

объединенный ИНСТИТУТ пдерных исследований дубиа

E2-88-254

> S.G.Gorishny, A.L.Kataev, S.A.Larin

NEXT-NEXT-TO-LEADING $O\left(\bar{\alpha}_{8}^{3}\right)$
QCD CORRECTION
TO $\sigma_{\text {tot }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ HADRONS):
analytical Calculation
and Estimation of THE PARAMETER $\Lambda_{\overline{M S}}$

Submitted to "Physics Letters $\mathrm{B}^{\prime \prime}$

1. INTRODUCTIOA

The $e^{+} e^{-}-a n n i b i l a t i o n$ into hadrons is one of the most informative processes in elementary particle physics. Both experimental [1] and theoretical (see, e.g. [2]) analysia of the behaviour of its basic characteristic $R(s)=\sigma_{t a t}\left(e^{-} \rightarrow\right.$ hadrons $) /$ $\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$allows one to obtain important inficrmation about the properties of hadrons and their constituents, i.e. quarks and gluons. In the zeroth order of perturbation theory (PT)QCD prediction for $R(s)$ is in qualitative agreement with experiment. However, in order to teat quantitatively the QGD predictions it is neceasary to take into account the effects of higher Pr corrections. Until recently $R(s)$ has been known in QCD up to the next-to-leading $O\left(\bar{\alpha}_{s}^{2}\right)$ PT correction [3]. In this work we present the result of analytical calculation of the sex:-next-50leading $O\left(\bar{\alpha}_{3}^{3}\right)$ correction to $R(s)$ and obtain the new estimatio of the parameter $\Lambda_{\overline{M S}}$ based on the analysis of the combined PETRA and PEP results [4, 28]. We show that not only the next-toleading PT correction but the bigher order PT effects exe very important for comparing QCD with experiment and determining the value of the QCD parameter $\Lambda_{\overline{M S}}$. We also discuss the problem of compering asymptotic PI series of QCD with experiment.

2. THE OUTLINE OF CALCULATIONS

Throughout this work we follow the calculationel program outlined in reis. $[5,6]$ and use the novetions irtrocuced there. In tine course of calculations it is convenient to use the D function

$$
\begin{equation*}
D\left(Q^{2}\right)=-\frac{3}{4} Q^{2} \frac{d}{d Q^{2}} \Pi\left(Q^{2}\right)=Q^{2} \int_{0}^{\infty} \frac{R(s)}{\left(s+Q^{2}\right)^{2}} d s . \tag{2.1}
\end{equation*}
$$

Here $Q^{2}=-q^{2}$ is the Euclidean transferred momentum and Ω is the badronio vacuum polarization function defined as

$$
\begin{align*}
i \int e^{i q x} & <o\left(T\left(J_{\mu}(x) J_{r}(0)\right) \mid 0>d^{4} x=\right. \tag{2.2}\\
& =\left(q_{\mu} q_{v}-g_{\mu v} q^{2}\right) \cap\left(-q^{2}\right) / 16 \pi^{2}
\end{align*}
$$

where J_{μ} is the hadronio eleotromagnetic current. It can be ahom that in order to oalculate the next-next-to-leading corrections to the D-function, it is necessary to use the two-loop approximation of the bare expanaion parameter
$a_{B}=\left(\alpha_{s} / J\right)_{B}$, to calculate the three-loop approrimation of the bare expression $\Omega_{B}\left(a_{B}\right)$ and to find the four-loop approximation of the photon wave function renormalization constant Z_{3}. At this level, over 100 diagrame contribute to Z_{3}. The typical examples are shown in figs.1. All the calculations have been done within the dimensional regularization in $n=4-2 \varepsilon$ space-time dimensions and the minimal subtraction (MS) scheme.

Pigure 1.
The application of the methods of infrared rearrangement $[7,6]$ and the infrared R^{*} - operation $[8]$ allowed us to reduce the calculation of the four-loop approximation of Z_{3} to the evaluation of the three-loop massless propagator-type integrala up
to $O\left(\varepsilon^{*}\right)$ terms. These integrals as well as the three-loop approximation of $\Omega_{B}\left(a_{B}\right)$ have been calculated with the in-

tegration-by-parts algoritha[9]. Some basic scalar integrals used in the calculations have been calculated with the Gegenbauer polynomial x-space technique[6]. All analytical calculations have been done with the help of the SCHOONSCHIP program[10] which implements the integration-by-parts algorithm [9] . The whole running time at the CDC-6500 computer exceeds 200 hours. All the direct calculations have been done at two atagea. At the firat atage, we have found the counterterms of 58 diagrams which contribute to Z_{3} in QED (see, e.g., Pigs. 1a, 1b). As a result, the four-loop approximations of the QBD β - function in the MS-acheme and the QED Ψ - function have been obtained [11]. At the second stage, the final QCD result for the D-function of eq. (2.1) has been obtained. The details and the testa of oalculations will be deacribed in a more extended publication.

