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1. INTRODUCTION

The €% - annihilation into hadrons is one of the most in-
formative processes in elementary particle‘phyaics. Both experi-
mental [1] and theoretical (see,e.g.[2] ) analysis of the behavi-
our of its basic characteristic R(s) = du(e*i'—» bhadrons)/

G (e‘e -—DJM‘JV‘ ) allows one to obtain importent infcrmation
about the properties of hadrons and their constituents, i.e.
quarks and gluons. In the zeroth order of perturbation theory
(PT)QCD prediction for R(s) is in qualitative agreement with ex-
periment. However, in order to test quantitatively the QCD predic—
tions it is neceasary to take into account the effects of higher
PT corrections, Until recently R(a) has been known in JCD up to
the next-to-leading 0 o?: ) PP correction[3] . In this work we
present the result of analyiical calculation of the sexs-next-to-
leading O(Saf ) correction to R(s) and obiain the new estimatio=
of the parameter Am based on tr2 analysis of the combined
PETRA and PEP results[4,28] . We show that not only the next-to-
leading PT correction but the higher order PT effects ere very
important for comparing QCD with experiment and deterzining the
value of the QCD parameter Am . We also discuss the problem of

comparing asymptotic PT series of QCD with experiment.

2. THE OUTLINE OF CALCULATIONS

Throughout this work we follow the calculationel program

outlined in refs.[S,G] and use the notetions introcuced there.

In the course of calculations it is convenient to use the D -

function

oo

3 z_d_ X Rcs) R
D(QL)=-szQ‘n(Q)=d§-(g—:E)tc\s. (2.1)

Here Q".-n"‘ is the Euclidean transferred momentum and.n. is the
badronioc vacuum polarigation function defined as

i (e %ol T 00 I, o> dx «
= (pdv- G P/ 1602,

18 the hadronio eleotromagnetic current. It can be

(2.2)

where JJ‘
shown that in order to ocalculate the next-next-to-leading
corrections to the D -function, it 1s necessary to use the
two=lo0p approximation of the bare expansion parameter

ag = (K, /W )g , to calculate the three-loop approximation
of the bare expreasion ﬂ‘(a.) and to find the four-loop ap-
proximation of the photon wave function renormalization constant
23 . At this level, over 100 diagrams contribute to ZS .
The typical examples are shown in figsi. All the calculations
have been done within the dimensional regularization in N =4-2¢

space-time dimensions and the minimal subtraction (MS) scheme.

OO

Pigure 1.

The application of the methods of infrared rearrangement [7.SJ
and the infrared K“ - operation[s] allowed us to reduce the
calculation of the four-loop approximation of Zs to the evalu-
ation of the three-loop massless propagator-type integrals up
to 0(;') terms. These integrals as well es the three-loop ap-
pProximation of _ﬂ_a (q‘) have been calculated with the in-
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tegration-by-parts algorithm('_‘B] . Some basic scalar integrals
used in the calculations have been calculated with the Gegen-
bauer polynomial X -gpace technique [6] « All analytical cal-
culations have been done with the help of the SCHOONSCHIP prog-
rem[10] which implements the integration-by-parts algorithm[9] .

The whole running time at the CDC-6500 computer exceeds 200 hours.

All the direct calculations have been done at two stages. At the
first stage, we have found the counterterms of 58 diagrams
which contribute to Zs in QED (see, e.g., figs. 1a, 1b). As .
a result, the four-loop approximations of the QED P - function

in the MS-scheme and the QED ‘P ~ function have been obtained [1 1].

At the second stage, the final QCD result for the D-function of
eq.(2.1) has been obtained. The details and the tests of calcu-
lations will be described in a more extended publication.

3. THE QCD RESULTS

All direct calculations discussed in the previous section
have been done in the Buclidean region of momentum transfers.
However, to obtain the theoretical expression for R(s) it
is necessary to transform the final result into the physical

region by means of the following representation

\}
Reoy= ;& fthD_éf_). (3.1)
~$~CE

Eq. (3.1) leads to the appearance of the additional scheme in-
dependent correction in the next-next-to-leading order we are

interested in, which is proportional to JI?

