$88-287$

объөдиненныด ИНСтитут ядерных исслвдованй
 дубиа

E2-88-287

A.V.Efremov, O.V.Teryaev*

SPIN STRUCTURE OF THE NUCLEON AND TRIANGLE ANOMALY

Submitted to 'Nuclear Physics'

IGM AS UkSSR, Dnepropetrovsk, USSR

1. Introduction

Processes with polarized particles draw the increasing attention as the most. delicate instrument for verification of the QCD. It is known that QCD allows in principle the description of some spin erfecta if the spin distribution $/ 1 /$ and quark-gluon correlation functhong $/ 2 /$ are know. They cannot be oalculated in perturbative QCD just as the usual parton distribution functions and have to be extracted from experiments. An important role play here different sum rules. Among them the Bjorken/3/, Ellis-Jaffe $/ 4 /$, Burkhardt-Cottingham $/ 5 /$ sum rules are the most known. A new set of gum rules has been recently proposed in paper $/ 6 /$.

Of particular importance are the alum rules due to conservation lawes the energy-momentum, charge, baryon charge, etc. In this connedlion it is natural to ask together with R.Pegnmans "what restrictions if any on the wave function come from the fact that the total angllar momentum of the proton is just $1 / 2 ?^{\prime \prime}$

Though Feynman himself did not answer his question, the naive expectation in the spirit of the parton model ia

$$
\begin{equation*}
\frac{1}{2} \sum_{f} \Delta q_{f}+\Delta g=\frac{1}{2} \tag{1}
\end{equation*}
$$

where Δq_{f} and Δg are differences of first moments of opposite hellcities of quarks (flavour f) and gluons (egg. $\Delta q_{f}=\int_{0}^{d_{x}}\left(q_{f} \pm q_{f}^{-}+\tilde{q}_{f}-\tilde{q}_{f} \tilde{q}_{x}\right)$). This sum rule however is in contradiction with the leading-log approximation of the QCD evolution equations

$$
\binom{\sum_{f} \Delta \dot{q}_{f}}{\Delta g}=\frac{\alpha_{s}}{2 \pi}\left(\begin{array}{cc}
p_{q q} & p_{q g} \tag{2}\\
p_{q q} & p_{g q}
\end{array}\right)\binom{\sum \Delta q_{f}}{\Delta q}
$$

where the dot means the derivative with respect to $\log Q^{2}$. In this approximation $P_{99}=P_{98}=0$ (due to the quark helicity conservation along a quark line) and $P_{g q}$ and $P_{g g}$ are not zero. So, the sum rule (1) cannot be valid for all Q^{2}.

Several attempts were undertaken to avoid this contradiction:
i) A rather elegant idea was proposed in work $/ 8 /$ to compensate the right-hand side of the second row of (2) due to cancellation of quark and gluon contributions. In this case $\sum \Delta q_{f}$ and Δg are expressed through the number of plavours.However the picture thus obtained: compensation of two large terms in (1) to obtain $1 / 2$ seems improbable.

1i) There was also an attempt to change the kernels of the evolution equation by adding some terms singular at $X=0$ to guarantee a constant gluon contribution. ${ }^{19 /}$ However, there are no grounds for this procedure $110 /$ (unlike introducing aingularity at $X=1$).
iii) A more interesting is the attempt $/ 10,11 /$ to include the orbital angular momentum into sum rule (1) to compensate the growth of the gluon contribution with increasing Q^{2}. A more accurate analysis, however, shows that the orbital momentum gives a zeroth contribution to the sum rule.