3. THE QCD RESULTS

All direct calculations discussed in the previous section have been done in the Euclidean region of momentum tranafers. However, to obtain the theoretical expression for $R(s)$ it is necessary to transform the final result into the physical region by means of the following representation

$$
\begin{equation*}
R(s)=\frac{1}{2 \pi i} \int_{-s-i \varepsilon}^{-\operatorname{shi} i \varepsilon} d Q^{2} \frac{D\left(Q^{2}\right)}{Q^{2}} \tag{3.1}
\end{equation*}
$$

Eq. (3.1) leads to the appearance of the additional acheme independent correction in the next-next-to-leading order we are interested in, which is proportional to π^{2}

$$
\begin{equation*}
R(s)=D(s, a)-3 \sum Q_{f}^{2} \pi^{2} \frac{\beta_{0}^{2}}{3} a^{3}+O\left(a^{4}\right) \tag{3.2}
\end{equation*}
$$

where $a=\alpha_{s} / D, \beta_{0}$ is the first coefficient of the $Q C D$ function which has been calculated in [12] in the MS-scheme at the three-loop level

$$
\begin{array}{r}
\frac{1}{\pi} \rho^{2} \frac{\partial \alpha_{s}}{\partial f_{1}^{2}}=\beta_{1}^{2} \frac{\partial a}{\theta \beta_{1}^{2}}=\beta(a)=-\beta_{0} a^{2}-\beta_{1} a^{2}-\beta_{2} a^{4}= \\
=-\beta_{0} a^{2}\left(1+c_{1} a+c_{2} a^{2}\right) \\
\beta_{0}=\left(11-\frac{2}{3} f\right) \frac{1}{4}, \beta_{1}=\left(102-\frac{38}{3} f\right) \frac{1}{16} \\
\beta_{2}=\left(\frac{2857}{2}-\frac{5053}{18} f+\frac{325}{54} f^{2}\right) \frac{1}{64} \tag{3.3}
\end{array}
$$

The additional contribution to $R(s)$ in eq. (3.2) appeara after taking into account the effects of analytical continuation of the torm $\ln ^{3}\left(\alpha^{2} / \mu^{2}\right) \rightarrow\left(\ln \left(s / \mu^{2}\right) \pm i \pi\right)^{3} \quad$ which arises in eq. (3.1) after the integration of the $a^{3} \ln ^{2}\left(Q^{2} / \mu^{2}\right)$ term in the expression for the D-function. These effects have been discussed carlier in the case of $e^{+} e^{-}$-annihilation $[13,14]$ and $Y / 4(\eta) \rightarrow g \rightarrow$ hadron process [15]. An analogous correction has also appeared in calculations of the next-next-to-leading order corrections to the total hadronic decey width of the neutral Higgs boson of the standard electroweak theory [16]. As well as in that case[16], taking into account the \boldsymbol{J}^{2} term decreases the numerical value of the analysed PT coefficient. Thus, we will not redefine the expansion parameter $\bar{\alpha}_{s}$ in the space-like region in contrast with the proposals of refs. [13,14].

Solving the renormalization group (RG) equation, we obtain the following analytical expression for $R(S)$ in QCD in the us - scheme

$$
\begin{aligned}
R^{म T S}(S) & =3 \sum Q_{3}^{2}\left\{1+\bar{a}+\left[\left(\frac{730}{3}-1763(3)\right)-\left(\frac{44}{3}-\frac{32}{3}\right\}(3)\right) f\right] \frac{\bar{a}^{2}}{16} \\
& +\left[\left(\frac{3503881}{144}-\frac{47374}{27} 3(3)+\frac{25120}{9}\right\}(5)\right)- \\
& =\left(\frac{62776}{27}-\frac{16768}{5} 3(3)+\frac{1600}{9} 3(5)\right) f+ \\
& \left.\left.\left.+\left(\frac{4832}{81}-\frac{1216}{27}\right\}(3)\right) f^{2}-\pi^{2}\left(11-\frac{2}{3} f\right)^{2} \frac{4}{3}\right] \frac{\bar{a}^{3}}{64}\right\} \\
& -\left(\sum Q_{f}\right)^{2}\left(\frac{560}{27}-\frac{320}{3} 3(3)\right) \frac{\bar{a}^{3}}{44},
\end{aligned}
$$

where $\boldsymbol{Z}(3)=1.20205 \ldots, \boldsymbol{j}(5)=1.03692$ are the Riemann zeta functions. Motice the cancellations of $\mathcal{Z}(4)$-terme in the obtained result. Te have no explanation of this fact. In the numerical form eq. (3.4) reads

$$
\begin{aligned}
R^{M 3}(S) & =3 \sum Q_{f}^{2}\left\{1+\bar{a}+(1.986-0.115 f) \bar{a}^{2}+\right. \\
& \left.+\left(70.985-1.200 f-0.005 f^{2}\right) \bar{a}^{3}\right\}-\left(\sum Q_{f}\right)^{2} 1.679 a^{3}
\end{aligned}
$$

