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HARD PROCESSES
IN GENERAL FACTORISATION SCHEME




1. INTRODGCTION

In most of physically interesting hard scattering processes we have to
do beside the renormalised couplant a:gz/4nz (in terminology and nota-
tion of [1]) also with various parton distribution and fragmentation
functions (called densities in the following). These are not calculable
in perturbative QCD and must therefore be extracted from experiment. In
doing so we face the problem of their precise definition in terms of
the bare parton densities, much in the same way as in the case of the
definition of the renormalised couplant @ in terms ¢of the bare couplant
@ . As a consequence of this latter freedom the couplant becomes a fun-

B
ction of free parameters (p,ci,izz} appearing in the definition.

%&)_ zp(a)=-ba’(H,c ) (1 + calu,c) + ca (ue) + ...) (1)

where b as well as c are fixed once the number n, of quark flavors is
given (we stay in masslegs QCD throughout the paper). The parameters
{u,ci,izzl specify the renormalisation scheme (RS) of the couplant a,
while the subset {Ci,iEZ} defines the renormalimsation convention (RC).
The whole theory is fixed by fixing some dimensionful quantity, as for
instance the parametsr A, specifying the solution of (1)

a
= ¢ _ 1 ca b L 1
7= bln 3 = 5+ cln T+oa * £ [ﬂ(a) + x'(l#cx)] dx . (2)

According to [1], changing the RS of the couplant means varying the pa-
rameters u,c, at will, but holding A fixed. Internal consistency of the

perturbation theory then implies that the coefficients r,Z£ of perturba-

X
tion expansion of some fully inclusive physical quantity R(Q) (assumed

for simplicity to depend on a single external momentum Q)

R@z=a'tu.c)ft + r@/matu,e) + r@uepattue) +...] (@
are unique functions of Q/u,cl.iSk. For d=1 we have for instance
r, (Q/u#) = bln(w#/Q) +r (4=Q) = bln(u/A) - p (Q/A), (4)

where P, 18 RS invariant, i.e. is independent of the choice of wu, ci.Aa
~# and A enter in (2) always in the ratio u/A, the change of the RS can
equally well be accomplished by holding & fixed by setting it equal to,
say, Q@ and varying A instead. In this notation it is the dependence of
a(M=Q) and r, (#=Q) on A and c, which expresses the RS ambiguity. The

dependence of the couplant a and the coefficientsa r,
however, only two different sides of the same coin and so it would be

on 4 and A are,




redundant to vary both » and A. For bookkeeping purposes we therefore
single out one particular RS (by specifying a(u~=Q) and r (#=Q) and let
all the RG transformations be described by variations of the parameters
H,c, . Although thj{phoice of this referential renormalisation scheme
(RRS) is completely arbitrary and has nothing to do with the RS ambigu-~
ity of finite order approximations to (3) (we would have to choose some
RRS even if we were able to calculate the full sum (3)), some quantiti-
es, like r, (Q/#) will depend on it. On the other hand the invariant
©,=bln(Q/A)-r (#=Q) is naturally independent also of the chosen RRS as
the explicit dependence on the associated A of the logarithm 1n(Q/A) is
compensated by the implicit dependence of the coefficient rk(yzQ) on
the RRS (higher order p;s are Q-independent).

Having fixed the RRS as, cay, M8 (so for u=Q we get a(Q) and r, (4=Q)
as defined by the usual MS counterterms),we may now choose any u,c, to
evaluate R(Q) according to (3) because in the full sum (3) the dep;n—
dences of the couplant and the coefficients r, on these parameters ful-
ly compensate each other ( we ignore here the complicated and pressing
problem connected with the divergence of expansions like (3) [2,3]).
The truncated approximations to (3) do, however, depend on this choice.
Various ideas [1,4-7)] have been proposed to resolve this finite order
ambiguity. They stress different aspecte of the problem, but there is
usually little doubt as to the form of the N-th order approximant R":
it is (3) truncated to that order. In principle one can imagine other
forms of this approximant, like for instance

N _ 2
Q) = IR (Q)N = aH+Bla+Bzaz+"aNaN 'al=2rg’a.=r:+2r:l-. (5)

i.e. we first calculate Rz(Q) to N-th order and then take the square
~root (5), but they are mostly rather artificial. Moreover, if we insist
on the polynomial form of the N-th order approximant then only (3) trun-
cated to that order is acceptable. Nevertheless in some cases there may
really be good reasons to modify (3) and thus alsoc its approximants RN.
This happens in the case of exponentiation of soft gluon emissions whe-
re, written echematically and apart from overall normalisation, we have
instead of (3) (8,9]

RQ) = o™ {a(1+7a+Tiar.. )], For,r etc. (6)

(r is some number) and truncate then the series in the brackets.

