

объединенный
институт
дерниых
исследований
дубна

E2-88-324

D.Yu.Bardin, M.S.Bilenky, O.M.Fedorenko*, T.Riemann

THE ELECTROMAGNETIC $\boldsymbol{a}^{\mathbf{3}}$ CONTRIBUTIONS TO $\mathbf{e}^{+} \mathbf{e}^{-}$-ANNIHILATION INTO FERMIONS IN THE ELECTROWEAK THEORY. TOTAL CROSS SECTION σ T AND INTEGRATED ASYMMETRY AFB

Submitted to "Nuclear Physics"

[^0]1. Introduction

One of the importent processes in high energy physics is the annihilation of point-like fermions,

$$
\begin{equation*}
e^{+} e^{-} \cdots\left(\gamma, Z^{0}\right) \rightarrow f^{+} f^{-}(\gamma) \tag{1.1}
\end{equation*}
$$

This reaction allows the precise determination of the mass M_{z} and the width Γ_{z} of the weak neutral gauge boson as well as the study of other features of the electroweak theory $/ 1 /$ at the new colliders SLC and LEP. These new experimental feasibilities represent a great challenge for theoriats who want to enaure the analysis of data with sufficient accuracy and reliability $/ 2,3 /$. In this respect the potentially large QBD radiative corrections necessarily require special care. The fruitful competition of different theoretical approaches led to a permanently rising number of complementary resulte. Analytic formulae allow a deeper understanding of eseential features of the process and a fast numerical orientation, whereas Monte-Carlo ($\mathbf{N} \mathbf{C}$) studies are the ideal tool for the interpretation of data obtained in experiments. In fact, very effective MC-algorithms have been developed 3 -5/.

In this article, we present a systematic and to some extent complete analytic investigation of the α QSD radiative corrections to reaction (1) within the electroweak standard theory. We obtain compact expreasiona for the angular diatribution $d \sigma / d c \quad(c=\cos \theta$ with θ the cms acattering angle between e^{+}and f^{+}); the total crose section $\hat{\sigma}_{T}$,

$$
\begin{equation*}
\sigma_{T}=\sigma\left(-1_{2}+1\right) \tag{1.2}
\end{equation*}
$$

and the integrated forward-backward agymmetry $A_{F B}$,

$$
\begin{equation*}
A_{F B}=[\sigma(0,1)-\sigma(-1,0)] / \sigma_{T}, \tag{1.3}
\end{equation*}
$$

where we use the notation

$$
\begin{equation*}
\sigma\left(c_{1}, c_{2}\right)=\int_{c_{1}}^{c_{2}} d c \frac{d \sigma}{d c} \tag{1.4}
\end{equation*}
$$

In the context of the electroweak theory it is technioally difficult to obtain analytic results including hard photon bremsatrahlung, much more difficult than in pure QED. To simplify the problem we treat the photon totally inclusive (i.e. no photon observation at all). The only further assumption we made is the ultra-relativistic approximation: $m_{e}^{2}, m_{f}^{2} \ll S, M_{z}^{2}, M_{z} \cdot \sqrt{z}$. The mass M_{z} and the width $\Gamma_{z} / 6 /$ of the $z-b o s o n$ are taken into acoount without any further approximation at arbitrary beam energy $E=\sqrt{5} / 2$.

The QED-corrections arising from diagrams shown in Fig. 1 are model-independent in the sense that they depend only on the mase and width as well as on the vector and axial-vector couplings of the weak neutral boson but are not sensitive to further details of the electroweak theory. Of course, they may be combined with the genuine weak loop corrections $/ 7,8 /$ to form the complete α EWRC (eleotroweak radiative corrections). Purther, multiphoton initial state radiation $/ 9,10 /$ has to be added to really compete with the experimentally accessible accuracy.

Generally, attempts to get analytic results on the angular dist-
 $\overline{15,16 /}$ are soarce though exiat for some other distributions; see, e.g., $/ 2,4,8 /$. Concerning the total crose mection, there has been done much work on initial (and on the more trivial final) state radiation $/ 4,5,10,11,14 /$, whereas the remarkably simple enalytic expresaions for their interference to be presented in this part of the paper are to our knowledge lacking in the literature. Of course, it is not difficult to extend the results presented here to the case of a longitudinally polarized electron beam to get the left-right asymmetry $A_{L R}$ or to the production of longitudinally polarized fermions allowing the study of the asymmetry Apol.

The angular diatribution $d \sigma / d C$ is a basic quantity for the theoretical analygia of reaction (i). With a simple one-dimensional integration over the analytic expression to be presented in the second part of this article one may simulate a more realistio (but yet idealized) experimental situation for σ_{T} and $A_{F B}$ by excluding the beam pipe region or a broader region of low angles for a detector (demanding, e.g., that $|C|<0.9$). This cut also exoludes much of the large amount of hard photon bremestrahlung. If there is required a
more realistic treatment of hard photons, the analytic formulae of this study may be combined with any MC-program for hard bremsetrahlung aimulation. But, in contrast to the usual approach one has to gubtract from the analytic expression the observed hard photon events (and not to add the non-observed hard photon events). This seems to be an interesting new ansatz for the calculation of observables, at least in the aspect of an independent check of more common procedures.

This article is organized as follows. In Chapter 2, we introduce the definitions and notation. Chapter 3 contains the C-even QED-corrections to the total cross-section σ_{T} and Chapter 4 the c-odd contributions to the integrated forward-backward asymmetry $A_{F B}$. Both the resulte are numerically compared with an recalculation. In the Appendix, we comment on the method used to carry out the analytic integration of hard bremsetrahlung.

