


1. IBTRODDCTION 

I n  most of  p h y s i c a l l y  i n t e r e s t i n g  ha rd  s c a t t e r i n g  p r o c e s s e s  we have t o  

do b e s i d e  t h e  r enorma l i sed  c o u p l a n t  a=gt/4n2 ( i n  t e rmino logy  and no ta -  

t i o n  of C11) a l s o  w i t h  v a r i o u s  p a r t o n  d i s t r i b u t i o n  and f r a g m e n t a t i o n  

f u n c t i o n s  ( c a l l e d  d e n s i t i e s  i n  t h e  f o l l o w i n g ) .  These  a r e  n o t  c a l c u l a b l e  

i n  p e r t u r b a t i v e  QCD and must t h e r e f o r e  be  e x t r a c t e d  from exper imen t .  I n  

doing s o  we f a c e  t h e  problem o f  t h e i r  p r e c i s e  d e f i n i t i o n  i n  t e r m s  o f  

t h e  b a r e  p a r t o n  d e q e i t i e a ,  much i n  t h e  same way a s  i n  t h e  c a s e  o f  t h e  

d e f i n i t i o n  o f  t h e  r enorma l i sed  a o u p l a n t  a i n  t e rms  o f  t h e  b a r e  c o u p l a n t  

am. A s  a  consequenqe o f  t h i s  l a t t e r  freedom t h e  c o u p l a n t  becomes a  fun- 
c t i o n  of f r e e  pa ramete r s  { ~ , c , , i 2 2 )  appea r ing  i n  t h e  d e f i n i t i o n .  

where b  a s  w e l l  a s  c  a r e  f i x e d  once t h e  number n r  o f  qua rk  f l a v o r s  i a  

g i v e n  ( w e  s t a y  i n  mass l e s s  QCD th roughou t  t h e  p a p e r ) .  The pa ramete r s  

{ r , c L , i 2 2 )  s p e c i f y  t h e  r e n o r m a l i s a t i o n  scheme {RS) of t h e  c o u p l a n t  a, 

whi le  t h e  s u b s e t  { c L , i 2 2 )  d e f i n e s  t h e  r e n o r m a l i s a t i o n  conven t ion  (RC). 

The whole t h e o r y  i e  f i x e d  by f i r i n g  some d imens ionfu l  q u a n t i t y ,  a s  f o r  

i n s t a n c e  t h e  pa ramete r  A, s p e c i f y i n g  t h e  a o l u t i o n  o f  ( 1 )  
a 

A - a  l t c a  ] d x .  T- b l n  'i - 1 + c l n  + f j j q  + i ; Z m )  ( 2 )  

According t o  111, changing t h e  RS o f  t h e  c o u p l a n t  means v a r y i n g  t h e  pa- 

r ame te r s  @ , c ,  a t  w i l l ,  b u t  h o l d i n g  A f i x e d .  I n t e r n a l  c o n s i s t e n c y  o f  t h e  

p e r t u r b a t i o n  t h e o r y  t h e n  i m p l i e s  t h a t  t h e  c o e f f i c i e n t s  rk of p e r t u r b a -  

t i o n  expans ion  o f  some f u l l y  i n c l u s i v e  p h y s i c a l  q u a n t i t y  R(Q) (aeeumed 

f o r  s i m p l i c i t y  t o  depend on a s i n g l e  e x t e r n a l  momentum Q )  

~ ( ~ ) = a * ( w . c ~ ) [ l  t r , ( Q / p ) a ( v , c , )  t r 2 ( Q / v . c 2 ) a z ( ~ , c L )  t .  . .) ( 3 1  

a r e  unique f u n c t i o n s  o f  Q / p . c L ,  i < k .  For d = l  we have f o r  i n s t a n c e  

r , (Q/p)  = b l n ( p / Q )  + r , (u=Q)  = b l n ( ~ / A )  - p,(Q/A). ( 4 )  

where P, is RS i n v a r i a n t ,  i . e .  is independent  o f  t h e  c h o i c e  o f  P ,  cL.As 

P and A e n t e r  i n  ( 2 )  a lways  i n  t h e  r a t i o  p/A, t h e  change of t h e  RS can  

e q u a l l y  we l l  be accomplished by h o l d i n g  P f i x e d  by s e t t i n g  it e q u a l  t o ,  

s a y ,  Q and v a r y i n g  h i n s t e a d .  I n  t h i s  n o t a t i o n  i t  is t h e  dependence of 

a ( p = Q )  and r k ( p = Q )  on A and c L  which e x p r e s s e s  t h e  RS ambigu i ty .  The 

dependence of t h e  c o u p l a n t  a and t h e  c o e f f i c i e n t s  rk on P and A a r e ,  

houever ,  o n l y  t u o  d i f f e r e n t  s i d e s  o f  t h e  same c o i n  and s o  i t  would be 



redundant t o  vary  both P and A .  For bookkeeping purposes we t h e r e f o r e  

s i n g l e  o u t  one p a r t i c u l a r  RS (by spec i fy ing  a (p=Q)  and r,(p=Q) and l e t  

a l l  t h e  RG t rans format ions  be descr ibed  by v a r i a t i o n s  of t h e  parameters 

p,c,.  Although t h e  hoice of t h i s  r e f e r e n t i a l  renormal i sa t ion  scheme P (RRS) is complete Y a r b i t r a r y  and has nothing t o  do with t h e  RS ambigu- 
i t y  of f i n i t e  o rder  approximations t o  ( 3 )  (we would have t o  choose some 

RRS even i f  we were a b l e  t o  c a l c u l a t e  t h e  f u l l  sum ( 3 ) ) ,  some q u a n t i t i -  
e s ,  l i k e  r, ( Q / r )  w i l l  depend on it. On t h e  o t h e r  hand t h e  i n v a r i a n t  

pA=bln(Q/A)-rL(p=Q) is n a t u r a l l y  independent a l s o  of t h e  chosen RRS a s  

t h e  e x p l i c i t  dependence on t h e  a s s o c i a t e d  A of t h e  logari thm ln(Q/A) is 
compensated by t h e  i m p l i c i t  dependence of  t h e  c o e f f i c i e n t  r,(p=Q) on 

t h e  RRS ( h i g h e r  o r d e r  pis a r e  Q-independent).  