For processee involving parton distribution and fragmentation func-
tions perturbation theory leads to results which are more complicated
than (3). I shall in the rest of this paper discuse mostly the simplest
case, namely that of nonsinglet nucleon structure functione as exempli-

fied by the combinations

e = e - Pleoe) )
% (x,Q) = FyP(x,Q) + B (x,Q)- (8)

1 drop the superscript NS and denote by F(x,Q) in the rest of this pa-
per generically all the NS structure functions like (7-8).

QCD predictions for F(x,Q) are burdened, beyond the RS ambiguity dis-
cussed above, also with the so called factorisation scheme (FS) ambigu-
ity [10-11]. But before attempting to resolve, in one way or another,
this ambiguity we must again first of all agree on the form of the N-th
order approximant. There are two different, but equally plausible al-

ternatives. The first starts with QCD predictions for the moments
. 1

Fo@ = [ X 'F(x,Q)dx (9)
of the structure function F(x,Q):
-a"/v ~aNbe
Fu@= A, [;20%5] T Grean) Tl s l@mann vy a0

where a(M), a(u#) are renormalised couplants, taken at generally diffe-
rent scales M and u, AN are numerical constants and d",d: are firet two
coefficients in the expansion of the anomalous dimension

= d—li“—;ﬁ-,"im = d"a) + dlatn + ... (11)
describing the dependence of the matrix element of relevant Wilson ope-
rator 0" (in the proton state) on the factorisation mass M. The last
bracket in (10) corresponds to "hard scattering” part of the structure
function and is closely reminiscent of (3). While a® are, similarly to
b, ¢ in (1) uniquely specified by n,, all the remaining coeficients d?,
i>1 are again completely arbitrary and define what is usually called a
factorisation convention (FC): FC:{d?}. This, together with the facto-
risation mass M, define the factorisation scheme (FS):FS={M,FC}. Ratu-
rally, also the coefficients r, in (10) do depend on this FC. To NLO,
to which I restrict myself in this paper, only the first two terms, ex-
plicitely written out in (10-11) are taken into account and g0 in this
approximation FC:{d:} and FS={H,d:}. To the order considered the ambi-
guities inherent in (10) are therefore connected with the freedom in
the choice of both the FS={H,d:} and the RS={u}. Let me call calculati-
onal scheme (CS) the set of all parameters y,H,d:. All the information
on the long-distance properties of the proton is contained in the con-
stants AN. which cannot be calculated perturbatively, but must be con-
sidered a8 free farame‘erz to be extracted from comparison of (10) with

experirental data, Note, hiowever, that AN are not equal to matrix ele-



ments of Wilson operators o" at some particular scale M., but specify
the solution of (11) by means of its asymptotic behaviour as M+w

. o -a"ob
(plo |p> m AN [m] . (12)
The internal consistency of perturbation expansion (10) dictatees again
the dependence of rT on M,M and the FC:{d:} [10]:
r:TQ/H,dT) = d"1n % + %: + 2", (13)
where =" are FS-invariante, which, however, still depend on the RRS of
the couplante a(w),a(M).

The form (10) ie a direct consequence of the operator production ex-
pansion technique. Were the moments FN(Q) experimentally measurable, we
could compare them directly to (10). In practice only structure functi-
ons over a limited range of x-valuee are avallable and so we must turn
(10) into prediction for them. The other possibility of extrapolating
the measured structure function to the whole interval <0,1> in order to
calculate the moments (9) mixes experiment with phenomenological assum-
ptions and should better be avoided.It is definitely preferable to in-
corporate such assumptions into free parameters of the theoretical for-
mulae. A number of methods for translating (10) into prediction for the
structure functions does exist. One of them, based on the use of Jacobi
polynomials will be described in more detail in Section 4. I shall call
it the momentum based (MB) formulation of QCD predictions for structure
functions.

The alternative way of formulating QCD predictions for structure fun-
ctione, embedded naturally ly in the parton model language [12], is to
write them as a convolution of the (nonsinglet) quark density q(x,M,FC)
(taken at the general scale M ) and the hard scattering croes-section
C(z.Q/H.y,FC):é(1—z)+a(M)C’(z,Q/H,FC):

1
F(x,Q) = [ :—z q(x/z.H.FC)[6(1—z)+a(y)C’(z,Q/H.FC)]- (14)
[+]

The quark density iteelf ie a solution of the evolution equation
1

B = 9 a(x/2.M,F0)R(z,a(4),KO), (15)

where

P(z,a(M),FC) = a(M)P°(z) + a*(M)P'(z,FC) (16)

and r:.dN,d:,aN are moments (defined as in (9)) of C‘,Po,P’ and =(z)
respectively. In terms of these functione eq.(13) reads

C'(z,Q/M,FC)= P°(2)1n(Q/M) + P*(2)/b + =(z), (17)

Clearly, (11) ie just the Mellin transformation of (15). In this al-
ternative language, let me call it parton model based (PB) formulation,
FC is specified by the fun%ion P‘(z). Provided M in (10) is independent
of N and equal to M in (14), which thue is independent of x and more-
over a(u) and a(M) are exact solution of eq.(2) truncated to the NLO,
these two expresglons yleld identical F(x.Q).