Really, the commonly adopted receipt for obtaining the sum rule consiste in choosing a conserved operator with no anomalous dimention and in calculating it in the limit of free fields. For a quark field such an operator is the axial current minch conserves in the chiral limit $m_{q} \rightarrow 0$. For the free field it gives

$$
\begin{equation*}
\langle P, s| \sum_{f} \bar{\psi}_{f} \gamma^{\mu} \gamma^{s} \psi|P, s\rangle=M s^{\mu}, \tag{3}
\end{equation*}
$$

where S^{μ} is the 4 -vector of polarisation. The first moment of spin distribution functions is connected just with this matrix olement /12/ which resulte in

$$
\begin{equation*}
\sum \Delta q_{t}=1 \tag{4}
\end{equation*}
$$

The axial current is directly expressed through the canonical tensor of the spin moment of quark $/ 13 /$

$$
\begin{equation*}
S^{\lambda, \mu \nu}=\frac{1}{2} \varepsilon^{\alpha \lambda \mu \nu} \sum_{f} \bar{\psi}_{f} \gamma^{\alpha} \gamma^{\delta} \psi_{f} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{f} \Delta q_{f}=\left\langle p_{1} S\right| S^{\lambda_{,} \mu v}\left|p_{1} S\right\rangle \varepsilon_{\alpha \lambda \mu \nu} S^{\alpha} \tag{6}
\end{equation*}
$$

To obtain the conserved angular momentum, one has to add to (6) the orbital momentum

$$
\begin{equation*}
\langle p, s|\left(z^{\mu} T^{\lambda \nu}(z)-z^{\nu} T^{\lambda} \mu(z)|p, s\rangle \varepsilon_{\alpha \lambda \mu \nu} s^{\alpha}\right. \tag{7}
\end{equation*}
$$

It is zero however because of the symetry of matrix elements of the energy-momentum tensor T^{N}. The same result can be obtained from translation invariance of the matrix element (7), which allows us to put $z=0$. The physical reason of this result is the absence of the natural frame of raference for the incluaive process.

So, without gluons (or with scalar gluons) the quark spin momentum is conserved and again we arrive at the sum rule (4). It was just the way it was obtained several years ago in work $/ 14 /$. The drawback of this result is neglect of the vector character of gluon fields, which lead, owing to the triangular anomaly, to nonconservation of the axial current. In Sect. 2 we will show that the anomaly changes the relation (1) and makes it consistent with the QCD evolution equations (Sect. 3). The anomaly contribution changes also the Ellis--Jaffe sum rule for the structure function g_{1} which gete now in good agreement with experiment.

2. The Gluon Contribution and Axial Anomaly

For the description of the gluon contribution one can use either the expansion in gauge invariant operatora $/ 15 /$ or Q^{2}-dependent parton distributions 7167. These two approaches 胃e consistent with each other with the exception of the first moment: the evolution kernels are known to be different from zero $/ 16 /$, however there is no gaugeinvariant operator of the required twist 3 (like the axial current which describes the quark polarisation).

To resolve this contradiction, one may turn to the factorization procedure $/ 18 /$ where the operator product expanion results from the expansion of nongingular bilocal operators into the Teylor eeries. A variant of the procedure $/ 19 /$ has been used by us in the transverse polarization analysis $/ 2 /$.

Por simplioity let us consider the longitudinal polarization because the sum rule does not depend on the polarization direction due to the well-known equation by Burkhardt-Cottingham $/ 5 /$ or due to rotation invariance on which it is based $/ 1 /$.

$$
\int_{-\infty}^{\infty} \frac{d \lambda}{2 T} e^{i \lambda x}\left[\begin{array}{c}
\left\langle\bar{\psi}_{\alpha}(0) \psi_{\beta}(\lambda n)\right\rangle_{p, S} \\
\left\langle A_{p}(0) A_{6}(\lambda n)\right\rangle_{p, S}
\end{array}\right]=\left[\begin{array}{l}
\left.q(x) \hat{P}_{\alpha \rho}+i\right\} \Delta q(x)\left(\hat{p} \gamma_{S}\right)_{\alpha \beta} \\
\frac{g(x)}{x} d_{\rho \sigma}+\xi \frac{\Delta g(x)}{x} \varepsilon_{\rho G p n}
\end{array}\right]
$$

Where $d_{\rho \sigma}=g_{\rho \sigma}-n_{\sigma} P_{\rho}-n_{\rho} p_{\sigma} \quad, \varepsilon_{\rho \sigma p n} \equiv \varepsilon_{\rho \sigma \alpha \beta} p^{\alpha} n^{\beta} \quad,(n A)=0$, $p^{2}=n^{2}=0 \quad, p h=1$ and $\}$ is a polarization value. The parta averaged over apin are written down also for completeness.

