ОБЬЕАИНЕННЫЙ ИНСТИТУТ
 คAEPHЫX
 ИССАЕАОВАНИЙ

> AYБHA
$V-87$

$$
30 / v 1-75
$$

I.P.Volobujev

ON A CONSEQUENCE OF CAUSALITY CONDITION IN FIELD THEORY
WITH MOMENTUM SPACE
OF CONSTANT CURVATURE

$$
\text { E2 : } 8796
$$

I.P.Volobujev

ON A CONSEQUENCE OF CAUSALITY CONDITION IN FIELD THEORY WITH MOMENTUM SPACE OF CONSTANT CURVATURE

It is well-known that the callsality sondition plays the most important role in Bogoliubov's axiomatic approach to the quantum field theory $[1,2]$. This condition can be formulated, for instance, in terms of variational derivatives with respect to asymptotic fields of S-matrix extended off the mass shell. Firthermore, it is assmaed that the momentum space, in which the coefficient functicns of the extended, S-matrix, the ofr the mass shell rield operators, etc., are defined, is ordinary Minkowsky space.

In the paper $[3]$ a hypothesis has been put forward that the momentum space corresponding to the off the mass shell $S-m a t r i x$ be a space of constant curvature. And the bogolubov causality condition has been generalized accordingly,

Proceeding from the results of the papers $[3,4]$ (and in a certain sense implementing the program outlined in [3]) We shall consider a theory in which the motion group of the momentum space is de-Sitter group $S O(4,1)$ (unlike $S O(3,2)$ $\pm n[3]$). The momentum space with such a motion group has been considered in the papar [5].

Further, making use of causality condition we shall construct an integral representation for a matrix element of scalar Pield commutator - an analogue of Iost-Lebmann-Dyson representation [6]. In this paper spectrality condition is not taken into account.

The momentun space of constant curvature is embodied as a hyperboloid in pseudoeuelidean 5-space of Variables

$$
\begin{aligned}
& \left(P_{c}, P_{1}, \rho_{2}, P_{i}, \rho_{4}\right): \\
& \quad \rho_{0}^{2}-\rho_{1}^{2}-p_{2}^{2}-p_{3}^{2}-\rho_{4}^{2}=-\frac{\hbar^{2}}{t_{0}^{2}},
\end{aligned}
$$

Qo beigg the fundamental length. We shall use the system of units $\quad \hbar=C=\ell_{4}=1$.

Gasimir operator of the group $S O(4,1)$ is interpreted as the operator of squared interval. In the unitary representactions it possesses the following spectrum:

$$
C= \begin{cases}\left(\frac{2}{2}\right)^{2}+\Lambda^{2} & 0 \leq n<\infty \\ -L(L+3) & L=-1,0,1,2\end{cases}
$$

The continuous series corresponds to the timelike region, and the discrete - to the spacelike one.

The transition to configuration space is carried out with the help of "plane waves":

$$
\begin{align*}
& \langle\Lambda, N \mid P\rangle=\left(P_{4}-P N\right)_{+}^{-\frac{3}{2}-i \Lambda}, N^{2}=1 \\
& \langle L, N / P\rangle=\left(P_{4}-i P N\right)^{-\left(L^{+} 3\right)}, N^{2}=-1, \tag{array}
\end{align*}
$$

These objects are generalized functions with power singulari.ties. Therefore, a regularization is needed to calculate inteprals with them. We use the regularization corresponding to the generalized function $\quad X_{+}^{\lambda}$ which is defined as

$$
x_{+}^{\lambda}= \begin{cases}x^{\lambda}, & x \geqslant 0 \\ 0, & x<0\end{cases}
$$

when $\lambda>-1$ and as an analytic continuation from this domain for other values of $\lambda[7]$.

Further we shall denote the sets $(\Lambda, N),(L, N)$ that correspond to the "points" of quantized space by greek letters ' $\bar{\prime}, \eta$, etc.