The term containing the factor $\left(\Sigma Q_{f}\right)^{2}$, which does not appear in the previous orders of PT, results from the QCD analogs of the QED light-by-light diagrams (see fig. 1b)with SU(3)-group factors proportional to $d^{\text {abe }} d^{\text {abc }}$. This term is scheme independent. However, other coefficients do depend on the subtraction scheme used. The question of the acheme dependence of the results obtained will be considered elsewhere.
4. discussions of the results and determination of thr parameter $\Lambda_{\text {MS }}$

[^0]of comparing theory with experiment and determining the correct values of the parametor $\Lambda_{\bar{\sim}}$ in various regions of energies? Indeed, it is known (see, e.g.[17]) that PT series of quantum field theory are the asymptotic ones and, as distinct from g^{4} and QBD, in QCD they have sign constant character. It is commonly considered that the orror of the aum of asymptotic series is eatimated by the value of a first thrown away torm[18]. Hence, in order to minimize the error, it is necessary to find a minimal perturbative torm, throw it away and take into acoount wil the preceding ones, So it is important to find the ainimal term among PT terms with asymptotically increasing coofficiente. However, in the model $g^{4}{ }^{4}$ the asymptotic n^{\prime} growth predicted by the asymptotic estimates [17] has not been observed even at the five-loop level[19]. That is why we will first consider the case when the minimal term in the PT series for $R(s)$ is numbered among the unknown higher order terms and include the calculated correction in the analysia of the experimental data.

We will use the data obtained at the PETRA and PEP colliders far above the thresholds of the production of the b-quarks in the process $e^{+} e^{-} \rightarrow \gamma, z^{0} \rightarrow$ hadrons. The recent analysis of these data with taking into eccount both the value of the $O\left(\mathcal{X}_{\boldsymbol{s}}^{2}\right)$ corrections in the $\overline{\mathrm{MS}}$ - scheme and the known mass effects for the world average value of $\sin ^{2} \theta_{w}=0.23$ gives the resulte $\bar{\alpha}_{3}\left(34^{2} \mathrm{GeV}^{2}\right)=0.169 \pm 0.025, \bar{a}_{m}=\alpha_{s} / \pi=0.054 \pm 0.008[4],(4.1)$ where index $n \ell$ means that the next-to-leading correction has been taken into account* 1 .

[^1]Let un now take into account the calculated next-next-to-leading correction and find the oorresponding value of the parameter Λ_{MS}. The analyais will be made in two different ways: (a) the direct analysis in the \bar{m}-soheme and (b) the analyais in the framework of the approach[20] known in the literature an the fastest appearant convergence (PAC) oriterion (this approach has been also discussed in[21]). We will call it "the effective scheme approach". Substituting $f=5$ into eq.(5) and introducing the index gnl to indionte the noxt-next-to-leading py order and the index eff for the offective acheme resulta, we present the expression for $R(s)$ in this region of energies in the following form

$$
\begin{aligned}
R(s) & =R_{0}\left[1+\bar{a}_{n n \ell}+r_{1} \bar{a}_{n n \ell}^{2}+r_{2} \bar{a}_{n n \ell}^{3}+\cdots\right]= \\
& =R_{0}\left[1+\bar{a}_{e f f}^{(s)}\right] .
\end{aligned}
$$

where $r_{1}=1.411$ and $r_{2}=64.860$. The expression for $R_{\text {, can }}$ be found,e.g. in ref.[4] . It contains the information not only about γ - exchange, but about \mathcal{Z}^{0} - exchange and their interference also. We neglect in (4.2) the $\left(\Sigma Q_{4}\right)^{2}$ - term of eq. (3.5) since within dimensional regularization ita generalization to the case of the z° arial vector coupling needs additional careful consideration. It should be noted, however, that for $f=5$ this scheme independent term is suppressed by both the amall coofficient (see eq.(3.5)) and the factor $\left(\sum Q_{f}\right)^{2} / 3 \sum Q_{f}^{2}=1 / 33$. From the experimentel result for $\bar{a}_{n \ell}$ we have that $\bar{a}_{\text {eff }}^{(2)}=\bar{a}_{n \ell}\left(1+r_{1} \bar{a}_{n \ell}\right)=0.058 \pm 0.009$. Solving now numerically the equation $\bar{a}_{\text {eff }}^{(3)}=\overline{\mathrm{a}}_{\text {eff }}^{(2)}$, we obtain the corrected value of
$\bar{\alpha}_{s}\left(34^{2} G_{e} v^{2}\right)$ in the 「3-sahese: $\bar{\alpha}_{\text {me }}=0.048_{-0.006}^{+0.005}$, $\bar{\alpha}_{s}\left(34^{2} \mathrm{O}_{6} \mathrm{v}^{2}\right)=0.151_{-0.019^{+0.016}}$

