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1t is well-known that the causality condi%ion plays Ghe mcst
important role in Bogoliubov's axiomatic approach to the quan-
tum field theory [1 ,2—_’I . This condition can be forwulated,
for instance, in terms of variational derivatives with respect
to agymptotic fields of S-matrix extended off the mass shell.
Furthermore, it is asswaed that the momentum spece,in which
the coefficient functicans of the extended ,S’—macrix, the ofrl
the mass shell lield operators,etc.,ure defined,is ordinary
Minkowsky space.

In the paper [3] a hypothesis has been put forward that
the momentum space corresponding to the off the mass chell

S—matrix be a space of constant curvature. And the Bogolu-
bov causality condition has been generalized accordingly.

Proceeding from the results of the papers [},L'} (and in
a certain sense implementing the programw outlined in }_'3 )
we shall consider a theory in which the motion grouyp of the .
neomentum space is de-Sitter group SO([/J j) (ulike ,SO(3, Z)
in [}] ). The momentum space with such a motion group has been
considered in the paper [5]

Further, making use of causality conaition we shall const-
ruct an integral representation for a matrix element of scalar
field commuteter - an analogue of Iost-Lehmann-Dyson represent-
ation [6] . In this paper spectrality condition is not taken
into sccount.

The momentws space of constant curvature is embodied &s
& hyperbeloid in pseudoeuclidean 5-space of variables
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Z,_-, belnyg the fundemental length. We shall use the system of
units =C = &: i.
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Cusiuwir operator of the group ,5’0(5/,.{) is interpreted
as the operotor of squared interval. Tn the unitary represent-
ations it possesses the following spectrum:
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The continuous series corresponds to the timelike region, and
the discrete - to the spacelike one.

The transition to configuration space is carried ouv with
the help of 'plane waves":

SAMPY = (f-pi),
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These objects are generalized functions with power singulari--
ties. Therefore, a regularization is needed to calculate in-
tegrals with them. We use the regularization corresponding to
the generalized function X;_ which is defined as

A [ XA, Xz 0
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>
when ~)\ P4 ‘1 and as an analytic continuavion from this
domain for other values of _A [’7 .
Further we shall denote the sets (/(, /V} 5 {L7 A/) that
correspond to the "points" of quantized space by greek letters

'z, 1, ete.

Let us consider a comnutator of scalar operators

[9(5), o107,



where f{O) is defined by

W0) = v | 91p.pY 42,

It is not difficult to proove that this commutator possesses
the property of locality. This emerges from the new czusality
condition and solvability condition (inmdependence of the second
variational derivative on the order of variaticn). Therefore

[9(5) 90T =0 , £ = (L,4).

We take a matrix elemeat of this commutator between certain

states 0\. andﬁ :

<A[9E),Yallp) = £, (%)

and suppose that it 1s not egaal zero identicaliy. Then we
obtain a function %,(/,(g) that vanishes beyond the time-
like region. Thus, the problen reduces %o tha construction of
the most general representation for functions of this type

(vwe omit indices ol amd B ).
Let us introduce the characteristic function of the time-

1, &= (/AW )
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This function enmbles us to write down the main equation for
the functions shat vanish beyond the continuous series:

£(5) = oY (). »

Transforming (3) to the momentum represcatat.on we shall derive
an integral equation "in convolutions". The genernl solution



of this equation can be constructed by virtue of specific
form of Q( PL) .
It turns out that®

P) JT“ [,Z ,ZF] . (4)

Finally we find the main equation (3) in the momentum repre—

( JQ 5
[(p- m‘
where ?L: (q/)[L ,i),': (F’Pq) and /DL :?L‘z’:-.{

Prom here on cur reasening will remind the procedurs of
Dyson [6] . First of all let us note the fact that

@{/D/ //JLJ.Z

is the even invariant sclution of ths equation

Ll Dilp) = 0,

DG Leing D'Alsmbert's operator in the space of & dimensiona.
Nexc we shall introduce into comsideration 6-vectors

Q, P-= (PP P o i) R and P being the vectors

of special form Q (7“ 0/, P= {P‘; 0), and a new function

F( P)=7 [(;;gﬁ@j’lQ 6

X Dhe proof of this fact see in Appendix.