2. Definitions

The differential cross section corresponding to the diagrams of Pig. 1 may be darametrized as followa:

$$
\begin{align*}
& \frac{d \sigma}{d c}=\frac{\pi \alpha^{2}}{2 s}\left\{Q_{f}^{2}\left[1+C^{2}+\frac{\alpha}{\pi}\left(F_{0}+Q_{f} F_{1}+Q_{f}^{2} F_{2}\right)\right]+\right. \\
& \left.+2 \operatorname{lQ}_{f} \left\lvert\, \sum_{e} \int_{f} \operatorname{Re}\left[X\left(1+C^{2}\right)+\frac{\alpha}{\pi}\right)\left(G_{0}+Q_{f} G_{1}+Q_{f}^{2} G_{2}\right)\right.\right]+ \\
& +2 \operatorname{lQ}_{f} \left\lvert\, a_{E} a_{f} \operatorname{Re}\left[\times 2 C+\frac{\alpha}{\pi} \times\left(G_{3}+G_{t} G_{4}+Q_{f}^{2} G_{5}\right)\right]+\right. \\
& +\left(v_{e}^{2}+a_{e}^{2}\left(r_{f}^{2}+a_{f}^{2}\right) \mid r\right)^{2}\left[1+C^{2}+\frac{d}{T_{1}} R e\left(H_{0}+Q_{f} H_{1}+Q_{f}^{2} H_{2}\right)\right]+ \tag{2.1}\\
& \left.+4 \sum_{e} a_{e} \sum_{f} a_{f}|y|^{2}\left[2 C+\frac{\alpha}{\pi} \operatorname{Re}\left(H_{3}+Q_{f} H_{4}+Q_{f}^{2} H_{5}\right)\right]\right\} .
\end{align*}
$$

Fig. 1. The QED α^{3} radiative contributions to the $e^{+} e^{-}-$ annibilation into a fermion pair considered in this article.

Using the definitions (1.2), (1.3) we derive:

$$
\begin{aligned}
& \sigma_{T}=\sigma_{0}\left\{Q_{f}^{2}\left[1+\frac{\alpha}{\pi} \cdot\left(F_{0}^{T}+Q_{f}^{2} F_{2}^{T}\right)\right]+\right. \\
& +2 \cdot\left|Q_{f} \|_{e} v_{f} \operatorname{Re}\left[X+\frac{\alpha}{\pi} X\left(G_{0}^{T}+Q_{f}^{2} G_{2}^{T}\right)\right]+2 Q_{f}\right| a_{e} a_{f} \frac{\alpha}{\pi} Q_{f} \operatorname{Re}\left(X G_{4}^{T}\right)+ \\
& +\left(v_{e}^{2}+a_{e}^{2}\right)\left(v_{f}^{2}+a_{f}^{2}\right)|\gamma|^{2}\left[1+\frac{\alpha}{\pi} \operatorname{Re}\left(H_{0}^{T}+Q_{f}^{2} H_{2}^{T}\right)\right]+ \\
& \left.\left.+4 v_{e} Q_{e} v_{f} a_{f} \mid\right\}\left.\right|^{2} \frac{\alpha}{\pi} Q_{f} \operatorname{Re}\left(H_{4}^{T}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& A_{F B}=\frac{\sigma_{c}}{\sigma_{T}}\left\{\frac{\alpha}{\pi} Q_{f}^{3} F_{1}^{T}+\right. \\
&+2 Q_{f} \left\lvert\, V_{e} v_{f} \frac{\alpha}{\pi} Q_{f} R e\left(r G_{f}^{T}\right)+\right. \\
&+2\left|Q_{f}\right| Q_{\varepsilon} a_{f} R e\left[\frac{3}{4} X+\frac{\alpha}{\pi} \times\left(G_{3}^{T}+Q_{f}^{2} G_{5}^{T}\right)\right]+ \\
&+\left(v_{e}^{2}+Q_{e}^{2}\right)\left(v_{f}^{2}+Q_{f}^{2}\right)|X| \frac{\alpha}{\pi} Q R e\left(H_{1}^{T}\right)+ \tag{2.3}\\
&\left.+4 v_{e} Q_{e} V_{f} Q_{f}|X|^{2}\left[\frac{3}{4}+\frac{\alpha}{\pi} \operatorname{Re}\left(H_{3}^{T}+Q_{f}^{2} H_{5}^{T}\right)\right]\right\}
\end{align*}
$$

The QED radiative corrections are contained in the functions F, G, H :

$$
\begin{equation*}
\left\{F_{i,}^{T} G_{i}^{T}, H_{i}^{T}\right\}=\frac{3}{4} \int_{0}^{1} d c\left\{F_{i}, G_{i}, H_{i}\right\}, i=0,1, \ldots 5 \tag{2.4}
\end{equation*}
$$

These functions depend only on particle masses, the \mathcal{Z}°-width and on the beam energy. Strictly speaking, one should add yet the fermionic vacum polarization (see, e.g. $/ 4 /$) to get the complete α^{3} QED contribution. The reader should have in mind that this has not been done here.
 The V and a are vector and axial-vector couplings to the massive neutral vector boson. In the standard electroweak theory they become

$$
\begin{equation*}
Q_{f}=1, \quad v_{f}=1-4 \cdot S_{w}^{2}\left|Q_{f}\right| \tag{2.5}
\end{equation*}
$$

