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Notation

We adopt the following notations and conventions 1,2

1) The metric teasor MV 45 given by

00_ H_ 22 33 . MY
3%=4,2"=9"=97=41; =0, Mt
/A()>?= 63:4/2) 3.,

The scalar product of four-vectors

L= gHrb = g™ =Q° Y
a-8 déu g a.6,=a¢ a-t
where

g —
sz”_: (Z?‘) a ) 5 CZ‘(:: /273 _.t?’),
In particular on the mass shell

2) The anticommiitator of Zfl.matrices

VYN = 292,

The Dirac equation for positive frequency spinor wave functions

reads as
('3‘— M)u(pr-o,

where
- >

A o
P=YP - vop-¥f.



1. Deep_lnelastlc electron-nucleon scattering

The spinor U (P) is normalized by the conditlon

* Since the electron to a hlgh accuracy 1s an elementary
u (F) ’L{(F) = j_ 5 Yy = U Xo . point~like particle with the well known electromagnetic
propertles, electron scattering 1s an ldeal probe of the

For negative fregquency splnors we have ) structure of other more complex obJects such as atoms, nuclel,
( {')\+ M) v (P) — j_ , : ‘ and hadrons. By bombarding a target with the beam of known
g energy and detecting only the outgolng electrons, one can
ar (P) ’U’(P) =-1 . determine the charge and magnetlc moment distributlons
The matrix within the object and hence, galn information on the consti-
s \ tuents lnside. Thus, we possess a unique opportunity as 1f to

glance into the composite object and in thils meaning one could
Under the hermitian conjugation 4 speak about the "“leptonic 1llumination® ( Bjorken).
T _1; -5 t | In the case of hadrons like the nucleon we know vary
Yo—.- {o ) Y :‘—Y ) Y{,’ = X5‘ ’ 1little about thelr basic structure elenients, though we belleve
that we are dealing with composite objects in that sense or
3) The one-—particle state vectors are normalized as another. So much interesting appeared the results of the
experiments on the deep inelastic electron-nucleon scattering,

- s
< P’\ F>= _g_(_P.) (2”)3 573 F" F/> 5 which revealed the point-=like behaviour of cross sectlons for
M

these inclusive processes. The 1dea about such a kind of
(9 = \/T’T——; behaviour of the total cross sections for lepton-hadron
E P/) F +M * { reactlions time was first pur forward by prof. M.A.Markov more
than ten years ago.
The discovered behaviour of the cross sectlon may be
interpreted in such a way, as 1f electron ( muon) scatters on

i quasifree point—like elements ( partons) constituting a nucleon,




Tn addition to a large ( point-like) magnitude of the
cross sectlon, experiments revealed also a remarkable
regularity, namely, the scale invariant ( automodel) behaviour
of inelastic structure functlons, i.e.,the absence of
any dimensional parameters, characterizing the structure of
nucleon constituents ( Bjotken, Bogolubov, Matveev, Muradyan,
Tavkhelldze).,

In the other language, employing the duality ldeas, one
can say that a substantlal part of the scaling behaviour
emerges as a result of averaging over a sum of large number
of nucleon resonances, exited by an incoming lepton ( Bloom
and Gilman). .

While preparing this sectilon we widely used lectures and

reviews 36 .

l.1. Kinematics of the process

Consider the 1nclusive reactlon of inelastic electron—

nucleon scattering

e + N —_— o7 + 3, hadrons
n (1.1)

unobserved

where only the final electron 1is detected, This process in
one-photon (62 ) approximation 1s shown graphically in Fig.l.

ELECTRON

N UCLEON HADRONS

Fieg.1l
/
where k and k. are the inltial and flnal four-momenta

of an electron of mass M , q: k- k/ 1s the four-momentum
transfer carried by the virtual photon, and P is the target
nucleon’s four-momentum with Pz = Mz.

Hadrons 1n the final state | n> owing to the conservation

law have the total four-—momentum

Pn= P9
and the effectlve invariant mass squared

PE=5 = (prqd?=Mreqr2pp, 7

It 1s also helpful to introduce the invariant variable ( M
is the nucleon mass)
y = _(P'_q) (1.3)
which in laboratory ( lab.) frame of reference ( initial
-
nucleon at rest, F =0 ) 1s equal to the virtual photon's

energy ( or the electron energy transfer)



= ° = -E7
v (ffaﬁ E-E
where
E=(pkK) /M , E= (pkI/M
are the energies of the initlal and final electrons in the

lab.frame. The lnvariant momentum transfer squared
] 2
92= (k-k)%= 2mr—2(kk) | k== k'=m?
in the lab.frame takes the form
/
9%=—2E£’({~-ces0) =
/ 2 1.4
_ _4Ee’'sin?*8 <9 .9
2 J
where 9 is the scattering angle and the electron mass has
been neglected compared to its energy. We adhere this

approximation throughoutli in what follows., Sometimes we shall
also use positive—definite variable

R*=-9%*>0 (1.5) y

Knowing ) and qz from measuring the incident and
scattered electron, one can easlly determine from eq. (1.2)

the effective mass squared of the final hadrons
2
S= M*+q%+ 2 My. (1.6)

Using the selfevident lnequalilty

S = M*

one immediately obtains the boundary of the physical region

of inelastic electroproduction

9%+ 2Mv20 , Q*< 2MY.

In the followlng we shall often use the dimension variable

(1.7

2MV _ 2 Mv _ S_M1.+i

= qz - &J_ — QZ. (108)
in terms of which 1lnequality (I.7) takes the form
w =>4 . (1.72)

The lnequality ngo ( (W< o9 ) serves as another
boundary of the physical reglon, which is shown graphically in

Fig.2.
2 (‘5‘/1/
Q =-(12‘L 7
S/
‘pf’» X /
7/
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/
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According to the rules of guantum electrodynamics (QED) 1,2
the amplitude of inelastic electro—production can be written

in terms of the S_matrix element

S,i = <HIS [D=<HId + i 8 (akep-l) Ty
{ITHD =
- 974 iﬁ u(k')m(k)@h YIRS

(1-9)

wvhere ’jv(X) i1s the hadronlc electromagnetic current operator
single-particle states and the Dirac spilnors are normalized

by the condition
FVED = __Em)sg’c )
, £Cp) = Npreme

and  o{= ©2/4r = 4 /[37 the fine structure constant.

We are interested in the differentlal cross section for

M(?) u(f)=

the process (l.1), where only the final electron is detected
and various ( unobserved) hadron states are produced.,

2

According to the usual rules the invariant differential

cross section for this process has the form

J?k/
e T»TTWZ‘ Tl @S lparn) W,

2 SISl S o

(1.10)

£’ ‘JE’ﬁml,

10

where the final states \ h:> are summed over, On account of
eqs (1.7) a phase space element in the lab.frame looks like

LK (Piierde = 7 dEdg: @00

o

In the general mse of a reaction with both polarized initial
electrons and nucleons the double differential cross section
summed over the final electrons polarization in the lab,frame

can be represented as

AG‘ _ YoARE MY
derde’ gvE [T Wols)  am

where the leptonic tensor

L/uv(é“)=m2§z7‘(£));, uStk)UTR) Y, U SCk) =

(1.12)

= 7/4—Tr [%_ (i*bf; 60)@*'")?&('?/"”)%] )

and the hadronic structure tensor

W= @5) Goaly O 5,000 pea-ri)

1.13)



The lepton and nucleon polarlzatlons are characterized by the

spin four-vectors ©- and S satlsfying the conditions
) 6-.ok = S’P:O
-
so that in the rest frame,e.ge, P=O
—» B "’2-
P:(M;O) , s=(0,s ), §°=4,
-

where S 15 the usual spln pseudovector.

sz = 62=—i

From the hermiticity of the electromagnetlc current

3u00= 4,0

the hermiticity propertles of the structure tensor %V

operator

follow

>
(1.13a)
W/.w ::W).)/M. 1.1

Exploiting the translation lnvariance property

<Ph\ ’jﬂ(x)l P> - e (P~ PXX <P“ \‘J/A(O)]P>)

it 1s stralghtforward to verify that the hadronlc tensor
describing the nucleon structure can be written as the Fourler

transform of a matrix element of the current commutator:

-V\//luv ()= %471— g‘l’lx e iq.x<P)s\[’aﬂ(x)ljv(o)]LP,s>)

(1.14)

12

where the second term vanishes due to energyv conservation
for V> 0.

Expression (I.1l4) shows that tensor W/_‘v up to a
constant factor 1s the ™maginary® ( absorptive) part of the
forward off-shell Compton amplitude for virtual photons of
mass squared equal to qz‘ « In fact such an amplitude up to
some real finite polynomial in qo ( irrelevant to demonstra-

tion of the above statement) can be represented as

Cott)=ie* [l e Ty 3,018,

(1.15)

where the time-—ordered product of currents

T "(]/u ()%, ()= Q(Xo)‘a/u(x) 7,0) + QGXO)JV(")‘JF(X)'

Making use of the T—product definitlon and integral
representatlion of the 9— function, we finally obtain a
disperslon~like relation

_ ZM , Mv(qo/;q)) _ W,m’ (‘qo/rED
C,}uv(q)~e JY qo’+qo-i0

. (1.16)
0 ’ qo/-qf—lo

Hence, employlng a symbollic formula

A4 _ - @’-)'; + 1700

13



we 1mmedlately find

IYV\ C/uv (Ci)‘: G2 o Mu (ci) . (1.17)

Graphlcally eq. (1.17) 1s presented in Fig. 3

Fig.3

lfore precious meaning of eq. (1.17) consists in that the
hadronic terisor \A&w 1s given by the dlscontinuity of the
forward off-shell Compton amplitude across the S—cut ( in V-

varlable):

41’201 -h'//‘:w [v/qz) =c‘;SCs C/M’ (S,ﬂz) =

= {Cﬂ\, (s+io, %) — Cﬂv (9“""/‘17')} .