It should be reminded that the introduced constants $\bar{a}_{n} \ell$, $\bar{a}_{\text {nle }}, \bar{a}_{e f f}^{(2)}$ and $\bar{a}_{e f f}^{(3)}$ obey different RG equations of the types (3.3). They have the following forms:

$$
\begin{align*}
& \frac{\partial \bar{a}_{n \ell}}{\partial \ln |s|}=-\beta_{0} \bar{a}_{n l}^{2}\left(1+c_{1} \bar{a}_{n \ell}\right) \tag{4.3}\\
& \frac{\partial \bar{a}_{n n \ell}}{\partial \ln |s|}=-\beta_{0} \bar{a}_{n n l}^{2}\left(1+c_{1} \bar{a}_{n l l}+c_{2} \bar{a}_{n n l}^{2}\right) \tag{4.4}\\
& \frac{\partial \bar{a}_{e l f}^{(L)}}{\partial \ln |s|}=-\beta_{0}\left(\bar{a}_{e f f}^{(2)}\right)^{2}\left(1+c_{1} \bar{a}_{e f f}^{(2)}\right) \tag{4.5}\\
& \frac{\partial \bar{a}_{e f f}^{(s)}}{\partial \ln |s|}=-\beta_{0}\left(\bar{a}_{e f f}^{(s)}\right)^{2}\left(1+c_{1} \bar{a}_{e f f}^{(3)}+\widetilde{c}_{2}\left(\bar{a}_{\ell f f}^{(x)}\right)^{2}\right) . \tag{4.6}
\end{align*}
$$

For $f=5$ from eq. (3.3) we have $\beta_{0}=1.917, C_{3}=1.261$, $C_{2}=1.475$ and \widehat{C}_{2} can be found from the property that the quantity $\rho_{2}=C_{2}+r_{2}-c_{1} r_{1}-r_{1}^{2} \quad$ is scheme invariant $[22-24]$. In the effective acheme $r_{1}=r_{2}=0$ we then have $\tilde{C}_{2}=\rho_{2}=62.565$.

There are several methods of extracting the velues of the parameter $\Lambda_{\text {MS }}$. In the framework of the firat of them one should exactly solve the RG equations (4.3)-(4.6). Let us introduce the following designations:

$$
\begin{align*}
\Psi_{n l}(a) & =\frac{1}{\beta_{0} a}+\frac{c_{1}}{\beta_{0}} \ln \frac{c_{1} a}{1+c_{1} a} \tag{4.7}\\
\Psi_{n n l}\left(a, c_{2}\right) & =\psi_{n l}(a)+\frac{c_{1}}{2 \beta_{0}} \ln \frac{\left(1+c_{1} a\right)^{2}}{1+c_{1} a+c_{2} a^{2}}+ \\
& +\frac{2 c_{2}-c_{1}^{2}}{\sqrt{\Delta} \beta_{0}}\left[\operatorname{arctg} \frac{c_{1}+2 c_{2} q}{\sqrt{\Delta}}-a \operatorname{ctg} \frac{c_{1}}{\sqrt{\Delta}}\right] \tag{4.8}
\end{align*}
$$

where $\Delta=4 C_{2}-C_{1}^{2}$. In the next-to-leading order the solutions of eq. (4.3), (4.5) in the $\overline{\mathrm{HB}}$ - and effective acheames read

$$
\begin{align*}
& \left.\ln \frac{s}{\lambda_{n!}^{2}}\right|_{\sqrt{5}=34 \in E V}=\Psi_{n l}\left(\bar{a}_{n l}\right) \tag{4.9a}\\
& \left.\ln \frac{s}{\tilde{\Lambda}_{e f f}^{2}}\right|_{\sqrt{3}=34 \operatorname{sev}}=\Psi_{n l}\left(\bar{a}_{e f f}^{(2)}\right) \tag{4.9b}
\end{align*}
$$

The parameter $\Lambda_{\text {mS }}$ is connoted with $\Lambda_{\text {mB }}$ and $\boldsymbol{\lambda}_{\text {eff }}{ }^{\text {in }}$ the following maya:

$$
\begin{aligned}
& \Lambda_{\overline{M S}}^{2}=\tilde{\Lambda}_{\overline{M S}}^{2}\left(\frac{c_{0}}{\beta_{0}}\right)^{\infty / \beta} \\
& \Lambda_{\overline{M S}}^{2}=\Lambda_{e f f}^{2} \exp \left(-r_{1} / \beta_{0}\right)-\tilde{\Lambda}_{e f f}^{2} \exp \left(-r_{1} / \beta_{0}\right)\left(\frac{c_{1}}{\beta_{0}}\right)^{\mu_{0}}(4.10)
\end{aligned}
$$

Taking into account the numerical values for $\bar{a}_{n \ell}, \bar{a}_{e f f}^{(4)}$, C_{1}, β_{0} and Γ_{1} we obtain from eqs. (4.9) and (4.10) the corresponding estimates in the framework of the MS-acheme and effective scheme approaches:

$$
\begin{array}{ll}
\left(\Lambda_{\overline{M B}}\right)_{n l} & =585_{-320}^{+481} \mathrm{MeV} \\
\left(\Lambda_{\overline{M S}}\right)_{n} \ell & =553_{-298}^{+415} \mathrm{MeV} \tag{4.11~b}
\end{array}
$$