2
R()=D(s,a)-3=Qq ' L2a*+ Oca®),  (.2)

where Q=os/F , f;, is the first coefficient of the QCD
function which has been calculated in[12] in the MS~scheme at

the three-loop level

t?—s qﬁ.-f(a)=-ﬁoa—leaf

= -f;,q t(g4+C.Q+Ce Q)
8
Poz("-%‘f)zz_ , P‘E(foz-%_':f);’a
)G"’ (zgsv - 24%33#%5&2) = (3.3)

The additional contribution to R(s) 1in eq.(3.2) appears after
taking into account the effecte of analytical continuation of
the term &’(QZ’")* ( &(‘(ﬁ‘)!ir)‘ which arises in
eq.(3.1) after the integration of the a’fh'(a’//,‘) term in
the expression for the D-function. These effects have been dis-
cussed earlier in the case of €%€” -annihilation[13,14] and
37?(7')—9 z, -—» hadron process[151 . An analogous correction
has also appeared in calculations of the next-next-to-leading
order corrections to the total hadronic decay width of the neu-
tral Higgs boson of the standard electroweek theory [_16] . As
well as in that case[16J y taking into account the JI‘ term
decreases the numerical value of the analysed PT coefficient.
Thus, we will not redefine the expansion parameter o?_, in the
space-like region in contrast with the proposals of refs.T_13,14] .

Solving the renormalization group (RG) equation, we obtain
the following analytical expression for R(S) in QCD in the
¥S - scheme :



w L -
R¥t=3Zq; {1+ 8+ L0 mezo)-(41- 34951 &
+[(35o3881 _ 418344, %;cs))—

199 2
3.4
*(6::1‘_ 1‘;“;0)* 1_,‘,00‘,_;9):‘ + (3.4)

2 3

e ('1?0143. - 1:_;..‘.70))-} —ﬂ‘(”‘:‘.‘ﬂzg‘] GA.; 3
=3

- (T (- yne) £

where 3 (3) = 1.20205 ..., §(5) = 1.03692 are the Riemann zeta
functions. Notice the cancellations of J(4)-terms in the obtained
result. We have no oxplmfion of this fact. In the numerical

form eq.(3.4) reads

R¥() = 3TQ) {1+3+ (1.986-0.¢5$)F*+ (3.5)
+(30.985-1.200§-0.0054%) T*} - (ZQ,)li.s;s 3.

2.
The term containing the factor (ZQ*) y which does not appear
in the previous orders of PT, results from the QCD analogs of
the QED light-by-light diagrams (see fig.1b)with SU(3)-group

abe
e:l“< o This term is scheme inde-

factors proportional to d
pendent. However, other coefficients do depend on the subtrac-
tion scheme used. The question of the acheme dependence of the

results obtained will be considered elaewhere.

4. DISCUSSIONS OF THE RESULTS AND DETERMINATION OF THE PARAMETER A}R

We have obteined that in the E—scheme the coefficient of
the next-next-to-leading correction to R(s) is large. Thus,

the question arises: how to involve O(f;)terma in procedures

of comparing theory with experiment and determining the cor-
rect values of the parameter AW in various regions of ener-
gles? Indeed, it is known (see, e.g.[17] ) that PT series of
quantum field theory are the asymptotic ones and, as distinct
from 3'-(' and QED, in QCD they have sign constant character. It
is commonly considered that the error of the sum of asymptotic
series is estimated by the value of a first thrown away term[18].
Hence, in order to minimize the error, it is necessary to find

e minimal perturbative term, throw it away and take into account
all the preceding ones, So it is important tc find the minimal
term among PT terms with asymptotically increasing coefficieats.
However, in the model 8‘(* the asymptotic n! growth predicted
by the asymptotic estimates [171 has not been observed even at

the five-loop level [19_1 . That is why we will first consider the
case when the minimal term in the PT series for R(s) is num-
bered emong the unknown higher order terms and include the cal-
culated correction in the analysis of the experimental data.