Decompose leptonic tensor L,/uv (6? into pleces symmetric

(1.17a)

[S]and antisymmetric I:A] under permutation M <> )

1 . [A)
Lo,=LEh et
MV MY MV ) (1.18)

where neglecting the lepton mass

[s1 z [s]
L/"V = :{9: [k)‘ kp/+ kv I(/: -+ ?/w %‘J = L)’/H (1.192)
[A]

Al

LE — ime q)6(t - _ (1.191)
/_‘\) 2 /.AVAT - V/.« :

Actually decomposition (1.18) follows from the hermiticity

property of L/uv

X%
Lo = L‘,’/'\ '
The symmetric piece as one should expect, coincides with
the result of averaging over the polatizations of the 1initial
lepton
[s3- 4
L. =2

v L/“) [6') ) (1.20)
S

Now owing to the hermiticity property (1.13a), the hadronic

tensor W/u

symmetric and antisymmetric pleces

A
Wav = W/Ef] + 1 W,E ], (1.21)

pcan be decomposed in a similar way into

where 4 as in the previous case, the symmetric part corresponds
to averaging over the initial nucleon polarizations. Utlll-
zing the relativistic and gauge invariance of the theory we can

put the spin idenepdent part Wl‘zJ into the form
M

15




(1.22)

=['3/AV+M]V\/;(V,QI r\; W (n@?),

Mzw

which insures the 1mplémentation of the requirements of

current conservation
83 _
94 Weew™ = 47
W[Sj= W[SJ

./Ul) V/(,q

In order to find an expliclt gauge and Lorentz

W [s7

and of PT-lnvariance

invariant decompositign into structure functions of the spin
dependent plece VV;ﬁwae notice that 1t must be linear in
the spin vector S ’ » Indeed, thls follows from the expression
for the spin 1/2 denslty matrix

A

— ?~4—)4 { A
W) US(p) = 27—3Q+&5) (129
and from the constraints imposed by PT-invarlance:

LAT CAl
W/w (s) W/( " (-5) (1.23a)

16

Thus the spin dependent tensor 1A£Ml7(§) can be reprosented

. A A ’
w = ‘)?[(P+M)r5s Guwl,  aw
where in the most general from

=§IF4{[‘})%](P‘!)—[%»q]f’;ﬁ%]f;} G,6,Q%)+
4Ty T4 Ty, 4, T4 619 6.6

(1.25)

4
The invariant structure functions 6574,2_ are defined
according to Bjorken 7 . The trace calculatlons lead to a

simpler expression

[A] fo :
‘\f\//—w = E/NJ%.Q' Sgéi(v,@)—»

(1.26)
+ii4_£/uv]6' q i [(P‘Q) 86’— (SQ) PG]GQ_(V) Qz) .

The requirements of current conservation on account of antl-

symmetry of the temnsor & g are ldentically fulfilled

e
[A] [4]
9 Wa ™ = "W, " =0



The hermiticity properties (2.13a) of the hadronic tensor
\A/ provide the conditions
/uv

' *~D$A] i}$A]
%v = W“V >

which result in the reality of the structure functions Wh/;’z

and CS\,Z .

The product of the hadronic and leptonic temnsors
entering expression (1,11) for the differential cross section
with the help of decomposition into symmetric and antisymmetric
pleces can be rewritten as
M o LT gAY LA
L = L /w [A3 /W o @D

According to eqs. (1.19), @.20) and (1.22) the first term in
(1.27) corresponds to averaging over the spins of the
initial lepton and nucleon)so that the spin independent plece

of the differential cross section (1.11) has the form

ds,, //a E’ .
Dsin? L WG @eos? 6
For @)sin® £ W0 eor €|

Exactly this quantity was measured till now in the experiments

(1.28)

on the deep inelastic electron-nucleon scattering in which

the remarkable phenomenon of scaling was discovered.

(1.13b)

The second term in eqe (1.27) describes the spln dependent
effects and, as 1is obvious from its expression, in order to
observe them one needs to scatter polarized electrons (muons)
on polarized protons. Such experiments are planned at a
number of laboratories ( SLAC, FNAL). Under the assumption
of time reversal (T) invariance the spin components normal to
the scattering plane gives no effect. It ig therefore sufficient
to restrict oneself to the two independent configurations for
the proton spin parallel and transverse to the beam direction
in the electron scattering plane.

Hence, 1t follows that one must measure two asymmetries

in the lab.frame:

6 —»

l)'.__a .P
k “s

(1.29a)

2N izt 4%{2
d*s _4e iE [(E+E CDSB)G(VQZ)

JodE’ T 4gdE
R* 6, (»&%)]

3
2) . o P
k rys
4

d% < Clzb‘f"z Y’
d9de’  d2dE Q2

+ 2E@G, (7@ )

s*mé[@(,; Q%) @V



Thus 1s principle it is possible to separate G‘( and GZ. .
1.2, Unitarity and positivity conditlons

As 1s shown above, hadronic tensor W/uy is proportio-
nal to the lmaglinary part of the off-shell Compton amplitude
for the forward scattering of virtual photons on nucleons. The
optical theorem, which is the consequence of the S-matrix
unitarlity, relates thls forward amplitude to the total
cross sectlon for the absorption of virtual photons. Unlike
real ones virtual photons in addition to the two transverse (T)
polarization states possess a longitudinal (1) one as well.
Thus, it 1s possible to express the inva.ria.nt structure
funcfcions W‘ﬂ_ > 6:4’7_ in terms of the thotoabsorption cross
sectlons for varlous polarization states. It 1s convenient to

utilize the formalism of the hellcity amplitudes:

</\i$'l‘_\—|)\,§>= g:, C/N(sfs) 8: (1.30)

where the virtual photon% hellicity wave functions in the lab,

frame have the form

6;—4 = J—%(O}ii,i,O)’

L R
o = .lq‘ (\ql,o,o,q°))

9= (9%00141), 9=V, 1q1=\biq®

and satlsfy the conditions
* *
ET e gbe /“
=- =+ =
s + i ) T T L i') qj.« gTIL 0 .
For the S ~— channel forward helicity amplitudes for virtual

Compton scattering we introduce the abbreviated notations:
<i, 2 | T4, %>= T,
L4,-V2 |\ TV d,-%>=Ts,
<0) \/Z\T\\ 0, VZ>:T\. (1.31)

CE4, 2\ T o, 2> =Ty

The tensor Compton amplitude C/‘“; can be also splitted

into the symmetrlc and antisymmetric pileces
C =cC i C
/uu /u\) -+ /L(v )
which have exactly the same invariant decomposition as their
, 055 AT

A
(1.22) and (1.26), We shall denote the invariant structure

%
functions entering C:“z;‘)]as 642(”/ @2) and the ones
(AT ; : ! _ .
entering C’/‘“) as H/,z(V7QZ) + Thus on the basis of eq.
(1.17) we have the relations

IW Ci,q_ = 4‘7’_201 —\( A,z (1.32)
Iwm H, = fr2y 6’-4)1,

"imaginary®" parts displayed by the expressions

4,2

21



where as before the "lmaginary" part means the discontinuilty
across the S —cut ( in V- variable).

It 1s quite evident that the number of independent helicity
ampllitudes must be equal to the number of lnvariant structure
functions, l.e.yin the present case to four. Thus they can be

linearly expressed in terms of each other:

Ty=Cov ot + 24, ]
Ty, = ¢ -vR g ]
T = (4-—_%—2->sz

(1.33)

—
Tl = W[Hi“’ »H, |

As 1s well known the optical theorem in the case of real

>

photons states

. — A R
Tm T ()= ————SZ MM g Tt (1429

where S§ 1s the centre-of-mass energy squared equal to the
effective mass squared of a produced hadron system.

At present 1t is common to adopt Hand’s conventlon
concerning the ginematic flux factor for virtual photons,
Namely, the invariant flux factor 1s taken to be the same as
in the case of a real photon with energy VW producing a
final hadron state of mass VE? « Thus the "eguivalent virtual
photon’s energy"

= S'Pp-= + 1z _ -R%, (1.35)
K“zM T = Vo

Using eqs. (1.32), (1.33) and (1.34) we find the helpful

relations

=L (5),053,)= A T[T T3, 1= 222y

(1.36)

IerT_ 4”'°‘[Z14-——— )'M/ ‘VV;—]
(6"/1‘ *73/1):—IM[T'/L Ty WJE’G &g, ],
L= e Im Ty = 2207 [6, +G, ]

In additlon the asymmetry

A< Sazth 186 Lo
= W

and the ratio of the cross sections for longitudinal and

transverse %“photons®
V& (1.37v)
gz = ?El: = (}iﬁ"“ \NEE -~ i
T wW

are often employed.

It 1s easy to write down the inverse relations

W, =S 6
472d
W

2

(1.38a)

szz

23



61/ L' v -'2-{6”'/1 Sy l= 47‘0(@(1) 0)= i L6‘ ORACIR

G, = [Q AG’J 2 2
4r 19( (.Q where 6'A7 p are the total cross sections for the absorption
6.;/ L (1.38!9) of real photons with spin parallel (P) and antiparallel (A)
2.
G — 4/ ™ [\) ch?- —_— A 6‘ ]\)" QZ to the proton spin.
2. V8

The introduced above notlions of the total photoabsorptidn
In terms of the above introduced total photoabsorption cross

cross sectlions allow one to present in a transparent fomm
sections the measured double differential cross sections take

5 some of the propertlies of the imvariant structure functions
the form in Hand's parametrization
entering the hadronic tensor V\//uv « In particular the

46
before mentioned hermiticity property of this temsor (1.13a)
=" (6_+s6.), (1.39)
d9dE T leads to the positivity condition

* NI
2000 oM \/ z | ar W, a’> >0
C'l o —AG =2[ (1 EE)AG 6"/24_} | ~ (e42)

dg_)’d E’ dQHE’ for any complex vectors A" . Making reasonable cholce

of the vectors Q™ = E;.“ ( = 1is the nucleon spin
Azs'h- (125"1 f"—'_' F F I‘EEI)E index) it is possible to obtain © restrictions on the
Tl = S(HS A6 FE( E /18 > values of the invariant functions. However their complete
proof is rather involved, It 1s considerably easlier to see

where
0{ K E 2 the origin of these restrictions from the conditions of

T = P/ ositivity of the total photoabsorption cross sections. We
4,”2. Qz E/ (I-€) (1.40) r ¥y D a D
2 | emphasize, that despite the seeming obviousness of this
i
i + 2 (i + 5})—,_) ZL? _2- . i method it cannot be considered as completely rigorous, since

the positivity of the cross sections for unphysical processes
Note that in the case of real transverse photons

R?*=0, K=V
S, (»0) = 6,,, (vo)=0

I

|

) involving virtual photons 1s not so evident., Nevertheless in
(1036&) {

) i

§r(v0) = W, 00)= £ [0, 0)+0p07]

| 25
24 ‘



view of the existence of a more rigorous proof we accept that

the following conditlons are fulfilled:

ES{T' :;L 0 bl G;J =0 E;i/ C) ESjy ::’C7

(1.42)
2 — 2
GT m <671 3/z>22¢7'(5“;4'63/2)1, A<e .