Let us notice that the distribution functions obtained have the parton interpretation. It is obvious for quarks, because a density matrix for a free quark has been obtained. For gluons it is easy to see that the right-hand side of (8) is a density matrix of a circular-
-polarized gluon with Stocks parameters $\xi_{1}=\xi_{2}$. The firgt moments of the spin distribution functions are

$$
\begin{align*}
& \Delta q=-\left\langle\bar{\psi} \hat{n} \gamma_{s} \psi\right\rangle_{p_{i} s} \tag{9a}\\
& \Delta g=\frac{1}{2}\left\langle A_{\rho}^{a} \partial_{\mu} A_{G}^{a}\right\rangle_{p, S} n^{H} \varepsilon^{\rho 6 p n} \tag{9b}
\end{align*}
$$

Let us stress that in axial gauge the gluon fields can be expressed though the strength tensor $G^{\rho \rho}=G^{f 6} n_{6} / 20 /$

$$
\begin{equation*}
A_{\rho}(\lambda n)=\int_{0}^{\infty} d \tau G_{\rho h}((\lambda+\tau) n) \tag{10}
\end{equation*}
$$

As a result, the moments of the bilocal operator in (8)

$$
\begin{equation*}
\left\langle A_{\rho}(0) A_{G}(\lambda n)\right\rangle_{P_{S} S}=\int_{0}^{\infty} d T \int_{-T}^{T} d \tau\left\langle G_{\rho n}(0) G_{6 n}((\lambda+\tau) n)\right\rangle_{P, S} \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& \text { after integration acquire the form } \\
& \left\langle A_{\rho}(0)\left(\partial^{n}\right)^{k} A_{6}(0)\right\rangle=-\left\langle G_{\rho n}(0)\left(\partial^{n}\right)^{k-2} G_{6 n}(0)\right\rangle \tag{12}
\end{align*}
$$

That ia for $K \geqslant 2$ the local field operators are expressed through the etrength operators. (To check (12), it is enough to exprese in the right-hand-aide G through A and use the gauge condition). In the case of interest $K=1$ one integration cannot be accompliahed, and we have to deal with nonlocal strength operator matrix element:

$$
\begin{equation*}
\left\langle A_{\rho} \partial^{n} A_{\sigma}\right\rangle=\int_{-\infty}^{\infty} d T \frac{1}{2} \varepsilon(T)\left\langle G_{\rho n}(0) G_{\sigma n}(T n)\right\rangle \tag{13}
\end{equation*}
$$

That ia why we prefer to work with local field operators, the gauge invariance being ensured by transversality of the coefficient function $E^{P G}$. Notice also that the local operator in ($9 b$) is proportionel to the gluon apin tensor* $/ 13 /$.

To obtain the relation between the gluon epin operator and similar to (6) one can use the identity 72/

$$
\begin{equation*}
\varepsilon^{\rho 6 p n} n^{\mu}-\varepsilon^{\rho \mu p n} n^{6}+\varepsilon^{6 \mu p n} n^{\rho}=\varepsilon^{\rho 6 \mu n} \tag{14}
\end{equation*}
$$

[^0]which is a consequence of the space-time being four-dimensional. Ueing it in (9b) one obtains
\[

$$
\begin{equation*}
\Delta g=\frac{1}{2}\left\langle A_{\rho} \partial_{\mu} A_{\sigma}\right\rangle \varepsilon^{n \rho \epsilon \mu} \tag{15}
\end{equation*}
$$