Having f i x e d  t h e  RRS a s ,  aay,  ( s o  f o r  r=Q we g e t  a ( Q )  and r,(p=Q) 
a s  defined by t h e  u s u a l  liS counter terms) ,we may now choose any p ,c i  t o  

e v a l u a t e  R ( Q )  according t o  ( 3 )  because i n  t h e  f u l l  sum ( 3 )  t h e  depen- 

dences of t h e  couplant  and t h e  c o e f f i c i e n t s  r, on t h e s e  parameters  f u l -  

l y  compensate each o t h e r  ( we ignore here t h e  complicated and p r e s s i n g  

problem connected wi th  t h e  divergence of  expansions l i k e  ( 3 )  [ 2 , 3 ] ) .  

The t r u n c a t e d  approximations t o  ( 3 )  do,  however, depend on t h i s  cho ice .  

Various i d e a s  [1,4-71 have been proposed t o  r e s o l v e  t h i s  f i n i t e  o r d e r  

ambiguity. They s t r e s s  d i f f e r e n t  a s p e c t s  of t h e  problem, bu t  t h e r e  is 

u s u a l l y  l i t t l e  doubt a s  t o  t h e  form of  t h e  N-th o r d e r  approximant R ~ :  

it is  ( 3 )  t r u n c a t e d  t o  t h a t  o r d e r .  In  p r i n c i p l e  one can imagine o t h e r  

forms of t h i s  approximant, l i k e  f o r  i n s t a n c e  

R*(Q) = = a I ~ + s ~ a + s ~ a ' + .  .sNaN ,sL=trl,sI=r:+2rZ, . . ( 5 )  

i . e .  we f i r s t  c a l c u l a t e  R'(Q) t o  N-th o r d e r  and t h e n  t a k e  t h e  square 

r o o t  ( 5 ) ,  b u t  they  a r e  mostly r a t h e r  a r t i f i c i a l .  Moreover, i f  we i n s i s t  

on t h e  polynomial form of t h e  N-th order  approximant then only ( 3 ) t r u n -  

c a t e d  t o  t h a t  o r d e r  is accep tab le .  Nevertheless  i n  some caees t h e r e  may 

r e a l l y  be good reasons t o  modify ( 3 )  and t h u s  a l s o  i ts approximanta ItN. 

This  happens i n  t h e  c a s e  of exponent ia t ion  of s o f t  gluon emissions whe- 

r e ,  w r i t t e n  echematical ly  and a p a r t  from o v e r a l l  normal i sa t ion ,  we have 

i n s t e a d  of ( 3 )  [8 ,91  

R(Q) = era (a( l + ~ ~ a + I ' : a + .  . . )) , I'*=rL-r e t c .  ( 6 )  

( r  is  some number) and t r u n c a t e  then  t h e  s e r i e s  i n  t h e  b racke ts .  

For p rocesses  involving parton d i s t r i b u t i o n  and fragmentat ion func- 

t i o n s  p e r t u r b a t i o n  theory  l e a d s  t o  r e s u l t s  which a r e  more complicated 

than  ( 3 ) .  I s h a l l  i n  t h e  r e s t  of t h i s  paper d i scus6  mostly t h e  s i m p l e s t  

c a s e ,  namely t h a t  of nons ing le t  nucleon s t r u c t u r e  func t ions  a s  exempli- 

f i e d  by t h e  combinations 

F ; (~ ,Q)  = t [ g v : ( x , ~ )  - F':(X,Q)] ( 7  

YP 
F:(X,Q) = F ~ ( x , Q )  + F~ ( x , Q ) .  ( 8 )  

I drop t h e  s u p e r s c r i p t  NS and denote by F ( x , Q )  i n  t h e  r e s t  of t h i s  pa- 

per  g e n e r i c a l l y  a l l  t h e  NS s t r u c t u r e  func t ions  l i k e  ( 7 - 8 ) .  

QCD p r e d i c t i o n s  f o r  F ( x , Q )  a r e  burdened, beyond t h e  R S  ambiguity d ie -  

cussed above, a l s o  with t h e  s o  c a l l e d  f a c t o r i a a t i o n  scheme (FS) ambigu- 
i t y  [ lo-111.  But before a t t empt ing  t o  r e s o l v e ,  i n  one way o r  ano ther ,  

t h i s  ambiguity we must aga in  f i r s t  of a l l  agree  on t h e  form of  t h e  N-th 
order  approximant. There a r e  two d i f f e r e n t ,  but  e q u a l l y  p l a u s i b l e  a l -  

t e r n a t i v e s .  The f i r s t  s t a r t s  with QCD p r e d i c t i o n s  f o r  t h e  moments 
L 

FN(Q) m I x N - ' ~ ( x , ~ ) d x  ( 9 )  
0 

of t h e  s t r u c t u r e  func t ion  P(x .Q) :  

where a(M), a ( p )  a r e  renormalised couplan ts ,  taken a t  g e n e r a l l y  d i f f e -  

r e n t  s c a l e s  M and p ,  AN a r e  numerical c o n s t a n t s  and dN,d: a r e  f i r s t  two 
c o e f f i c i e n t s  i n  t h e  expansion of t h e  anomalous dimension 

+ N l  d lncp lONlp>  dlnU = dNa(M) + d:af(U) + . . . (11)  

descr ib ing  t h e  dependence of t h e  mat r ix  element of r e l e v a n t  Wilson ope- 
r a t o r  oN ( i n  t h e  pro ton  s t a t e )  on t h e  f a c t o r i s a t i o n  mass M .  The l a s t  

bracket  i n  (10)  corresponds t o  "hard s c a t t e r i n g "  p a r t  of t h e  s t r u c t u r e  

func t ion  and is c l o s e l y  reminiscent  of ( 3 ) .  While dN a r e ,  s i m i l a r l y  t o  N 

b ,  c  i n  ( 1 )  uniquely s p e c i f i e d  by n,, a l l  t h e  remaining c o e f i c i e n t s  d , ,  

i 2 l  a r e  aga in  completely a r b i t r a r y  and d e f i n e  what is u s u a l l y  c a l l e d  a 

f a c t o r i s a t i o n  convention (PC) : FC={~:}. Thia,  t o g e t h e r  with t h e  f a c t o -  

r i s a t i o n  mass H, d e f i n e  t h e  f a c t o r i s a t i o n  scheme (FS):PS={U,PC}. Natu- 

r a l l y .  a l s o  t h e  c o e f f i c i e n t s  r, i n  (10)  do depend on t h i s  PC. To NLO, 

t o  which I r e s t r i c t  myself i n  t h i s  paper ,  only t h e  f i r s t  two te rms ,  ex- 