Hence, with the account of relations (1.36), the positivity

constraints follow

o

] (1.43)

\AIL = ( i+ é%;') VVL'—WACL'Eb o, "

W, > v - QG|
One more constraint may be obtained with the help of a
Schwarz type inequality:

t t 1
2

A TTUHSSGITTIN > K| TTIp i

Sincey, owing to the optical theorem ( S~matrix unitarity)
T
S, < Im A T|e> =5 | TTID =0
T .
Spoc Im T =3 KTTI

inequality (1.44) can be rewritten like

26

ESJ €5J c{/g (1.45)

As a specific example of inequality (1.45) we have

(1.46)
’E;Jhél 6;:_ ;;3 QE;:Ai L
or introducing the ratio (1.37b)
6, =R 6%
(10463.)

654341 FZ ESJ ESJ”@L Lo

Hence using relations (1.36) we obtair. another constraint for the

structure functions

[wW+ve-@:61ewW, = 2q2 (6, +vg . &7
1 4 2 i 4 2Jd -

For some applications it is more convenient to employ

inequality (1.47) in a different form. Since according to the
last of the bounds (1.43)

W, = VE - Q26

from the constraint (1.47) it follows

RW > QR* \_G+1>G-]

We shall utilize the latter bound for an estimate of the

(1.48)

hadronic structure contribution to the hyperfine splitting
of the hydrogen energy levels.

27



1.3, One~nucleon state contribution

HNow consider at more length the contribution of one-~nucle-—
on intermediate states in expression (1.12) fér the hadronic
tensor \A(*‘g » Such a contribution corresponds to the elastic
electron-nucleon scattering. To this end we make use of the

well-known parametrization for the matrix element of the

electromagnetic current between one-nucleon states 2 :

<}>’)3i\gﬂ(°)\p5>=ay{p’) @)y ue
-4 B g Bl oo

where
GV:_&EY/‘)Y‘)] ) q:?/—P'

The form factors Fa’l are normalized in the following

way ( p=-proton, n-neutron)
P Py =
E (O)Z/J_ 3 F\ (0)_0
h -
FQ_P(°)=2P) Fz (O)~£“ '
Usually electrlic and magnetic form factors are also introduced

G, = Qs

E 1 4/MZ T

GM: F1+Fz

(1.50)

28

In terms of these form factors onme~nucleon contridbution to

the invariant structure functlons reads as:
el .
W, (v,6%) = //M‘G (@) 0 (v- )
W (3,07) = [Fate)+ 22 F:m] 5(-25)-
2 Gl )
63 (@)4- 4/51 X(v_@ ))
SRTE (1.51)

G’ (vce)—-éFm)G (@) 3(v-35
F0) 6 (@) 8(v-2 ).

G"[(v C?)"‘

It 1s strailghtforward a to check that the following relations
are valid

ve-qer-we,
6+ V6 = g 66y T £),

(1.52)

W () welw = 62 50- %



In the parton model a parton 1s defined as a polnt-like
object the mass (four-—momentum) of'which is some fraction
of the nucleon mass ( four-momentum) and the parton charge
1s equal to ez'e « In the case 1f a parton is the point-—like
Dirac particle ( i.e. of spin 1/2 and with F‘(ql) =i) B(qt):o)
we Tind changing M into XM in eq. (1.51):

2MW, =ef §x-L),
vW, = e x 8@-2) 2M )

il

Q_M\)G—i = e:‘ 5?(X—W—L):QMW;

- _ 2Mv
G?_ - 0 J) w" Qz ‘'

1.4, Scale invariance ( automodelity) and sum rules

The pecullar property of deep inelastic electron-nucleon
scattering is the scaling ( automodel) behaviour of the structu-~
re functions Wi g ¢ Experimentally it was found that as both

)
Yy and QZ reach sufficiently high values ( compared to Mz)
the functions \]—WQ_ and W; become nontrivial functions

of the dimenslonless ratio &J = Z2MV/®@72,

There exlst varlous theoretlcal models which predict the
obseryed scaling behaviour ., Since the hadronlc tensor W/uv is
expressed through the current commutator, it 1s possible to
show that the asymptotic behaviour of w;‘z as qz, V5 eo
1s intimately related to the nature of singularities in the
vicinlty of the light cone X2=0. The most complete investiga-
tion of this question on the basls of the Jost-Lehman-Dyson
representation for the causal commutator was carried out by

Bogolubov, Viadimirov, Tavkhelildze 1o

papers 11 o

and in the subsequent

Briefly explaln why the asymptotlc behaviour of structure
functions in the Bjorken limtt ( £img )
_2Mv

.q 5

18 connected with the behaviour of the current commutator near

f rxed

qz._.)Dd,V»—)od , W=

the light cone X?2=0. To this end recall the Fourier

representation (1.14) for the tensor \A//,w « Choose the

reference frame, where P= (M,—J) y 4= (v, o0, o, ‘]yz_qz'>.

Then the scalar product ( q-x) in the expoment can be

obviously written down in the form

(g0 = 'é (4-95) (Xotx3) + 5 (qot5)(Xom X3)
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In the chosen reference frame
2
(4,-9,) = v- oo = -3
4m
(ot 95) = V> VWwi-g? == 2v=-9"FF,

It is well known that the maln contribution to the Fouriler
integral comes from the reglon of values of (CI-)()N 1 s

iees,
2 = 2w
\Xo+x3| ~ 190~ 93\ M D
2M

2 = £ .
| Xo=Xs) i T e

Hence, the essentlal values of X% are

-
()(a’)(s)(f\/o"'xz)“‘x}. <
'm, ‘
(Ya’Yz)(Xo’*Xs)N %;\-1—3’-8 ) .
The parton model assumes that a nucleon 1s composed of
quasifree polnt-like constituents, named partons. Thls model
rests on such an experimental fact that the electroproduction
cross sectlon integrated over the energy V at high fixed (?2
has the same order of magnitude as the Mott cross sectlon on
a point-like nucleon., The structure functions \Af4'2
are thereby obtalned by integrating over X’ the parton
functions (1.53), multiplied by the distribution functlions of
the fraction X of longitudinal momentum and summing up over

all partons:

4
ZMFM_(Vr @l)zfi'effclx )c!-(x) g(x-;/{‘)=5/w)

(1.54)
i
v Wa (@)= 2167 4y 1,09 8(xe4 )= E=4

2 fm
Q- §J_"'_ M_/Z—.<i+ ) 4= 4M —B 0
Wi - szl
where {u (x) 1s normalized by the condition
\ {

ng L) = SN PV =<V,
( N-

[/}
{N;> is the average number of partons of charge e;.

Thus deep lnelastlic electroproductlon in the parton
model reduces to the sum of elastlc scatterlng processes on
point-like partons . We have assumed above that partons are
spin 1/2 particles which may be identified with the usual
quarks. There 1s extensive literature dealing with the detailed
consideration of thils model 12 and , 1n particular, with the
deduction and analysis of various sum rules.

In the case af spin dependent electroproduction one needs
in addition to take into account spin degrees of freedom
of partons 6 . For spin 1/2 partons two distribution functlons
emerge, which correspond to the parton helicity directed parallel

or opposite to the nucleon helicity:
215, 0 KENAVAD =
P
= -42 V—-ST () — {.*’ (x)] . (1.55)



It is evident, that the function used before

L7 v
.00 =3 Lf o+ £fm]
As a result on account of the expressions (1.53) for the

parton functions G-‘ll we f£ind
)

2MV G, (3,Q%) = g, (w)=
Z 216,2 jd)( )(Y—}?(x)_-ﬂ(x{\ S(X’L\U), (1.56)
G,eed) =0,

In the simplest quark-—parton model ,where the nucleons are

= (uud) , n=(udd),

2 __4
euz.é- ) ed_ 3 -

composed as

Employing the explicit form of the U(6) wave functions we
obtain

: Hf(x) IMOIE (£-8)§,00= 25,
[%* () — ‘r (0] = "'3){ )=-3 %,

Hence, the scaling functions given by eqs. (1.54) and (1.56)
take the form:

F o= 5 £,6) + 5 §,6),

%0 =55 L~ ft),

/—;"(w) =2 f(w)+4 { (w) -2
9" (w)= 7= f, (w)- 2 L f ).

Relations (1.57) lead to the bounds on the magnitude of the
asymmetry (1.37a), namely,

— 91 (w)
(w)
A )

, (1.58 )
If, in a'.‘ddition, we assume that ..fu (w) = fd ((4,‘) ,
then §, (w) =0,
L n
Afw)=Z . AMw)=o .

and the following sum rule is valid
Bag

o
' W Ao _ 5
d_"._"l (w):S (J—;_A(“)E_(w)———
w* d1¢ w : 9
{ 1
or on account of eq. (1.59)
T d (1.60)
| 4 F(w)=1.
1
In a more gencral case on the basis of chiral current alzcbra

Bjorken's famous sum rule can be deduced 6,7
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142 (gt —gr)] = £ 18|, o

where C;A //é;v is the ratio of the axlal and vector weak
intera€tion constants,
The application of the low energy theorem at C?2=0

leads to the Ge im wn rul
eads to e rasimov s e od

=2 _[d L \dy
4yMT j{;‘ G%L(v)O) Xﬁrﬂi [}5) CV) A(vé}a
v, vsr

One of the intrinsic parton properties is thelr point-like
nature, It 1s tempting therefore to abstraot thls property and
to formulate it in a form of the general hypothesis regarding
the absence of any dimensional parameters ( except the nucleon
mass) fixing the scale of invariant kinematic variables and
cross sectlions for deep inelastic lepton-hadron processes.
Under the additlonal assumption that at high energles and

momentum transfers, when

A 2 — (. 2 My .
lqz\>>M , Mv_.. (P q)>>M) —CTi j-nxed)
any nontrivial dependence on the hadron masses squared drops out,
all physical quantities are expected to become the homogeneous

functions of kinematic variables. This actually means that

under the scale transformation ( dilatation) of the four-~momenta

p=2Xp > 9729

the invariant structure functlons, cross section and so on

transform according to their physical dimensionalities

LFG)i=m"
F(p,.q)——> FOp,2D=X" F(p,9),

since there 1s only one dimensional unlt, namely, that of mass.
Such a general hypothesls was first formulated by