Let us consider a comatatior of scalar operators

$$
[\varphi(\xi), \varphi(0)]
$$

where $\mathscr{P}(0)$ is defined by

$$
\varphi(0)=\frac{1}{(2 \pi)^{3 / 2}} \int \varphi\left(p, p_{4}\right) d Q_{\rho}
$$

It is not difficult to proove that this commutator possesses the property of locality. This emerges from the new causality condition and solvability condition (independence of the second variational derivative on the order of variation). Therefore

$$
[\varphi(\xi), \varphi(0)]=0, \quad \xi=(L, N) .
$$

We take a matrix element of this commutator between certain states α and β :

$$
\langle\alpha|[\varphi(\xi), \varphi(0)]|\beta\rangle=f_{\alpha \beta}(\xi)
$$

and suppose that it is not equal zero identicaliy. Then we obtain a function $f \alpha \beta(\xi)$ that vanishes beyond the timelike region. Thus, the problell reduces to the construction of the frost general representation for functions of this type (we omit i indices α and β). Let us introduce the characteristic function of the timelike region:

$$
\theta\left(\xi^{2}\right)= \begin{cases}1, & \xi=(\Lambda, N) \tag{2}\\ 0, & \xi=(L, N)\end{cases}
$$

This function ensiles us to write down the main equation for the functions shat vanish beyond the continuous series:

$$
\begin{equation*}
f(\xi)=\theta\left(\xi^{2}\right) f(\xi) \tag{3}
\end{equation*}
$$

Transforming (3) to the momentum representation we shall derive m integral equation "in convolutions". The general solution
of this equation can he constructed by virtue of specific form of $\vec{G}\left(\beta^{2}\right)$.

It tums out that ${ }^{x}$

$$
\begin{equation*}
\tilde{\theta}\left(p^{2}\right)=\frac{1}{J^{3}} \Gamma \frac{1}{\left[2-2 \rho_{4}\right]^{2}} \tag{4}
\end{equation*}
$$

Finally we find the main equation (3) in the momentum repairsentation:

$$
\begin{equation*}
f(p)=\frac{1}{\pi^{3}}\left\{\frac{f(q) d Q_{1} q}{\left[\left(p_{L}-q_{L}\right)^{2}\right]^{2}}\right. \tag{5}
\end{equation*}
$$

where $q_{L}=\left(q, q_{L}\right), p_{i}=\left(p, p_{4}\right)$ and $p_{L}^{2}=q_{L}^{2}=-1$.
From here on our reasoning will remind the procedure of Dyson [6]. First of all let us note the fact that

$$
D_{1}(p)=\rho \frac{1}{\left[p^{2}\right]^{2}}
$$

is the even invariant solution of the equation

$$
\square_{6} D_{1}(p)=0
$$

\square_{6} being D'Alegbert's operator in the space of 6 dimensions. Next we shall introduce into consideration 6-vectors $Q, P=\left(P_{0}, P_{1}, \rho_{2}, \rho_{1} ; \rho_{4}, P_{s}\right), \hat{Q}$ and \hat{P} being the vectors of special form $\hat{Q}=(Q, 0), \widehat{P}=\left(\rho_{L}, O\right)$, and a new function

$$
\begin{equation*}
F(\rho)=\frac{1}{\pi^{3}} \int \frac{f(q) d Q}{\left[(\rho-Q)^{2}\right]^{2}} \tag{6}
\end{equation*}
$$

[^0]This equation represents $F(J)$ in the forin of convolution of two generalized functions:

$$
F(\mathcal{F})=\varnothing_{4} \times \mathscr{\rho}(\mathcal{P})
$$

The rule of convolution differentiation arad the definition of $\mathcal{Z}_{1}(\rho)$ give

$$
\begin{equation*}
\square_{6} F(\rho)=0 \tag{7}
\end{equation*}
$$

Moreover, the definition of $F(P)$ (6) shows that $F(\rho)$ is invariant under the reflection of the fifth axis $\rho_{S} \rightarrow \rho_{s}$ and
$F(\hat{D})=f(\rho)$. These properties are sufficient to construct the general representation of $f(\beta)$.

