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Recently, Ignatiev and Kuzmin /1/ have again raised the problem
of verification of the accuracy and possible small violation of the
Pauli principle, for instance,when electrons occupy the atomic le=~
vels. Greenberg and Mohapatra 2 have formulated trilinear relations
for field operators that, es they proposed, should be a generaliza-
tion of the one-level Ignatiev-Kuzmin model for the local quantum
field theory of violation of the Pauli principle. However, earlier,
in /3/ I proved, on the bamis of general assumptions (also valid for
the Greenberg-Mohapatra theory), the uniqueness theorem of the Green
paraquantization /8,5 as an extension of the conventional quantiza-
tion, and consequently, the uniqueness of the para-Fermi and para-
-Bose-statistics as an extension of the usual statistics (with allo-
wance for the possibility of infinite parastatistica when the number
of particles in symmetric and antisymmetric states is not limited).
When proving that theorem I made use of the condition of the positi-
veness of the state-vector norms that was earlier formulated by
Greenberg and Messiah 5/ in demonstrating sufficiency of the Green
quantization for the description of parastatistics.

In this note it is shown that under that condition the Green-
berg-Mohapatra theory reduces either to the usual Fermi statistics or
to the second-order para-Fermi statistics, and thus, cannot be the
local field theory of small violation of the Pauli principle. At the
same time we shall convince ourgelves in the possibility of gene-~
ralization of conventional statistics to para-Fermi and para-Bose
statistics which, in turn, happen to be equivalent to usual ones
7%}h including some extra internal quantum numbers (see 6/ and

).

Greenberg and Mohapatra 2/ based their theory on the following

commutetior relations (with the Hermitian conjugate ones):
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. (1b)
where 4, and 9, are the operators of annihilation and creation
of a particle resp. in states K and m ( xk and m runs over
a certain discrete set of one particle states); the bracket with
“-" and "+ " mean a commutator and an anticommutator, resp. Summing
(1a) and (1b) we get

(2_—{3")0r @, A - (- k(zz)q: Q,a, =

=-U=-p% 8 a, +(2—g‘)aedlak‘(4429’“)%‘1:% :
” (2)

Subtracting (1a) from (1b) we arrive at the same expression (2) with

the change « = § . Thus, instead of (1a) and (1b) one may employ

a relation (2). It can be rewritten in the form

af,a, 1,8, 1 =-xd,  a,

+ o * +
(as,ael, =a.a,+20,a,,

3)

where

£=(2_F2)/(4_2(§2) L oL = (‘(—(32'*‘39)/("(*'2(32).

4)
Relation (3) is a general expression for the basic commutation
relation in the local quantum theory of a free field with arbitrary
real parameters £ and oL 3 . By free fields we mean the fields
for which observables (the Hamiltonian, currents, etc.) are bilinear
in form. Thus, the Greenberg-Mohapatra scheme is a particular case
of the general scheme with parametrization (4) leaving only one pa-~
rameter independent. It can be obtained from the general scheme (3)
by setting

(3?'=(2.—£ Y/(4-2e>, L= (-2+£%)/4-28) .

(5)
3/ For the general scheme the following theorem has been proved
3
If £ +0 or £ 7/ oo and 1) there exists a unique vector lo>
such that &, 10> =0 for all m , (6)

*

2) the norm of vectors is positive definite, and
3) the number of particles in a symmetric (antisymmetric) state

does not exceed a given integer M > 2 , then £ =-4(£=+1)
and oL >Q . In this case,
a_afto>=pd o>
~ P ome 1970 ()
where p=2 0 is a real number connected with numter ™ as follows:
M=2p/a .
P (8)
The exception is the Permi (Bose) statistics: M =4 . In this
case, when psl1, any £ are admissible under the condition
X=4-g (=4+€). (9)

In other worde, under the conditions of the theorem the only feasible

generalization of the conventional quantization of free fields is

the Greer paraquantization (with the account taken of the above ex-

ceptions £ =0 and £ oo o/ £ " = const) /4/.
In the parametrization (5) the admissible solutions are

2
€ =-4, gT=1, x=4, (10)
= 2= o« =4
£=0, p7=%, =1, (1)
£ —» 0o, (3": 12, A/ E —>-4/p (12)
(the value of £ = A corresponds to the para-Bose statistics
and is not allowed in that parametrization since in this case
(;*:-4 and o« =-4<0O ).

The solution (10) represents the para-Fermi statistics.If, follo-
wing/z/,we set p=1,then from (8) we find that M=2,i.,e.we have the
second-order para-Fermi statistics., In general case we might set
p=4/2,1, 3/2, 2,... to which there correspond the conventi-
onal Fermi statistics ( M =4 ) and para-Permi statistics of
orders M= 2,3, %, ... .

For the solution (11) relations (2) or (3) are not sufficient
for the complete determination of the commutation relations, whereas
for (12) a scheme arises, analogous to the para-Permi statistics but
with trilinear relations different from the Green relations, In /
the latter case was not considered, however its consideration does
not influence the conclusions to be given below.



For the Fermi statistics @z =0 /2/ and in accordance with
(4) and (9) we have & = 2 and ol=-1 .

In any of the above-listed cages admitted by the theorem the
parameter pz has a fixed finite value and cannot be made arbit-
rarily small.