14

Matveev, Muradyan, Tavkhelidze and is known as the auto-

modelity principle.
In particular, since the basic kinematical invariants

have the dimensionality
[421= [Mv]I=m?

it is clear that dimensionless invariant functlons may depend

only on the dimenslonless ratlo,e.g.,
2Mv
qi

and quantities of a type of cross sections having dimensionality

can be represented in the form

6 (v9°) = qi F(w).

o =—

(1.62)
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Now we apply thls simple reasoning to considering the
properties of structure functions VV!,Z. and G;},z
Then formulae (1.38) with due regard for the definition (1.,35)
of the virtual photons flux

K =£(i—w}=v(i—£)) w fixed
and eq. (1.62) lead to already familiar relations:
2M W, e = F (v,
V \Afz.()ﬁ(?l) = ‘%z(bo) y

(1.63)
2MVG, (@) = 4, (),
o MV G, (@Y =9 (w),
To deduce the latter of relatlons (1.63) some additional
6

assumption is required, however, we shall not dwell on.it o
Unllke the analogous relatlons within the parton model there are
no connections between the scale invariant functions Fa'z_

. t1
and g‘,z and moreover gz‘+£0 The scaling function

satlsfies the superconvergent sum rule
oa

SLA(«J 89_(“) =0 ,

which can be most easily deduced with the help of the light

cone current algebra 216 .

Scaling 1s rather well confirmed experimentallylgt SLAC > .
However, recently in periments carried out at FNAL using
38

a muon beam some small deviations from scaling were observed,
In general it was noticed that scaling sets 1in earlier and
is better fulfilled in the variable

2

w’'= w+—£iz=§+/./.

In favour of this phenomenon there are some reasons based

on the dwality idea 16 « Namely, the nucleon and nucleon

resonances of mass V?F at low energy bulld up, in the sense

of finite energy sum rules, the nondiffractive component

of the off-shell forward Compton amplitude on the average,

Thus a subssantial part of the scaling behaviour of the virtual

prhoton-nucleon amplitude 1s due to a non-diffractive component

which corresponds to the non-Pomeron exchange at high energy.
If the possible deviations from the scaling behaviour

of the functions VV; and vTN; are parametrized in the form
of the fctor >

2R0% .
<Ti - /\f ) = 11 2 )

then for 1l.5<¢ w < 3 the best fif to the data requires

A =62:9 Gevr , A= 7527 Gov2.

2
If one uses the variable (¢ “ then the fits with Ai = oo

are perfectly acceptable and with a 95 % confidence level the
2
lower limits on the /‘l- are

A >846ev2 A% S 179 Gev:
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The results of the FNAL experimnet at 150 GeV and 56 GeV

can be summarized as follows:
1) Scaling is good to A~ lo% for Qz > 4/_ 5 GelV2.

2) If the ratios of data at 150 GeV to the data at 56 GeV

and to the SLAC data are parametrized in the fomm

R '
—_ .
- 2
(1+ ®¥/A2)
then the fits to both the ratios are consistent with

A > 10 gev

with 90% confidence, averaged over a restricted W range (higth
and low W),
3) There are indications of low Q®R% or large ev
deviations from scaling. An overall fit gives a two

standard deviations effect,

The virtual photons scattering is primarily transverse
employing dominantly scattering off spin 1/2 constituents ( par—
tons). The experimental value of the ratio

R=Sc- 048+ 0.10.

6-"T
The experiments on the spin dependent deep inelastic

electroproduction are planned in the near future, For that one
needs polarized lepton beams and polarized nucleon targets.
Muon beams at FNAL, BNL and CERN automatically possess a
longitudinal polarization due to their origin in the weak
decays of pions. At SLAC a polarized electron source is being

installed.

2, Hyperfine splitting in hydrogen and deep inelastic

electroproduction

The magnitude of hyperfine 8plitting of the singlet and
triplet ground-state energy levels of a hydrogen atom is
at present the most accurately known physical constant.

The hydrogen maser measurements yield the value

A\)‘l =4 420 405 #51 , 7662 (3) Hz
¥s (2.1)

with the fantastic accuracy of 10712 .,

Theoretical evaluation of this quantity is based on the

employment of quantum electrodynamics 1 and relativistic

equations for bound states 20 o As such an equation it is the

most helpful to utilize the Logunov-Tavkhelidze quasipotential

21

equation in the momentum representation

(E- VP24 mf‘ —VpuME) Y= &’ GHOYE),

@
(2.2)

where the wave function w_(-‘;) describes the relative motion
of an electron of mass m and of a proton of mass M in their
centre—of-mass frame with the relative three—momentum ?: .
The electron~proton interaction is determined by the quasi-~
potential V(F,—F’;E) which is in general a nonlocal ( i.e.,

dependent not only on the difference (FL;F’) ) and explicitly
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energy dependent function. In the nonrelativistic limit

2 2z
P m*,M* 5 W=E-m-MzmM
the quasipotential equation (2.2) turns into the usual Schro-

i;z. - CJi)/ > >, >,
(V=20 ) ¥6)= G5 VB 5,

where the reduced mass
mM
m+pM

The quasipotential -\r is usually given in terms of the

scattering amplitude off the mass shell with the help d an

operator relation

VT (1+ 6T ) =T, - TG T+ |
(2.3)

which can be obtained from the corresponding Lippmann—Schwinger

equation for the off=shell scattering amplitude

T, =-V+Va&T: .
The Green's function of free particles

> > (27’)3 8’3 (F"—P") : (2.4)
) /3EE = ry ’ > ¢
(';O(F P ) E_\frz*_mz,_ﬁz_'_Mz
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The scattering amplitude projected onto the positive frequence

states
TGHE) =P TERHE U ()

(2.5)

where the amplitude T is given in terms of a sum of Feynman

diagrams, parametrized as is shown in Fig.4

m > , >
m+mE+€ )P m+ME+€ ) P’

m = Pq 4
meplE "€ P —rE-€5-P

Fig.4
Examples of one-photon and two-photon exchange diagrams

of the lowest order in €% are displayed in Fig.5

Fig.5
In the initial approximation, as should be expected, we
have the purely Coulombd interaction., We are malnly intersted in
the contribution to the hyperfone splitting of the two—~photon



exchange diagram since it includes the amplitude for the
Compton scattering of virtual photons off the proton.
The combined contribution to the hyperfine splitting

of the one-~ and two—photon exchange diagrams can be written as

AEHs 8BS = | WOP IR (2) (8.8, > +

MS
Ty Gy 2 (4+x)<ses>“V SEA GRS

et
@), T
/“ )
e
where (0 0 /) is the two-photon exchange amplitude
2y

taken at zero values of the proton and electron three-mnomenta,

£ 1is the proton anomalous magnetic moment, 6’e 5 §‘P
are the usual Paull spin matrices and symbol <f...;> means
the matrix element with respect to singlet and triplet states.

The Coulomb potential

ez ol -
V(C[)"‘q_ = %77_ (2.6&)
the Bohr energy -levels
ol 2u

= - b] n=4)273)"¢
We 2n* (2.6b)
and the modulus squared of the Coulomb wave funokion in the
-
coordinate representation at the orlgin r’=:o reads as
Y ) = =)
c = (2:6¢)
T h

In the end, the expression for the triplet-singlet hyperfine

splitting in the ground state takes the form 22

/ee/

4, =ECS)-E('S) =41 (1+7),

@.n

where the sc—called Fermi splitting

AV, = 577"‘ " (1+2) \ W ()|

and the correction

__Am | 3M AL |
6= ()M Jin* ?‘* A Now 9= 29

— §M(1vx >§

2. 2 \A
e, € |
Ne = 4T [seom 2] = GEA1e7,

$3= (0,9,0,55)

Thus, tensor coincides with the spin dependent ( anti-

AUV

symmetric ) plece of the off-shell forward Compton amplitude
—

if the spin threc~vector S in the particle rest frame is

directed along the Z-axis. In particular, the electron

amplitude
e,y —Ymg? [A]
/\fixu (27) (17 ¢ 67 ‘))f) ;712 th;‘u 3

In the integral (2.8) it is possible to perform the Wick
rotation of the ?e-axis in the complex plane and thus to
integrate over the four-dimensional Euclidean space C? with
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. . 2 2
o o —_—
Q = 7 q =1 % ) Q - ?
As a result utllizing the invariant decomposition (1.26)

and expression (1.19), we find

Zo(mM d7Q .
S 7i(/+) «S‘Qz(Q‘%#mzv) [(2Q2+)) )H4<1V)Q2)+

8 dQ (2.9)
+ 30 Q*H, (6] - ;,‘—mjm .