. . 2P ,
This equation represents in the form of convolution
of two generalized functioms:

oy
F(P)= 9, x £(F).
The rule of convolution differentiation and the definition

of %,(P) give
[, F(P)=0. (7

Moreover, the definitioan of F[?) (6) shows that F(J/)) is
invariant under the reflection cf the fifth axin/%» » =P and
P(p): #//0) . Tnese properties are sufficient to construct
the general representation of 72//-’)
Let us write down the generalized Kirchhotf's formulae for
the function P(j)) (it is possible due to (7) ):

F(F)= f JZ[B(P-u) 5 Flu)-Fli0(9-v)]

where Z is a spacelike rurface.

To aatisfy the parity condition it is sufticient to choore
the surface 27 and the initial conditions F/U) to be
even functions of s . In particular, when z does not
depend om s , the formulae (8) can be rewritten in the fol-
lowing way:

FIP) = f i ﬁo{@(f-w,}ﬁ/u)-ﬁ/u)g—/— 4], @

8’ being @ spscelike surface of by unity less dimension than
tnat of Z'

Introducing generalized functions S((J“) and Az‘(ﬁ/"/} 8(67)

[7] , we can trensform (9) to be /

FU) =1 fu (P 15 1),

(10)



where U= [ths, e, s &/,,U.q) and

Plu; ;) = J,[é“(c‘/) Fl+y L (Fbe)]

Here from using the explicit forum of Z)(?) [6]

Co) A I
UF) = % £1p) $(PY
and CP/‘/;'/@/ being an even function of l/_s— we get a represent-

ation for g//)j 3
)2(/’) Jd{/ jdu E/ﬂ, ) 3/1 L/J u+u“u)
X P {L/ Us).

(11)

Further, the surface (~ can be cho..n 20 that it is suffici-
ent t;o integrate in the formulae (41) only over the region
‘<o . In this case we have:

£ip = fcws T:Is jdu S(uss?) £(pito) x
X o(i ,Z/')u+u" Ud) @) i),

We muke a substitution in this integral according bto [//:Sl:/[’ :
Plp)= jcw- ({sljg"}wL S(s¥uret) € (p-ete) x
X X(J 1{7 LU S-S5 47 ) P(su,  Us) =
,J[QI_JSJQJJQ g/;, U)g /j(/oz—)u)‘l _L’_‘b X
< (12)

X ¢(SUL) .,l_;),

It is convenient at this stage to introduce in (12) a new vari-



i+ Sty <X < oo,

shows that the transformation undsr consideration is not
unique. Dividing the region of integration In (12) into sub-
region where it jis unigue and muking in each one treasition
to the ner variable we shall obtain the Following representa-—

tion:

7w
)= Jdx [ dQ, 1p2) 8((perty -7 %)
1
X WU, %)

(13

In this formulae \f a9 - 03
) dlis ) 8 /—Zﬁf‘?‘ X
Wi w)= 1~ ~Ms [ (x-Veiteu
_L{ 3 ) A QY J V,Z‘—_(’Ufl— /

_ e 13 ———— ;
x#)({.i-\/x‘-ﬁ-?)m, us-) —{xr\/x‘-x—ug) Pl Vyis—u,f-)tu,usjl

The reprssentation (13) for %(P] corresponds exactly to the
Icst-Lehmann-Dyson representation in ordimary theocy (and
coincides with it as /o = (0 ). The spectrality condition
would cause supplementary restrictions on the function fg"/U,M_
The corresponding problems wili be considered in a aeperate
peper.

The author is deeply grateful to V.G.Kadyshevsky for
interest in work and stimulating discusslions.



Appendix
Iet us prove that the choice
B = L7y @
2 S i
)= [¢-ipl
is consistent witn the formulae (2).
That is

~

N 3 j 3 E: (”,M/’ (4 2a)
<P 5702
! 0, £~ (Lw). O

We shall turn to the proof of (A 2a) first.