p l i c i t e l y  w r i t t e n  ou t  i n  (10-11) a r e  taken i n t o  account and s o  i n  t h i s  
N 

approximation FC={~:} and PS={U,dL}. To t h e  o r d e r  considered t h e  ambi- 

g u i t i e s  inheren t  i n  ( L O )  a r e  t h e r e f o r e  connected wi th  t h e  freedom i n  

t h e  cho ice  of both t h e  FS={H,d:} and t h e  RS={p}. Let me c a l l  c a l c u l a t i -  

ona l  scheme (CS) t h e  s e t  o f  a l l  parameters p,U,d:. A l l  t h e  information 

on t h e  Long-distance p r o p e r t i e s  of  t h e  proton is contained i n  t h e  con- 

s t a n t s  A M ,  which cannot be c a l c u l a t e d  p e r t u r b a t i v e l y ,  bu t  must be con- 

s idered  . ~ s  frac: csrameLerg t o  be e x t r a c t e d  from coaparison o f  (10)  with 

e x p e r l 6 ~ n t n l  d n t ? .  Y.:t-?. h:wever, t h a t  AN a r e  not  equa l  t o  mat r ix  e l e -  



ments of Wilson operators oN at some particular ecale Mo, but specify 
the solution of (11) by means of its asymptotic behaviour as U- 

The internal consistency of perturbation expansion (10) dictates again 

the dependence of ry on M,M and the FC={~:} [lo]: 

r:(~/M,d:) = dNln + $ + 2, (13) 

where rN are FS-invariants, which, however, still depend on the RRS of 
the couplante a(r),a(M). 

The form (10) is a direct consequence of the operator production ex- 

paneion technique. Were the momente FN(Q) experimentally measurable, we 

could compare them directly to (10). In practice only structure functi- 

ons over a limited range of x-valuee are available and so we must turn 

(10) into prediction for them. The other possibility of extrapolating 

the measured structure function to the whole interval <0,1> in order to 

calculate the momente (9) mixes experiment with phenomenological aseum- 

ptione and should better be avoided.It is definitely preferable to in- 

corporate such assumptions into free parameters of the theoretical for- 

mulae. A number of methods for translating (10) into prediction for the 

structure functions doee exist. One of them, based on the use of Jacobi 

polynomials will be described in more detail in Section 4 .  I ehall call 

it the momentum based (MB) formulation of QCD predictione for structure 

functions . 
The alternative way of formulating QCD predictions for etructure fun- 

ctione, embedded naturally ly in the parton model language 1121, is to 

write them as a convolution of the (noneinglet) quark deneity q(x,U,FC) 

(taken at the general ecale M ) and the hard scattering croee-section 

C(~,Q/U,~,PC)=~(~-~)+~(P)C~(Z,Q/U,FC): 

L 

F(x,Q) = $ q ( x / z , ~ , ~ ~ )  [~(~-~)+~(M)C'(=,Q/U,FC)]. (14) 
0 

The quark deneity iteelf ie a solution of the evolution equation 

where 

P(z,a(U),FC) = a(U)p"(z) + ~*(M)P~(z,Fc) (16) 

and r:,dN,d:,rN are momente (defined ae in ( 9 ) )  of c*.PO,P' and r(z) 

respectively. In terms of these functions eq.(13) reads 

Clearly, (11) is just the Mellin transformation of (15). In this al- 

ternative language, let me call it parton model based (PB) formulation, 

FC is specified by the funtion ~'(z). Provided M in (10) is independent 

of N and equal to M in (14), which thus is independent of x and more- 

over a(r) and a(M) are exact solution of eq.(2) truncated to the NLO, 

these two expressions yield identical F(x,Q). 

There is, nevertheless no reasons why M in (10) could not depend on M 

and/or M in (14) on x. In such case (10) and (14) are no longer equiva- 

valent and so express two different forms of the NLO QCD predictions 

for F(x,Q), each of them still burdened with the CS ambiguity. Before 

trying to resolve this ambiguity, we must therefore first of all deci- 

de which of the two discussed formulations to adopt. Although from the 

point of view of eventual applications to more complicated processes 

like Drell-Yan production of massive dileptons [13], large p, photopro- 

duction or hadroproduction of photons with large p, [14,15l,the 

PB formulation is definitely preferable on technical grounds, there is 

in fact no serious reason to prefer it in principle. At the end of Sec- 

tion 4 we shall see that indeed both formulations lead to similar for- 

mulae, namely the sums of exponentially improved expressions like ( 6 ) ,  

weighted by some functions of the parameters A,. 

In the following I shall first discuss, for both formulations and in 

a quantitative manner, the question of the choice of the CS.Then a for- 

malism will be constructed which allows an easy transformation from one 

FS to another (changing the RS={r} is in eq. (1,4)). The whole problem 

of the appropriate choice of the FS has only very recently obtained so- 

me attention in the phenomenological analyses 113-151, but merely as 

far as the change of the scales r and M is concerned. I shall demonst- 

rate that the proper choice of the FC is probably even more important. 

The rest of this paper is organised as follows. In the next Section I 

shall commnent on some of the popular choices of FS={H,~~}, including 

the one based on the extension [10,11] of the Principle of Minimal Sen- 

sitivity to quantities like ( 7 , 8 ) .  Their quantitative comparison in the 

case of the moments (9) can be found in Section 3. The explicit expres- 

sion for the structure function F(x,Q) in a general FS and using both 

the MB and PB formulations are constructed in Section 4. The generali- 

sation of the results to more complicated processes is sketched in Sec- 

tion 5. Summary and conclusions are reserved for the last Section. 

2. REVIEW OF CURRENTLY USED FACTORISATION SCHEMES 

Of the more or less ad hoc chosen FS the following two have been used 

most frequently 



2.1 The "universal" factorisation scheme 

This is the rather unfortunate and misleading denomination for the FS 

in which M=Q and d: are given by expressions first derived within the 

OPE technique in C161. The corresponding branching function pL(z) was 

obtained in 1161 by means of inverse Mellin transformation and in [I21 

using directly the PB formulation . As in both techniques the results 
(i . e. d: or pL(z) ) are calculated ( in dimensional regularisation) from 

certain renormalisation factors, retaining at each order only the pole 

terms, the denomination "HS" would be much more appropriate. The word 

"universal" is misleading as it gives rise to incorrect impression that 

only this FS can be used in all hard scattering processes. This, how- 

ever, is not the case. Any FS, that is, any choice of M,P and dy (or PL) 

can in principle be used in any hard scattering process, much in the 

same way as any RS={PI can be used in (3). In complete analogy to the 

couplant (I), quark density q(x,M,EC) is not a physical quantity and we 

are therefore free to define it in any way consistent with ( 1 5 ) .  Phy- 

sics is not contained exclusively in the quark density, but rather in 

its convolution (14) with the hard scattering cross-section. 