For the invariant functions H4’l(v’Q2) with (RZ2>0 the

dispersion relations can be rigorously proved 1 H

od
dv?
2) 2
H4ﬂ- (VR = R G— (v 5 Q%) (2.10)
\)B »
where the point ’\)B:: Q%ZM) corresponds to the position of the
proton pole ( the Born term), and the cut starts at the pion-

nucleon threshold
{ 2 2
= — +Mm + m, .
2M (@ 7 ) d

Inscerting the dispersion relatlons (2.10) into expression (2.9)

¥

we separate the correction 5’ into three pleces
57 — + 57 + (2.11)
513 1 é72 ’

where the "Born plece®™ corresponds to the contributlon of
the Feynman dlagrams shown 1n Fig.6 with the real protons

Torm factors at the vertices

DU

This contributlon can be easily calculated 19,20,22

5? = e ‘ iZ) - = O—§
p=— (34.5%2)ppm | 4 ppn=1 2.
The remaining two pleces are expressed directly in terms of the

proton spin denendent structure functions

4
§y =_&xXm Ay,

1,2 2rM(i+x) )
8%} g \ Ty &N
A= S““i i b (@)- 4MZS"5‘ Py "@%)%O’JQO} )
o vﬂ'
A= 12MZ§—A-92 dve (%)G (v
27 Q* v?z((ﬁ) , (V&%) (2.13)
where 0 VW

p,(6)=36-20°- 2(2-6)V46+7],
pal6)=1+26-2V6(6+) , #=vi/a*

and Fl(Qz) is the Pauli form factor of the proton. Thus,

the two-photon exchange corrections to the Ferml hyperfine
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splitting can be evaluated with the help of the experimental
data on spin dependent lnelastic electron proton scattering.
ihile detertining the contributlon of the 411 term
one may utilize also the data on the spin dependent total
photoabsorption cross sections for real photons, since

at QZ—‘-O ( see egs. (X.36a) )
erG (v,0) = -32—[6}_, »)-6, o))

and it satisfies the Gerasimov sum rule. As a result one

manages to obtaln the estlmate
l 5’4_\ N 4= prm . (2.14)

The situation 1s more complicated as regards the L}Z contribu—
tion. In the absence, presently, of any dlrect experimental
information about the structure function C;

2
make use of those bounds which ensure from the positivity

y We can

conditions for the proton tensor \Ncuv « Then, from lnequa-

lities {1.43) and (1.48) it follows 23

GQ(V/QZ) V\rr( Q)(i RW)

tha

(2.1%)

G(V L Wi(\),Qz). ( 8&7') RQL\\G

Vi+Q1t (\]—g’b’k%‘:ﬂe

48

Employlng inequalities (2,15), one can find the corresponding
limits for the quantilty 4&_2. defined by egs. (2.13). The
exlsting experimental data for the structure functlon “NCL

and the ratio R permit one to make a numerical estimate 23
of the upper and lower bounds for the é;;correction:
__.2 ?Pm é 5:2 é ‘ 3 FPM . (2.16)

The comparison of the theoretical ( with radlative correc—
tions) and experimental values of the ground-state hyperfine

splitting leads to the relation

AVeyp, — AV
~____iif_______ik_ — <£Z.5'i:44,0 )PPY""S;-'éz ,
Avﬂ‘

which 1s consistent with estimates (2.14) and (2.15) for

the structure correstions 5;_and éiz N
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3« Electron-positron annihilation into hadrons

The process of electron-positron annihilation into hadrons
1s characterized by the following experimental data 24 :

1) The ratio R. of the cross section of hadronic annihi-
lation to the cross section of annihilation into a muon bair is
large and is rising from the value 243 at V7€E1 2 3 GeV to
about 426 at \qZ s 5 Gev.

2) The single-particle inclusive distribution q‘AS‘/JN ’
where (Q=X= ZE”/ qz for ete” » 7 H fails completely
to scale and increases rapidly with qz for ) & 0.5. On the
contrary for (Q ;3 0.5 it is conslistent with scaling.

3) The angular distribution <§€Z//d L of charged particles
is close to an isotropic one for 3 <\]?Z‘< 5 GeV and \cos0)< 0.6,

4) The single-particle inclusive distribution
E”ASA_-PP oCexpCEr /) with T2 470 MeV for not very
high momenta, i.e.,it is very similar to the single-particle
inclusive distributions found in hadronic reactions.

5) The mean momentum and multiplicity of charged particles
rise slowly with & Pc> A 400 MeV and <> 2 4.

6) As a result the fraction of the total energy carried by
charged particles, evaluated assuming all particles are pions
and <J€;/<H 52 is isotroplc, is small and decreases gradually
from = 0.6 at \[qZ A 3 GeV to 2 0.55 at Vg7 =& 5 Gev,

7) In the region q qz > 3 GeV several new vector
regonances were discovered with gquantum numbers t)PC: i—

and properties

m (GeV) Tie (MeV) Ty (keV)

% 3,105 0.08 5.2
¥, 3,695 0.5 2,2
Vs 4,15 250-300 4

—
where rlot 1s the total width of resonances and \f
1s the partial width of the decay into a charged lepton pair
(e*te™) ,(ut )
2430

While preparing this section we have used papers .

3.1. Kinematics of the process

Consider the inclusive process of electron~-positron annihi-
lation in the one-photon approximation with a single detected
hadron in the final state

€7+ e* >y h+ Zlhadrons <D

unobserved
The diagram of this process is shown in Fig,.7, where kft are
the momenta of the colliding electron and positron with mass m ,
q,= k,+*‘k_ is the four-nomentum of the virtual photon with
q23>0and 3? 1s the momentum of the detected hadron with mass
M . The rest of the hadrons ( unobserved) in the final state

owilng to conservation laws carry the momentum

Pn= q—F



, K re
ELECTRON - P HADRON

POSITRON Tk HADRONS

Fig.7

with the invariant mass squared

2

P =s= (q=Fd)*=q% M*-2(§-q), ©2

Introduce, alsc the lnvariant variable

nY (P-q) — (3.3)
V== S <o s P,

which in the centre—of-masg frame of the collidlng 1leptons
-
(q =0 ) is proportional to the detected hadron energy E

M\):— E qu ) (3.32)

and the hadron three—momentum squared

(3.39)

=2

‘\)7-1

2_ kR —

P:E—M =M("—11 .

The scattering angle in the same frame of reference is deflned

relative to the direction of the lepton beams

(Q?): \_\:\\:‘:\ eos § > (3.4)

52

and four-momentum squared of the virtual photon
2 T2 (3.42)
; . 4a

2
In terms of the invariant varilables q and P the

effectlve mass squared of the unobserved hadrons
. 2 3.5 )
s = MZ+g%+ 2Mv, ¢

Since the lowest final state is the hadron-antihadron pailr,
it is clear, that

c> M , (3.6

and hence from eq. (3.5) we obtain the boundary of the physlcal

reglon

Z
q° = - 2Mv, (.7
Introduclng as before the dimensionless varlable

2_____M1)=X:£_E_- — S‘Mz_’_i (3:8)
A

we rewrite inequality (3.7) in the form

—
Ww=-"_.

0<to< 4 (3.72)

The other boundary we can find from the positlvity

condition for the three~momentum squared of the detected hadron

=Y
in the lepton c.m. frame ( q =0)

im0, E=VieMT > M.
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Then from eqs. (3.3a), (3.3b) the inequalities follow

viz 9t =% 6

which determine the second boundary of the physical region.
The domaln singled out by inequalities (3.7) and (3.9) 1is
displayed in Fig.8

74 )
X,
(\‘7
57
. 7
J7Ve
7
7
!
7
\ - 2My
- >
’ Fig.8

According to the Feynman rules the amplitude of the
process (3.,1) 1s of the form

Tom 2L TP U <pl 016>

¢ (3.10)
where l}’(k) 1s the negative frequency spinor normalized as
AV =—1 , and the imvariant differential cross section,

averaged over the polarizations of the detected hadron with spin

Sy 1s equdal to
d&'_ 2m*M(25+) 2yt
Eda— \/‘T(mﬂ%\'—l}l\ ey g(q—P“PrO.

(3.11)

(on)?

The phase space element with the help of eq. (3.3Db)

may be written as

I \Flaede =M duede
(3.12)

Ag: 271’(46039,

Neglecting the lepton mass, compared to ql and on account

of eqe (3.12), we represent the differential cross section

(3.11) inthe form

46 _ 4> (28+1) |, = T4V 3.13)
AQAE— q‘l 2 ‘M\F\L w/“v ’ (

where averaging over the splns of the initial leptons gives

the tensor

%Lﬂ %Zg VU T UK)=
= 1g Tr|Ckomy (k-m)y?] =

“—‘%[kfkﬁ k7 kf—%qlg/‘“’] )
\2" Yk )

(3.142)



and the hadronlc tensor

(2r)3
Weo =G5 22 OIRRY 1010 8 Ta-p,) -

N g
4 ST SR, o
P-7- &g, (For=0,

where the spin of the detected hadron is averaged over, and C
denotes the connected part.

As a result, making necéssary transformations we obtain
the expression for the cross section (3.13) in terms of the

structure functions

2

% _,_(z +1)M”[ {’,—} {zw (v,99) + -
+< —72 C;)sinZQS ;

o o

ki fi v’W (qu)E
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z 3 5'4/ 70(2(23+1)w{2MW(v72)+ “y W (v, qz)}
q —-> 00, W {-axed
In close analogy with the case of electroprcduction we
may introduce the "longitudinal® structure function ( note the
change of signs compared to eq. (1.36) )

Wo=W,+ (F-9)W, -

Then the positivity conditions are of the form

W =W, >0, W_2=0,

and the differential cross section (3.15) may be rewritten as

jij «L? (S+1)M,P]{(i+c’0529)W(vq)+
+ (4-ces29) W (», ‘i‘)} (3.15b)

Consider the process of "elastic® annihilation when in the
final state only particle and its antiparticle are produced,
2 2 Ta_q* 4m?
leeey, =P, _= M ' P =T(i‘a—2—_ « Then the structure
functions WI o are expressed through the elastic form
]
factors of a hadron as follows:

a) case of a spin 0 particle

<pFld, (0)\°> L (p- P F @), 9=P*P,
Wi=0 [F(qi)\z‘ Cv.-__

b) case of a spin 1/2 particle

W, ( ,qz)—m\@ ()* Fo-51 ),
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W09 = G (g2 § (- L

In particular, for a point-like spin 1/2 particle

( €eBey muon) we find the cross section 26

which in the 1limit YV\; <<qz turns into the "parton®™ cross

sectlion

d6va_ 2 ot 4rol®
4 qqz (i Co3 9) 6"/2 - 3 qZ * (3.16a)

In the case € point-like scalar particles ( spin 0 partons)

d6. AL
d9 9‘1 l:i_ MJ (4- @39)

(3.16b)

2
and the total cross section in the limit Mz & q

) tot - Fo(2 / 6’ (3.16¢)
o - '/?_ .
392
In the general case of spin S particles the Melastic"

differentlal cross sectlion reads as follows 26

a) for integer spins

d& _ z<z>+f)(4_ IM? ) /z{ 4~ eos26) F(92) +

4L
+ (4+ 60529)4,77; M (z]?)} ,

i I b

b) for half-integer spins

4o _ 4050, )5 1 asi)E )
o= Lo Me(4= )] (1-eos"0)E ¢7)

+ (1+ Cosze)ﬁz M (qz)}

where E (qz) 1s the sum of the modull squared of the
electric form factors with E (0)= (P2 the square of electric
charge and M (qz) is the sum of the modull squared of the

magnetic form factors with
ME) = 224 e
55
the square of the dipole magnetic moment. The total cross section

2
for point-like particles ( R = =4 ) 1in the limit qz > M

1s of form

a) integer spin S 24

G'SM = 37;"’1‘: (Z‘SZ?(M) = Const ,

b) hsl:t—intéger spin S

,iaT_ Yrol? (25*4)(3“'1) ol const
6y = 39* 65 9%




Note that for point-like particles of lnteger spin s ;;; 1

the total cross section tends to a constant value as ?2'—> o,

3+2. Inclusive annihilation and elengqproduction

Thus we see that the description of the inclusive
annihilation proceeds quite in parallels to the description of
the inclusive electroproduction. Accordingly, if the scale
invariance is still valid, then on the basis of eq. (3.16) and
dimensional analysis ( the automodelity principle) we should

2M W, (v,92) = E (w),
~VW,(v,99)= E (w)

in the limit \),q’-v—>oo , - fzxed,
However, the experimental data up to now show, that quG/Jw

(3.17)

falls to be a scale invariant function ( 1.e.,a function
depending on only). So the qﬁestion arises, whether the
straightforward connection ( of the type of crossing symmetry)
exists between the structure functions of inclusive annihilation
and electroproduction.