In order to take into account the next-next-to-leading PT corrections both to $R(S)$ and the β-functions, one should solve the following equations:

$$
\begin{align*}
& \left.\ln \frac{s}{\lambda^{2}}\right|_{\sqrt{3}=34 G 2 V}=\Psi_{n n l}\left(\bar{a}_{n l l}, c_{2}\right) \tag{4.12a}\\
& \left.\ln \frac{s}{\lambda_{e f f}^{2}}\right|_{\sqrt{5}=34 \operatorname{cel}}=\Psi_{n n l}\left(\bar{a}_{e f f}^{(3)}, \tilde{c}_{2}\right) \tag{4.12b}
\end{align*}
$$

As a result, we find two corrected numerical values of the parameter $\Lambda_{\text {MS }}$ in the frameworks of the Fis-scheme and effective scheme approaches

$$
\begin{align*}
& \left(\Lambda_{\text {mB }}\right)_{\mathrm{mal}}=326_{-169}^{+201} \mathrm{MoV} \tag{4.13a}\\
& \left(\Lambda_{\mathrm{mB}}\right)_{\mathrm{Mol}}=241_{-117}^{+139} \mathrm{Mov} \tag{4.13b}
\end{align*}
$$

Let un now find the values of $\Lambda_{\text {㾍 }}$ in the framework of the second method which presupposes expansion of the solutions of eq. (4.9), (4.12) in powers of $1 / \ln \left(s / \Lambda^{2}\right)$. The correlpodding representations of the running coupling constant can be expressed in terms of the following functions:

$$
\begin{align*}
\varphi_{n l}(\Lambda) & =\frac{1}{\beta_{0} \ln \left(s / \Lambda^{2}\right)}-\frac{c_{1}}{\beta_{0}^{2}} \frac{\ln \ln \left(s / \Lambda^{2}\right)}{\ln ^{2}\left(s / \Lambda^{2}\right)} \tag{4.14}\\
\varphi_{n \Lambda l}\left(\Lambda, c_{2}\right) & =\varphi_{n l}(\Lambda)+\frac{1}{\beta_{0}^{3} \ln ^{3}\left(s / \Lambda^{2}\right)}\left(c_{1}^{2} \ln n^{2} \ln \left(s / \Lambda^{2}\right)\right. \\
& \left.-c_{1}^{2} \ln \ln \left(s / A^{2}\right)+c_{2}-c_{1}^{2}\right) .
\end{align*}
$$

In the next-to-leading PT order we have

$$
\begin{align*}
& \bar{a}_{n e}=\left.\varphi_{n e}\left(\Lambda_{n s}\right)\right|_{\sqrt{5}=34 \mathrm{GeV}} \tag{4.15a}\\
& \bar{a}_{e f f}^{(a)}=\left.\varphi_{n e}\left(\Lambda_{e f f}\right)\right|_{\sqrt{3}=34 \mathrm{geV}} \tag{4.15b}
\end{align*}
$$

From eqs. (4.15) we obtain the corresponding estimates in the framework of the HS -scheme and effective scheme approaches.

$$
\begin{gather*}
\left(\Lambda_{\overline{M s}}\right)_{n l}=600_{-330}^{+466} \mathrm{MeV} \tag{4.16a}\\
\left(\Lambda_{\overline{M S}}\right)_{n l}=560 \pm 223 \mathrm{MeV} \tag{4.16b}
\end{gather*}
$$

After using the information about the next-next-to-leading order corrections instead of eqs. (4.25), we obtain

$$
\begin{align*}
& \bar{a}_{n h l}=\left.\varphi_{n h l}\left(\Lambda_{n 3}, c_{2}\right)\right|_{\sqrt{3}+34 \mathrm{edv}} \tag{4.17a}\\
& \bar{a}_{44}(3)=\left.\varphi_{n n l}\left(\Lambda_{e f f}, \tilde{C}_{2}\right)\right|_{\sqrt{s}=34 \mathrm{eed}} \tag{4.17b}
\end{align*}
$$

Solving then numerically and taking into acoount the relation between $\Lambda_{M_{S}}$ and $\Lambda_{\text {eff }}$ we ind reaulte which follow from the TS-acheme and the effective acheme approaches

$$
\begin{align*}
& \left(\Lambda_{\text {ms }}\right)_{\mathrm{min}}=325_{-175}^{+200} \mathrm{MeV} \\
& \left(\Lambda_{\mathrm{MS}}\right)_{\mathrm{nn}} \rho=211_{-104}^{+135} \mathrm{MeV} \tag{4.18b}
\end{align*}
$$