2.2 The "physical" factorisation scheme 

In this FS, suggested first in C181, M is again set equal to Q but the 

function PL(z) is chosen in such a way that 

cL(z,M,Fc) = 0 + F(x,Q) = q(x,Q) (18) 

identically for the structure function (7). This structure function is 

singled out owing to the fact that the associated FS-invariant r(z) has 

the following important property 
L 

rL = J x(z)dz = 0 -  (19) 

In "physical" FS 

P'(z) = -b=(z) i.e. d: = -bxN (20) 

and consequently (19) implies, for the structure function (7), fermion 

number conservation sum rule 
L 

q(x,Q)dx = u,,(x,Q) - dV(x,Q) = 1 t A 21 
0 

where uV,dv are valence quark densities as defined in the "physical" 

FS. Although the validity of (21) is not obligatory, it is certainly 

preferable to preserve this basic parton model property of quark densi- 

ty even in QCD, if only to maintain, as far as possible the intuitive 

connection of the latter with the former. 

It is, however, obvious that although (18) combined with M=Q implies, 

for (7) the sum rule (21), the opposite is not true. Indeed for struc- 

ture function (7) the property (19) requires r:=d:/b and thus the vali- 

dity of quark number conservation sum rule (i.e.d:=~) implies r:=0, but 

this does not mean that r:=Q for all N, or equivalently, that C'=O 

identically! Even assuming H-Q, any partition (17) of the FS-invariant 

~ ( z )  tnto PL(z) and cL(z,Q/H) which meets the condition d:=0 (i.e. P' 
is a " + "  distribution) guarantees the sum rule (21), not only that de- 
fined in (18). One of them is just the "universal" FS diecuaaed above! 

The "physical" FS is not a direct consequence of the physically well 

motivated condition (21) but is based in an essential way on the rather 

ad hoc assumption d:=0 for all N, though only d:=0 is required by (21). 

In fact it is very close to the "effective charges" criterion of [41, 

developed for resolving the RS ambiguity of expansions like (3). 

Moreover, the "physical" PC, i.e. assuming (20) but leaving M still 

free, has a rather unwelcome feature. Due to the fact that the FS inva- 

variant r(z) still depends on the RRS of the couplant the choice (20) 

(20) means that in this PC the bra'nching function pL(z) is also RRS-de- 

pendent. In Subsection 2.4 this feature will be shown to lead to unaa- 

satisfactory results when optimisation with respect to M is performed 

in the "physical" PC. 

2.3 The "zero" factorisation convention 

In some sense opposite to the "physical" PC is the FC in which P'(z)=Q 

by definition. While in the former PC all of the NLO corrections to 

structure function (7) were included ("exponentiated") in the definiti- 

on of the Q-evolved quark density, none is in the latter, as they are 

all shifted into the hard scattering cross-section, which in the "sero" 

PC has therefore the form 

The evolution equation for the quark density q(x,M) is the same as in 

the LO. This PC has so far not been used in phenomenological analyses, 

though as we shall see later it is very close to the one prefered by 

the PMS criterion. It is also not far from the results of the conven- 

tional "nonexponentiated" formula 

which results from expanding, wherever possible, the r.h.6. of (10) in 

powers of a(M) and retaining the first two terms only C191. 

2.4 Defining factorisation scheme through optimisation 

The idea [10,11] of choosing the RS={p} as well as the FS={M,~:} at the 

stationary point of the function P,(Q) as given in (10) is a direct ex- 

tension of the original PMS criterion of [I]. In [lo] each of the mome- 

nts FN(Q) is optimised separately and consequently the optimal FS and 



RRS turn out to be N-dependent : FsSL={~(N) ,q(N) 1, ~sO~~={ii(N)). The 

optimisation with respect to r yields the condition [ll] 

which when combined with equations resulting from optimisation of (10) 

with respect to H and d: gives (in the approximation ca(H)<<l) 

so that 

As the quantity sN=rNtdNln(Q/h) in (25-27) is both FS end RRS invariant 

(the dependence of atN on the RRS is compensated by the explicit depen- 

dence on A of the secand term), the ratio R(N)/A is manifestly RRS-in- 

dependent and consequently (28) unique. 

Two features of the optimised reeult (28) are notewo~thy. First, for 

c=O the optimal FCO~'={T} is just the "zero" FC of the previous Subsec- 

tion and in fact even for realistic values of c these two FC are, for 

the same H, numerically practically indistinguishable. Secondly, 

the optimal 8, though for fixed N proportional to Q, 16 rapidly decrea- 
sing function of N for fixed Q, r o ~ h l y  like QN-'~. Although in both 

the optimised and "physical" FS rY30, the ways in which this is achie- 

ved are vastly different. In the optimised formula (28) moat (for c=O 

all) of the NLO corrections are incorporated in the dependence of the 

factorisation mass H on N, while in the "physical" P6 they are fully 

shifted into the NLO anomalous dimensions d: , or equivalently into 
the NLO branching function P'( 2). The quantitative difference between 

these two realisations of the condition r:=0 is significant as will be 

discussed in the next Subsection. 

Closer examination of the formula (28) shows that the stationary po- 

int determined by eqe. (25-27) is not a local extreme but rather a sad- 

dle point. This is clear already from the fact that for H and d: at the 

stationary point FN(Q) does not depend on r ,  (r:=0 there) which is a 

property typical for a saddle point. It is also evident that full opti- 

misation, 1.e. optimisation of all moment8 FN(Q) is possible 

only for structure function like (7) for which the FB-invariants rN ha- 

ve the property m'=~. Recall that although rN do, for general N, depend 
Y on the 886, r' does not as rN change by a term proportional to d when 
- 

the is varied and di=O. 