We will use the data obtained at the PETRA and PEP colli-
ders far above the thresholds of the production of the | -quarks
in the process @€ —w Y ,2° —» hadrons. The recent analysis of
these data with taking into account both the value of the O J: )
corrections in the M3 - scheme and the known mass effects for
the world average value of sinzsw a 0.23 gives the results

o, (34 Gev?) = 0.169 4 0.025, Ty = /T = 0.054 1 0.008[4]{4.1)

where index Ll means that the next-to-leading correction Has

been taken into account®1,

*1. For the consideration of the more recent results[_ZB]

see Sect. 7.



Let us now take into account the calculated next-next-to-leading
correction and find the oorresponding value of the parameter
Am . The analysis will be made in two different ways: (a)
the direct analysis in the MS-scheme and (b) the analysis in

the framework of the approach[20] known in the literature as

the fastest appearant convergence (PAC) criterion (this approach
hag been also discussed in[21] ). We will call it "the effective
scheme approach™. Substituting f « 5 into eq.(5) and introduc-
ing the index mf_ to indiocate the next-next-to-leading P2
order and the index _C;f_f for the effective scheme resulis, we
present the expression for R(s) in this region of energies in
the following form ’

Resy= Ro[:l-ba,,,,l,.r,ﬁ:“(*I‘,,C-l,f,.('*"']—‘ . (4.2)

where €, = 1.411 and f, = 64.860. The expression for R, can
be found,e.g. in ref.[4]l . It contains the informastion not only
about Y - exchange, but about 2° - exchange and their inter-
ference also. We neglect in (4.2) the (ZQ‘),' - term of eq. (3.5)
since within dimensional regularization its generalization to

the case of the E° axial vector coupling needs additional ca-
reful consideration. It should be noted, however, that for 5 = 5
this scheme independent term is suppressed by both the amall coef-
ficient (see eq.(3.5)) and the factor (}:Q“)*/sza; = 1/33.
From the experimental result for a,.c we have that

a‘&}=ahe (1+ 0o anl) = 0.05840.009. Solving now numerically
the equation a'ﬂ =Ces » We obtain the corrected value of

o(;(34% GeV?) in the MB-schemes 3, = 0.04870-302,

Z(342 aev®) = 0.151%3:018,

'

It should be reminded that the introduced constante c_l',,(,
a.,.,.( ’ -;;} and ag; obey different RG equations of

the types (3.3). They have the following forma:

90 . _ g 3 c,a

i f., Qy (4+C4 Q,,) (4.3)
o, t a C2 Qo

i ﬁo Q¢ (1+4C4 Qe +C2 ll() (4.4)

-—u_)

932%: - p-(@G) (4+ e TG) (4.5)
:?qnls)--fz -(8g, )(i C«Q,:z-tc “’)) (4.6)

For } = S.from eq.’(j.B) we have Jz. = 1..917. Cys = 1.261,
Ca, = 1.475 and C, can be found from the property that the
quentity Py =Cp+ly=Cif- ry is scheme invariant[22-24] .
In the effective scheme ra=f,=0 we then have Erz"fz =62.565.
There are several methods of extracting the values of the
parameter Am « In the framework of the first of them one
should exactly solve the ‘RG equations (4.3)-(4.6). Let us in-
troduce the following designations:

% = 21+ & €9
h( (Q) ﬁﬂ ﬁ° h 4+C.q 4.7

1§
\*/hhf (a,C,_)- Y’he(a).;zL_ [h (.:[+C,q) .
e 1+c.a+C.q? 4.5)
Tt [ancty 22009 _aacty &7,

+ QC'-

z .
where A=4C.~C, . In the next-to-leading order the soclutions

of eq. (4.3), (4.5) in the MS- and effective scheames read



x| =
x, a (a-nl)

1 V?r.” SeaV (4.9a)
4 2 =T i\r".sﬂav = Yae (3gy). (4.9b)

The parametexr Am is connected with Aﬂ; and Kq}in
the following ways:

A = Rre (j?,—;"”’

<,
2 L ~2 S X7 (4.10)
Taking into account the numerical values for Q,g ) 5,;:; .
Cys JB" and [4 we obtain from eqs. (4.9) and (4.10) the

corresponding estimates in the framework of the US-scheme and

effective scheme approaches:

(/\m)n( = 535:;'23 MeV (4.11a)
(Ams )t = 5537812 wev.  (4.110)

In order to take into account the next-next-to-leading PT cor-
rections both to R(S) and the F ~-function§, one should solve
the following equations:

A?‘;-m

Vi'e34 ger = Tone (Ome, €), (4.128)

(h \v—,‘y’“’ \I}MC (a;;,a',_) . (4.12b)

As a result, we f;l.nd two corrected numerical values of the pa-
rameter /‘m in the framework of the ¥S-scheme and effective

scheme approaches

10

(Aﬁ!)m( = 326132} Mev (4.138)

(Am)ug = 201133 wav. (4.13b)

P Let us now find the values of Am in the framework of

the second method which presupposes expansion of the solutions
of eqe. (4.9), (4.12) in powers of 4/6\(3/'\") . The corres~
ponding representations of the running coupling constants can
be expressed in terms of the following functions:

_ e bbiesiA)

Yae (4)= f.&(sm‘) f.‘,“ {h’( /AY)

(4.18)
\PM( (./1 Cz)? kﬂ,g (./1.) F?"(‘/ (C4 6. &(5//11)
- sy ac-r).
In the next-to-leading PT order we have
Qne = \Pne(An;)l\E'- 34 GeV (4.158)
~ ) . «15b
Qq; = nI(A%‘)‘R =34 ceV. (4.150)
From eqs. (4.15) we obtain the corresponding estimates in the

framework of the M3-scheme and effective scheme approaches
A +466
MJ)nl = 600 330 MeV (4.16a)

23
(A "S)ne ‘5‘50-191 Mev (4.16D)

After using the information about the next-next-to-leading order
corrections instead of eqs. (4.25), we obtain

1‘ annc = \fhhe (Am. C&)Iﬂrgq GcelV (4017‘)
ﬂ ae
o = tme (A ey, El)lv;'-,wur. (4.170)

11



Solving them numerically and taking into account the relation
between Am and A‘JJ we find results which follow from the

MS-scheme and the effective scheme approachea'
+200
(AQ)M( = 325_175 MeV (4.18a)

(A Fa‘;)nn? = 211:]82 MeV . (4.18b)

Comparing the results (4.18) with (4.13) we observe that the
values of Am depend on both the form of representing the
solutions of the RG equations (compare eqs. (4.12) and (4.17))
and the ways of extracting the numerical values of the Am -
paremeter (elther the MS-scheme or the effective scheme approa-
ches). This difference is due to different ways of taking into
account the amounts of information about totally unknown and
uncontrollable terms of order 0( ?‘\"'( S/AL)) . Notice, how-
ever, that the results (/1 e = 3257290 iteV, obtained by ana-
lysing in the E-scheme, are almost insensitive to the methods
of extracting its value (compare eqs. (4.13a) and (4.18a)). In
any case, we arrive at the definite conclusion that taking into
account the calculated 0(2}‘) next-next-to-leading corrections
decreases twice the values of Am « Thus, in addition to
the observation made in ref. [25] » Wwe claim that in order to
analyse self-consistently the QCD prediction for physical quan-
tities it is important to use not onlj next-to-leading correc-
tions but higher order PT effects as well. Indeed, the next-to-
leading order corrections allow one to fix the renormaligzation
schemo[?.S] + Using higher order corrections one can make more
rigorous statements about the real numerical values of the pa-
rameter Apg and the theoretical errors of the QOD P? series.
%o minimise the theoretiesl uncertainties of the obtained

12

estimates one should find the region of intersection of the nu-
merical intervals (4.13) and (4.18). The final results

(Am)m.( = 157 - 346 MeV (4.19)

are in better agreement with the values of Ai}, extracted from
other processes [26] with taking into account the neit-to-leadin.g
PT effects only, then the results (4.11), (416) obtained from

the alalysis of R(s) in the next-to-leading PT order. Of course
the comparison should be made with care. Indeed, the values of
Am also depend on the numbers of flavours taken into account
in the snalysis of experimental data (see,e.g.[24] ). But this
theoretical dependence does not affect the obtained conclusions
aince it is even amaller than the magnitudes of the experimental
error bars of the numerical values of the parameter Aﬂ's [24] .
The large value of the calculated correction may indicate that
for the presently available energies of PEP and TRISTAN and even
for the future energies of SLC and LEP the correction is experi-

mentally detectable and should be involved in procedures of ana~-
lysing the &d - data.
We are formulating this important conclusion with a bit of

osution since for the obtained values of the running coupling
constant of, 1in the HB-scheme 1;04’ Ge¥2) = 0.15t the PT
series for R(s) obtained from eq. (4.2) has the form
R(s) = R (1 4 0,048 + 0,003 + 0.007 + ..c) (4.20)