For the beginning note, that in distinction from the case
of electroproduction the hadronic annihilation tensor

cannot be represented in the form of a matrix, ‘element of the

current commutator ( or product ) 31 and consequently, doesnot

coincide with the "imaginary® part of the forward Compton

amplitude for the virtual photons with q2>0 and VX 0.
In faot, when qz>0 the Fourler transform of a matrix

element of the current commutator

(ZW)WAV(P"D: A"’x e'?-)ZP’[ZA(X))gv(o)]‘» , (3.18)

besides the familiar contributlon displayed in Fig.3 contains the
contributions of different types of intermediate states, shown in

Fig.g
|

WO==@ L4

Sy e —

PGS S —

-

Fig.9
Only Z-type diagrams in Fig.9a are relevant to the process
of single-particle conclusive annthilation. In order to avoid
the appearance of the graphs in Fig. 9b,c¢ it 1s necessary to
consider the discontinuity (™imaginmary" part) of the nonforward
Compton scattering amplitude for the virtual photons with



« Denote 1t by

C,/'uv (5’) ZL; 7'2)722)) = /q,-%)z.

The substltution rule tells us that under the interchange of

9>+ 9;

the 1nitial and final hadrons with - Pi<—> Pz.,hadron-aa.nti—
hadron C/uy behaves as follows ( depending on the hadron

statlstics and assuming invariance under charge conjugation).

Cow L3580 ) =2 C, (0 l9047),

S > U 5 e i ¥
where

U= S—qMV = (%"/Dz)z’
S= (?1+f4)2

and the upper (lower) sign refers to the interchange of bosons

( fermions).

Recalling eqe. (I.17) we have in the oase of electroproduction:

W/V;w (bq) o [C’N(sm, 0,4%9%) - G (509,95 99)]=
Jiscs C/,“, (s)o0, ‘iz)‘)z) . (3.188)

Since here q2<0 we are not in a reglon where C/._w

has cuts 1n qz sy and, therefore, 1t 1s not necessary to

shift the values of qz from the real axis,

Similarly, in the case of inclusive annihilation the hadro-
nic tensor \V/«v 1s given by the discontinuity
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w (P,q) OC[C V(Sﬂo 0. ¢]+10,q_10)-c (S -0, )qu q—zo)]

(3.18b)
-— AtS‘C C/uv (S 0 q+10)q "‘0) 2
which is shown graphioally in Fig.l0
9, %
-— Pd.
Note that now q1>0 and - we are

in the region of cuts ( physical thresholds) in the variables q‘zz .
As it follows from eqs. (3.10), (3.11) one must take q
above its out ( + 20 ) and qz. below its out ('-10)
to insure the correct selection of the hermitian tensor W
and consequently, the real struoture functions W| 2"
We 1llustrate the aforesaid by a simple example 28 « Let the

eleotroproduction struoture funotions be of the form
W g = dim, €G105) ) = €49 F3),

Then the annihilation structure functions are evidently equal to

W)= 2@ ) , 9250,

and, generally speaking, cannot be obtained from the funotion
without additional assumptions,



Now assume that from field theory we know the Compton
amplitude C;/up for ?,Z:;é qzz and in particular i1ts analytio
propertles. Namely, one expects that C/",“, has ( for <o )
the right-and left-hand cuts in § and right-hand cuts in 9
Then discontinuity of (;:“y in S while not being an
analytic function‘in S » may still have simple analytic pro-
perties in 7"5_ variables. Since the lines of fixed S >M?
pass through the physlcal regions both of electroproduotlon
and annil lation, we may get from one to the other by continuing
Aiscs C/Av in qu:l at fixed values of §

( Fig.11 )

N\

It 1s obvious that in the scaling 1imit one must intrcduce
a palr of scaling variables
W, ,=S=M
Lwe | _ 4z
4,2

and consider the generalized Bjorken limit (/l'ma) S, qf?_ — o
with t ’ Ld,’z fixed. Then the correct analytic continuation
leads to the statement

—F ) = F (w+io, w-io)

—F::;_ (w) = Fz (w"':o) (.d-—i@) )

(3.19)

where

Fi (Wn W, ’): '("MB ZMW*L (S’ t=o) Cﬁ';ﬂi)}

Fq_ (wi) wz) = {;WB vwz (S)t=O) qﬂqf))
FT)Z(-U’): F\ﬂ— (wJ w)‘

In varlous models more simple relations were obtained.
For instance, 1f the Compton amplitude 1s taken to be a sum
of ladder dlagrams in the field theory with a cut—off of trans—

32

verse momenta sy then naive continuation relations hold

_F_-i (w)= ¥ F:L (w) , (3.20)
F, (wy=x F, (W),




where the upper ( lower) sing refers to fermions ( bosons).
Summing up leading logarithmic terns @2 1 92
in the scaling reglon in some(ﬁeutra.l )’5 and )’/A > TenoYmam

lizable fileld theorles, Gribov and Lipatov 3 have found

reciprocal relations

W (w, £nq?)=-5 W (G > bres),
W= 2MW, = wv W, | (.21)

In thils case scaling is violated by terms in /h 92 .
Relations (3.21) are interesting because unlike analytic
continuation ( e.g.,naive formulae (3.20) ) they relate values

of W in 1ts physical region (&J 21) to the values of \7\7
also in its physical region ( 0 S W< 1),

There 1s an important theorem 34 pertalning to the thres—

hold region near the point €U = 1, The theorem is true under

rather general circumstances and states:

If as w — i+

Flw)— A <W—4>d , (3.22)
and as W — 4 -
F)=4 (1-w)

then

A=A, A=

. The proof i1s based on the assumptlon that the Bjorken limit
1s controlled by generalized ladder dlagrams with exact propagators
and vertices. This assumption 1swlid for all simple models.

28,16

At the same time 1n some models 1t 1s possible to relate

the index ¢ 1in eq. (3.22) to the power of asymptotic

decreasing of the elastic hadron from factors:

A= 2n-4 (3.23)
L, A\
2) - 2‘) 2
G (q (9 , gis oo,
Presently one is used to take | =2, then ol =23, which
seems to be conslstent with ‘ex:perimental datae.

Gllman Se

nade a comparlison of reciprocal relatlions

(3.21) with the available experimental data. Under some simpli-
fying assumptions he finds that the reclprocal relation between
e+e‘->p H ana e~ p >€" H  1s in rough agreement
with the data, while analogous relation between ete" > H

and €~ JT>€"H would predict, using annihilation data at W= 0.5,
for & 7- electroproduction at (= 2 the result by an order
of magnitude larger than that measured for €~ p = e~ H )

which seems quite unreasonable,
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3.3, Total cross section of € € —annihilation and
hadronic vacuum polarization

Now we proceed to considering the inclusive process of
electron-positron annihilation into hadrons with no hadron

singled out:

e-" + e_ ,___>Y ..,.2 hadrons (3.24)
n

The one—~photon Feynman dilagram for this reaction, is shown in

Fig.l2

cLEcTRON ke

HADRONS

PoSTTRON ~ K

Fig.12

with the notations already adopted. The amplitude of the process
(3.24) in the ez— approximation has the form evidently
( Cf.eq. (3410) )

Ti = 4;21 v U(k,)<Pn\ yﬂ(0)|0> , (329

and the total cross sectlon according to eq. (3.11) 1s equal to

32F3X:

(9%) =
61 q) q1(72_4MZ)- Z"‘ ﬁuu ? (3426)

where the leptonic tensor L""V is given by eq. (3.14a) and the
hadronic tensor

f/ﬁ)(‘l) = @77)32 <o} ) (o),"><h)y )0 574(61— b=

- Llwve ™y o0l =
<*?,wq +q/4‘fv)ﬁ (92) N

satisfles the requirements of gauge invariance qﬂf,uv = q »P)w:

q>o

Neglecting the lepton mass compared to qz we finally obtain
/ F o2
6—1‘@2) f ( ) (3.28)

The hadronic spectral function f (92) is closely
connected with the hadronic vacuum polarization, namely, it 1s
Jjust the imaginary part of the hadronioc polarization operator

h -
Io@)= SA"x e <o|T'(‘7f/4CX)yV(O)Io>=

: h
= (-9,9%+ 9.9) [1°(3»)

As 13 well known/l/,the invariant function n(q‘) satisfies the

(3.29)

Kallen-Lehman speotral representation with one subtraction

02 2 zooAS (s)
ﬂ(q)ze q g g(sp_qz-io) (3.30)

ym2




under the condition of convergence of the integral. From eg. (3.30) g s
it immediately follows that ( see Fig.1l3)

. > (3.32)
S = 9
Im (s = Yz j:(s). (3.30a) SOAS I 16 gocls fell _(s> g
where rl>(g) at sufficlently high S > S, vehaves like H(S),

Imﬂ=® Bls-s) [ (-T2 (s)] =0,

Fig.13 It 1s interesting, also, to note that the integral of

The photon propagator then takes on the form ( see Fig.l4) can be directly related to the so—called Schwinger term in the

v Mgy eq ime current commutator 28,
D@=- (- L) Dy S t

3.31) T o'} I.q'X |
D)= Eﬁ%ﬁ&i ( XM" q"f (f]z) =é},)-gjq o gg”xe @[’Jo<");yz(°)j“‘>}‘iz'o

- 09

D)= W 4+ A : W+ A YYWAN Ywwwn o == SAXD S(XO)jCPX d <0W"‘ao()o’gi(o)]\@)
| dqpa)=-i [r 1 LY EDOND,

Now applying the Cauchy theorem to the function

1s 18 possible to obtaln finite energy sum rule (FESR) 32 Now 1f the equal-time commutator contains the c-number

1 _ 3 el
?: - )= fas oo [4 (07,4, 0] =1c 2 87 ,

0X3

Schwinger term of the form

i



then int egrating by parts we eé.sily find
[ -]

S‘)p(s‘)ds .