Following the recommendations of the atudy group of electroweak radiative corrections at $L_{E P} / 3 /$, we use the following definition of X :

$$
\begin{equation*}
x=k x(1-\delta r)^{-1} \tag{2.6}
\end{equation*}
$$

Here real constant K measures the relative strengthe of the photon and weak neutral boson couplinge, in the standard tweory:

$$
\begin{equation*}
k=\frac{g^{2}}{16 c_{w}^{2} e^{2}} \tag{2.7}
\end{equation*}
$$

where we use the on-mass-shell renormalization scheme:

$$
C_{w}^{2}=1-S_{w}^{l}=M_{w}^{2} / M_{z}^{l} \quad, g=e / S_{w} \text {. The complex kinema- }
$$

tic variable \mathcal{X} relates the corresponding propagators:

$$
\begin{equation*}
x=\frac{S}{S-M^{2}} \tag{2.8}
\end{equation*}
$$

with

$$
\begin{equation*}
M^{2}=M_{z}^{2}-i M_{z} \Gamma_{z} \tag{2.9}
\end{equation*}
$$

In eq. (2.6) the quantity $\delta \tilde{r}$ is the radiative correction to the muon decay constant G_{μ}. So we can rewrite (2.6) as follows

$$
\begin{equation*}
X=\frac{G_{\mu}}{\sqrt{2}} \frac{M_{z}^{2}}{8 \pi / \alpha} \frac{S}{S-M^{2}}=0.38894\left(\frac{M_{z}}{93}\right)^{2} \frac{S}{S-M^{2}} \tag{2.10}
\end{equation*}
$$

The point-like QED-cross section σ_{o} is

$$
\begin{equation*}
\sigma_{0}=\frac{4 \pi \alpha^{2}}{3 S} \tag{2.11}
\end{equation*}
$$

A longitudinal polarization λ of the electron beam may be taken into account by the following modification of electron couplings:

$$
\begin{align*}
v_{e} v_{f} & \rightarrow\left(v_{e}-\lambda a_{e}\right) v_{f}, \\
a_{e} a_{f} & \left.\rightarrow\left(a_{e}-\lambda v_{e}\right) a_{f}\right) \tag{2.12}\\
\left(v_{e}^{2}+a_{e}^{2}\right)\left(v_{f}^{2}+a_{f}^{2}\right) & \rightarrow\left(v_{e}^{2}+a_{e}^{2}-2 \lambda v_{e} a_{e}\right)\left(v_{l}^{2}+a_{f}^{2}\right) \\
4 v_{e} a_{e} v_{f} a_{f} & \rightarrow 2\left[2 v_{e} a_{e}-\lambda\left(v_{e}^{2}+a_{e}^{2}\right)\right] v_{f} a_{f}
\end{align*}
$$

Alternatively, the creation of a fermion with a definite helicity atate ($S_{f}= \pm i$) may be described by a corresponding change in the fermion couplings. This simple procedure of inclusion of a longitudinal polarization is no longer true in the presence of genuine weak loop corrections because these destroy the factorisation property of the couplings valid here. But even for weak corrections one may obtain some adequate substitutions which are only slightly more complicated than (2.12) as has been demonstrated in $/ 17 /$.

3. The integrated C-even corrections

The analytic calculations done with Schoorscerp ${ }^{18 /}$ will not be deacribed in this article. Some reamrks on the definitions and the strategy used together with some references of more technical orion-
tation may be found in the Appendix. Here we only remember that the QED-corrections considered are a gauge-invariant sum of vertex (or box diagram) corrections and of initial- or final-atate radiation (or their interference). The infrared finiteness is ensured due to the inclusion of both the loop diagrams and the soft photon radiation. Since we integrate over the complete photon phase epace, the result doesn't contain any cut-off parameter. Instead, it is Lo-rentz-invariant.

The initial-state corrections are

$$
\begin{align*}
& F_{0}^{T}=d+t\left(L_{f}-\frac{7}{6}\right), \tag{3.1}\\
& G_{0}^{T}=d+t\left[R+\frac{1}{2}+\left(1+R^{2}\right) L_{R}\right], \tag{3.2}\\
& H_{0}^{T}=d+t\left[2 R+\frac{1}{2}-|R|^{2}+\frac{2 R}{R-R^{*}}\left(1-R^{n}\right)\left(1+R^{2}\right) L_{R}\right], \tag{3.3}
\end{align*}
$$

with

$$
\begin{equation*}
d=\frac{\pi^{3}}{3}-\frac{1}{2} \quad, \quad t=L_{e}-1 \tag{3.4}
\end{equation*}
$$

The pure QED function F_{0}^{T} is known from/11/. The other two ini-tial-atate corrections depend on one additional, complex parameter R 。

$$
l=\frac{M^{2}}{s}
$$

with M^{2} as defined in (2.9). The R^{*} is its complex conjugate. Further,

$$
\begin{align*}
& L_{a}=\frac{s}{m_{a}^{2}}, a=e, f, \tag{3.6}\\
& L_{R}=\ln (1-1 / R) \tag{3.7}
\end{align*}
$$

The use of complex variables in final expressions allows a very compact notation compared to a more conseryative, real-variable approach. This is especially evident for the C-odd functions but may be also realised oomparing (3.2)-(3.3) with the real expressions for G_{c}^{T}, H_{0}^{T} which may be found in ${ }^{\prime \prime} /$.

All initial-state-radiation functions show the well-known QED mass-aingularity term t due to the emission of a photon from an electron line. The other mase singularity in F_{0}^{T} arising there froin the photon propagator kinematica is regularized by the final fermion mase in L_{f}. In G_{e}^{T}, H_{0}^{\top} this singularity has been naturally repla-

Table 1. Individual contributions to σ_{T} as defined in (2.2) in unite of $\sigma_{0}^{2}(2.10)$ as punctions of $\sqrt{s}=2 E$. The A, \mathcal{Z} and I are the corresponding Born values due to photon exohange (A), z-boson exchange (Z) and their interference (I). The parame ters are $\mu_{z}=93 \mathrm{GeV}, \Gamma_{z}=2.5 \mathrm{GeV}, \int_{w}^{2}=0.23$. (see also footnote to Table 2).