Although the optimisation of (10) with respect to Fc={~:} is an inte- 
gral part of the optimieation procedure and may in fact be the most im- 

portant part thereof, we may for some reasons wish to fix it and opti- 
mise with respect to the scales r and H only. In this case we again get 

the condition (24), but instead of (25) we find for the optimised fac- 

torisation mass $'=(N) the formula 

and consesuentl~ 

Provided d: is fixed independently of the RRS, the ratio P/A is RRS- 

invariant and so is therefore also (30). As mentioned at the end of the 

Subsection 2.2, this provision is violated in the "physical" FC. So in 

this FC the result (30) of optimisation with respect to r and H remains 
still ambiguous as it depends through d:=-bxN on the RRS of the coup- 

lant a(Q) ((29) implies iPx=Q in this PC). Of course, the dependences 

of a(Q) and rN on the RRS mutually cancel1 to the NLO, but numerically 

(30) does depend on it. This in itself is nothing wrong, but in (30) we 

have already optimised with respect to both r and H. As, however, chan- 
ging H or the RRS are merely two different ways of realising the same 

renormalisation group transformation, this is clearly unsatisfactory. 

The source of this unwelcome feature is clearly the very definition of 

the "physical" PC, namely the fact that by setting d:=-brN we force 

these parameters to depend on RRS. 

So far all the optimisation concerned exclusively the moments FN(Q) 

of structure functions. We can take the results (28) or (30) and invert 

them to find the corresponding structure function itself. However, as 
the optimisation procedure does not commute with the inverse Hellin 

transformation, the in this way obtained F(x,Q) will in general not be 

the same as if optimisation is applied directly to formula (14). Unfor- 

tunately, this is technically rather involved and practically impossi- 

ble to do. But in any case we must first of all find an analogue of ex- 

pression (lo), which would explicitly exhibit what should be held fi- 
xed when varying the FS={H,P'(~)}. From (14-15) this is not obvious. 

But even after constructing in Section 4 such an expression, we shall 

see that it is practically hopeless to try to optimise it with respect 

to FC={P'(Z)). So some experience gained from optimisation of the mo- 

ments will be invaluable 



3. NUMERICAL COMPARISON 

In thie Section the reeulte correeponding to varioue option6 diecueeed 

in the previoue Subeectione are quantitatively compared. Firet, Fig.1 

dieplaye the dependence of FN(Q), as given in (10) and normalieed to 
-dN/b the common LO expreesion AN(ca(Q)) , on the ratio Q/A for eeveral 

lowest momente of the etructure function (7). In all caeee the RRS of 

the couplant ie choeen to be s. The curvee in Fig.1 separate into two 
dietinct groupe. The firet contain6 thoee of the "phyeical","universal" I and "zero" FC. all eupplemented with the choice H=Q, together with the 

conventional nonexponentiated formula (23). Hithin thie group the "phy- 

eical" PC leada coneistently to higheat value6 of FN(Q) and exhibits 

aleo the eteepeet dependence on Q/A, while the loweet and least eteep 

curve is that of the "zero" FC. The difference6 are, however, rather 

emall and of little phenomenological eignificance. Once we let r and M 
vary and optimiee with reepect to them the eituation changes ae is de- 

monetrated by the three upper curves, correeponding to optimieation 

in the "univereal" and "zero" FC as well ae the fully optimieed reeult 

( 2 8 ) .  The optimieation with reepect to M in the "phyeical" FC gives 

P = Q  and eo lbade to the aame reeulte ae already shown there. 

Several conclueions can be drawn from Fig.1. Firat, the relevance of 

the optimieation with reepect to r and I depend6 eeneitively on the 
choeen fixed FC. Hhile no change (relative to the caee M=Q) occur6 in 

the "phyeical" FC, there ie a significant jump in the "zero" FC, lea- 

ding to reeulte which are aleo practically indietinguiehable from thoee 

of the full PIS procedure. But aleo when optimieation ie performed in 

the "univereal" FC do we come much closer to the latter than in the 

"phyeical" FC. Secondly, the upper three curvea are aleo much eteeper 

than the lower onee. Thie ie further demonetrated in Fig.2, which die- 

playa the ratio FN(Q)/AN for N=3,4,5. While for I=Q the difference bet- 

ween curvea correeponding to the "phyeical" and "zero" FC can, for each 

moment N, be approximated by a uniform ehift along the x-axis equiva- 

lent to the change of A by an N-dependent factor in the interval (1.05, 

1.2>), no such simple change of A ie capable to deecribe the relation 

between the fully optimieed FN(Q) and any of the lower four curvee. 

Qualitatively, thie eteeper increaee~of (28) at low Q/A hae eimilar ef- 

fect ae the addition of higher twiet term6 to the latter curvee. 

The reeulte preeented inFigs.1,2 are instructive,eepecially if we 

prefer the PIS approach, but strictly epeaking they concern the momente 

of etructure function and cannot be etraightforwardly generalised to 

other proceeeee or even to the direct analyeis of etructure functions 

themeelvee. Nevertheleee the reeulte dieplayed in Figs.l,2 ehow that 1 



the "physical" FC is certainly not the only plausible choice of the FC. 

4.FACTORISATION SCHEME AMBIGUITY IN PARTON MODEL BASED FORMULATION 

In the caee of the deep inelastic scattering, and so long as we do not 

attempt to optimise, there is neither a principal nor a practical rea- 

son for prefering the PB formulation to the MB one or vice versa. If 

optimisation is performed then, however, the PB formulation is defini- * 

tely preferred. The PB formulation is also prefered, although now on 

on practical grounds, if other, more complicated processes (DY dilepton 

production, photoproduction of large P, hadrons or hadroproduction of 

large p, real photons) are considered in the NLO approximation. It is 

therefore vital to have at our disposal general formalism for analysing 

within the PB formulation, any hard scattering process in arbitrary FS. 

To my knowledge such a formalism is not available in the literature. 

In the rest of this paper a simple construction of such a formalism 

will be discussed, starting with the caee of the nucleon structure fun- 

ctions ( 7 - 8 ) .  

The PB formulation of QCD predictions for the structure function 

F(x,Q) is embodied in eq. (14-15). The moments of the quark density 

q(x,M) are given explicitly as 

and the result of the convolution (14) is equivalent to (10). provided 

in both (10) and (14) M is a constant, independent of either N or x. 

Nevertheless this provision is not mandatory and so we allow for pos- 

sible dependence of M in (14) on x. 