\]

Now, one could seemingly use the total angular momentum conservation and determine a relative contribution of quarks and gluons. However, there is the problem that the apin moment is determined in a nonunique way. One can redefine it together with the ener-gy-momentum tensor preserving the equation of motion and the conservation laws. In particular, one can totally absorb the spin moment into the energy-momentum tensor ($\theta . g$, the Belinfante tensor $/ 21 /$) which is naturally symmetric and gives no contribution to the sum rule. So, the relative contribution of gluons in classical field theory seems quite indefinite.

This ambiguity is totaliy fixed by quantum theory where the conservation of the axial current is broken as is well known by the triangular anomaly of Adler-Bell-Jackiw/22/ (Fig. 1a).

(a)

(b)

(c)

(d)

Fig. 1
This anomaly fixes also the conserved quark-gluon current

$$
\begin{equation*}
\tilde{j}_{s}^{\mu}=\bar{\psi} \gamma^{H} \gamma^{s} \psi=\frac{g^{2}}{8 \pi^{2}} \varepsilon^{\mu \sigma \nu \rho}\left(A_{6}^{a} \partial_{\rho} A_{v}^{a}-\frac{1}{3} f_{a} b_{c} A_{6}^{a} A_{v} A_{\rho}^{c}\right) \tag{16}
\end{equation*}
$$

The calculation of the matrix element of the projection of the current on the gauge vector n gives immediately

$$
\begin{equation*}
-\left\langle j_{s}^{n}\right\rangle_{p, S}=\Delta q+\frac{\alpha_{s}}{\pi} \Delta g \tag{17}
\end{equation*}
$$

Due to conservation of the current \tilde{j}_{5}^{μ} the anomalous dimension of the combination is zero in any order of the perturbation theory.

Using the standard method $/ 23 /$ baged on the total angular momentum conservation, $\partial_{\mu} M^{\mu, 6 \rho}=0$ and on the definition of a state vector with helicity ξ

$$
\left(\int d^{3} z M^{0, i x}(z)\right)|P, \xi\rangle=\frac{\xi}{2} \varepsilon_{i x l} \frac{P_{e}}{m}|P, \xi\rangle
$$

one can obtain the sum rule

$$
\begin{equation*}
\sum_{f} \Delta q_{f}+N_{f} \frac{\alpha_{s}}{\pi} \Delta g=1 \tag{18}
\end{equation*}
$$

It has been taken into account also that the contribution of the gluon apin is controlled by axial anomaly and that the orbital momentum gives no contribution.

One has to notice that the gluon contribution is linked with the topological number. The difference Δg from zero could mean a nontrivial topological structure of the QCD vacuum. This delicate question, however, needs further investigation. Now it.is clear only that the relative contribution of quarks and gluons to sum rule corresponding to the conservation of the angular momentum is determined by such a fundamental feature of the theory as the axial anomaly.
3. Evolution Equations and Sum Rules for the Structure Function

Consider now the evolution of singlet parton distribution functions $\sum \Delta q_{f}$ and $N_{f} \alpha_{s} / \pi \Delta g=\widetilde{\Delta g}$ with the change of the momentum transfer Q^{2}. The functions Δq and Δg have the parton interpretation so one can use the reaults of standard oalculations.