$\overline{\text { (GeV) }} 60$	82	92.5	93.0	93.5	100
$\sigma_{0}(\mathrm{nB}) 0.02413$	0.01292	0.01015	0.01004	0.00994	0.00869
A	1	1	1	1	1
I -0.00354	-0.01714	-0.06305	0	0.06467	0.03579
z 0.07772	1.84241	179.00599	212.01602	186.59627	8.15261
$F_{0} \quad 0.60431$	0.65436	0.67415	0.67504	0.67593	0.68710
$\mathrm{F}_{2} \quad 0.00174$	0.00174	0.00174	0.00174	0.00174	0.00174
$\mathrm{G}_{\mathrm{o}} \quad 0.00011$	0.00188	0.00039	-0.02916	-0.05094	-0.00530
$\mathrm{G}_{2} \quad-0.00001$	-0.00003	-0.00011	0	0.00011	0.00006
$\mathrm{G}_{4} \quad-0.00120$	-0.01161	-0.04879	0.00271	0.05554	0.03214
$\mathrm{H}_{0} \quad-0.00824$	-0.36007	-63.06491	-66.01508	-41.76859	10.45730
$\mathrm{H}_{2} \quad 0.00014$	0.00321	0.31185	0.36936	0.32507	0.01420
$\mathrm{H}_{4} \quad-0.00001$	-0.00008	-0.00035	-0.00001	0.00034	0.00021
$\sigma_{T} 1.671$	3.115	117.817	148.021	146.900	20.376
$\sigma_{T}^{\prime} 1.664$	3.100	117.792	147.993	146.869	20.357
C: $\theta_{T}^{\prime} \quad 1.665$	3.102	117.899	148.139	147.006	20.360
$\Delta \sigma_{T}^{\prime} \pm 0.001$	± 0.003	± 0.096	± 0.121	± 0.120	± 0.017
$\begin{aligned} & \mathrm{H}= \\ & 750000 \end{aligned}$					

tions is quite good. But far from the resonance σ_{T} differs essentially from σ_{T}^{\prime} (several sigmas), which is quite obvious, because the resonance box approximation is valid only near the resonance.

4. The integrated C -odd correction

The initial-state $\mathrm{Q} \mathbb{I}$ corrections to the integrated forward--backward asymmetry (2.3) are:

$$
\begin{align*}
\frac{1}{3} G_{3}^{T}= & -\frac{1}{8}+\frac{1-R}{1+R}(1-\ln 2)+(1-R) \ln 22+\frac{1}{4}(1+2 R) \operatorname{Li}_{2}(1)+(4.1) \tag{4.1}\\
& +\frac{1}{2} \frac{1-R}{1+R}\left[-\frac{1+3 R}{1+R} \ln 2+\frac{7-R}{4(1-R)}\right] t+R \frac{1+R^{2}}{(1+R)^{2}} D_{3}, \\
\frac{1}{3} H_{3}^{T}= & -\frac{2 R}{|1+R|^{2}}-\left(\left.\frac{1-R}{1+R}\right|^{2} \ln 2+|1-R|^{2} \ln ^{2} 2+\frac{1}{4}\left(1+4 R-2|R|^{2}\right) \operatorname{li}_{2}(1)+\right. \\
& +\left(\frac{7}{8}-\frac{2 R}{|1+R|^{2}}\right)(t+1)+\left(-\frac{5}{2}+2 \frac{6 R-1}{|1+R|^{2}}+4 \frac{1-R^{2}}{\left(1+\left.R\right|^{4}\right.}\right) \ln 2+ \\
& +2 R^{2} \frac{1+R^{2}}{(1+R)^{2}} \frac{1-R^{*}}{R-R^{*}} D_{3} . \tag{4.2}
\end{align*}
$$

The following abbreviations are uaed:

$$
\begin{align*}
& D_{3}=D_{1}+D_{2}+\ln ^{2} 2+(t-2 \ln 2) L_{R}, \tag{4.3}\\
& D_{2}=D_{0}+\operatorname{Li} 2\left(-\frac{1}{R}\right)-\operatorname{Li}(1)+\ln \left(\frac{R+1}{R-1}\right) \ln \left(-\frac{1}{R}\right), \tag{4.4}\\
& D_{0,1}=\operatorname{Li}\left(-\frac{1+R}{1-R}\right)+\frac{1}{2} L_{R}^{2}, \tag{4.5}\\
& \operatorname{Lin}_{2}(z)=-\int_{0}^{1} \frac{d t}{t} \ln (1-z t) .
\end{align*}
$$

These corrections have no snalogue contain the electron mase-singularity term t (3.4) and H_{3}^{\top} develops a radiative tail beyond the resonance in the same way as H^{T}. Additionally, the Euler dilogarithm with a complex argument and a dependence on $\ln 2$ arise here. Both dependences are closely connected with the behaviour of C -odd functions on the integration boundary $\mathrm{C}=0$ (2.4). Thia fact will become more evident from the corresponding spectra in $\cos \theta$ to be presented in the second part of this article: As a result, the C-odd functions are of considerably more complexity than the corresponding c-even functions.