As we want to vary all the parameters P,M,P'(z) specifying the CS, we 

must'first of all decide what should be held fixed in the process.Star- 

ting from eqs.(14-15) the answer is not obvious as in the case of F,(Q) 

in (10). Indeed, in this respect the moments of structure functions are 

more primary quantities than structure functions thremselves, as they 

are directly related to the corresponding Wilson operators. This con- 

nection tells us that it is the constant A, in (31) which must be fixed 

when we vary M and the FC=(P'(Z)I. However, as already stressed these 

constants do not characterise quark densities at any fixed M,, but rat- 

her specify their asymptotic behaviour as M e .  On the other hand, it is 

the quark density q(x,Mo) at some initial I, which is usually used to 

specify the solution of (15). But it is obvious from (33) that by chan- 

ging LI and/or ~'(2) (and thus d:) while holding A, fixed, we change 

P,(Q) for all Q. This means that variation of the FS in (14-15) does 

not only change pl(z) in (15) and U and c'(z,Q/I) in (Id), but implies 
also the change of the initial condition q(x,~,)! 

So if we want to use the results (i.e. A and q(x,Mo)) of a particular 

analysis of some hard scattering process, performed in a given FS, for 

working out QCD predictions (for the same or other processes) in a dif- 

ferent FS, we muet inevitably know also the associated change of the 

boundary condition on (15). This information is, however, essentially 

equivalent to the explicit knowledge of the solution q(x,M) of (15) as 
a function of both M and pL(z) . We can write down the evolution equati- 
on, including the boundary condition, for the quark density in the new 

FS only provided we know its explicit expression in terms of the mo- 

ments (31) because only for these moments do ue know what muet be held 
fixed when M and PL(z) change. It is, however, clear that once we have 

such an expression at our disposal there is no further need to solve 

the evolution equation in the new FS as this expression itself repre- 

sents the most general solution of it. 

We therefore seek an explicit solution of (15) in terms of moments 

(31), which moreover allows an easy transformation of the initial con- 

dition q(x.Uo), employed in all existing analyses, into the information 

on A,. An efficient way of doing this is based on the use of orthogonal 

Jacobi polynomials as suggested in [20]. The numerical accuracy of this 

way of solving the evolution equation (15) has been studied in detail 

in [21] and turns out to be very satisfactory (better than 1% for all 

x and Q of interest). Following [201 we write the solution of (15) in 

the form 

and so obtain for the structure function F(x,Q) the expression 

In (32-33) c ( z )  are the Jacobi polynomials and the "Jacobi" moments, 

~ ~ ( u , F c )  are defined by means of the moments q,(M,FC) (31) as 

where c z  are numerical coefficients (for their explicit values as well 

as for the exact definition of e ( z )  see [20-213). To fix (33) unambi- 
guously, a and 13 must first be specified. This is done in such a way so 

as to approximate the basic shape of the structure function P(x,Q) al- 

ready by the lowest term in the series (32).For the nonsinglet structu- 

re functions it is quite sufficient [21] to take e-0.5,@=3. 



Formula ( 3 3 )  r e p r e s e n t s  t h e  b a s i c  form o f  QCD p r e d i c t i o n  f o r  F ( x , Q )  

which a l l o w s  f o r  t h e  v a r i a t i o n  o f  t h e  F S = { ~ ~ , P ' ( Z ) }  and s p e c i f i e s  what - 
namely t h e  c o n s t a n t s  A,- must be h e l d  f i x e d .  These c o n e t a n t e  must t h e n  

b e ,  t o g e t h e r  w i t h  A,  e x t r a c t e d  from phenomenological  a n a l y s e a  of  expe- 

r i m e n t a l  d a t a .  They r e p r e s e n t  t h e  moet n a t u r a l  p a r a m e t r i e a t i o n  o f  non- 

p e r t u r b a t i v e ,  l o n g - d i s t a n c e  p r o p e r t i e s  o f  t h e  nuc leon .  Fur the rmore ,  i n  

c o n t r a s t  t o  t h e  qua rk  d e n s i t y  q(x,U,) a t  some i n i t i a l  Ma, which is n o t  

a  p h y s i c a l  q u a n t i t y  and is t h u s  ambiguously d e f i n e d ,  t h e  c o n s t a n t s  A, 

a r e  un ique ,  independent  o f  t h e  CS used .  Employing ( 3 3 )  a e  t h e  t h e o r e t i -  

c a l  formula ,  it is t h e n  s t r a i g h t f o r w a r d  t o  compare any two ( o r  more) 

phenomenological a n a l y e e s  o f  any g i v e n  s t r u c t u r e  f u n c t i o n ,  performed i n  

d i f f e r e n t ,  comple te ly  a r b i t r a r y  FS. R e c a l l ,  how it is sometimee d i f f i -  

c u l t  t o  compare r e s u l t s  o f  p u b l i s h e d  a n a l y e e e ,  when t h e e e  a r e  done ( a e  

is u s u a l l y  t h e  c a s e )  i n  d i f f e r e n t  FS, u s i n g  d i f f e r e n t  p a r a m e t r i s a t i o n s  

o f  q(x,H,) a t  d i f f e r e n t  M,. 

Fur thermore  it is f r e q u e n t l y  n e a r  t o  i m p o s s i b l e  t o  f i n d  o u t  from pub- 

l i s h e d  p a p e r s  which FS hae  i n  f a c t  been employed. Take f o r  i n e t a n c e  r e -  

c e n t  e x t e n s i v e  a n a l y e e s  o f  nucleon s t r u c t u r e  f u n c t i o n s ,  done by EMC 

[22] ,  BDCMS [23] and CDHS [24]  C o l l a b o r a t i o n e .  I n  none o f  them does  one 

f i n d  a  r e l i a b l e  i n f o r m a t i o n  conce rn ing  t h e  FS ueed .  I n  [22]  r e f e r e n c e  

is made t o  a  pape r  o f  Abbott  e t  a l .  [25]  which, however,  c o n t a i n 8  o n l y  

t h e  LO a n a l y e i s ,  w h i l e  i n  [231 o n l y  a  vague s t a t e m e n t  t h a t  " t h e  program 

of Abbott  and B a r n e t t  was ueed" can  b e  found. I n  [24]  t h e  e v o l u t i o n  

e q u a t i o n  f o r  n o n s i n g l e t  s t r u c t u r e  f u n c t i o n  is w r i t t e n  i n  t h e  form sug-  

g e e t i n g  t h e  u s e  o f  " p h y s i c a l "  FS, b u t  when s p e c i f y i n g  t h e  NLO branch ing  

f u n c t i o n  p a ( = )  t h e  r e a d e r  is r e f e r r e d  t o  pape r  C121, t h e  r e s u l t s  o f  

which co r re spond  t o  t h e  " u n i v e r s a l "  FS w i t h  p = U .  I n  o r d e r  t o  avo id  such 

unnecessa ry  c o m p l i c a t i o n s ,  I  recommend t h e  u s e  o f  e q .  ( 3 3 )  a s  t h e  gene-  

r a l  form o f  t h e  NLO QCD p r e d i c t i o n s  ( i n  t h e  PB f o r m u l a t i o n )  f o r  any 

s t r u c t u r e  f u n c t i o n  and i n  a r b i t r a r y  FS. Once A and A, a r e  f i x e d  from an 

a n a l y s i s  o f  one p a r t i c u l a r  p r o c e s s  i n  a  g i v e n  CS, it is t r i v i a l  t o  u s e  

them t o  w r i t e  down p r e d i c t i o n s  f o r  o t h e r  s t r u c t u r e  f u n c t i o n e  ( qr any 

o t h e r  h a r d  s c a t t e r i n g  p r o c e e s  ) i n  a r b i t r a r y  c a l c u l a t i o n a l  scheme. 