There ig, neverthelees no reasons why M in (10) could not depend on M
and/or M in (14) on x. In such case (10) and (14) are no longer equiva-
valent and so exprees two different forms of the NLO QCD predictions
for F(x,Q), each of them still burdened with the CS ambiguity. Before
trying to resolve this ambiguity, we must therefore first of all deci-
de which of the two discuesed formulatione to adopt. Although from the
point of view of eventual applications to more complicated processes
like Drell-Yan production of massive dileptons [13], large P, photopro-
duction or hadroproduction of photons with large P, [14,15],the
PB formulation is definitely preferable on technical grounds, there is
in fact no serious reason to prefer it in principle. At the end of Sec-
tion 4 we shall see that indeed both formulations lead to similar for-
mulae, namely the sums of exponentially improved expreesions like (6),
welghted by some functions of the parameters AN.

In the following I shall first discuss, for both formulations and in
a quantitative manner, the question of the choice of the CS5.Then a for-
malism will be constructed which allows an easy transformation from one
FS to another (changing the RS={u} is in eq. (1,4)). The whole problem
of the appropriate choice of the FS has only very recently obtained so-
me attention in the phenomenological analyses [13-15], but merely as
far as the change of the scales u# and M is concerned. I shall demonst-
rate that the proper choice of the FC is probably even more important.

The rest of thie paper is organised as follows. In the next Section I
ghall commnent on some of the popular choices of FS:{H,d:}, 1nc}uding
the one based on the extension [10,11] of the Principle of Minimal Sen-
sitivity to quantities like (7,8). Their quantitative comparison in the
case of the moments (9) can be found in Section 3. The explicit expres-
sion for the structure function F(x,Q@) in a general FS and using both
the MB and PB formulations are constructed in Sectiocn 4. The generali-
sation of the results to more complicated proceeses is sketched in Eec-
tion 5. Summary and conclusions are reserved for the last Section.

2. REVIEW OF CURRENTLY USED FACTORISATION SCHEMES

Of the more or less ad hoc chosen FS the following two have been used
most frequently



2.1 The "universal" factorisation scheme

This is the rather unfortunate and misleading denomination for the FS
in which M=Q and d: are given by expressions first derived within the
OPE technique in [16]. The corresponding branching function P‘(z) was
obtained in [16] by means of inverse Mellin transformation and in [12]
using directly the PB formulation . As in both techniques the results
(1.e. dT or P‘(z)) are calculated (in dimensional regularisation) from
certain renormalisation factors. retaining at each order only the pole
terms, the denomination "MS" would be much more appropriate. The word
“"universal” is misleading as it gives rise to incorrect impression that
only this FS can be used in all hard scattering processes. This, how-
ever, is not the case. Any FS,that is,any choice of M,u and d: (or P‘)
can in principle be used in any hard scattering process, much in the
same way as any RS={u} can be used in (3). In complete analogy to the
couplant (1), quark density q(x,M,FC) is not a physical quantity and we
are therefore free to define it in any way consistent with (15). Phy-
sics 18 not contained exclusively in the quark density, but rather in
its convolution (14) with the hard scattering cross-section.

2.2 The "physical” factorisation scheme
In this FS, suggested first in [18], M is again set equal to Q but the
function P‘(z) is chosen in such a way that

¢'(z,M,FC) = 0 » F(x,Q) = a(x,Q) (18)
identically for the structure function (7). This structure function is
singled out owing to the fact that the associated FS-invariant »(z) has
the following important property

1

1

» = [ »(z)dz = 0" (19)

In "physical"” FS

P'(z) = -bx(z) 1.e. d} = -ba" (20)
and consequently (19) implies, for the structure function (7), fermion

number conservation sum rule
1

{ a(x,Q)dx = u (x,Q) - d (x,Q) = 1, 4£21)

where uv,dv are valence quark densities as defined in the "physical”
FS. Although the validity of (21) is not obligatory, it is certainly
preferable to preserve this basic parton model property of quark densi-
ty even in QCD, if only to maintain, as far as possible the intuitive
connection of the latter with the former.

It is, however, obvious that although (18) combined with M=Q implies,
for (7) the sum rule (21), the opposite is not true. Indeed for struc-
ture function (7) the property (19) requires ri:d:/b and thus the vali-

dity of quark number conservation sum rule (1.e.d:=0) implies r:=0, but
this does not mean that r::o for all N, or equivalently, that c'=0
identically! Even assuming M=Q, any partition (17) of the FS-invariant
x(z) jnto P'(z) and C'(z,Q/M) which meets the condition d{=0 (i.e. P
ig a "+" distribution) guarantees the sum rule (21), not only that de-
fined in (18). One of them is just the “universal"” FS discussed above!

The “"physical” FS is not a direct consequence of the physically well
motivated condition (21) but is based in an essential way on the rather
ad hoc assumption d:=0 for all N, though only d::O is required by (21)
In fact it ia very close to the "effective charges” criterion of [4],
developed for resolving the RS ambiguity of expansions like (3).