Comparing the results (4.18) with (4.13) we observe that the values of $\Lambda_{\overline{M s}}$ depend on both the form of repreaenting the solutions of the RG equations (compare eqs. (4.12) and (4.17)) and the ways of extracting the numerical values of the $\Lambda_{\text {Ms }}$ parameter (either the $\overline{\mathrm{MS}}$-scheme or the effective scheme approaches). This difference is due to different ways of taking into account the amounts of information about totally unknown and uncontrollable terms of order $O\left(l_{h}^{-4}\left(s / A^{2}\right)\right)$. Notice, however, that the results $\left(\Lambda M_{m}\right)_{m l}=325_{-175}^{+200} \mathrm{HeV}$, obtained by analysing in the $\overline{\mathrm{MS}}$-scheme, are almost insensitive to the methods of extracting its value (compare eqs. (4.13a) and (4.18a)). In any case, we arrive at the definite conclusion that taking into account the calculated $O\left(\alpha_{s}^{3}\right)$ next-next-to-leading corrections decreases twice the values of $\Lambda \overline{M s}$. Thus, in addition to the observation made in ref. [25], we claim that in order to analyse eelf-consiatently the QCD prediction for phyaical quantities it is important to use not only next-to-leading corrections but higher order PT effects as well. Indeed, the next-toleading order corrections allow one to fix the renormalization scheme[25] - Using higher order corrections one can make more rigoroue atatementa about the real numerical values of the parameter Λ_{F} and the theoretioal orrorm of the QOD PI earien.
so animise the theoretieal uncertainties of the obteined
entimeten one ahould find the region of intersection of the numerical intervala (4.13) and (4.18). The final resulta

$$
\begin{equation*}
\left(\Lambda_{M S}\right)_{n n l}=157-346 \mathrm{MeV} \tag{4.19}
\end{equation*}
$$

are in better agreement with the values of $\Lambda \overline{m S}$, extracted from other processes [26] with taking into account the next-to-leading PF effecte only, then the results (4.11). (416) obtained from the alalyain of $R(s)$ in the next-to-leading PT order. Of course the comparison ahould be made with care. Indeed, the values of $\Lambda_{\text {M }}$ also depend on the numbers of flavours taken into account in the analyais of experimental data (see,e.g.[24]). But this theoretical dependence does not affect the obtained conclusions eince it is even amaller than the magnitudes of the experimental error bars of the numerical values of the parameter $\Lambda_{\text {MS }}$ [24]. The large value of the calculated correction may indicate that for the presently available energies of PEP and TRISTAN and even for the future energies of SLC and LEP the correction is experimentally detectable and ahould be involved in procedures of analyaing the $e^{+} e^{-}$data.

We are formulating this important conclueion with a bit of cention eince for the obtained valuen of the running ooupling constant Z_{3} in the $\bar{B}-$ saheme $\mathcal{Z}_{3}\left(34^{\left(10 T^{2}\right.}\right)=0.151$ the $F T$ eeriea for $Z(a)$ obtainad from eq. (4.2) han the form

$$
R(s)=R_{0}(1+0.048+0.003+0.007+\ldots) \cdot \quad(4.20)
$$

The inolualon of the next-next-to-leading correction in the fit of the experiment precumes that, firatiy, the $0\left(\bar{\alpha}_{3}^{2}\right)$ - correction in eq. (4.20) is eccidentelly mall, and aecondly, the unmown $O\left(\mathcal{X}_{3}\right)$ corrections to $R(s)$ are not large.

Iet us now diecued the poensulity thet the aquytetie nature of the QGD PY meriea manifeste itmelf already at the level of the noxt-next-to-leading correction, that is to any
the series (4.20) asymptotically explodes at this level. Further, following the ideology of asymptotic expansions[18] , one mast truncate the series (4.20) on the minimal third term and take into account only the tree and leading order terms. In this case it is impossible to determine self-consiatently the value of the parameter $\Lambda_{\bar{M}}$ since all the information about the schemedependence is absorbed in the truncated term. Thus, in order to compare self-consistently the predictions of QGD PF series with experiment, it becomes very important to develop methods of summations of QCD sign-constant series.

Note that even if the series (4.20) does not blow up for the considered energies $\sqrt{\mathbf{5}} \approx 34 \mathrm{GeV}$, we face the problems discussed above in the low-energy region. Indeed, the calculated by us $0\left(\mathcal{X}_{5}^{3}\right.$) correction in eq. (3.5) becomes comparable with the leading $O\left(\bar{\alpha}_{s}\right)$ term for $\bar{\alpha}_{s} \sim 0.380$. For these values of \mathcal{X}_{s} the PT approximation for $R(s)$ obviously blows up. It seems, that in the region of larger values of \mathcal{Z}_{3} the quantity $R(s)$ should be approximated by only two terms of the PT series (3.5) with all that this implies.