From p r a c t i c a l  p o i n t  o f  view it is e s s e n t i a l  t h a t  o n l y  6-7 terms i n  

t h e  sum ( 3 2 )  a r e  n e c e s s a r y  f o r  ve ry  a c c u r a t e  ( t y p i c a l l y  b e t t e r  t h a n  1%) 

approximat ion o f  q ( x , Q ) .  Tha t  is more t h a n  t h e  f o u r  pa ramete r s  u s u a l l y  

employed f o r  t h e  d e s c r i p t i o n  o f  q!x,U) a t  some i n i t i a l  I, i n  t h e  form 

b u t  a s  i n  t h e  c a s e  of ( 3 5 ) .  which o f  c o u r s e  is merely  eome a n e a t a ,  w e  
may assume c e r t a i n  dependence o f  A, o n  N and i n  t h i s  way still lower 

t h e  number of pa ramete r s  r e q u i r e d  i n  t h e  t r u n c a t e d  form o f  ( 3 2 ) .  For 

i n s t a n c e  w e  may u s e  t h e  r e s u l t s  o f  t h e  c o n v e n t i o n a l  p a r a m e t r i s a t i o n  

( 3 5 )  t o  de te rmine  A, i n  terms o f  A , a , P , r ,  tl,, d: 

U n f o r t u n a t e l y  it is p r e s e n t l y  impoeeible  t o  u s e  ( 3 6 )  f o r  a  r e l i a b l e  de -  
Q t e r m i n a t i o n  of t h e  c o n s t a n t s  A,. T h i s  is i n  p a r t  due t o  t h e  mentioned 

l a c k  o f  r e l i a b l e  i n f o r m a t i o n  on t h e  FS used i n  a n a l y e e s  l i k e  t h o s e  i n  

[22-241, b u t  t h e r e  is a l s o  a n o t h e r  r eason .  I n  most o f  t h e  phenomenolo- 

g i c a l  a n a l y s e s  u s i n g  t h e  e v o l u t i o n  e q u a t i o n  ( 1 5 )  i n  some FS, t h e  boun- 

d a r y  c o n d i t i o n  is s p e c i f i e d  n o t ,  a s  would be  a p p r o p r i a t e  w i t h  r e s p e c t  

t o  t h e  e q u a t i o n  (151 ,  by q(x,M,),  b u t  r a t h e r  by t h e  f u l l  s t r u c t u r e  fun-  

c t i o n  F(x,Q,) a t  some Q,. Consequent ly  t h i s  p a r a m e t r i a a t i o n  must f i r s t  

be t r ans fo rmed  i n t o  t h e  one f o r  q (x ,Q , )  by u n f o l d i n g  t h e  c o n v o l u t i o n  

( 1 4 )  ( e x c e p t  i n  t h e  " p h y s i c a l "  FS, where F ( x , Q ) = q ( x , Q )  by d e f i n i t i o n ) .  

A s  t h e  p a p e r s  c o n t a i n  u s u a l l y  no i n f o r m a t i o n  how t h i s  s t e p  was done ,  I  

p r e f e r r e d  t o  u s e  ( 3 6 )  f o r  merely  a  s e m i q u a n t i t a t i v e  e s t i m a t e  o f  A, by 

p lugg ing  i n t o  it t h e  LO p a r a m e t r i s a t i o n  o f  r e f .  C221, co r re spond ing  t o  

( 3 5 )  w i t h  A = 0 . 9 7 , ~ = - 0 . 6 5 , / 3 = 3 . 1 6 , y =  - 0 . 1 3 , ~ ~ = 5 ~ e ~ ~ .  Accordingly  I  s e t  

d:=0 i n  ( 3 6 ) .  A s  dN can  be  ex tended  t o  any N>O, A, c an  be c a l c u l a t e d  

f o r  any r e a l  N>O, n o t  o n l y  i n t e g e r s  [271.  The r e s u l t s ,  shown i n  F i g . 3 ,  

i n d i c a t e  a  smooth dependence o f  A, on N which can  be p a r a m e t r i s e d  wi th  

s u f f i c i e n t  accuracy  a s  

A,=exp( h , + h , ~ + h ~ ~ ~ + h , ~ ' )  . (37  

Without  any  e f f o r t s  t o  f i n d  t h e  b e e t  

v a l u e s  o f  h i e ,  we s e e  t h a t  ha=1 .4 ,  

h,=-1. 55 ,h2=0 .  168,h,=-0.007 g i v e  a  

v e r y  s a t i s f a c t o r y  d e s c r i p t i o n  o f  a l l  

AN,NS1O. So a g a i n ,  a s  i n  t h e  c a s e  o f  

t h e  i n i t i a l  c o n d i t i o n  (351 ,  f o u r  pa- 

r a m e t e r s  a r e  s u f f i c i e n t  f o r  t h e  pa- 

r a m e t r i s a t i o n  o f  n o n p e r t u r b a t i v e  

p r o p e r t i e s  o f  t h e  nuc leon .  Phenome- 

n o l o g i c a l  a n a l y s e s  would t h e n  r e s u l t  

i n  t h e  d e t e r m i n a t i o n  o f  A and h i , i S 3  

The above formula  can  a l s o  be used 

i n  a n o t h e r  way. We do  n o t  have t o  

P i g 0 3 . A ~  a e  a f u n c t i o n  o f  N ac- employ ( 3 3 )  and may fo l low t h e  con- 
c o r d i n g  t o  (36)(-), ( 3 7 )  (---->. v e n t i o n a l  p rocedure  o f  s o l v i n g ,  i n  

some FC={P:(Z)}, ( 1 5 )  G i t h  t h e  i n i t i a l  c o n d i t i o n  ( 3 5 )  a t  some Mo.  Choo- 



sing different M, in (35) and different FS=(M,P'(~)}~~ (14), we shall 

in general get different values of A,a.l),y. Nevertheless, if these are 

substituted into (36), they must, for various approximations to be mu- 

tually consistent, yield the same AN. 