Moreover, the “physical” FC, i.e. assuming (20) but leaving M still
free, has a rather unwelcome feature. Due to the fact that the FS inva-
variant »(z) atill depends on the RRS of the couplant the choice (20)
(20) means that in this FC the brahching function P‘(z) is also RRS-de-
pendent. In Subsection 2.4 this feature will be shown to lead to unsa-
satisfactory results when optimisation with respect to M is performed
in the “physical” FC.

2.3 The "zero"” factorisation convention

In some sense opposite to the "physical” FC is the FC in which P‘(z):O
by definition. While in the former FC all of the NLO corrections to
structure function (7) were included (“exponentiated”) in the definiti-
on of the Q-evolved quark density, none is in the latter, as they are
all shifted into the hard scattering cross-section, which in the “"zero”
FC has therefore the form

cl'(z,q/M) = dVin(Q/M)) + =(z)- (22)

The evolution equation for the quark density q(x,M) is the same as in
the LO. This FC has so far not been used in phenomenological analyses,
though as we shall see later it is very close to the one prefered by
the PMS criterion. It is also not far from the results of the conven-
tional “nonexponentiated” formula

dN

F,(Q) = A, (ca(M)™® *(1+a(M)[d"1n(Q/M)+x(2)+d"c/b]) (23)

N
which results from expanding, wherever possible, the r.h.s. of (10) in
powers of a(M) and retaining the first two terms only [19].

2.4 Defining factorisation scheme through optimisation

The idea {10,11] of choosing the RS={u} as well as the FS:{H,d:} at the
stationary point of the function F _(Q) as given in (10) is a direct ex-
tension of the original PMS criterion of [1]. In {10] each of the mome-

nts FN(Q) is optimised separately and consequently the optimal FS and



RRS turn out to be N-dependent: FS°™'=(H(N),d}(N)}, Rs°™:=(k(N)}. The
optimisation with respect to u ylelds the condition [11]
N

r =0 (24)

Y
which when combined with equations resulting from optimisation of (10)

with respect to M and d: gives (in the approximation ca(M)«1)

ﬁ(ﬂ):Aexp[g: - 5% - Qexp[gz - %5 (25)
H(N)=Aexp(s"/d")=H(N)exp(c/2b) (26)
dy=-d"cs2 (27)
so that N
FL%(Q)= AN[ 2l 7 (Lecaly) U, (28)

As the quantity < '=x"+d"1n(Q/A) in (25-27) 1s both FS and RRS invariant
(the dependence of »™ on the RRS is compensated by the explicit depen-
dence on A of the second term), the ratio M(N)/A is manifestly RRS-in-
dependent and consequently (28) unique.

Two features of the optimised result (28) are noteworthy. First, for
c=0 the optimal FC°N={a:} ia just the "zero" FC of the previous Subsec-
tion and in fact even for realistic values of c these two FC are, for
the same M, numerically practically indistinguishable. Secondly,
the optimal M, though for fixed N proportional to Q, is rapidly decrea-
eing function of N for fixed Q, roughly like QN-"'. Although in both
the optimised and "physical"” F§ r:=0. the ways in which this is achie-
ved are vastly different. In the optimised formula (28) most (for c=0
all) of the NLO corrections are incorporated in the dependence of the
factorisation mass M on N, while in the "physical” FS§ they are fully
shifted into the NLO anomalous dimensions d: , or equivalently into
the NLO branching function P'(z). The quantitative difference between
these two realisations of the condition r:=0 is significant as will be
discussed in the next Subsection.

Closer examination of the formula (28) shows that the stationary po-
int determined by eqs. (25-27) is not a local extreme but rather a sad-
dle point. This is clear already from the fact that for M and d: at the
stationary point FN(Q) does not depend on M, (rT:O there) which is a
property typical for a saddle point. It is also evident that full opti-
misation, i.e. optimisation of all moments FN(Q) is possible
only for structure function like (7) for which the FB-invariante x" ha-
ve the property «'z0. Recall that although . do, for general N, depend
on the BRS, »' does not as a change by a term proportional to d" when
the BES is varied and d'z0. ' T

Although the optimisation of (10) with respect to FC={dT} is an inte-
gral part of the optimisation procedure and may in fact be the most im-
portant part thereof, we may for some reasons wish to fix it and opti-
mise with respect to the scales u and M only. In this case we again get
the condition (24), but instead of (25) we find for the optimised fac-

torisation mass ﬁ"'(N) the formula

N N N N
=fix & d 2 d
M (N)=Aexp[— + =] = Qexp|— + —45 (29)
[d" bd"] [d" bd"]
and consequently
N N
=fix -d o . y-d sbe
plix (q=a [22 ) (+cacE™) * . (30)
l+ca(M )

Provided d} is fixed independently of the RRS, the ratio H'“*/A is RRS-
invariant and so is therefore also (30). As mentioned at the end of the
Subsection 2.2, thie provision ie violated in the “physical” FC. 5o in
this FC the result (30) of optimisation with respect to u and M remains
still ambiguous as it depends through dT=-be on the RRS of the coup-
lant a(Q) ((29) implies ﬁﬁ'=Q in this FC). Of course, the dependences
of a(Q) and 2" on the RRS mutually cancell to the NLO, but numerically
(30) does depend on it. This in itself is nothing wrong, but in (30) we
have already optimised with respect to both u and M. As, however, chan-
ging M or the RRS are merely two different ways of realiesing the same
renormalisation group transformation, this is clearly unsatisfactory.
The source of thie unwelcome feature is clearly the very definition of
the "physical” FC, namely the fact that by setting d::—bu" we force
these parameters to depend on RRS.