Let us write dawn the generalized Kirchhof's formulae for the function $F(\mathcal{P}$) (it is possible due to (7)):

$$
\begin{equation*}
F(\rho)=\int d \Sigma\left[g(\rho-u) \frac{\partial}{\partial \Gamma^{7}} \tilde{F}(u)-\bar{F}(u) \frac{\partial}{\partial,} D(\rho-u)\right] \tag{8}
\end{equation*}
$$

where \sum is a spacelike surface.
To satisfy the parity condition it is sufficient to choose the surface \vec{Z} and the initial conditions $\vec{F}(L)$ to be even functions of U_{s}. In particular, when $\bar{\Sigma}$ does not depend on U_{S}, the formulae (8) can be rewritten in the following way:

$$
\begin{equation*}
F(P)=\int_{-\infty}^{\infty} d\left(u _ { s } \int d \sigma \left[\phi(\rho-u) \frac{\partial}{\partial \gamma} \tilde{F}\left((u)-\tilde{F}(u) \frac{\partial}{\partial y} \phi(\mathcal{F}-u)\right]\right.\right. \tag{c}
\end{equation*}
$$

$\widetilde{\sigma}$ being a gpacelike surface of by unity less dimension than tat op $\bar{\Sigma}$.
$[7] \begin{aligned} & \text { Introducing generalized functions } \\ & \text {, we can transform (} 9 \text {) to be }\end{aligned}$

$$
\begin{equation*}
F(\rho)=\pi^{2} \int_{-\infty}^{\infty} d u_{5} \int d u^{\prime} \phi(\rho-u) \phi\left(u^{\prime}, u_{5}\right) \tag{10}
\end{equation*}
$$

where $U^{\prime}=\left(U_{0}, U_{1}, U_{2}, U_{3}, U_{4}\right)$ and

$$
\dot{\phi}\left(u^{\prime}, U_{5}\right)=\frac{1}{J^{3}}\left[\hat{C}(0) \frac{\partial}{\partial \gamma} F(u)+\frac{\partial}{\partial y}(F(u) \delta(0))\right]
$$

Here from using the explicit form of $\mathscr{D}(\mathcal{P})[6]$

$$
\dot{L}(\rho)=\frac{1}{2 \pi^{2}} \xi\left(\rho_{0}\right) \sigma^{N}\left(\rho^{2}\right)
$$

and $\dot{\phi}\left(U^{\prime}, u_{S}\right)$ being an even function of $l l_{5}$ we get a representnation for $E(\rho):$

$$
\begin{align*}
& P(p)=\int_{c}^{\infty} d u_{5} \int u u^{\prime} \varepsilon\left(p_{0}-u_{c}\right) \delta^{\prime}\left(-1-2 p_{L} u^{\prime}+u^{\prime 2}-u_{5}^{2}\right) \times \tag{11}\\
& x q^{\prime}\left(u^{\prime}, u_{5}\right)
\end{align*}
$$

Further, the surface \mathcal{O}^{-}can be chon. n so tint it is suficens to integrate in the formulae (1१) only over the region $l^{\prime 2}<0$. In this case we have:

$$
\begin{aligned}
& \psi(P)=\int_{0}^{\infty} d d_{5} \int_{0}^{\infty} d S^{2} \int_{0}^{i} d u^{\prime} \partial\left(u^{\prime 2}+S^{2}\right) \varepsilon\left(\rho_{0}-i \%_{0}\right) x \\
& \times \dot{0}^{\prime}\left(-1-2 \rho_{i} u^{\prime}+u^{\prime 2}-u_{j}^{2}\right) \phi\left(u^{\prime}, u_{s}\right) \text {. }
\end{aligned}
$$

We make a substitution in this integral according to $U^{\prime}=5 d L_{L}$:

$$
\begin{align*}
& f(\rho)=\int_{c}^{\infty} d d_{5} \int_{0}^{\infty}\left(1 s^{2} \int_{0}^{5} d i L_{L}\left(S^{2}\left(u_{L}^{2}+1\right)\right) \varepsilon\left(\rho_{0}-2 t_{0}\right) x\right. \\
& x \delta_{\infty}^{\prime}\left(-1-2 p_{L}^{c} u_{L} S-s^{2}-u_{j}^{2}\right) \phi\left(S u_{L}, u_{5}\right)= \\
& =\int_{i}^{\infty} d d_{5} \int_{0}^{\infty} S d S^{2} \int d Q_{u} E\left(\rho_{0}-u_{0}\right) \delta^{\prime}\left(2(\rho(-) u)_{4}-\frac{1+s^{2}+u_{5}^{2}}{25}\right) x \tag{12}\\
& \times \leftrightarrow\left(S U_{2}, U_{5}\right) \text {. }
\end{align*}
$$