To conclude this section we want to note that from the point of view of studying the region of applicability of asymptotic QCD PP predictions, it is highly desirable (i) to estimate the contributions of the $O\left(\bar{T}_{5}^{*}\right)$ corrections to $R(s)$ which is an unrealistic problem, and (ii) to calculate the effects of the next-next-to-leading order corrections to charaoteristics of other physical processes, eay, deep inelastic lep-ton-hadron scattering. This is practicable due to the existence of the methods of calculating the necessary corrections in the MS-acheme of both enomalous dimensions of composite operators[9] and coefficient functions of operator product expansions [27].
6. CONCLUSION

We have calculated the next-next-to-leading $O\left(\bar{\alpha}_{s}^{3}\right)$ QCD correction to $R(s)=\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow\right.$ hadrons $) / \sigma^{\prime}\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$). The obtained correction is large, e.g., in the $\overline{\mathrm{MS}}$-scheme at $\sqrt{5}=34 \mathrm{GeV}$ it is over 2.5 times larger than the previous next-to-leading correction. Of course, it cannot be ruled out that some contributions of the lower PT corrections are accidentally small. That is why we include the $O\left(\bar{S}_{5}^{3}\right)$ correction in the procedure of analysing PEP and PETRA data. As a result, taking into account this correction drastically (twice) decreases the value of $\Lambda \overline{M S}$. To obtain final estimates we have considered
two forms of representing the running coupling constant in terms of the Λ-parameter ((I) explicit solutions of $R G$ equations, (II) reexpansions of these solutions in termg of $1 / \ln \left(s / A^{2}\right)$) and two ways of comparing QCD predictions with experiment based on application of (a) the $\overline{\mathrm{MS}}$-acheme and (b) the effective acheme approaches. We have got the following four results: (Ia) $\left(\Lambda_{\text {ms }}\right)_{\text {mnl }}=326_{-169}^{+201} \mathrm{MeV} ;(\mathrm{Ib})\left(\Lambda_{\text {ms }}\right)_{\operatorname{Aml}}=241_{-117}^{+139} \mathrm{MeV}$ (IIa) $\left(\Lambda_{\overline{M S}}\right)_{m P}=325_{-175}^{+200} \mathrm{MeV}$ and (IDb) $\left(\Lambda_{M S}\right)_{n A P}=211_{-104}^{+135} \mathrm{MeV}$. They intersect in the region $\left(\Lambda_{\text {Ms }}\right)_{\text {mil }}=157-346 \mathrm{MeV}$. Ve also consider the posaibility that the amyptotic PF series explodes already at the level of the next-next-to-leading corrections, discuss the regions of applicability of the obtained resulta and comment upon the problems of involving the calculated corrections into the procedure of analysing the $e^{+} e^{-}$data in various regions of energies.

We are grateful to V.A. Matveev, D.V.Shirkov and A.N.Tavkhelidze for interest in the work, constent support and useful discussions. It is a pleasure to thank K.G. Chetyrkin, D.I.Kazakov,
N.V.Kreanikov, S.A.Kulagin, O.V.Tareaov, F.V.Tkachov, M.E.Shapoahnikov, A.A. Vladimirov and other researches of the theoretical divisions of both INR and JINR for usefful discussions at different stages of the work.

7. NOTE ADDED

After this work has been written, we became aware that a more refined analysis of the combined PETRA and PEP data with an improved treatment of the QED radiative corrections gives $\bar{\alpha}_{s}\left(34^{2} \mathrm{GeV}^{2}\right)=0.145 \pm 0.020$
for $\sin ^{2} \theta_{w}=0.23[2 B]^{2}$. Revising our analysis with respect ta this new information instead of estimates of eqs. (4.11), (4.16), obtained in the next-to-leading order in the fremework of the discussed above approaches, we have the following esti-

 cluding the calculated $O\left(\mathcal{X}_{3}^{3}\right.$) correction into the analyais, we obtain the corrected value of the running coupling constant in the $\overline{r i s}$-scheme $\bar{X}_{3}\left(34^{2} \mathrm{GeV} \mathrm{V}^{2}\right)=0.132_{-0.016}^{+0.013}$ and the new extimates of the parameter $\Lambda_{\text {NF }}:(I a)\left(\Lambda_{\overline{M S}}\right)_{\text {nal }}=157_{-86}^{+104} \mathrm{MeV}$;
 (IIb) ($\left.\Lambda_{\text {MS }}\right)_{\text {hl }}=107_{-55}^{+80} \mathrm{MeV}^{(\mathrm{M}}$, which ahould be compared with the previous estimates of eqs. (4.13), (4.18). These intervals intersect in the region ($\left.\Lambda_{\text {MS }}\right)_{\text {me }}=71-187 \mathrm{MeV}$, which is the new estimate of this parameter obtained from PETRA and PEP data provided the considered PT seriea is not yet in the asymptotic regime for these energles.