So far all the optimisation concerned exclusively the moments F _(Q)
of structure functions. We can take the reesults (28) or (30) and invert
them to find the corresponding structure function itself. However, as
the optimisation procedure does not commute with the inverse Mellin
tranaformation, the in this way obtained F(x,Q) will in general not be
the same as if optimisation ie applied directly to formula (14). Unfor-
tunately, this is technically rather involved and practically impossi-
ble to do. But in any case we must firet of all find an analogue of ex-
pression (10), which would explicitly exhibit what should be held fi-
xed when varying the FS:{H,P‘(z)}. From (14-15) this 1is not obvious.
But even after constructing in Section 4 such an expression, we shall
see that it ie practically hopeless to try to optimise it with respect
to FC:{P‘(z)}. So some experience gained from optimisation of the mo-
pents will be invaluable.



3. NUMERICAL COMPARISON

In thie Section the results corresponding to variocus optione discussed
in the previous Subsections are quantitatively compared. First, Fig.1l
displays the dependence of F (Q), as given in (10) and normalised to
the common LO expression AN(ca(Q))'dN/b, on the ratio Q/A for several
lowest moments of the structure function (7). In all cases the RRS of
the couplant is chosen to be MS. The curves in Fig.l separate into two
distinct groups. The first containas those of the "physical”, “universal”
and "zero” FC, all supplemented with the choice M=Q, together with the
conventional nonexponentiated formula (23). Within this group the “phy-
sical” FC leads consistently to highest valuee of F_(Q) and exhibits
also the steepest dependence on Q/A, while the lowest and least steep
curve is that of the “"zZero" FC. The differences are, however, rather
epall and of little phenomenological significance. Once we let u and M
vary and optimise with respect to them the situation changes as is de-
monstrated by the three upper curves, corresponding to optimisation

in the "universal” and "zero"” FC as well as the fully optimised result
(28). The optimieation with respect to M in the "physical"” FC gives
ﬁﬁx=Q and so leads to the same results as already shown there.

Several conclusions can be drawn from Fig.1l. First, the relevance of
the optimisation with respect to » and M depends sensitively on the
chosen fixed FC. While no change (relative to the case M=Q) occurs in
the “phyeical” FC, there is a significant jump in the "zero"” FC, lea-
ding to results which are also practically indistinguishable from those
of the full PMS procedure. But also when optimisation is performed in
the "universal” FC do we come much closer to the latter than in the
“physical” FC. Secondly, the upper three curves are alec much steeper
than the lower ones. This is further demonstrated in Fig.2, which die-
plays the ratio F (Q)/A, for N=3,4,5. While for M=Q the difference bet-
ween curves corresponding to the “physical” and "zero” FC can, for each
moment N, be approximated by a uniform shift along the x-axie equiva-
lent to the change of A by an N-dependent factor in the interval (1.05,
1.2>), no such simple change of A is capable to describe the relation
between the fully optimised F, (Q) and any of the lower four curves.
Qualitatively, this steeper increase of (28) at low Q/A has similar ef-
fect as the addition of higher twist terms to the latter curves.

The results presented in Figs.1,2 are instructive, especially if we
prefer the PMS approach, but strictly speaking they concern the moments
of structure function and cannot be straightforwardly generalised to
other processes or even to the direct analysis of structure functions

themselves. Nevertheless the results displayed in Figs.1,2 show that
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the "physical” FC is certainly not the only plausible choice of the FC.

4 . FACTORISATION SCHEME AMBIGUITY IN PARTON MODEL BASED FORMULATION

In the case of the deep inelastic scattering, and so long as we do not
attempt to optimise, there is neither a principal nor a practical rea-
son for prefering the PB formulation to the MB one or vice versa. If
optimisation is performed then, however, the PB formulation is defini-
tely preferred. The PB formulation is also prefered, although now on
on practical grounds, if other, more complicated processes (DY dilepton
production, photoproduction of large Py hadrons or hadroproduction of
large Py real photons) are considered in the NLO approximation. It is
therefore vital to have at our disposal general formalism for analysing
within the PB formulation, any hard scattering process in arbitrary FS.
To my knowledge such a formalism is not available in the literature.
In the rest of this paper a simple construction of such a formalism
will be discussed, starting with the case of the nucleon structure fun-
ctions (7-8).