The QED bremastrahlung and the interference of photon box diagrams with the QED Born-graph yield the following pure QED contributions to $A_{F B}$:

$$
\begin{align*}
& F_{1 B r}^{T}=p+\frac{3}{4}[1-16 \ln 2-\operatorname{Li}(1)], \tag{4.7}\\
& F_{160 x}^{T}=-p+\frac{3}{4}\left(1+6 \ln 2+\ln ^{2} 2\right)-\frac{i \pi}{2}(2-5 \ln 2), \tag{4.8}\\
& \rho=(1+8 \ln 2) \bar{P}_{I R} . \\
& \text { The function } F_{1}^{T} \text { in (2.3) may be composed as follows/15/: } \\
& F_{1}^{T}=R e\left(f_{1}^{T}\right) \text {, } \tag{4.9}\\
& f_{1}^{T}=F_{18 r}^{T}+F_{18 o x}^{T}, \tag{4.10}\\
& F_{1}^{T}=-\frac{3}{4} \lim _{2}(1)+\frac{3}{4} \ln ^{2} 2-\frac{15}{2} \ln 2+\frac{3}{2}=-4.572 . \tag{4.11}
\end{align*}
$$

The pure QED bremestrahlung $F_{18 r}^{T}$ is a real function for the same reasons as $F_{0,2}^{T}$. Due to the vanishing two-photon production threshold, the photon box diagrams have an energy-independent imaginary part. This imaginary part interferes with the complex (due to the M^{2} dependence of (2.7)) z-boson Born-graph and contributes to the pho-ton-2-boson interference function G_{i}^{T}.

The inftial-final-state interference functions due to Z -boson exchange are:

$$
\begin{align*}
& H_{1 R r}^{T}=p-\frac{1}{4}(5 R-3)-\frac{3}{4}\left(1+R-2 R^{2}\right) h_{i_{2}}(1)+ \\
& \quad+\frac{1}{1+R}\left(-12-3 R+8 R^{2}+5 R^{3}\right) \ln 2+\frac{1}{2}(1-R)\left(5-R+5 R^{2}\right) h_{i_{2}}\left(\frac{1}{R}\right)- \\
& \left.\quad-\frac{R}{1+R}\left(1-4 R+R^{2}\right) L_{R}+\frac{1}{2}\left(5-3 R+6 R^{2}\right) D_{1}+\frac{R}{2}\left(6-3 R+5 R^{2}\right) D_{2}\right) \\
& H_{160 x}^{T}=-p+\frac{3}{2}-R+\left(9-4 R-4 R^{2}\right) l_{R} 2+2 R^{2} 2+\frac{1}{2}(-5+4 R) L_{z}+ \\
& +\frac{1}{2}\left[4-9 R+3 R^{2}+2\left(-5+3 R-6 R^{2}\right) \ln 2\right] L_{R}+ \tag{4.13}\\
& +\left(1-3 R+6 R^{2}-8 R^{3}\right)\left[L_{i 2}\left(1-\frac{1}{2 R}\right)-L_{i 2}\left(1-\frac{1}{R}\right)\right]+4 R^{3}\left[L_{i 2}(1)-L_{i}\left(1-\frac{1}{R}\right)\right]
\end{align*}
$$

The asymmetry $A_{F B}$ contains the sum of (4.12)-(4.13):

$$
\begin{equation*}
H_{1}^{T}=H_{1 b r}^{T}+H_{1 B o x}^{T} \tag{4.14}
\end{equation*}
$$

The initial-final-state and photon-Z-boson-exchange interference functions G_{1}^{T} are the average of the corresponding functions f_{1}^{T} and H_{1}^{\top} :

$$
\begin{equation*}
G_{1}^{T}=\frac{1}{2}\left(f_{1}^{T}+H_{1}^{T}\right) \tag{4.15}
\end{equation*}
$$

At first sight this identity, which we derived by direct calculation, looks mysterious, but more deep analysis shows that relations of that kind hold already on the level of traces and are valid for any initial-final interference. A similar relation holds even for G_{4} and H_{4} though this is not so obvious due to the absence of a pure QED-function F_{4}. Evidently, the initial-atate photon-Z-boson interference cannot be a simple sum of photon and $Z-b o s o n$ exchange terms because of their very different mass signularities and radiative tail properties.

The final-atate contribution to the integrated asymmetry vanishes identically after summing up the vertex correction and bremsatrahlung:

$$
\begin{equation*}
G_{5}^{T}=H_{5}^{T}=0 \tag{4.16}
\end{equation*}
$$

This behaviour is present already for the angular distribution (2.1) and may be understood as a consequence of the following fact. In the limit of small fermion masses, it is not possible to define a nonvanishing axial-vector-type eelf-energy of the photon or Z-boson due to fermions because there is only one independent momentum for the compoaition of tensor structures. The imaginary part of the self--energy is proportional to the final-atate radiation correction. This connection allows a simple derivation of (4.16) and also explains (3.18).

The resonance contributions of the box diagrams as introduced in Sect. 3 are (see the comment after eq. (3.20)):

$$
\begin{align*}
g_{180 x}^{\top}= & \frac{1}{2}\left(F_{180 x}^{\top}+h_{1 b o x}^{\top}\right) \tag{4.17}\\
h_{180 x}^{\top}= & -p-(1+8 \ln 2)\left[\ln (R-1)+\frac{1}{2} L_{z}\right]+\frac{1}{2}+ \tag{4.18}\\
& +(1+4 \ln 2) \ln 2+2 h_{i 2}(1) .
\end{align*}
$$

The numerical contributions to $A_{F B}$ from the integrated c-odd functions are shown in Table 2. In the energy interval considered,

Table 2. Individual contributions to $A_{F B}$ as defined in (2.3). Specificationa are those of Table 1.