It is convenient at this stage to introduce in (12) a new vari-
able

$$
2=\frac{1}{2} \frac{1+S^{2}+t_{3}^{2}}{S} \quad 1 \leqslant y<c-3
$$

The explicit expression of Jacobian

$$
\frac{D\left(S^{2}, u_{3}\right)}{\Phi\left(x, u_{s}\right)}=\frac{4 S^{2}}{S^{2}-1-u_{3}^{2}}
$$

shows that the transformation under consicieration is not unique. Dividing the region of integration in (12) into subregion where it iss unique and making in each one transition to the nev variable wo shall obtain the following representtion:

$$
\begin{align*}
& f(p)=\int_{1}^{\infty}(x) \int d Q_{4} z(p \cdot u) \delta\left(i(p(-) u)_{4}-i x\right) x \tag{13}\\
& x \psi^{\prime}(u, x)
\end{align*}
$$

$$
\Psi(u, x)=2 \sum_{x} \int_{=}^{\sqrt{x^{2}-1}} \frac{d u_{5}}{\sqrt{x^{2}-1-u_{3}^{2}}}\left[\left(x-\sqrt{x^{2}-1-u_{j}^{2}}\right)^{3} x\right.
$$

$$
\left.x \Phi\left(\left(x-\sqrt{x^{2}-1-u_{1}^{2}}\right) u_{u_{2}} u_{5}\right)-\left(x^{x}+\sqrt{x^{2}-1-u_{5}^{2}}\right)^{3} \phi\left(\left(x^{2}+\sqrt{x^{2}-1-u_{5}^{2}}\right) u_{1}, u_{5}\right)\right] \text {. }
$$

The representation (13) for $f(P)$ corresponds exactly to the Iost-Lehmann-Dyson representation in ordinary theory (and coincides with it as $\ell_{0} \rightarrow 0$). The spectrality condition would cauca supplementary restrictions on the function $\Psi(u, d e)$. The corresponding problems will: be considered in a separate paper.

The author is deeply grateful to V.G.Kadyshevsky for interest in work and stimulating discussions.

Appendix
Let 43 prove that the choice

$$
\begin{equation*}
\hat{\theta}\left(p^{i}\right)=\frac{1}{\sqrt{1}}{ }^{3} \frac{1}{\left[x^{n}-i^{2} p\right]^{2}} \tag{array}
\end{equation*}
$$

is consistent with the formulae (2).
That is

$$
\left.\int\langle\dot{S} \mid p\rangle \tilde{\theta}_{(i}\right) d P_{p}= \begin{cases}1, & \xi=(N, N) \\ (A, 2 a) \\ 0, & \xi=(A, N),\end{cases}
$$

We shall turn to the proof of (A aa) first.
It is clear that due to the relativistic invariance of $\tilde{\hat{Q}}\left(\mathrm{P}^{i}\right)$ we can prove (A aa) under a special choice op $\xi-(\Lambda,(1, \overrightarrow{0}))$. Let u; introduce on the hyperboloid

$$
p^{i}-\vec{p}^{2}-p_{4}^{2}=-1
$$

modified orispherical coordinates:

$$
\begin{aligned}
& p_{4}-p^{-\omega} \\
& \vec{p}=e^{-\frac{\omega}{2}} \vec{q} \quad-\infty<\infty<\infty \\
& p_{4}+p_{0}=e^{\omega^{2}} \vec{q}^{2}
\end{aligned}
$$

It can be easily found that

$$
\frac{\phi\left(\rho_{c}, \vec{P}\right)}{\theta(\omega, \vec{g})}=e^{-\frac{3 \omega}{2}}
$$