[^2]
RTFFRENGES

1. Feldman G.J., Perl M. L. Phys.Rev., 1977, 35, 285; Berkelman K. Phys.Rep., 1983, 98, 145;
Tu s.L. Phys.Rep., 1983, 107, 59.
2. Kugmin V.A., Tavkhelidze A.N., Chetyrkin K.G. Piama ZhETF, 1977, 25, 456;
Chetyrkin K. G., Kramikov K. V., Tavkhelidze A.N. Phys.Lett., 1978, 76B, 83.
3. Matyricin Z. Q., Eataev A.I., Tkachov M.V. Phys. Iott., 1979, 85B, 277
Dine M., Sepirstein J. Phys.Rev.Iett. 1979, 43, 668; Celmaster W. Gonsalves R. Phys.Rev.Lett., 1980, 44, 560.
4. Behrend H.J. et al. GRLJO collab. Phys.Lett., 1987, 183B, 400.
5. Chetyrkin K.G., Kataev A.L., Tkachov F.V. Preprint INR, P-6170, 1980.
6. Chetyrkin K.G., Kataev A.I., Tkachov F.V. Nucl.Phys. 1980, B174, 345.
7. Vladimirov A.A. Theor. Mat. Fiz., 1980, 43, 210.
8. Chetyrkin K.G.. Tkachov P.V. Phys.Lett., 1982, 114B, 340; Ghetyrkin K.G., Smirnov V.A. Phys.Lett., 1984, 144B, 419.
9. Tkachov P.V. Phys. Lett., 1981, 100B, 65; Chetyrkin K.G., Tkachov F.V. Nucl. Phys., 1981, B192, 159.
10. Gorishny S.G., Larin S.A., Tkachov F.V. Preprint INR P-0330, 1984.
11. Goriahny S.G., Kataev A.L., Larin S.A. Phys.Lett., 1987, 194B, 429.
12. Tarasov O.V., Vladimirov A.A., Zharkov A.Yu. Phys.Lett., 1980, 93B, 429.
13. Pennington M.R., Ross G.G. Phys.Lett., 1981, 102B, 167.
14. Radyuahkin A.V. Preprint JINR E2-82-159, Dubna, 1982.
15. Krasnikov N.V., Pivovarov A.A. Phys.Lett., 1982, 116B, 168.
16. Gorishny S.G., Kataev A.L., Larin S.A. Yad.Fiz., 1984, 40, 517, Brratum Yad. $\mathrm{Hz} ., 1985,42,1312$.
17. Kazakor D.I., Shirkov D.V. Fortachr. Phys., 1980, 28, 465; Bogomolny E.B., Fateev V.A., Lipatov L. M., in: Sov.Soient.Rev., sect. A, Phys.Rev., 1980, 2, 247.
18. Olver F.W. Introduction to asymptotics and apecial functions. Academic Press, 1974.
19. Ghetyrkin K.G., Gorishny S.G., Larin S.A., Tkachov F.V. Phys.Iett., 1983, 132B, 351.
20. Grunberg G. Phys. Lett., 1980, 93B, 70.
21. Kataev A.L., Krasnikov N.V., Pivovarov A.A. Nucl. Phys., 1982, B198, 508.
22. Stevenson P.M. Phys.Rev., 1984, D23, 2916.
23. Dhar A. Phys.Lett., 1983, 128B, 407.
24. Kazakov D.I., Shirkov D.V. Yad. Fiz., 1985, 42, 768.
25. Bace M. Phys.Lett., 1978, 78B, 132.
26. Duke D.W., Roberts R.G. Phys.Rep., 1985, 120, 275.
27. Chetyrkin K.G., Gorishny S.G., Tkachov F.V. Phys.Lett., 1982, 119B, 407;
Gorishny S.G., Larin S.A., Tkachov F.V. Phya.Lett., 1983, 124B, 217;
Gorishny S.G., Larin S.A. Nucl. Phys., 1987, B283, 452.
28. de Boer W. Preprint SLAC-PUB-4428, 1987.
29. Barriero F. Proc. of the Int. Europhys. Conf. on High Energy Physics, v. 1, p. 184, Uppsala, 1987.

Received by Publishing Department on April 18, 1988.

Горипний С.Г., Катаев А.Л., Ларин С.А. Е2-88-254 Следующая за нелидирующей поправка КХД порядка O ($\bar{a}_{\mathrm{s}}^{\mathbf{3}}$)
$\kappa \sigma_{\text {tot }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ адроны): аналитическое вычисление
и оценка параметра Λ
Вычислена следующая за нелидирующей поправка КХД порядка $O\left(\vec{a}_{\mathrm{s}}{ }^{3}\right) \kappa \sigma_{\text {tot }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ адрона). Найденная поправка оказалась большой. Например, при $\sqrt{\mathbf{s}}=34$ ГэВ в схеме $\overrightarrow{M S}$ она приблизительно в 2,5 раза больше, чем предыдущий член порядка $O\left(\bar{a}_{2}^{2}\right)$. Учет найденной поправки в процедуре фита комбинированных данных PETRA и PEP уменьшает в два раза значение параметра $\Lambda_{\overline{M S}}$. Обсуждается статус пертурбативных предсказаний КХД.

Работа выполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного инствтута ядерных исследований. Дубна 1988

[^0]: We have obtained that in the $\bar{W}-\mathrm{scheme}$ the coefficient of the next-next-to-leading correction to $R(s)$ is large. Thus, the question arises: how to involve $O\left(\bar{\alpha}_{3}^{3}\right)$ terms in procedures

[^1]: *1. For the consideration of the more recent results [28] see Sect. 7 .

[^2]: \#2 Note, howgyer, that in ref. [29] this result has been
 attributed to $\sqrt{5}=43 \mathrm{Gov}$.