The inclusion of the next-next-to-leading ocorrection in the fit
of the experiment presumes that, firstly, the 0( J,‘ ) - correc-
tion in eq. (4.20) is accidentally mmall, and secondly, the un-
known O( :: ) corrections to R(s) are not large.

Let us now discuss the posaibiliiy that the amymptetio
nature of the QCD PT series manifests itself already at the
level of the next-next-to-leading correoction, that is to say

13



the series (4.20) asymptotically explodes at this level. Purther,
following the ideology of asymptotic expansions[18] , one must
truncate the series (4.20) on the minimal third term and take in-
to account only the tree and leading order terms. In this case
it is impossible to determine self-consistently the value of
the parameter /\m since all the information about the scheme-
dependence is absorbed in the truncated term. Thus, in order to
compare self-consistently the predictions of QCD PT series with
experiment, it becomes very important to develop methods of
sumnations of QCD sign-constant series.

Note that even if the series (4.20) does not blow up for
the considered energies Vi'a 34 GeV, we face the problems dis-
cussed above in the low-energy region. Indeed, the calculated
by us 0( J: ) correction in eq.{3.5) becomes comparable with

the leading 0 oTS ) term for a?5~0.380. For these values of
J; the P? approximation for R(s) obviously blows up. It seems,

that in the region of larger values of 07:‘ the quantity R(a)
should be approximated by only two terms of the PT geries (3.5)
with all that this implies.

To conclude this section we want to note that from the
point of view of studying the region of applicability of esymp-
totic QCD P? predictions, it is highly desirable (i) to esti-
mate the contributions of the Oa}') corrections to Rcs)
which is an unrealistic problem, and (ii) to calculate the ef-
fects of the next-next-to-leading order corrections to charao-
téristics of other physical processes, say, deep inelastic lep-
ton-hadron scattering. This is practicable due to the existence
of the methods of calculating the necessary corrections in the
MS-scheme of both anomalous dimensions of composite operators[9]

and coefficient functions of operator product expansions [27] .

14

6. CONCLUSION

We have calculated the next-next-to-leading 0(:1;3) QCD
correction to R(8) = 6&‘ (e%e” —» hadrons)/6” (e"e."“j‘tf: ).
The obtained correction is large, e.g., in the MS-gcheme at
V€' 34 GeV it 48 over 2.5 times larger then the prévious
next-to-leading correction. Of course, it cannot be ruled out
that some contributions of the lower PT corrections are acci-
dentally small., That is why we include the OGZ’) correction in
the procedure of analysing PEP and PETRA data. As a resulz,
taking into account this correction drastically (twice) decreases
the value of A‘ﬁ'; . To obtain final eatimates we have considered

two forms of representing the running coupling constant in
terms of the _A <-parameter ((I) explicit solutions of RG equa-
tions, (II) reexpansions of these solutions in terms of 1/&.(:/4‘))
and two ways of comparing QCD predictions with experiment based
on application of (a) the MS-scheme and (b) the effective scheme
approaches. We have got the following four results: (Ja)
(Am)nn( = 326:$2; MeV; (Ib) <AR‘)M‘ - 241:}?’? ndd
(118) (A Ts)ppe = 3252779 MoV ana (ID) (Amg)pyp= 2111333 M.
They intersect in the region (Am)M, = 157-346 MeV. Ve also
consider the possibility that the asymptotic PT series explodes
already at the level of the next-next-to-leading corrections,
discuss the regions of applicability of the obtained results
and comment upon the problems of involving the calculated cor-
rections into the procedure of analysing the €*¢ data in vari-
ous regions of energies.