The first moment of the evolution kermel $\operatorname{P\tilde {g}q}$ can be expressed through the atandard kernel $\rho_{g q}$ obtained in the pioneering work by Allterelly and Parisi $/ 16 /$

$$
\begin{equation*}
P_{\tilde{g} q}=\frac{\alpha_{s}}{\pi} N_{f} P_{g q}=\frac{3 \alpha_{s}}{2 \pi} N_{f} C_{2}(R) \tag{19}
\end{equation*}
$$

where $C_{2}(R)=\left(N^{2}-1\right) / 2 N, N$ is the number of colour.

$$
\text { Due to conservation of } \sum_{f} 1 q_{f}+\Delta \tilde{g}
$$

$$
P_{9 q}=-P_{g q} \quad \text { and } \gamma_{q q}=-\frac{\alpha_{s}}{2 \pi} \cdot P_{99}=\left(\frac{g^{2}}{16 \pi^{2}}\right)^{2} 12 N_{f} C_{2}(R)(20)
$$

which exactly coincides, with the results of two-loop calculations (Fig. 1b) of Kadaira/24/. (Recall that one-loop calculations give zero contributions). This serves as a good check of conservation of (18).

For calculation of $P_{\tilde{g} \tilde{g}}$ one has to add to the standard gluon kernel ${ }^{1 / 6 /} P_{97}=\frac{1}{6}\left(11 N^{\prime}-2 N_{f}\right)$ the result of differentiation of $\alpha_{5}\left(Q^{2}\right)$

$$
\begin{equation*}
P_{\tilde{j}}=P_{\hat{j}}+\frac{2 \pi \beta\left(x_{s}\right)}{\alpha_{s}{ }^{2}} \tag{21}
\end{equation*}
$$

using the expression for $\beta\left(x_{s}\right)$, we get

$$
\begin{equation*}
\mathrm{P}_{\tilde{g} \tilde{g}}=0 . \tag{22}
\end{equation*}
$$

Using again the conservation of $\sum_{f} \Delta q_{f}+\Delta \tilde{g}$ one can find

$$
\begin{equation*}
P_{q \tilde{g}}=-P_{\tilde{g} \tilde{g}}=0 \tag{23}
\end{equation*}
$$

This reault is a second check of the validity of (19) because, as is well known $/ 23 /$, the anomaly, Fig. 1a, is not renormalized by higher orders of the perturbation theory. So, the diagrams of Pig. ic have to give zero contribution. Thus, we finally obtain

$$
\begin{align*}
& \binom{\sum_{f} \Delta \dot{q}_{t}}{\dot{\sim}}=\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(\begin{array}{cc}
-a & 0 \\
a & 0
\end{array}\right)\binom{\Sigma \Delta q_{t}}{\Delta \tilde{g}} \tag{24}\\
& a=3 N_{f} C_{2}(R)+G\left(\alpha_{s}\right) \text {. }
\end{align*}
$$

Notice also that the second eigenvector of (24) is the quark contribution $\sum 4 q_{f}$ which is known $4 /$ to be multiplicatively renormalized. This does not prevent, however, its mixing with $\Delta \widetilde{g}$ (cf. /25/).

With increasing Q^{2} both moments $\sum \Delta q$ and $\Delta \tilde{g}$ tend to constant limita

$$
\begin{align*}
\sum_{f} \Delta q_{f}(\infty) & =\sum \Delta q_{f}\left(Q_{0}^{2}\right) \exp \left[-\frac{\alpha_{s}\left(Q_{0}^{2}\right)}{\pi} \frac{9 N_{f} C_{2}(R)}{33-2 N_{f}}\right] \tag{25}\\
\Delta \tilde{g}(\infty) & =1-\sum \Delta q_{f}(\infty) \tag{26}
\end{align*}
$$

the former decreasing and the latter increasing. This change, however, is not large and is about 10% from the region $Q_{0}^{2} \simeq 1(G e V / c)^{2}$ where $\alpha_{s}=0.2-0.3$.