The PB formulation of QCD predictions for the structure function
F(x,Q) is embodied in eq. (14-15). The moments of the quark density
q(x,M) are given explicitly as

ca(M - -d be
qn(")=Au[TIEET%T (1+caqmy) (31)

and the result of the convolution (14) is equivalent to (10), provided
in both (10) and (14) M is a constant, independent of either N or x.
Nevertheless this provision is not mandatory and so we allow for pos-
sible dependence of M in (14) on x.

As we want to vary all the parameters u.H,P'(z) specifying the CS, we
pust ‘first of all decide what should be held fixed in the process.Star-
ting from eqgs.(14-15) the answer is not obvious as in the case of FN(Q)
in (10). Indeed, in this respect the moments of structure functione are
more primary quantities than structure functions thremselves, as they
are directly related to the corresponding Wilson operators. This con-
nection tells us that it is the constant A in (31) which must be fixed
when we vary M and the FC={P‘(z)}. However, as already stressed these
constants do not characterise quark densities at any fixed M,, but rat-
her specify their asymptotic behaviour as M+o. On the other hand, it ie
the quark density q(x,Ho) at some initial Ho which is usually used to
specify the solution of (15). But it is obvious from (33) that by chan-
ging M and/or P‘(z) (and thus d:) while holding A" fixed, we change
F . (Q) for all Q. This means that variation of the FS in (14-15) does
not only change P'(z) in (15) and M and C(z,Q/M) in (14), but implies
also the change of the initial cpndition q(x,Mg) !
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So if we want to use the results (i.e. A and q(x,Ho)) of a particular
analysis of some hard ecattering process, performed in a given FS, for
working out QCD predictions (for the same or other processes) in a dif-
ferent FS, we must inevitably know also the associated change of the
boundary condition on (15). This information is, however, essentially
equivalent to the explicit knowledge of the solution q(x,M) of (15) as
a function of both M and P‘(z). We can write down the evolution equati-
on, including the boundary condition, for the quark density in the new
FS only provided we know its explicit expression in termes of the mo-
nente (31) because only for these momente do we know what must be held
fixed when M and P‘(z) change.It is, however, clear that once we have
such an expression at our dieposal there is no further need to solve
the evolution equation in the new FS as this expression itself repre-
sents the most general solution of it.

We therefore seek an explicit solution of (15) in terms of momente
(31), which moreover allows an easy transformation of the initial con-
dition q(x,M_ ), employed in all existing analyees, into the information
on A . An efficient way of doing this is based on the use of orthogonal
Jacobi polynomials as suggested in [20). The numerical accuracy of thie
way of solving the evolution eguation (15) has been studied in detail
in [21] and turns out to be very satisfactory (better than 1% for all
x and Q of interest). Following (20] we write the solution of (15) in
the form

w
atx,)=x*(1-x)" £ &f*(x)al* (M, FC) (32)
k=0
and so obtain for the structure function F(x,Q) the expression
f S
ow
Poa@=Jg2 %m0 £ &% nal o) [sc1-5rva) [0 1agencE)

+%p‘(§)]]. (33)

In (32-33) Gfa(z) are the Jacobi polynomiale and the "Jacobi" moments,
afa(H,FC) are defined by means of the moments qN(H,FC) (31) as

k

a*(u,8C)= E cffq M, PC=(dT)) (30)

j=o0
where c:? are numerical coefficients (for their explicit values as well
as for the exact definition of GC“(:) see [20-21]). To fix (33) unambi-
guously, a and ? must first be specified. This is done in such a way so
as to approximate the basic shape of the structure function F(x,Q) al-
ready by the lowest term in the series (32).For the nonsinglet structu-

re functions it ie quite.éhfficieﬁt [21] to take o=-0.5,8=3.
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Formula (33) represents the basic form of QCD prediction for F(x,Q)
which allows for the variation of the FS:{H,P‘(z)} and specifies what -
namely the constants AN— must be held fixed. These constants must then
be, together with A, extracted from phenomenological analyses of expe-
rimental data. They represent the most natural parametrisation of non-
perturbative, long-distance properties of the nucleon. Furthermore, in
contrast to the quark density q(x,M ) at some initial M , which is not
a physical gquantity and is thus ambiguously defined, the constants AN
are unique, independent of the CS used. Employing (33) as the theoreti-
cal formula, it is then straightforward to compare any two (or more)
phenomenological analyses of any given structure function, performed in
different, completely arbitrary FS. Recall, how it 1is sometimes diffi-
cult to compare resulte of published analyses, when these are done (as
is usually the case) in different FS, using different parametrisations
of q(x,M ) at different M, .