We are grateful to V.A. Matveev, D.V.Shirkov and A.N.Tavk-
helidze for interest in the work, constant support and useful

discussiona. It is a pleasure to thank K.G.Chetyrkin, D.I.Kazakov,

15



N.V.Krasnikov, S.A.Kulagin, O0.V.Tarasov, F.V.Tkachov, M.E.Shaposh-
nikov, A.A.Vliadimirov and other researches of the theoretical
divisions of both INR and JINR for useful discussions at dif-

ferent stages of the work.

7. NOTE ADDED

After this work has been written, we became aware that a
more refined analysis of the combined PETRA and PEP data with
an improved treatment of the QED radiative corrections gives

&5 (342 GeV?) = 0.145 + 0.020
for sin2 Ow = 0.23[2@'2. Revising our analysis with respect
tq this new information instead of estimates of eqs. (4.11),
(4.16), obtained in the next-to-leading order in the framework
of the discussed ebove approaches, we have the following egti-
mateas (1a) ( Agg ho = 2657225 uev; (x0) ( Agg )yg= 2552231 wevy
(110)( Agg ) = 280%320 Mev; (1I0)C Ay g = 2707325 Mev. In-
cluding the calculated O ;C? ) correction into the analysis,
we obtaln the corrected value of the running coupling constant
in the W-scheme ol (342 Ge¥?) = 0.132%0:012 and the new ex-
timates of the parameter Ang s (Ia) ( AR} )MQ. 157:132 MeV;
()¢ Agy ) = 124282 Mev; (1I0)( Agg )= 1552132 Mev;
(110)( Amg g 107722 MeV, which should be compared with the
previous estimates of eqs. (4.13), (4.18). These intervals in-
tersect in the region ( AFB L* = 71=-187 MeV, which is the new
estimate of this parameter obtained from PETRA and PEP data
provided the considered PT series is not yet in the asymptotic

regime for these energles.

*2 Note, howpver, that in ref.[29] this result has been
attributed to \fs" = 43 GeV.,
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lopummuts C.I'. , Karaes A.Jl., Jlapur C.A. E2-88-254
Cnepyioman sa Heympaupyome#i nmonpaBka KXJI mopsanka 0(a3)
K 0. (ete~™ -+ appoHm): aHanuTHYECKOE BHYMCIIEHHE
H omeHka napamerpa A __

BriuncneHa crenywomas sa Henuoupyiomeil nonpaBka KXI mo-
pAnka 0(a3) 1 S - (ete~ + appona). Halinenmnas mnompabxa
okasamnach 6onbmou. Hanpumep, npu Js =34 I'sB B cxeMe MS
OoHa npHOnu3HTenbHO B 2,5 pasa Gonbme, ueM INpenbIymEid WiIeH
nopsiaka O(Ef) . YdeT HaHOeHHOH mONpaBKH B nponenype dura
KoMOHHHpOoBaHHLIX OaHHLIX PETRA u PEP yMenwnmaeT B OBa pasa
3HaueHHe napaMmetrpa A — . O6cyxmaercsa craTyc nepTyp6aTHB—

MS
HbIX npenckasaHud KXII.

Pa6ora BhnoJsiHeHa B JlabopaTOpHH TeopeTHYECKOH GH3HKH
OHAH.

Ipenpunt 061 eXMHEHHOr0 HHCTHTYTa AREPHLIX HecnemoBauuii. JlyGua 1988

Gorishny S.G. , Kataev A.L., Larin S.A. E2-88-254
Next-Next-to- Lead1ng O(a2) QCD Correction
to o, (ete” Hadrons) Analytical Calculation

and Estimation of the Parameter 1\ﬁ§

The next-next-to-leading 0O(a23) QCD correction to
Orot (e+ ~ -+ hadrons) is' calculated. The obtained cor-
rection is large. For example at V5 =34 GeV in the MS -
scheme it is about 2.5 times larger than the prev1ous
O(a 2) term. Taking into account this correction in the
fit of the combined PETRA and PEP data decreases twice
the value of 'Aﬁg . The status of perturbative QCD 1is
discussed.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR. ‘
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