How let us apply the results obtained to describe deep inelastic scattering on a polarized target. We are interested in the gluon contribution to the first moment of the atructure funotion g_{1}. As the natural moment of gluon distribution is $\Delta \tilde{g}$., the corresponding coefficient function $\tilde{E}_{\text {; }}$, has to be of order $0(1)$. To find it, we use the result of work $/ 24 /$ where the coefficient function E_{1} of the diagram of Pig. 1d has been calculated. For the firat moment we have to use only the term independent of $\omega=1 / x$. It is finite and determined by the axial anomaly

$$
\begin{equation*}
E_{1}=-\frac{g^{2}}{4 \pi^{2}} N_{f}\left\langle e^{2}\right\rangle \quad \text { i.e. } \widetilde{E_{1}}=-\left\langle e^{2}\right\rangle \tag{27}
\end{equation*}
$$

So, the first moment of $g_{1}(x) w i l l$ have the form (see Appendix)

$$
\begin{equation*}
g_{1} \equiv \int_{0}^{1} d x g_{1}(x)=\frac{1}{2} \sum_{f} e_{f}^{2} \Delta q_{f}-\left\langle e^{2}\right\rangle \Delta \tilde{g} \tag{28}
\end{equation*}
$$

i.e. the gluon field results in a negative correction to the Ellis--Jaffe aum rule.

For estimation of this correction let us use the sum ruie (18) and following Ellis and Jaffo $/ 4,25 /$ neglect the contribution of $\theta-$ quarks. Then one can express the quark contribution through the constant $g_{A}=G_{A} / G_{V}=1,254 \pm 0,006$.and the ratio $F_{D}=0,631 \pm 0,024$

$$
\begin{equation*}
\sum_{f} \Delta q_{f} \simeq \Delta u+\Delta d=g_{A} \frac{3 F / D-1}{F / D+1} \quad=0,687 \pm 0.069 \tag{29}
\end{equation*}
$$

1.e. the quarks carry about 70% of the nucleon spin at $Q^{2} c(1 \mathrm{GeV} / \mathrm{c})^{2}$ (the region where g_{A} and F / D were measured). In its turn the gluon contribution is.

$$
\begin{equation*}
\Delta \tilde{g}=1-\sum_{f} \Delta q_{f}=0.313 \pm 0.069 \tag{30}
\end{equation*}
$$

Substitution of(30)into(28)gives the possibility of estimating the correction to the Ellis-Jaffe sum rule for the proton. With taking into account e-quarks in the loop of Fig. 1d $\left\langle\left(e^{2}\right\rangle=2 / 9\right)$ one has

$$
g_{1}^{p}=\int_{0}^{1} g_{1}^{p}(x) d x=(0.199 \pm 0.005)-\frac{2}{9}(0,313 \pm 0.069)=0.129 \pm 0.009
$$

(without s-quarks, $\left\langle e^{2}\right\rangle=5 / 18$, and $g_{1}^{P}=0.112 \pm 0.024$). These values are in good agreement with result of the EMC-group $/ 26 / g_{1}^{P}=0,113^{ \pm}$ $\pm 0.012 \pm 0.025$ at $Q^{2} \approx 10(\mathrm{FeV} / \mathrm{c})^{2}$. For the neutron we predict $g_{1}^{n}-0.08$.

4. Conolusion and Discussion

Thus, we have shown that the contribution of the apin of gluons to the spin of the nucleon is determined by the axial anomaly of Adior-Bell-Jaokim. The new sum rule corresponding to oonservation of the angular momentum is consistent with the QCD evolution equations in all orders of α_{S}. The axial anomaly giuon contribution gives also a negative correction to the Ellis-Jaffe sum rule for which compeneates the discrepancy with experiment.

The usually made assumption that $\Delta S \simeq O$ allows us to estimate the aontribution of $\sum \Delta q_{f}$ and $\Delta \widetilde{g}$ from the low-energy β-deoas
phyaice ($Q^{2} \simeq 1 \mathrm{GeV}^{2}$) and find that gluons carry about 30% of the nucleon spin and reduce the Ellis-Jaffe result almost to the experimental value. This also removes the contradiction of the EMC result with the Bjorken sum rule. A serious question is high-twist corrections to the deep inelastic scattering. However large enough $\left\langle Q^{2}\right\rangle$ for the EMC data and also the calculations of g_{1} by the QCD sum rule method $/ 27 /$ indicate that these correotions do not possibly exceed 30%. The role of higher-twist corrections could become clear from experiments at higher Q^{2}.

