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Let us consider the Minkowski space-time (R" , ‘rz )= M , where
M is the Lorentz-Minkowski metric, dia m = (-1,-1,-4,4) .
We shall denote by (X',xﬂxl,xﬁ)= {(* 4,2, 8=ct) the standard co-
ordinates on M ,80 that

D(SZ: - a(rl» J‘?L» LJZL+01§L: ’?ﬂvd"f‘l‘v.

The metric /VZ 2nduces corresponding covariant derivatime V  with
components FJ‘" =0 in these coordinates, but in general curve-
linear coordinates (\3'.&‘, },,3"), r;.: (3')4‘0 . In particular, in
spherical coordinates (fr ,8,Y¥, %)

Y = rSime cos ¥
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wve have

r‘: sorkin'® , (—ﬁ: - sinBeosb
A ¢
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Fee--r )

/1/ e _ 4 voA NEL UL
r're:?J '-'r\{— r ! re‘f J
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All other [’

v are identically zero.

Definition. A vector field U= 'LL"'Q—-cr on M is called geodesic
( or autoparallel) if Vuu= 0 d , Leg. if
M v
T ?u P yTu =
/2/ u + r:_v u o .

Qa“

Note that /2/ is a system of 4 monlinear partial differential equ-—

1 L
ations for the functions u"(;',;‘, y.3 ) . We are goipg to con-
sider the equations /2/ in the following two cases: firat in standard

coordinates (¥,y,?, ¥ ), where l”j,',=0 and /2/ reduces to
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a =
/3/ w o

a
and, second, in spherical coordinates, vhere r‘), are given by

/1/. The equations /2/ appear in physics if we consider the well

known energy-momentum tensor

/4/ 'Tl)w‘: u)‘uv ]

satisfying the local conservation law

/5/ g, T =0.

‘

Then » v
- VV\T)‘V = quy u)' + U Vvu

and the moat natural "field equations" are
Y r
u yut=o

/6/ " VV uv: c .

We are going to show that this system of nonlinear equations admits

solutions of ( 3 4 1 ) - solitary wave type, i.e. the conpongnts

may be chosen to be concentrated in finite regions f1c R

vith respect to the three space-coordinates (X, 3 ,Z ) or (V,0,¥)

and to depend on ¥=¢t like a "running wave". )
consider first the case of standard coordinates (y v Fo 2 ,§)

with r;i(x,:;)z,!) =0 .Let the solution run along the Z-coordinate.

Hence, Y'- =0 and the system /6/ reduces to

3 3 3 L]
YU QU _ s U @u -0
of w o tU gy o °/“(fn+fbl
M ¥ 3 v
you o g wou | AW Y_g |
b/ u,)z t o) a/ U a""q!

Bguh- 14“2 = f’n Zt3 = f"lav* :(('IJ})-

FProm b/ and d/ it follows

4 9U5= u!m‘q - nid’:rid f/(',i,y .

u 2z 0z

so Aua?) cglg ¥ dieg) e
u3= ﬁ\(',g)uﬁ. where _P("J) = ex'P{4‘(l|3)] .

Nov the equations a/ -~ d/ reduce to just one equation, namely

u X Rut _
53'32 TS

The general solution of this equation is
iy L)
we=uxyz-p3) , p-feuzd,

vhere the depend:mce on (x, §» %) is arbitrary and, therefore, we
may require u to be conscentrated with respect to (x,7,2)
in a small region N cR . ABsuming the simple case P(X'J):\‘Cn;

ve have the solution

4 4 &
fy o weo uise, wegu, wru(xge-pl).

2 1w 2
It u:u,>0 then u‘usfu"u,,=-(u3)+(u.)=(u)(4‘f J7oa
i.e. P <4 . Putting 85= % y vhere V' is some 3-velocity
and ( is the velocity of light, ve obtain & solution, describing
a time~stable localized object, moving as a whole along the z-coor—
dinate with velocity U< ¢ . If WU,=0 the object moves with
the speed of light.
The enmergy-momentum tensor /4/ looks like

0 o] [2] o2
0 0 0] 0
» o y
= 0 o () u’ul
0 0 u"lf (th
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] & oo
Assume U is a bounded function, i.e. 3f U | = comst< >
and concentrated in the small region _Q>C(R « Then the correspon-
ding total energy E and momentum P are finite and given by

E: S(u‘()ld(dadl ) ?=(o, 0‘ %J(Uﬁ)adldadi) B
R® R®

It U< ¢ we can define the mass M of the object by

= é—sz"- I

It follows
{ 2 PR a2 3 R )
m= —x E-C'ETE ‘614 et
’
i.0. mcz
E= —mr
v
\{‘ =
it U=C the corresponding mass I is zero. Thus the solu-

tion & /7/ describea localized free objects with finite constant
total energy and momentusm coming from (- OO ) and going to (+ OO ).
Assuming ;:- cz we can reverse the direction of motion.

Rov consider the case of spherical coordinates. Physically this
means the following. wWe isolate a small region D se.g. a ball,
around the origin of the coordinate system (x ,3,2) or (¥ , 8 ,¥).
Let some physical processes ocurr in D s 80 that some particles
leave [ » and other particles enter D . Let these particles
move radially, i.e. along the [ -coordinate. The question is, do
equations /2/ admit corresponding ( 3 4 1 )-solitary wave solutions?
We shall show that the answer is positive, 0 ¥

Since the motion is along the r~coordinate we assume U -u=0.
In view of /1/ we get from ;/2; just two equations, namely for p= 1,4

(The other two equations for u:2,3 are identically satisfied.):
4 ] .
w u _
ul Pu s U =0

r 3

2
4 u’)u.'
: Bu u —=0 R
u Qr 9!
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We have the solution

Yy
u'=16 (o), ‘hore WU (ript e,

and the dependance on (f ,0 ,¥ ) is arbitrary. Hence, choosing

?: tomst. and u to be concentrated in a small region QCR!
out of [ , we obtain the desired radially moving (34l)- solitary
wave solution. 1If u’u,>1 then 551< { and again we may put p:% s
<t . If u¢u¢_=0 then ?"=1 , i,e. s C , In thia case

the tensor T/’= W*u” is not the energy-momentum tensor, since

v, u"= u‘%*o for these solutions. But if [U [« F ,
approximately V,u"_:o si.e. far enough from D we obtain again
energy-momentum tensor , and the total energy and momentum of the
solution can be introduced in the same way.
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