In the coordinates (A 3) the "plane wave" (Ta) and $\tilde{\theta}\left(\rho^{2}\right)$ (A 3) respectively take the form

$$
\begin{align*}
& \langle\Lambda,(i, \overrightarrow{0}) / \omega), \vec{q}\rangle=e^{\left(\frac{3}{2}+i \Lambda\right) \omega} \tag{A4}\\
& \tilde{\theta}(\omega, \vec{q})=\frac{1}{\pi^{3}} P \frac{1}{\left[-4 s^{2} \frac{\omega}{2}+\vec{q}^{2}\right]^{2}} \tag{array}
\end{align*}
$$

exactly analogous to that of the "Plat theory". Substituting ($A 4$) and (A 5) into (A La) we shall obtain:

$$
\left.\tilde{\theta}\left(\xi^{2}\right)=\frac{1}{\pi^{3}}\right\} e^{i \lambda \omega \frac{d \omega d \vec{q}}{\left[-4 \operatorname{sh}^{2} \frac{\omega}{2}+\vec{q}^{2}\right]^{2}}, \xi=(1,(i \overrightarrow{0})) .(A 6)}
$$

We can easily prove that

$$
\begin{equation*}
I=\int \frac{d \vec{q}}{\left[-a^{2}+\vec{q}^{2}\right]^{2}}=\pi^{3} \Gamma(a) \tag{array}
\end{equation*}
$$

Really, using the formula

$$
\begin{equation*}
\rho \frac{1}{\left[-a^{2}+\vec{q}^{2}\right]^{2}}=\frac{1}{2} \lim _{\varepsilon \rightarrow 0}\left\{-\frac{1}{\left[-a^{2}+\vec{q}^{2}+1 \varepsilon\right]^{2}}+\frac{1}{\left[-a^{2}+\vec{q}^{2}-1 \varepsilon\right]^{2}}\right\} \tag{array}
\end{equation*}
$$

We can represent the internal (A 7) in the form

$$
\begin{equation*}
I=\lim _{x \rightarrow 0} \frac{1}{2}\left[I_{1}+\frac{1}{-2}\right] \tag{array}
\end{equation*}
$$

where $I_{1}=\int \frac{d g_{i}}{\left[-a^{2}+\frac{1}{q}+\varepsilon\right]^{2}}$

$$
T_{2}=T_{1}^{*}
$$

(A Mb)
(A 90)

Introducing in (A gb) spherical coordinated we get

$$
\begin{equation*}
I_{1}=2 \pi \int_{0}^{\infty} \frac{\sqrt{q} d q}{\left[-a^{2}+q-i \varepsilon\right]^{2}} \tag{array}
\end{equation*}
$$

This integral can be easily calculated by contour integration (wee fig. 1).
We find $(a>0)$:

$$
\begin{equation*}
2 \int_{i}^{\infty} \frac{\sqrt{q} d q}{\left[-a^{2}+q-1 \varepsilon\right]^{2}}=\frac{\pi i}{a+i \varepsilon} \tag{A11}
\end{equation*}
$$

By combination of (A ga), (A gb) and (A 11) we derive:

$$
I=\lim _{\varepsilon \rightarrow L^{4}} \frac{1}{2} \frac{2 \pi^{2} c^{2}}{i^{2}+\varepsilon^{2}}=\pi^{3} \delta(a)
$$

Thus we have proved the validity of (A 7). Substituting (A 7) into (A 6) we obtain

$$
\begin{align*}
\tilde{\theta}\left(\xi^{i}\right) & =\int e^{i n} d\left(2 \operatorname{sh} \frac{w^{\prime}}{i}\right) d u=1 \tag{A12}\\
\xi & =(A,(1, \overrightarrow{0}))
\end{align*}
$$

Which produces (A aa).
Now lat us consider the formulae ($A 2 b$). The explicit form of the "plane wave" and the relativistic invariance of $\hat{\theta}\left(\rho^{2}\right)$ Lead to the result :

$$
I=\int\left(p_{4}-i p_{3}\right)^{-(L+3) 2 \delta\left(p_{0}^{2}-\vec{p}^{i}-p_{4}^{2}+1\right)} \frac{\left[2-2 p_{4}\right]^{2}}{\left[p_{0} d \vec{p} d p_{4} . \quad\right. \text { (A 13) }}
$$