Starting uith (33) we may now attempt to optimise it, for a given 

x ,  with respect to p,M as well as FC=(P*(Z)). There are no serious pro- 

blems uith optimisation uith respect to p and M, but they turn up when 

we want to find the optimised ~'(2). The reason for it is that even if 

we take only the first few terms in (33) and so only a feu of lowest 

moments d y  of ~'(z) are needed to calculate q(x,M) according to (321, 
the presence of P*(z) in the convolution (33) implies that we must vary 

PL(z) in the whole interval (0.1). To my knowledge there is no way of 

even formulating some kind of equation for the optimised P*(z) which 

would realise the formal condition ~F(x,Q)/~P*(z)=o. 

For the deep inelastic scattering we can, within the MB formulation, 

first optimise separately each of the moments FN(Q) according to (28) 

and then turn them into the corresponding structure functions using the 

general expansion 

where analogously to (34) 

Substituting (28) into (39) we see that the result of the PB formulati- 

on (33) has the same structure as (38): they are both given as a sum of 

exponentiated moments qJ(Q) (31), weighted by certain functions of M 

and pl(z), depending in (33) on x and in (38) on N. 

5. BEYOND THE NUCLEON STRUCTURE FUNCTIONS 

For other, more complicated processes, like those mentioned at the be- 

ginning of the previous Section, only the PB formulation is of practi- 

cal use. However, as the optimisation with respect to the FC of various 

parton distribution and fragmentation functions is hopeless, we must in 

practice choose some FC=(P*(~)) (for each parton leg in principle sepa- 

rately) and optimise, if we wish so. with respect to remaining parame- 

ters p and M only. For instance, in the case of hadroproduction of pho- 

tons with large pT, the differential cross-section (in the nonsinglet 

channel) as a function of x,, pT of the produced photon reads 

where q(x,,M;,FC,) i=1,2 are the nonsinglet quark densities of the two 

colliding hadrons, as defined in (15) in factorisation conventions FC,, 

taken at the scales Mi, and the function K, the generalisation of 

C(Z,Q/M,FC) in (14), describes again the "hard scattering" of two par- 

tons. For exact definition of the convolution e see 1131. In practice 

we are forced to assume Ml=Mz=M and choose some moreless ad hoc FCl= 

FC,=FC. This later choice is inevitably subjective, but at least some 

lesson can be drawn from the discussion of the previous Section. There 

the optimal FC was shown to practically coincide with the "sero" FC of 

Subsection 2.3 and even the "universal" FC lead, after optimisation Wi- 

th respect to p,M, to results which were much closer to the fully opti- 

mined ones than those of the "physical" FC. Although this feature is 

very Probably specific to structure functions (7-8), it seems reasona- 

ble to carry out any analysis (including the optimisation of (40) with 

respect to r and M) at least for all the three aforementioned FC. The 

eventual discrepancy of in this way obtained results represents, in my 

view, a plausible measure of the theoretical uncertainty associated 

with (40). 

In practice further simplification is forced upon us. The optimisation 

of (40) with respect to p and M cannot be done analytically, but the 

stationary point must be found by mapping (40) as a function of p and 

M. The optimised result is, however, also a function of the unknown 

constants AN. TO determine these constants as well as A by fitting (40) 

to experimental data would require on one hand much better accuracy of 

the data and on the other large amount of computer time. In practice, 

the constants AN must therefore be taken from other processes, like the 

deep inelastic lepton-nucleon scattering. This is quite legal to do but 

we must be careful1 to use in (40) the correct quark density q(x,H) and 

hard scattering croaa-section K(x,,pTM,FC), corresponding to the FS a- 

dopted. It is inconsistent to proceed as in 113-151 where the approxi- 

mate (though phenomenologically quite succesfull) but essentially only 

LO parametrisation 1271 of q(x,M) was used in convolution of the type 

(40) with truly NLO hard scattering cross-section K. 

6.SUMMARY AND CONCLUSIONS 

In the previous Sections we have discussed various ambiguities appear- 

ing at the NLO in the theoretical description of hard scattering proce- 

sses involving parton distribution and fragmentation functions. Two dif- 

ferent formulations, one starting from the moments of structure functi- 

ons, the other working directly with the evolution equations for parton 

densities, were shown to be in principle equally plausible representa- 

tions of NLO QCD predictions for the nucleon structure functions. There 



is no obvious way of resolving thie ambiguity, if we do not insist on 

optimisation, which naturally prefers the latter formulation. In both 

of these formulations we are still faced with the ambiguities connected 

with the choice of the FS={M,FC} as well as the RS={p}. Various curren- 

tly used choices of the former were reviewed and quantitatively compa- 

red. The quark densities were argued to play a role quite similar to 

that of the renormalised couplant a(p). In particular there is no natu- 

ral definition of the FC={P'(Z)}, very much as there is in QCD (cont- 

rary to QED) no natural definition of the couplant a(p). The "best" (in 

whatever sense we mean this) FC is furthermore expected to be process 

dependent. In the case of nucleon structure functions the fully optimi- 

sed moments FNturned out to practically coincide with those of the "ze- 

ro" FC combined with optimisation with respect to p and M and quite far 

from those of the "physical" FS. 

The main aim of this paper was to construct a general expression for 

the NLO QCD predictions in arbitrary FS={H,~:}. Such an expression al- 

lowing easy and straightforward transformation from one FS into another 

is necessary if we want to use the results of exiating phenomenological 

analyses of data on deep inelastic scattering for working out QCD pre- 

dictions for other, more complicated processes in general FS. Jacobi 

polynomials turned out to be very convenient for thie purpose as they 

lead to simpl'e but simultaneously rather accurate expressions. An impor- 

tant aspect of the whole construction is a new parametriaation of the 

nonperturbative properties of the hadrons. Contrary to the conventional 

way of parametrising the uncalculable properties of the hadrons by mea- 

ns of the quark desity q(x,W) at some referential Wo the use of cons- 

tants AN has an important advantage: they are independent of the chosen 

calculational scheme. 
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