To the M-results in Tables 1,2 we have assigned the statistical errors as follows $\Delta \sigma_{T}^{\prime} / \sigma_{T}^{\prime}=\left(1 / N_{e V}-1 / N_{C}\right)^{1 / 2}, \Delta A_{F_{B}}=\left(1 / N_{e V}-1 / 2 N_{C}\right)^{1 / 2}$ where $N_{e v}$ and N_{C} are the numbers of useful generated and crude events in the $M C$ progran, reapectively (for all $\sqrt{S} N_{c} \approx 2 N_{e}$). Expression for $\triangle A_{F B}$ was obtained for $\left|A_{F B}\right| \ll \mid$. The errors for σ_{T} are somewhat greater than those assigned by the authors of MUSTRAAL. The discussion of the statistical and systematic errors in the MUSTRAAL and detailed comparison of analytic and MC calculations as well as a recipe bow to updete the MC-program to reproduce analytic results will be presented in a subsequent publication.
the Born interference term is largest with the exception of the Z-boson pole where it vanishes due to the zero of X (see (2.9)). Generally, the influence of the different correctione depends on two componente, on the relative weight, they get from the kinematical factor of order either 1 or X or $/ K /^{2}$, and on their own magnitude for a given energy. With the exception of G_{1}^{\top} any of the functions has a region of sensible influence. Here again we confronted the analytic results with those obtained numerically with MUSTRAAL.

We remark that in the neighbourhood of the resonance the agreement of two calculations is not so good as for $\mathcal{\sigma}_{\mathcal{T}}^{\prime}$. Note also that the nonleading imaginary parts (e.g. those due to powers of R) are noticeable here, hence they have to be taken into account carefully. Hear the pole, the interplay of several contributions reduces the A_{F} which complicates the phenomenological analysis of this observable $/ 2 \xi^{\prime \prime}$. Here we do not study details of this behaviour because in the second part of this article the more realistic differential cross aection $d \sigma / d C$ (2.1) may be analysed.

Acknowledgements. We would like to thank A.A.Akhundov and G.V.Mcelmacher for fruitful discussions and W.Lohmann, M.Lokajicek, J.Ridky, H.-E.Ryseck and M.Sachwitz for support in the numerical comparison with the resulte of prograra modrail.

Appendix

This Appendix contains some remarise on the technique used to study the process

$$
\begin{equation*}
e^{-}\left(k_{1}, m_{e}\right)+e^{+}\left(k_{2}^{\prime}, m_{e}\right) \rightarrow f^{-}\left(p_{1}, m_{f}\right)+f^{+}\left(p_{2}, m_{f}\right)+\gamma(p) \tag{A.1}
\end{equation*}
$$

The problem to be solved here is the integration of hard bremastrahlung. The Lorentz-invariant integration phase space is parametrized $\int d \Gamma=\frac{\pi_{1}^{2}}{4 S} \int_{-1}^{+1} d \cos \theta \int_{0}^{1} x d x \frac{1-x}{1-x+m_{f}^{2} / 5} \frac{1}{4 \pi} \int_{-1}^{+1} d \cos \rho_{R} \int_{0}^{2} d \varphi_{R}$.
The Q_{R} and φ_{R} are angles of the photon in the rest syatem of feriaion f^{-}plus photon: $\quad \vec{p}_{1}+\vec{p}=0$.
The twofold integration over these angles is carried out first. Then, integration over the normalized energy X of the fermion f^{+}in the centre-of-maes system,

$$
\begin{equation*}
x=2 p_{2}^{0} / \sqrt{s} \tag{A.4}
\end{equation*}
$$

yielde the angular distribution $d \sigma / d \cos \theta$ (2.1). Por the calculation of the total cross section σ_{T} and the integrated forward-backward asymmetry $A_{f B}$ after integrating over the photon angles θ_{R}, φ_{R}, we integrate over the ecattering angle $c \cos \theta$ and then over the fermion energy. So, in fact we did not analytically integrate over the differential in $\cos \theta$ cross section as is suggested by (1.2)-(1.4). These definitions, however, have been used for a numerical integration in order to check the analytic results. Purther, at the z-boson pole, $S=M_{z}^{2}$, and in the amall and large S limits we proved analytically that (1.2)-(1.4) are fulfilled. At amall (large) S, an additional control is given by the necessary cancellation of powers (inverse powers) of $R=M^{2} / s$. The analytic calculations have been done with SCHOONSCHIP $/ 18 /$ and consist of several thousand atatements, approximately half of them being control calculations. The atrategy to be followed is quite different from that of the MC-approach where one is interested in very compact expreseions. Here, at each of the subsequent integration stepa one reduces by algebraic manipulations the squared matrix element to a minimal, but sufficiently simple set of integrable functions. This set is called the canonical form and can be integrated by means of prepared sete of bremsetrahlung standard integrals $/ 20,21 /$; see also $/ 22,23 /$. Before the first integration, the squared matrix element is a complicated aum of ratios of polynomiala in the integration variables $\cos \theta_{k}, \cos \mathbb{C}_{k}$. The next step deals al-
 the Euler dilogarithms (4.6) arise. The whole procedure has a common feature with the chess: the rules are not too complicated but nevertheless the game is quite sophisticated.