Furthermore it is frequently near to impossible to find out from pub-
lished papers which FS has in fact been employed. Take for instance re-
cent extensive analyses of nucleon strdcture functions, done by EMC
[22], BDCMS [23] and CDHS [24] Collaborations. In none of them does one
find a reliable information concerning the FS used. In [22] reference
is made to a paper of Abbott et al. [25] which, however, contains only
the LO analysis, while in [23] only a vague statement that “the program
of Abbott and Barnett was used” can be found. In [24] the evolution
equation for nonsinglet structure function is written in the form sug-
gesting the use of "physical” FS, but when specifying the NLO branching
function P‘(z) the reader is referred to paper [12], the results of
which correspond to the "universal” FS with w=M. In order to avoid such
unnecessary complications, I recommend the use of eq. (33) as the gene-
ral form of the NLO QCD predictions (in the PB formulation) for any
structure function and in arbitrary FS. Once A and A are fixed from an
analysis of one particular process in a given CS, it is trivial to use
them to write down predictions for other structure functions ( or any
other hard scattering process ) in arbitrary calculational scheme.

From practical point of view it is essential that only 6-7 terms in
the sum (32) are necessary for very accurate (typically better than 1%)
approximation of q(x,Q). That is more than the four parameters usually
employed for the description of q{x,M) at some initial !° in the form

q(x,M,)=Ax"(1-x) P (1+2x) (35)

but as in the case of (35), which of course is merely some ansatz, we
nay assume certain dependence of Au on N and in this way still lower
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the number of parameters required in the truncated form of (32). For
instance we may use the results of the conventional parametrisation
(35) to determine A, in terms of A,a,p3,7 M ,dN

T(N+a)T{3+1 ca(M
A =A F(N+a+n+1) [1+r N+a+ﬁ+1][1+ca(ﬁ %] [1+ca(H )] * (36)

Unfortunately it is presently impossible to use (36) for a reliable de-
termination of the constants AN. This is in part due to the mentioned
lack of reliable information on the FS used in analyses like those in
[22-24], but there is also another reason. In most of the phenomenolo-
gical analyses using the evolution equation (15) in some FS, the boun-
dary condition is specified not, as would be appropriate with reeapect
to the equation (15), by q(x.Ho), but rather by the full structure fun-
ction F(x,Qo) at some Qo. Consequently this parametrisation must first
be transformed into the one for a(x,Q,) by unfolding the convolution
(14) (except in the "“physical” FS, where F(x,Q)=q(x,Q) by definition).
As the papers contain usually no information how this step was done, I
preferred to use (36) for merely a semiquantitative estimate of AN by
plugging into it the LO parametrisation of ref. [22], corresponding to
(35) with A=0.97,4=-0.65,3=3.16,7= -0.13,M3=5GeV". Accordingly I set
dT:O in (36). As d" can be extended to any N>O0, AN can be calculated
for any real N>0, not only integers [27]. The results, shown in Fig.3,
indicate a smooth dependence of A on N which can be parametrised with
sufficient accuracy as

y 2A, A, =exp(h, +h N+h N*+h N°) . (37)
Without any efforte to find the best
values of h e, we see that h =1.4,
h‘=—1.55.hz=0.168,hs=—0.007 give a
very satisfactory description of all
AN,NSIO. So again, as in the case of
the initial condition (35), four pa-
rameters are sufficient for the pa-
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rametrisation of nonperturbative
properties of the nucleon. Phenome-
nological analyses would then result
in the determination of A and hi,isa
) ) N The above formula can also be used
4 5 ; r 2 5 fo. 1in another way. We do not have to
Fige3. AN as a function of N ac- employ (33) and may follow the con-
cording to (36)( )y (37)(----)¢ ventional procedure of solving, in
some FC={P£(z)}. (15) with the initial condition (35) at some M. Choo-
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sing different Mo in (35) and different FS:{H.P‘(z)}in (14), we shall
in general get different values of A,a,3,y. Nevertheless, if these are
substituted into (36), they must, for various approximations to be mu-
tually consistent, yield the same A.

Starting with (33) we may now attempt to optimise it, for a given
X, with respect to u,M as well as FC={P‘(z)}. There are no serious pro-
blems with optimisation with respect to ~ and M, but they turn up when
we want to find the optimised P'(z). The reason for it is that even if
we take only the first few terms in (33) and so only a few of lowest
moments df of P'(z) are needed to calculate q(x,M) according to (32),
the presence of Pi(z) in the convolution (33) implies that we must vary
P‘(z) in the whole interval (0,1). To my knowledge there is no way of
even formulating some kind of equation for the optimised Pl(z) which
would realise the formal condition &F(x,Q)/6P'(z)=0.

For the deep inelastic ecattering we can, within the MB formulation,
first optimise separately each of the moments FN(Q) according to (28)
and then turn them into the corresponding structure functions using the

general expansion

o
Fox, @) =x*(1-0" £ L ) F* @), (38)
k=0

where analogously to (34)
3o x 3o
F (Q)*jELckJFﬁQ). (39)

Subetituting (28) into (39) we see that the result of the PB formulati-~
on (33) has the same structure as (38): they are both given as a sum of
exponentiated moments qﬁQ) (31), weighted by certain functions of M
and P'(z), depending in (33) on x and in (38) on N.

