Lo +mely) -
g(ff—i) ¢ oc3) :g(ci} STy=¢ C’L-Le(-c L.c,e 7L +m .)

Then egs.{3.5) give the relation between the two equivalent paramet-
rizations of $0(1,2). The Certan forms in this new paramstrization
are as follows

o R +
w = ¢4 Cleos (2m?) + A dedsin(emt) + &, w0

a1
W =-m¢é CJC’SLh (2mT) + de? ¢os (e2m?)
+4 ¢ i -
w =m‘{4’f + 2¢ detf1 - cos (emt)] -ﬁ,dcssm(am’c)} :

One is free to impose the congtraints (2.14) in any parametrization.
It is easy to check that in terms of new variables these constraints
are reduced to

dot dc? ct ¢ are conatante  (3.12)
T~ JT S0 = ’

10



Expresging !, ¢? via original veriables, one obtains two first
integrals of eq.{(2.1) (it is convenient to pase to the variables A
and B given by (3.8))2): .

A= (§-46) + Bt B(%)=j3(§-§’c)-f?—f£
A = é =0.

Note that the variavies Ci({), ¢*(¢), T () are in a sense analogous
to the action-angle variables of two-dimensional integrable systems.
We would like to mention that the one more way of solving eq.

(2.1) is to reduce the latter to the harmonic oscillator equation.
Introducing Efzgfland going to the proper time T by eq.(3.2) one
may rewrite (2.1) as ‘

429

4T
Solving this equation and expreseing T in terms of t from the
first-order eq.{3.2)} one arrives again to the expression (3.7).

(3.13)

+ m1§=0-

4, Conclusione

In this paper we have demonstrated that the covariant reduction
method proposed originally for unified geomeiric demcription of the
Liouville-type systems in two dimensionsls’gl, equally applies to
d=1 systems, i.e, the models of particle mechanics. The foundations
of the method can be clearly understood when looking at the d=1 case.
The simple exsmple we have analyzed here in detail is mostly of il-
lustrative character, though it perhaps would be of some interest to
gee what are the implications of this geometric picture in the quan-
tum case., The actual power of the covarient reduction approach will
be demonstrated in our forthcoming paper where this technique is
applied to N=4, d=1 superconformal group SU{1,1/2) to construct a
menifestly invariant superfield formulation of N=4 superconformal
mechanica.

It is worth mentioning that the model we have congidered belongs
to a wide class of completely integrable d=1 systems. The list of
corresponding potentials can be found, e.g., in the review by Olsha-
netoky and Perelomov 16‘/. An interesting task is to reproduce in

z m
2) Note that the energy H= (f} + §? is expressed through thege
quantities by the simple formula
= A [mt+ B?].

11



our approach the remaining potentials from this list (and, perhaps,
to discover the unknown ones)}, astarting with a nonlinear realization
of an appropriate group and imposing the covariant reduction constra-
ints on the relevant Cartan 1-forme. Almo, it would be desirable to
understand the relationship with the general method of integrating
these systems which has been proposed by two authors cited above.

The method is based on relating the equation associated with a given
integrable potential tc the free (or geodegic) motion on a certain
higher dimensimnal auxiliary space. So it bears some formel analo-~
gies to ours. We would like to emphasize cnce sgain that the mein me-
rit of our scheme should be seen in its algorithmic characters One
chooses the group and the covariant reduction subgroup {(the latter
can be in general nonabelian), after thet all the things (deducing
the relevant mechanical system and finding out ites general solution)
go straightforwardly. The question to be esnswered is, of course,
whether all the d=1 integrable syeteme can be obtained in this way.

Now let us dwell on analogies with the Liouviile equation which
is the aimplest d=2 completely integrable system. These anslogiea are
far-reaching, despite the fact that in the Liouville case one deals
with an infinite number of degrees of freedom. The latter circumstance
manifesta itself in that one starts with the infinite-dimensional
d=2 conformal group. Respectively, there appear infinitely many Pfaff's
equations of the type (2.14a) %/, By these equations, the infinitely
meny flelds parametrizing a coset of d=2 conformel group ere expres-~
ged via & eingle dilaton field., The latter is & direct analog of field
3(#) - The Liouville equation arises analogously to eq.{2.14b). The
d=2 counterpart of d=1 reduction subaslgebra 50(2} is the subalgebra
50(1,2) of the d=2 conformal algebra, Respectively, the Cartan form
gurviving the covariant reduction livee on that S0(1,2). As a conse-
quence of covariant reduction constraints and of the original Maurer-
~Cartan equations, the remmsining form satisfies the standard zerc cur-
vature condition that expresses the fact of complete integrability of
the Liouville eguation.

The zero curvature conditions have no analog in the d=1 case
because of lack of two-forms in one dimension. However, as we have
seen, the first-order coveriant reduction constraints can etill be
implemented and these have a trasnsparent geometric meaning. Thus it
seems that the covariant reduction scheme may besr a deeper relation
to the concept of integrability than the conventional approach based
on the zero curvature representation. It would be of interest to ex-
tend this scheme %o other integrable d=2 systems, in particuler to
chirel fiell mcdels. We conjecture that the latter models are asso-

12



ciated with geodesic hypersurfaces in group manifolds of Kac-loody
groups 17 ’

As a final remark, we would like to stress that the results of
this paper and of /8,9/ demonstirate & close relation between the d=2
and d=1 lLiocuville-~type systems on the one hand and the intrinsic geo-
metry of d=2 and d=1 conformal groups on the other. Perhapas this fact
deservea a special attention in view of recent growih of intereat in
the geometry of coset apaces of the d=2 conformal group in the con-
text of string field theory /18’19/. A finite-dimengional toy model

7f jhe latter based on the group 50{1,2) was recently considered in
20
*

Acknowledgements. We sre grestely obliged to A.Pashnev and V.Tkach
for stimulating discussiona,.

Appendix. Relation to the standard description of geodesics
on 850(1,2)

We start with the meiric 9;& defined by eq.(2.10)

0 1 x? 0 i Fa)
R i 4,
g%_ 1 ©0 © ,'3”: y opoxr | - ¢ 1)
x? 0 -} o 2ax* -2

The equation of gzodesics corresponding to this metric is written as

e b

at +i";.¢ XixX* =0 (A.2)
L el oot dxt il
€ __'.I,(S)) £ =75/ |g%x:ﬁ]-i

Here B: are Christoffel coefficients calculated by the standard
rules of Riemann geometry. In components, eg.(A.2) amounts to the set

Xt~ et =0 (a)
% 42X xrxt + w2 + 20l =0 (0 (Aa.3)

0 —2x2xed - pxiypind =0, ()

Let us show that sny solution of egs.(2.14) solves eqs. (A.3).

13



Making change of variebles § —=> O¢fz { in eqe.{A.3)} and using eq.
(3.3), it 1s easy to check thet eq.(A.3a) is satisfied identically.
The rest of eqs.{A.3) is checked by using repeatedly eqs.(2.14).
Converamely, one may get the set {(2.14) ss & result of partial
integration of eqs.{A.3). 2
Specializing to the "time-like" case JS =0 , one readily
obtainge

x}
doct _
Te = pl
—?
ot = 4o - pa€ (Aud)
[ a e 3 4 "‘axs
FESRF YCO MR N

where fis » P2 8re integration constants asnd the derivatives are
taken with respect to £ =¥, Upon identifying Be=dd , m2= EJ%} .
these equations coincide with eqs.(2.14'), (2,17) and so are equiva-
lent to eqe.(2.14), It is worthwile to emphasize that the coupling
constant m? appears ag an integration constant in this scheme.
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