The bremsstrahlung integral (A.2) has been divided into soft and hard photon contributions. Here we follow the method developed for deep inelastic ep-acattering in $/ 19 /$, see also/15/. Both the references are concerned with pure QED. But aince soft bremastrahlung factorizes from the Born cross section (as do the QED vertex insertions), the inclusion of z-boson exchange gives no further complication. The same is not true, of course, for the hard bremestrahlung tion. The same is not true, of course, for the hard bremsetrahiung
integrals $/ 21 /$. Without going into detaile, we only remark that due

$$
\text { to the relation } \frac{1}{\left|S^{\prime}-M^{2}\right|^{2}}=\frac{i}{2 M_{z} \sqrt{z}}\left(\frac{1}{S^{i}-M^{2}}-\frac{1}{S^{\prime}-M^{* 2}}\right)
$$

the z-boson part of the calculation is not considerably more complicated than the photon-2-boson interference which is linear in the z-boson propagator. Purther, (A.5) shows the mathematical origin of tail effecta in initial radiation corrections. The \mathcal{S}^{\prime} is the invariant
energy equared of the 2-boson which has to be integrated over in the case of initial-state radiation (for final-state radiation, $S^{\prime}=S$). Once again it is obvious here that one has to carry out the complete calculation in the compiex plane. The box diagram contributions to the angular diatribution are well-known $/ 24 /$. The integration over the scattering angle ${ }^{/ 21 /}$ yields the compact expressions (3.12)-(3.13), (4.13), (4.15) which seem to be obtained here for the firist time.

We would like to conclude the Appendix with a comment on possible further applications of the technique developed. The analytic investigation of the QED corrections in a theory with several heavy neutral bosons $/ 8 /$ is only elightly more complicated. This is due to the fact that the algebra is essentially linear in the 2 -boson propagators as is indicated in (A.5). The treatment of a narrow resonance, $H_{z} \cdot F_{z} \leq m_{f}^{2}$, seema also possible with slight modifications. However, an analytic description of the process $e^{+} e^{-} \rightarrow e^{+} e^{-}(\gamma)$ is much more difficult due to the additional f-channel diagrams and their interference with the S-channel diagrams which are atudied here.

References

1. Glashow S.L. Nucl.Phys. 1961, 22, p. 579;

Weinberg S. Phys.Rev.Lettere 1967, 19, p. 1264;
Salam A. In: Elementary Particle Theory, ed. N.Svartholm

2. Altarelli G. et al. In: Physice at LEP, CERN $86-02,1986$.
3. Summary of the study group on electroweak radiative corrections at LEP, presented by Dydak F. at the ECPA workehop on LEP 200, CERN 87-08, 1987.
4. Berende P.A. and Kleise R. Nuol. Pbye. 1981, E177, p. 237; Berende F.A., Jadach S. and Kleias R. Nucl. Phys. 1982, B202,p.63; Kleise R, In: Physice at LEP, CERN $86-02,1986$, p. 153.
5. Berends P.A., Jadach S. and Kleise R. Comp.Pkys.Comm. 1983, 29, p. 185; Program library of the CERN Computer Centre w 999.
6. Antonelli F., Consoli M. and Corbo G. Phys.Letters 1981, 99B, p. 475;

Consoli M., Lo Presti S. and Maiani I. Nucl. Phys. 1983, B223, p. 474 ;

Akhundor A.A., Bardin D.Yu. and Riemann T. Nucl. Pbys. 1986, B276, p. 1.
7. Passarino G. and Veltman M. Nucl.Phys. 1979, B160, p. 151; Wetzel W. Nucl. Phys. 1983, B227, p. 1;
Cole J.P. In: Rad.corrections in $\operatorname{SU}(2) x U(1)$, eds. Lyan B.W. and Wheater J.F. (World Scientific, 1984), p. 139;

Brown R.W., Becker R. and Paschos E.A. Phys.Rev.Letters , 1984, 52, p. 1192;
Bönm M. and Hollik W. Pbye.Letters, 1984, 139B, p. 213;
Lynn B.W. and Stuart R.G. Nucl.Phys. 1985, B253, p. 216;
Igarashi M., Nakazawa N., Shimida T. and Shimizu Y. Nucl. Phys. 1986, B263, p. 347.
8. Bönm M. and Hollik W. Nucl. Phys. 1982, B204, p. 45;
2.Phys. C - Particles and Fields, 1984, 23, p. 31.
9. Greco M., Pancheri G. and Srivastava Y. Nucl. Phys. 1980, B171 p. 111: Erratum: ibid, 1982, B197, p. 543.
0. Kuraev E.A. and Padin V.S. Sov. J.Nucl.Phys. 1985, 41, P. 466 ; Catn R.N. LBL-preprint, 1987, 22, p. 601;
Berends F.A., van Neerven W.L. and Burgers G.J.H. Preprint CERN-TH 4772/87, 1987.
11. Kuraev E.A. and Meledin G.V. Nucl.Phys. 1977, B122, p. 485.
12. Passarino G. Nucl. Phys. 1982, B204, p. 237.
13. Bardin D.Yu., Pedorenko O.M. and Riemann T. Preprint BerinZeuthen PHE 85-15, 1985, p. 227.
14. Jersak J., Leermann E. and Zerwas P.M. Phys.Rev. 1982, D25, p. 1218.
15. Fedorenko O.M. and Riemann T. Acta Phye.Pol. 1987, B18, P. 49.
16. Riemann T., Bardin D.Yu., Fedorenko 0.M. Preprint Berlin-Zeuthen PHE 86-13, 1986, p. 334.
17. Bardin D.Yu.. Burdik C.. Chriatnva P.rin ond Diemann m.