Recently it has been suggested $/ 28,29 /$ that the naive parton model assumption $\Delta S \simeq O$ is not valid and that the Skyrme model combined with the $1 / N_{c}$ expansion results in $\sum \Delta q_{f}=0 / 28 /$. If so, then the EMC result is an argument against the Skyrme model because together with the Bjorken relation and SU(3) flavour hyperon decay
$\frac{1}{\sqrt{3}}(\Delta u+\Delta d-2 \Delta S)=\dot{0}, 39$ explain the measured value of g_{1}^{P} without gluon contribution. However, the gluon contribution being large in this case ($\Delta \tilde{g} \sim 1$ due to (18)) ruins this agreement.

The proposed gluon contribution can be directly measured in many hard processes with polarized particles. Part of them is listed in $/ 28 /$. The most important in our opinion are $J / 4$ and charm production in deep inelastic scattering $/ 29 /$ and in Dreil-Yen processes.

It is a pleasure for us to thank S.V.Ivanov, B.L.Ioffe, G.P.Korchemski, V.स.Pervushin, R.V.Radyushkin and Yu.Yu.Reznikov for usefui discussions. One of us (7.0 ,) is indebted also to V.P.Prisnyakov for kind eupport of the work.

Appendix

Due to an important role of the gluon contribution to the Ellig--Jaffe sum rule, let us consider its derivation to a greater detail. We start with the factorized expression for virtual photon forward scattering amplitude

$$
\begin{equation*}
T^{\mu \nu}=\Delta q \cdot \frac{1}{4} S_{p}\left(\hat{p} \gamma^{s} \hat{t}_{q}^{\mu \nu}\right)+\Delta g \otimes\left(i \varepsilon_{\rho 6 p n} \frac{t^{\rho \sigma \mu \nu}}{x}\right) \tag{A.1}
\end{equation*}
$$

where means a convolution in x and t_{q} and t_{g} are quark and gluon Green functions calculated $1 n^{124,301}$. The summation over quark flavours with the process-dependent weight is implied, as usual

$$
\left.t_{q}^{\mu v}(p, q)=\langle 0| T\left(\bar{\psi}(-p) J^{\mu}(-q) \dot{J}^{v}(q) \psi(p)\right)|0\rangle\right\rangle_{t_{r}}=\varepsilon^{\mu \nu q 6} \gamma^{6} \gamma^{5} \frac{1}{(p q)} \sum_{n=1,3 ; \cdots} \omega^{n}
$$

$$
t_{g}^{\rho \sigma \mu \nu}(p, q)=\langle 0| T\left(A_{p}(-p) J^{\mu} \rho^{\mu}(q) A_{C}(p)\right)|0\rangle_{t r}=i \varepsilon^{\mu v q \alpha} \varepsilon_{\rho 6 \alpha p} \frac{1}{Q^{2}} \frac{g^{2}}{2 \pi} N_{f}+O(\omega)
$$

$$
6
$$

Only the terms leading in α_{s} are taken into account. Changing $p \rightarrow x p$ and taking into account only the zero-order term in $x / x_{B_{j}}$ in t_{q} and $t g$ (for gluons it is determined by the axial anomaly) one obtains for the first moment

$$
T_{1}^{\mu \nu}=-\sum_{f} \Delta q_{1} \varepsilon^{\mu \nu q p} \frac{2}{Q^{2}}+\Delta g \varepsilon^{N \nu g p} \frac{g^{2}}{\pi^{2}} N_{f}=-\frac{2 \varepsilon^{\lambda \nu p q}}{Q^{2}}(\Sigma \Delta q-2 \tilde{\Delta \tilde{g}})
$$

One should notice also that the convolution of the total expression for the gluon Green function $/ 24 /$ with $\varepsilon^{\rho 6 p n}$ enables us to obtain the coefficient function $E_{1, n}$ for other momente.The result differs from that of $/ 24 /$ by factor 4 that may be a consequence of normalization/31/ of the amputated Green functions of local ainglet operators.