5. BEYOND THE NUCLEON STRUCTURE FUNCTIONS

For other, more complicated processes, like those mentioned at the be-
ginning of the previous Section, only the PB formulation is of practi-
cal use. However, as the optimisation with respect to the FC of various
parton distribution and fragmentation functions is hopeless, we must in
practice choose some FC={P‘(z)} (for each parton leg in principle sepa-
rately) and optimise, if we wish 8o, with respect to remaining parame-
ters 4 and M only. For instance, in the case of hadroproduction of pho-
tons with large Py» the differential crose-eection (in the nonsinglet
channel) as a function of x_, p, of the produced photon reads

do

3;:35: =Q(X‘:H‘-FC.)OK(P,.xr.H‘.Hz.FC1,FCZ,H)¢q(xa,H2,FCz), (40)

where q(x. ,M. ,FC,) i=1,2 are the nonsinglet quark densities of the two
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colliding hadrons, as defined in (15) in factorisation conventions FCU
taken at the scales "1’ and the function K, the generalisation of
C(z,Q/M,FC) in (14), describes again the “hard scattering” of two par-
tons. For exact definition of the convolution ® see [13]. In practice
we are forced to assume H‘=H’=H and choose some moreless ad hoc FC‘=
FCZ=FC. This later choice is inevitably subjective, but at least some
lesson can be drawn from the discussion of the previous Section. There
the optimal FC was shown to practically coincide with the "zero” FC of
Subsection 2.3 and even the “univeresal" FC lead, after optimisation wi-
th respect to u,M, to results which were much closer to the fully opti-
mised ones than those of the "physical” FC. Although thie feature 1is
very probably specific to structure functions (7-8), it eeems reasona-
ble to carry out any analysis (including the optimisation of (40) with
respect to » and M) at least for all the three aforementioned FC. The
eventual discrepancy of in thie way obtained results represents, in my
view, a plausible measure of the theoretical uncertainty associated
with (40).

In practice further simplification is forced upon us. The optimisation
of (40) with respect to # and M cannot be done analytically, but the
stationary point must be found by mapping (40) as a function of 4 and
M. The optimised result is, however, aleo a function of the unknown
constants AN. To determine these constants as well ae A by fitting (40)
to experimental data would require on one hand much better accuracy of
the data and on the other large amount of computer time. In practice,
the constants A must therefore be taken from other processes, like the
deep inelastic lepton-nucleon scattering. Thie ie quite legal to do but
we must be carefull to use in (40) the correct quark deneity q(x,M) and
hard scattering cross-section K(x,,pTH,FC), correaponding to the FS a-
dopted. It ie inconsistent to proceed as in [13-15] where the approxi-
mate (though phenomenologically quite succesfull) but essentially only
LO parametrisation [27] of q(x,M) was used in convolution of the type
(40) with truly NLO hard ecattering cross-section K.

6.SUMMARY AND CONCLUSIONS

In the previous Sectione we have discussed various ambiguities appear-

ing at the NLO in the theoretical description of hard scattering proce-
seses involving parton distribution and fragmentation functione. Two dif-
ferent formulations, one starting from the moments of structure functi-
ons, the other working directly with the evolution equations for parton
densities, were shown to be in principle equally plausible representa-

tione of NLO QCD predictions for the nucleon structure functiona. There
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is no obvious way of resolving thiese ambiguity, if we do not insist on
optimisation, which naturally prefere the latter formulation. In both
of these formulations we are still faced with the ambiguities connected
with the choice of the FS={M,FC} as well as the RS={un}. Various curren-
tly used choices of the former were reviewed and quantitatively compa-
red. The quark densities were argued to play a role quite similar to
that of the renormalised couplant a(#). In particular there is no natu-
ral definition of the FC={P'(z)}, very much as there is in QCD (cont-
rary to QED) no natural definition of the couplant a(u). The "best" (in
whatever sense we mean this) FC ie furthermore expected to be process
dependent. In the case of nucleon structure functions the fully optimi-
sed moments F turned out to practically coincide with those of the "ze-
ro" FC combined with optimisation with respect to » and M and quite far
from those of the “"physical” FS.

The main aim of this paper was to construct a general expression for
the NLO QCD predictions in arbitrary FS:{H.d:}. Such an expression al-
lowing easy and straightforward transformation from one FS into another
is necessary if we want to use the results of existing phenomenclogical
analyses of data on deep inelastic scattering for working out QCD pre-
dictions for other, more complicated processes in general FS. Jacobi
polynomials turned out to be very convenient for this purpose aa they
lead to simple but simultaneously rather accurate expressionsa. An impor-
tant aspectvof the whole construction is a new parametrisation of the
nonperturbative properties of the hadrons. Contrary to the conventional
way of parametrieing the uncalculable properties of the hadrons by mea-
ne of the gquark desity q(x,M) at some referential Ho the use of cons-
tante A, has an important advantage: they are independent of the chosen
calculational schegme.
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