Usually ( 1s a diverging quantity.

It 1is customary to relate the total cross sectlion of
annihilation into hadrons, to the cross sectlon of annihilation
into a muon palr. In the lowest ez_- approximation the lep—
tonic spectral function 1s given by 1 ( m! 1s the lepton

mass)
A ( L 2me 1= 2 .
pO=pr\t 5 -4 g T O
S’>>m;

Thus 1in the ez_ approximatlion the total cross sectlon of
this reaction according to eq. (3.28) is equal to

I &

o 2 (3.34)
(5) = =“—— , S>m
and the corresponding dlagram ls presented 1n Fig.l5.
e M
+ +
e M
Flg.l5
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Then the quoted ratio ( in the ©2_approximation)

o, (s) _
Re= o5 =

Replacing in eq. (3.25) the photon propagator by its modified

h
12 ﬁlf (s) - (3.37a)

expression (3.32) we find the cross sectlon 6/'_( with the

account of corrections on the hadronic vaouum polarization

( ) 4’/7'0( S'D(S')\Z

477017_ _ o (5) (3.35 )
Taserel - (denter

Similar correctlons to the total cross sectlon of annihila-
tion into hadrons eq. (3.28) lead to the expression ( on account
of relation (3,30c) )

6rast 2
61(3):——8—/:»(5)/5'])(3)) =

(3+36)
__ra ml10 4y [ DE).
T S|4+ Mhe)?
A8 a result we obtain 25 that the ratio (3.37a) remains
unmodified
(3.3_7)

6",,()

RG)= ={27 ﬁ(s)——fwn ),
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If, besldes, we take into account the contributlon to
vacuum polarization from lepton (€ and/b() palrs given by
eq. (3433) as well, we find, on using eg. (3.37)

I)Mn= jw ﬂh+21m ﬂ[:%[ﬂ-\r?_] . Gu0o9)

Thls relation allows one to deduce rather a strong bound for
the one-—photon contribution to the total annihilation cross

36

section into hadrons « According to eqs. (3.35) and (3.37)

we have
~ N g7 R < TLR
6,=R&u = 35 [(1+Re M)+ (InM?] ~ 35(ImN)?

Substituting there expression (3.38) we, finally, come to the

important inequality

1227 R
O, = S(r2)?

This bound can be obtained in a different way using unitarity
36

(3.39)

condition under the followling approximations and assumptions:
») The whole process of annihilation occurs from the
yPC = 477 state. Only the state with opposite lepton ( €

and M ) helicitles enters in the reactions ( in the limit

74

of zero lepton mass):

B2 = Lot |-,0D], 5

This 18 connected with the presence of only the single-
=photon state in the S—channel and conservation of the helicity
by the electromagnetic vertex ‘a;u .

b) Final states with prhotons are neglected, Hard photon
contridbution to 6")‘% 1s of order o( higher than the
terms which are kept. Both real and virtual soft photons
should be neglected in order to preserve unitarity. Thus,the
bound applies to the cross sectlions, obtained from the
experimental data after subtracting radiative corrections
due to both real and virtual soft photons. The cross sections
so defined should be independentof lepton mass.

¢) Final states of {)?C‘—‘ d_- with lepton pairs and
hadrons are neglected, which means the neglect of processes
like

Z+ + Z— —_— ,Z++ [—+ hadrons -

The cross seotion of this prooess 1s of order 9(2
relative to 6""/4 and in the state 4~ 1s bounded
by comst /s D

d) /U"e universality 1s assumed,

Now consider the S~matrix in the subspace of U PC—: i_-
states €D , \/.4) and \h> , where ‘€>) |/u>

are the relevant states of 1€, /u*)u" and \‘n> is
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the set of hadronic states distinguished by the index [L .
The following relations for the S_matrix elements hold:

<Q\Slﬂ>:<ﬂ\3\e>=i)t ) (3.40)
Ze\S\n>= </\S\ﬂ>=i§h

The total cross section for the process A+ 4 —-> F
with a fixed value of the total angular momentum 1s expressed

through the helicity amplitudes as follows 2

6' (/\a7/\€) ) 7‘(2?+i)\<‘; T‘;}“G7A3>\ (3.41)

where k 1s the relative momentum in the centre~of-mass frame.

In the case of inelastlic reaction 1t 1s obvious that
FCFIT > = <FIS I

where S’:} =4+ 1 T:’ . Averaging over the initial electron
and positron polarizations, we f£ind that the cross section
—_ + —_
for the reaction € + e '—>/b( /U
6,_437”} ,\,17/‘/36/2
4 k* ~ s

+ -
and the cross section for the reaction € € —> hadrons

h (3.43)

& =% 2 |4,
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The S-matrix can be written as
2:8 . .
7€ ' { f ! 7[31
C=\1s e it -4

*» & @
es e * & »

Then the unitarity of the S—matrix

! —_—
S, S, =1

ylelds the relaticns

SIS GISI=5,, , O

or more explicitly

%\(F\S\e>\7~: ??+l§]2+g\§"\z=i (3.458)

ZKMS \F><FlSle>=
=2y In(§77) + 31 1410,

Since V 20, relation (3.45a) on account of eqs. (3.43)
and (3.42) directly leads to the simple but weak unitarity
1imt 2°

(3.451v)

3%
< 2L
611* 6)/4 — S . (3.46)



Relation (3.45) with the account of eq. (3.45a) gives rise to
the following inequality

(3140 1= 42 [Im (56T "<
< 4pt |51 = 41512 (- 1512 15,17)

which after substituting eqs. (3.42) and (3.43) gives

6 +26.)2  12F
<)‘ /*)és M (3.47)

6 < Z ¢

h S .M I}
Using ratio (3.37) we rewrite inequality (3.47) as

f
s, (1~ &) <22,

which immediately leads to the strong bound given by eq.(.3.39).

3.4, Scale invariance and some models

We make use of the automodelity principle 4,14

over
again. Then naive dimensional analysis of the type presented by
eqe (1.62) leads to a simple result that the total annihilation

cross section into hadrons eq. (3.28) as q2_> oo behaves like

2. .
Gh (qz) = Cc;n; 7_’ }oh(q’)=c'on5’t ) (3.48)
q°—>» oo

and the ratio defined by eq. (3.37) 1s equal to
h ER LI F(3.49)
2) = 2 N==L (4*)=¢onst -
R@g)=1272p 1) = Im IV (@) .
The same result can be also obtained from the analysis of the

Wilson's operator product expanslon in the vicinity of the
light cone under the assumption of normal (cancnical) dimen—
sionality of the current operator and from asymptotically free
field theories.

29,30

In the parton model the operator of hadronlc

vacuum polarization takes on a simple form, shown in Fig.16é

D =

antiparton

Parton

Henoe, the imaginary part of thls operator in the case of

spin 1/2 partons is glven by eg. (3+33) as for leptons. In this
way we get

2
[
t

Q

(3.50)

W

T ML @)= 4t o =

)



where () 1s the i-th parton charge and the total annihila-
tion cross section lnto hadrons eq. (3.28) 1s equal to ( cf.,
eqe (3.16a) )

6= 2L 507 =6, 502

If spln O partons also exlst, then expression (3.51) 1s modi-

(3.51)

fied according to eq. (3.16¢) as follows

(3.51a)

6,6)= T4 S g+ L5 @

33 SP‘“‘/?- S'Plno »
The ratio R takes on especially simple form in the
parton mod el

R=31af £33 Q7 o7

S‘nr\ 2 FmD

Specific reallzatlons of the parton model with the help
of spin 1/2 quarks yleld the followlng values of K

R 2 the usual fractlonally charged triplet:
= = -2 _4 _ 4
3 ( Q= 32 3’ 3

the fractlonally charged quartet with the

yauy
ﬂ
+
Ol
l
|3

charge of a charmed quark QC = %

R . 3. 2 o 2 three coloured fractlonally charged
3 triplets
R 2+ 4 /0 three coloured fractlonally charged
- 3 _'2—; quartets
R 2+2 _ 4 three integrally charged triplets
- 0-1 -1
Q = 4 O 0
4 o ©
R _ 2+4 - 6 three integrally charged quartets
0-4 -4 O
=|4 0 o {1
4 0 0 1

The separation of R into two terms refers to a separatlon

of the electromagnetlc current 1nto
N of
o=+

where the ™normal® part ’JN has the usually assumed
transformation properi:y of an octet under SU(3) and singlet

under oharm, colour,etc. groups that is

’}(?,4)=g3+%3—'33.

The part ’Jc 18 assoclated with new hadronic degrees of
freedom ( new quantum numbers such as charm, colour and soomn).
And transforms differently ( in particular as a singlet under
usual SU(3) in the models considered above). Thus, one may



think that at relatively low energles ( \F¥Z1 < 3 GeV)
these edditional degrees of freedom are frozen out and R: 2,
However, after the "thaw® at higher energles the value of
F? increases to 426 ( Note, however, that it may pose
serious problems for electroproduction),
For single~particle inclusive cross sections, naive parton

model gives the followlng predictions ( see eqs. (3.16a,b) )

o< > Ri(1+eos’0) + ’L Q; (1-cos?6)

Sf\n‘AL

qz AG' f(w) + O (1 wz)

and 1eads to the two=jet structure of the energetic hadron

(3.53)

emission ( a rapidity plateau) while experimentally the angular
distribution 1s consistent with isotropy, scaling fails at
(U £ 0.5 in contradiction with eqs. (3.53). Spin O partons
cannot compensate the spin 1/2 partons, since such a large
contribution of in 0 partons is not seen, in electroproduction.