References

1. Peynman R. Hadron-Photon Interaction, N.Y., Bedjamin, 1972. 2. Efremor A.V., Teryaev O.V. Yad.Fiz. 39 (1984) 1517.
2. Bjorken J.D. Pbys.Rev. 148 (1966) 1467.
3. Ellis J., Jaffe R.L. Phys.Rev. D9 (1974) 1444.
4. Burkhardt H., Cottingham . . Ann. Fhys. (USA) 56 (1976) 453.
5. Efremov A.V., Teryaer O.V. Phys.Lett. 200 (1988) 363.
6. Seghal L.M. Phys.Rev. D16 (1974) 1663.
7. Bajpai R.P., Ramachandran R., Phys.Lett. B97 (1980) 125.
8. Richter-Wae E., Szwed J.J. Z.Phys. C31 (1986) 607.
9. Ratcliffe P.G. In: Proc, of VII Int.Symp, on High Bnorgy Spin Phys., Protvino, 1986, p. 45.
10. Ratoliffe P.G. Phys.Lett. 192 (1987) 180.
11. Bukhrostov A.P., Kuraev E.A., Lipator L.I. Pis'ma JEPT 37 (1983) 406; JBPT 87 (1984) 37.
12. Bogolubov H.K., Shirkor D.V. Introduction to the Theory of Quantized Pielde, Intesc. Publ. N. Y., 1959.
13. Efremov A.V., Teryaev O.V. Sov. J.Nucl.Phys. 36 (1982) 140; Yad. Fiz .36 (1982) 242.
14. Ahmed M., Ross G.C. Nucl. Phys. 111B (1976) 441.
15. Alterelli G., Parisi G. Nucl. Phys. B126 (1977) 298.
16. Efremov A.V., Radyughkin A.V. Phys.Lett. B63 (1976) 449.
17. Efremov A.V., Radyushkin A.Y. Theor. and Math.Phys. 44 (1981) 774; Teor.Mat.FIz. 44 (1980) 327.
18. Ellis R.K., Furmangki W., Petronzio R. Nucl.Pbys. B207 (1982) 1.
19. Ivanov S.V., Korchemakil G.P., Radyuahkin A.V. Yad.Fiz. 44 (1986) 230.
20. Belinfante F.J. Physica 6 (1939) 887.
21. Adler S.L. Phys.Rev. 117 (1969) 2426; Bell J.S., Jackiw R. Nuovo Cim. A51 (1967) 47.
22. Indurain F. Quantum Chromodynamice, Springer, 1983.
23. Kodaira J. Nucl.Phys. B165 (1980) 129.
24. Jaffe R.L. Phys.Lett. 193 (1987) 101.
25. Sloan T. Proc, of Intern. Europhys.Conf. on High Energy Phys., Uppsala, 1987; Preprint CERT EPf87-188.
26. Belyaev V.M., Ioffe B.L., Kogan Ya.I. Phys.Lett. B151 (1985) 290.
27. Brodaky S., Ellis J., Karlinger M. SLAC-PUB 4519, Jan. 1988.
28. Gluck K., Reya E. Prepr. DO-TH 88/4, Jan. 1988.
29. Kodaira J. et al. Kucl, Phys. B159 (1979) 99.
30. Sheiman J. Nucl.Phys. B152 (1979) 273.

Received by Publishing Department
on May 13, 1988.

[^0]: * We here diaregarded the colour structure which can be easily retored. Yor non-Abelian fields the term falc $A_{\rho}^{a} A_{\mu}^{\mu} A_{s}$ is to be present wich gives no contribution due to the gauge condition.