JINR preprint E2-87-595, Dubna, 1987.
18. Strubbe H.S. Comp. Phys.Com. 1974, B, P. 1.
19. Bardin D.Iu. and Shumeiko N.M. Nucl.Phys. 1977, B127, p. 242.
20. Akhundov A.A., Bardin D.Yu., Fedorenko O.M. and Riemann T. JINR Communications, E2-84-777, Dubna, 1984.
21. Bardin D.Yu., Fedorenko O.M. and Riemann T. JINR Communications, E2-87-664, Dubna, 1987.
22. Akhundov A.A., Bardin D.Yu., Fedorenko O.M. and Riemann T. Sov. J. Hucl. Phys. 1985, 42, p. 1204 and JINR preprint E2-84-787, Duone, 1934.
23. Akhundor A.A., Bardin D.Y.., Baranov S.P. and Riemann T. In: Proc. Conf. on Computer Algebra and its Applicationa in Theoretical Physica, Dubna, 17-20 sept. 1985, JINR D11-85-791, 1985, p.382.
24. Bardin D.Yu., Cristova P.Ch. and Pedorenko O.M. Nucl.Phys. 1982, B197, p. 1.

Бардин Д.П. и др.
Электромагнитные полравки порядка α
$\mathrm{Ke}^{+} \mathrm{e}^{-- \text {-аннигиляции в пару фермионов в теории }}$
электрослабого взаимодействия. Полное
сечение $\sigma_{т}$ и интегральная симметрня $A_{F B}$
Получены аналитические выражения для полностью проинтегрированных КЭД-вкладов порядка α^{3} в полное сечение $\sigma_{т}$ и интегральную асимметрию вперед-назад АғВ для процесса $e^{+} e^{-} \rightarrow f^{+} f^{-}(\gamma)$. Предлолагается, ято фотоны ненаблюдаемы. Расчет выполнен в ультрарелятивистском приближении по массам фермионов, при этом не делается никаких дополнительных приближений по массе M_{Z} и ширине Γ_{Z} нейтрального векторного бозона.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

$$
\begin{aligned}
& \text { Bardin D. Yu. et al. } \\
& \text { The Electromagnetic } \alpha^{3} \text { Contributions } \\
& \text { to } e^{+} e^{-A n n i h i l a t i o n ~ i n t o ~ F e r m i o n s ~ i n ~ t h e ~} \\
& \text { Electroweak Theory. Total Cross Section } \\
& \sigma_{T} \text { and Integrated Asymmetry AFB } \\
& \text { Analytic expressions are obtained for the integrated } a^{3} \\
& \text { QED contributions to the total cross section } \sigma_{T} \text { and the } \\
& \text { forward-backward asymmetry AFB in the process } e^{+} e^{-} \rightarrow \\
& \rightarrow f^{+} f^{-} \gamma \text {. Photons from soft and hard bremsstrahlung, are as- } \\
& \text { sumed not to be observed. The calculations are performed } \\
& \text { in the ultrarelativistic aproximation in fermion masses, } \\
& \text { mif }_{2} \ll M_{z}^{2}, M_{Z} I_{z}, \text { but the mass Mz and width } \Gamma_{z} \text { of the } \\
& \text { neutral weak gauge boson } Z \text { are treated without any further } \\
& \text { approximations. } \\
& \text { The investigation has been performed at the Laboratory } \\
& \text { of Theoretical Physics, JINR. }
\end{aligned}
$$

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?

You can receive by post the books listed below. Prices - in US $\$$, including the packing and registered poatage.

D13-84-63	Procéedings of the XI International Symposium on Nuclear Electronica. Bratislava, Czechoslovakia, 1983.	12.00
E1,2-84-160	Proceedinges of the 1983 JINR-CERN School of Physics. Tabor, Crechoslovakia, 1983.	6.50
D2-84-366	Proceedings of the VII International Conference on the Problems of Quantum Field Theory. Alushta, 1984.	11.00
D1,2-84-599	Proceedings of the VII International Seminar on High Energy Physics Problems. Dubna, 1984.	12.00
D1784-850	Proceedings of the III International Symposium on Selected Topics in Statistical Mechanics. Dubna, 1984 (2 volumes).	22.00
	Proceedings of the IX All-Union Conference on Charged Particle Accelerators. Dubna, 1984. (2 volumes)	25.00
D11-85-791	Proceedings of the Intemational Conference on Computer Algebra and Its Applications in Theoretical Physics. Dubna, 1985.	12.00
D13-85-793	Proceedings of the XII International Symposium on Nuclear Electronics, Dubna, 1985.	14.00
D4-85-851	Proceedings of the Intemational School on Nuclear Structure Alushta, 1985.	11.00
D1.2-86-668	Energy Phyaics Problems, Dubna, 1986 (2 volumes)	20.00
D3,4,17-86-747	Proceedings of the V International School on Neutron Physics. Aluahta, 1986.	25.00
D9-87-105	Proceedings of the X All-Union Conference on Charged Particle Accelerators. Dubna, 1986 (2 volumes)	25.00
D7-87-68	Proceedinzs of the Intermational School-Seminar on Heavy Ion Physics. Dubna, 1986.	25.00
D2-87-123	Proceedings of the Conference "Renormalization Group-86". Dubna, 1986.	12.00
D4-87692	Proceedings of the International Conference on the Theory of Few Body and Quark-Hadronic Systems. Dubna, 1987.	12.00
D287.798	Proceedings of the VIII International Conference on the Problems of Quantum Field Theory. Alushta, 1987.	10.00
D14-87.799	Proceedings of the Intemational Symposium on Muon and Pion Interactions with Matter. Dubna, 1987.	13.00
D17-88-95	Proceedings of the IV Intemational Symposium on Selected Topics in Statistical Mechanics. Dubna, 1987.	14.00

[^0]: *Dept. of Physics, State University, of Petrosavodsk, USSR