The isotropy of angular distribution, the absence of
scaling at W <& 0.5 and the exponential fall of the inclusive
single particle momentum spectrum with the specific cut—off
parameter T A 170 MeV are well explained within the
framework of various thermodynamic and statistical models of
hadron interactions. However, such models fall to explain
scaling at (U > 0.5, energy crisls and they can say nothing
about the absolute value of the total annihilation cross
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section and apparently fail to describe the spectrum of highly
energetic hadrons.

The ratio R sy found experimentally at \[a; X 5 GeV,
reached the values of order 4-6 compared to 23 at JEE'Q: 3 Gev.,
A linear rise of {l o qfcorresponds to a constant total
cross section of annihilation into hadrons, which contradicts
scale invariance ( automodelity principle), parton model
and above all rigorous unitary bound ( 3.39), With the existing
experimental data (thez,zo nb) this bound is saturated at

qz A2 30 GeV where the rise is expected to stop in any case,
A lirear rise of {2 (S) leads also to the aiverging integral
in representation (3.30) and therefore a new subtraction
constant is required,

One of the possible explanations of the observed rise
of R_(S) 1s given by the model of glant resonance in a quark

system of the type which occurs in nucleon system ( nucleus) 37,

3e5. Implications for guantum electrodynamics ( QFED)

According to egss (3.32) and (3.37) the photon propagator

can be written in the form

—

10 Far S(s-9q%-10)
img ( 9

D)= =1+ 2 A ds RE) T

(3.54)



At low momentum sguared q2‘<< 4)14} 1t follows from
eqs. (3.54) that

D(C’z) ~ iz [i _ <« _C_f_z_' ] ) (3.55)

2
3m mi

" = [ 4r0
4w

is the effectlve hadronic inverse mass squared required for the

where

lepton anomalous magnetic moment and atomic physics appllications.
It 1s also helpful to note that the Coulomb potential

(~=ZA/} ) becomes modified to

V() = 412 g(z 1 DEg)e ';=
(3.56)
= 34[1+ 45"‘3352(5)8 v])

which 1s a sum of Yukawa type interactions. As follows from eq.
(3+55) at large T’z>>4m;z the hadronic modification is
effectively glven by

T4 oL oD ' R
V(r)%-—zo(\.?-\fﬁ—-—ya—i—] . (3.56a)

In general for ({L spacelike the electromagnetic interaotlon
is increased 1n strength by hadronic vaouum polarization.

For estimates we set

.:2 n
R(S>=R<So> , s<A* O< h<d (3.57)
up to some large Smdx - Az and

‘ AZ ) n > 2
for higher values of S with S, 25 GeV® and R = 5
Then from eq. (3.54) for qzé AZ we have

a) 0<L n <4

Du-hi- LT

D n=4

D(ﬂz) =4 Li &4. %Z (H, (__‘/%;>] -1 (3.58Y)

3m

Note that for timelike qz >0 one must take in eq. (3.58a)
according to the prescription (q z+¢'0)

- {Th <
(-—j_)" = & = &STN —13InTh
In a special case of h = 0y *R ®= R = const whilch

correspondes to normal QED of polnt-like particles

we obtaln a well-known result 1

D(C]2> 4 D_— ( )] . (3.58¢)



It ghows, in particular, that the effective charge squared
2 2
e’ =e?qg2 D(s?)
s 92 D(7
grows as )qzl gets large. In contrast to that in non-
abelian zauge theories we have an oppesite sign in front of
log in the denominator of eg. (3.58c).

In such a case the effective charge at large qz

becomes equal to

. _ _ 3T N
gef{ ~ NI (gm?)

and asymptotically vanishes at small distances ( large qz).

0, 9>

Thus the theory is asymptotically free since there is no
interaction and implies a constant value of R at high qz .
The real part of the photon propagator 1s of speclal
experimental interest since only it interferes with the lowest

order 28 , From eqe (3.58a) we find:

Re :D(q‘) = Lq{—i[j_+ %—c’t&rn R (C]z)]°7i sencs, (?.59)

Note that for Y= 1/2 the hadronic modification of Re D(q2)
vanishes identically and hence there is no hadronlc correction
to the process e"e‘»/uju“ since only the annihilation
diagram enters there, For the process ete~—» e"’e" only
spacelike (qz=t<0) modifications are important if n= 1/2.
The modifications of the photon propagator due to hadronic

vacuum polarization yleld correotions of order several percent

(~ oA R ) to the lowest order cross sections of lepton
processes ete  —» e*e" and e*’e“—>/u+/u‘ for values
of qz of order several tenths GeV 2 and O = 90°.

In general the perturbation theory for QED would
breakdown completely, when \ {ED) \ ~ 1,i.e.,at R(S)é ;(3_:1/11
which is reached for R (XS at VS = 40 GeV.

The contribution of hadronic vacuum polarization to muon
anomalous magnetic moment can be expressed directly in terms
of the annihilation cross section ( the corresponding diagram

1s shown in Fig,17 )

o0 4
Y dz 27 (4{-%) (3.60)
a,= 7 (s '
Ah Val) & ‘lsgh(s) Z*+ (1-E)(5/mL)
For 1”"; °
§ >S5, > 4714; (3.602)
o&d
A2 2 fds “mi _ E.7x10°0
AdA, = > m S-— S)y=— L =2
e = g P ) ROV T g s
14

Fig. 17
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4 detalled analysis of hadronic contributions to AA'Qﬂ

leads to the following results 39,40

4,8, (4mF <5< 4GeV?) = (6.6 £0.9)x10™°
Aha/u( §> 4 Gev?) «x 0.5 %1078
which gives in total

-4 3.61
Aay =~ (Fi+0.9)x407" e
h oM
The comparison of theoretical and experimental values of Cyu
leads to

th
exp _ -8
0%t —a, (RED+had) = (27+34)x1077,

where the guoted error 1s taken from the experimental

value of C{,( o Thus, one needs to rise the accuracy of
measurements by a factor of 10 in order to reveal the
contribution of hadronic vaouum polarization. Such experiments

are in preparation at CERN and Los—Alamos.

+ -
3.6, New.vector particles and €€ annihilation

Recent discovery of new vector mesons yé
4,2, 3)“.'
at SLAC and BNL apparently change desioively the whole situation
in hadronic annihilation., Ip fact, since presently the
experimental data are obtained in the reglon, where several
resonances are found, so 1n analogy with the deep ilnelastic
electroproduction one should expect scaling only on the average

in the sense of a ™new duality®™ with respect to vector mesons

35,38

From the other point of view 1f the new vector particles bear,
in some form, a new quantum number ( of the type of "charm™"
"colour™ etc), then the rise of ‘l (S) between \r§1 = 3 GeV
and 5 GeV may be explained as a threshold effect of opening
(thaw) of a new channel ( of the type of charmed quark

production). Scaling in the single-particle inclusive distribu-
tions may also fail in thls region.

We 1llustrate the above conslderations by a simple example
of enlarged ( generalized) vector dominance model 35,38

The maln assumption of this model 1s the existence of an infinite

linear rising spectrum of vector meson masses squared:
mZ = m; (4+an) (3.62)
n 0 .

Such a spectrum is characteristic for dual models. The total
annihllation cross section in this case 1s equal to an infinite
sum of the Brelt-Wigner terms ?

) = 12% m2 [a [, (3.63)
61‘(5' —3_ 4 (S_m:)2+ },n: /;vz
where r; is the total meson width and the partlal decay

width into a lepton pair reads as
F3
F[ Yx oA "My
= 777
[ ]
n 3£
In the infinitely narrow width approximation eg. (3.55) takes
the form



1252 /
Gh(S)z-g,— gmn/: X(g-m,sz

v omE
= 6, 12722, o § (s-m?),

Now 1t 1s qulte, obvious, that in order to obtain scaling
behaviour of 61 OCA/S one should require
' T
wm,, t
- t —_ = cons
m, |, = const | 5

n

(3.64)

so that

\'—l= rt’)Mo_____ 470(2,”02'
v m"’ 3mhfqz

This condition directly leads to the result

a2 176 {25
-l g

h P .Er_;n—‘ = Z’;I 5 (3.65a)
o [
2
R = Sh - ____—/27'2_ (3.65b)
6. afo ’

For usual vector mesons f) w, (p one should take

[
mi=m? a=2, Z=_L =256
o P 4T YT

4 \2
and multiply egs. (3.57) by a factor of g =4+ ('(—3')
which accounts for both the Isovector and i1soscalar components.

Thus

27 (3.66a)
3 A ,{; .
Rpwe ™ P 27,

For the family of new vector mesons assuming that % is

an excited state of ‘f’4 we have

2 - z 2 o~ . eV:
Amq, = Qy m%_ g, -my = 4,4 6 Ve

2
\A

] 14

oy

Ry = Lt
Ay f, /97 Amg $2



In the end, the total value of

R= Qﬁw)\o Ry w2 5r2t=46 O

which 1s consistent with the present experimental data.
The same result may be obtained with the help of the sum
rule ( 3.32). Really, recalling relation (3.37) and choosing

R =2 ImMPE)=RE)"

we write the sum rule (3.32) in the form

Smax Q 8 n
Sma;r __'_"ﬂ (3.67)
g ds R(s) = n+il \So y 0€n<l,

Saturating the left-hamd part of eq. (3.67) by contributions

(3.56) of vector mesons

R, (s)= 1272 2 §(s=m)

we find

mé Rsmax <SJmax> ‘ (3.68)
412 le &2 n+i
2%

v

In the case of scaling behaviour we have R (S): Const) n=9

hence

R = _@f; _t"__f’; (3.688)
z
S"yn‘lX v fv J

92

and the sum rule is also valid locally.
Now assuming the usual SU(3) ratios for the constants mf/‘ff
V= P) w, that is 9:1:12 and taking as before S‘,“a)(=2m’-

f

we come to a famlliar result ( Cf. eq. (3.66a),note that again
4— 4 A + £ 4
9 9 3

Srxt

Rpwoe = 57

Similarly for the ¢—meson contribution we find, choosing
— 2 2
Smax = My R 1273 m,
T ————

2 (2
Am?, }‘/’
4n accordance with eq. (3.66b),

In the case 1if a \' meson is the pure ¢C-state ( ¢ 1is
the charmed quark) the SU(4) symmetry predicts the ratio
2 2
me, , 1:8
" e 2 .
I ¥
w Y

which 1s well satisfied by the experimental values.
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