To demonatrate the procedure of proving the theorem, we briefly
describe it for the Greenberg-Mohapatra scheme (at p = 1 in (7)).

The relation, Hermitian conjugate to (2):
(-g®ra.a,a; = (4-2g%ra.4, a2, +(2-*rqa,. " -

—(4-2(:'367;@.“&.: - =gt pd a (12)
allows us to shift the annihilation operators to the right towards
vacuum and with the conditions (6) and (7), to caloulate the
norms of state vectors. We shall be interested in the cowputation
of the norms of symmetric atate vectors.

The norm of a symmetric two-particle vector is given by

"z al, ap lo> =2l Z <ola,.a Qe ar 10> =

=2l Ut 0, (13)

where summation runs over arbitrary permutations of indices
Eim > @8 Pm (in thie case, over 1 m or m, L ). The
condition for the norm (13) being poeitive definite implies
gé2o0.
2 /2/
The value g =9 stands for the Fermi statistics .
Further, by induction it may be shown that any projectiona of a
vector containing three symmetrized creation operators which stand
one after the other equal zero:
<ola,a, .. a,a.. (X ay at, a? a* fo>=
2%m n Qi ® Pq, Bt @b)"‘ *‘> 9.
Thus, in the PFock representation there will always vanish a symmetric
combination
at a’ al,, =
%‘ Pq B s o
and any symmetric vector with a number of particles greater than two.
However, if symmetrization ie performed over three but not
successive creation operators, projectionas of a vector of that type

cannot automatically vanish., Consider two orthogonal vectors with fo-
ur particles, three of which are in the same state ! , and the

*
fourth is in another state k ( x+ ¢ ) ),

Lx, >= (/2)a,) (@, ay *aja; )ay 10>,

(14)
Calculating the norms of these vector we find that the norm of the
vector (X4 > disappears automatically, whereas the norm of
the vector Lx_> is
2 2 2 2.2 2,2
KX AX_>=("(1+0 > (g )(4—2§ ) /(2-(3 bR
(15)
For small pz <« 4 this norm becomes negative! Thus, the para-
meter (32 cannot be small, and the Greenberg-Mobhapatra scheume

cannot be the theory of small violation of the Pauli principle. If
we then require the number of particles in one state to be not lar-
ger than two, the norm (15) will vanish in three cases:

P =0, F =4, Pz: /2,

which coincide with the above-mentioned results obtained on the
basis of the general theorem /3/. (Note that at p2= 2 denomi -
nator in (15) becomes zero and theory gets inconsistent. In accor-
dance with (11), £ =0 corresponds to this case when the
commutation relations become incomplete).

Vanishing of the norm of a vector in the Fock space means va-
nishing of the vector itself., For vectors (14) this can be realized
by operator algebras themselves.

For ?L" o, a: az R Qe*q: =0 (Fermi statistics) (16)

.
For Pp'= 1, a, ap a/ = o (para-Fermi-statis- (17)
tice of second order),

In the case Fz = 4/2 we have two relations

v .+ + 2
aza;a; + (afral +a(alr* = o, (18a)

ay araid* o, (18b)

')The following arguments are applicable to systems having at least

two different states (levels), For this reason they cannot be applied
to the initial one-level Ignatiev-Kuzmin model /1/.



As is easily convinced, algebras (16)-(18) provide vanishing of
vectors | X+ > . The vector [Xx_> could be put equal to zero
also with + 4 + 4+
a.Q;-a,0, = O
re m Qg (Bose-statistics), (19)
But this solution is unsatisfactory. Indeed, making use of (12)

and the conditions (6) and (7) (at p=1 ) we get (rk=¢t)
ag(ayay -alag@die> =(z-g* aj lo>.

But according to (19) it should vanish., Since we a priori reject the
case gz =2, we have Q. (o> =0, which signifies the representa-
tion being trivial:

al =a, =0,

Thus, we directly verified the impossibility of small violation
of the Pauli principle in the local quantum field theory, in agreement
with the results of the earlier theorem 3/. We also verified the
possibility of its "big" violation in the form of the para-Ferumi sta-
tistics. There remains still an open problem of formulating, within
the parafield scheme, the physical symmetries observed in Nature and
the corresponding gauge theories 8,9 . Nevertheless, the uniqueness
proved above for this possible generalization of the conventionsal

j statistics seems rather attractive,

Finally note that Okun /10/ proposed another generalization of
the Ignatiev-Kuzmin model of small violation of the Pauli principle
within multi(infinite)-level scheme. It was suggested to assume
relations of the type (2) to be valid only for equal ( k=0 =wm )
states, whereas for different states all the operators were set
anticommuting

+
©

L d hd +
Qa ae =’aeqk-

Besides this theory is nonlocal and CPT-noninvariant, it has, as not-
ed by Okun/1°/.a more serious shortcoming: there is no continuous
transition between the possibility for two particles being in the
same state (for instance, with the same momentum) and the prohibi-

| tion for these particles being in a symmetric state with values

{ and { (momenta) infinitely close to each other. A scheme like that
; is a priori tied to a definite representation and does not permit
i superpositions of states.

| The author is sincerely grateful to A.Yu.Ignatiev, V.A.Kuzmin,
V.A.Matveev, L.B.Okun, and V.A.Rubakov for preliminary diecussions of
the results presented here.
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