Then we introduce on the plane $\left(\rho_{3} \rho_{4}\right)$ polar coordinates

$$
\begin{array}{ll}
p_{4}=2 \cos \varphi & 0 \leq \varphi \leq 2 \pi \\
p_{3}=2 \sin \varphi & 0 \leq 2<\infty
\end{array}
$$

and integrate over $d \rho, d / \rho_{\ell}$ with the he $1 p$ of δ-function. It gives:

Substituting in $(414) 7 . \rightarrow-2, f^{\prime} \rightarrow \bar{j}+y$ and adding the result back to (A 14) we find:

$$
\begin{equation*}
I=\frac{\pi}{2}\left\{\operatorname{zog}(2)^{-(2+2)} \varepsilon(2) e^{\left(i^{\prime} 2+3\right) y} \frac{\partial\left(P^{2}-z^{2}+1\right)}{\left[2-n 2(2) y^{\prime}\right]} \cdot(n, 12 . t y ;\right. \tag{A15}
\end{equation*}
$$

where the region: of integration over $d / 2$ is (- , , , \rightarrow). Now we hall regularize θ-function in (A 15) by integration over $d p_{c}$ in finite region ($-A, A$). a simple transformation or integral (a 15) yields

$$
\begin{equation*}
I=I_{1}+I_{2} \tag{A16}
\end{equation*}
$$

where

$$
\begin{align*}
& \left.\left.-\int_{\infty}^{-1(+i)} \frac{\sqrt{2^{2}-1} 1 / 2}{\left[2^{n}-22 c^{\prime} s y^{\prime}\right.}\right]^{2}\right\} \text {. } \tag{array}
\end{align*}
$$

It is evident that

$$
\begin{equation*}
I_{-1}^{T}=C \int_{0}^{x^{-}} e^{i(L+3) y}\left(\cos y^{i}\right)^{1+1} d \varphi=0 . \tag{array}
\end{equation*}
$$

The integral (A 18) can be treated as a contour integral (set fig.2). or in the explicit form:

$$
\begin{equation*}
I_{2}=-\sqrt{i} \int_{0}^{\operatorname{Li}^{-}} e^{\left(/ L^{+} \dot{3}\right) \psi} d \varphi \int_{c} z^{-(L+2)} \frac{\sqrt{Z^{2}}-1 d z}{\left[x^{2}-\alpha^{\prime} z \omega, y\right]^{2}} \tag{array}
\end{equation*}
$$

Calculating the residues we find that the pole at zero gives a polynomial in $\cos \psi^{\prime}$ of the power $L+1$, and therefore the integration over dy gives zero (cp.A (19)). It is
easy to find that owing to the formulac ($A B$) the poles of $\left[i-\frac{1}{2}+(+1]^{2}\right.$ five no contribution at all. B:ally, in dccordance with ($A 11$) and ($A 12$) the residues are taken alternately above and below the cut and therefore differ in sign. This proves (A 2b).

fig. 1.
The contour of integration in (A 11).

fig. ?.
Contour of integration in (A 20).

References

1. N.N. Bocroliubov, D.V.Shirkov. "Introduction to the quantur Field Theory", Gostechizdat, Moscow, 1957.
?. N.N. Bog,oliubov, A.A. Logunov, J.T.Tadorov. "Axiomqtic npproach to Quantum Field Theory", Moscow, Nauka, 1969.
2. A.D.Donkov, V.G.Kadyshevsky, W.D.Mateev, R.M. Hir-Kasimov. Preprint JINR $\mathrm{G} ट \mathrm{C}-6992$, Dubna, 1973.
3. V.G.Kadyshevsky, in "Problems of Theoretical Phyoics", volume dedicated to the medory of I.sidami, Moscom, Nauka, 1972.
4. V.G.Kadyshevsky. Preprint JINR R2-5717, Dubna, 1971.
G. F. Dyson. Phys. Rev. 110 (1958), 1460.
5. J.h.Gelfand, G.S.Shilov. "Generaiized Functions". 1 issue, huscow, 1958.
6. V.. Vladimirov, "Equations of Mathematical Physics", Hoscow, Nauka, 1971.

> Received by publishing lepartment on April $16,1975$.

[^0]: \mathbf{x} The proof of this fact see in Appendix.