. It is clear that due to the relativistic lavariance of
Q(P*) we can prove (4 2a) under a special cholce of & - (/),[4,5)),
Lev u; introduce on the hyperboloid

¢ 4
De - - = -
PR
modified orispherical coordinates:
] , oo < [aind
- = - <
PP e w
L2
Y z

] fev
w
popes €= 7%.
1t can be easily found that
LI

DpeF) _ PR

D, f/) .
In the coordinates (4 3) the "plane wave" (1a) and 6)//’1} (3
respectively take the form



NG = ¢ aw

{
9(:?,): iiT i, 2] (a 5)

exactly analogous %o that of the "flat theory”. Substituting
(A 4) and (A 5) into (4 2a) we shall obtaln:

Aw —
Aot _L ‘ //U«’df! == fA15)) (A 6)
Q(ZE/—JTg Z /—,4311’-'%"{_‘?'.&]2’, < /;/ D)/.

We can easily prove that

47 3%/ @
f[-i“—%ﬁ , = 1380
Really, using the formulae
CP_{_.__ = lg,m LA —/-—__4’4 (4 8)
[Zaiﬁql Z oo [—a‘@*ne]z [atges]
we can represent the inte:;ral (A 7) in the form

;//M—i[f 5 (A %)

£rQ

where T = fs_——?‘—’ 2 (A 9b)
LYY Easf 1:1‘ rf]
*
- (4 9¢)
Iz - I& .
Introducing in (A 9b) spherical coordinates we get
Pl

i i: (4 10)
L= 47 [a. +g- —]*



This integral can be eapily calculated by contour integration
(cee Pig.1).
Ve find ( A0 )

Fj _%,_ - _JT"-. . 1)

Z(L * “{] art

By combination of (4 9a), (A 9b) and (4 11) we derive:
T . ! th__; 8
[ = (e = J a)
= P @it gt (

Thus we have proved the validity of (4 7). Substituting (A 7)
into (4 6) we osbtain

~ T iAw .
G- o sk ) oo = 4 .
T = (A (47)

which probves (4 2a).
Now let us consider the formulae (A 2b). The explicit
form of .the "plane wave" and the relativistic invariance of
Q PL) lead to the result:

_ oV SREBER) s Ay, . e 13)
[= f(ﬁ«‘ﬁ) sz/,] /030/j
Ther. we introduce on the plane (/)3/’,,) polar coordinates
Py = 2003y 0L § <27
/J =24y 0L 2 Lo

and integrate over 670 L'/P,g with the help of g ~-function.
It gives:

- 5 faygpe) “ B ) ey
Yo [2-22e3¢ ]
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Substituting in (4 14) 2. ~ -7 g Si+ N’ and adding
the result back to (A 14) we find:

-{1+2) ¢ )Y Nl
- Ji ) (BRE2%L) ipifydy. a15)
{LJ(Z £@)¢ [Z- ,Nz‘f,SY] : v

where the region of integration over é/Z s (-e , o Dl
Now we _hall regularize @ —function in (A4 15) by integration
over /& . in finite region -A , /4 Y.

4 simple transformation of integral (4 15) yields

I - I' + IL (4 18)
where s .
ST e v/ ,z) 7 .
) { /143 ){ a2 (A 17)
[ ArJ //y ,_c()z](?) [L Ly ]?
e [T T
L= ‘nJc iy { 1{2 o iz ey 1t (4 19)

o _f
~ JZ 1) ik il
A [ 476’17’]
It is evident the.t
t / 3/
J 6 ([“)59} (/-)[‘ = 0. (4 19)

The integral (A 18) can be treated as a contour integral (see
fig.2). Cr in the explicite Fform:

+
l I' ’/[ 2 f /1*4/ I«S * 221 Y2 (4 20)
2
-2 ._/myj
Calculating the residues we find that the pole at zero gives

a polynomial in (035(‘ of the power L+ , and therefore
the integration over c/f gives zero (cp.4 (19) ). It is



easy to find that owing to the formulae (4 8) the poles of
7
Zq:fﬁajT?jQ ive no contribution at all. Rally, in accord-
PR IR
ance with (A 11) and (A 12) the residues are taken alternately
above and below the cut and therefore differ in sign. This

proves (A 2b).
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Phe contour of integration in ( A 11).
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fig. 2.

Contour of integration in (A 20).
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