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We adopt the following notations and conventions 1
'
2 

1) The metric tensor fJ ,l-(V is given by 

iOO=fJj-H::::j22=j33=J. J• j~~OJ_,Pj:.v) 
_/-( J ).)= OJ d,~ '2.~ 3 • 

The scalar product of four-vectors 

where 

In particular on the mass shell 

2) The anticomml1tator of o- matrices 

The Dirac equation for positive frequency spinor wave functions 

reads as 

where 
1\ 
p-
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The spinor U ( p) is normalized by the condition 

"* 11 c r) t{( p; = i ) 
"U = 1A 'fo 

For negative frequency spinors we have 

Cf+M)v(p)=:i 

ttY(~) 'lr(f) = i. 

The matrix 

'0 ;- = 1 Yo '(j_ '{2. 0.3 

Under the hermitian conjugation 

t !. ~ t 
Yo= fa , Y ~-Y) Yr = r5"" · 

J) The one-particle state vectors are normalized as 

< rl r >= £ (p) (27T) 3 sJ c-p---f) J 

M 

E. (pl ='= '{p2.+ Mi"' 
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1. ~.:E inelastic elect!2!!::~.!L~terin,g 

Since the electron to a high accuracy is an elementary 

point-like particle with the well known electromagnetic 

properties, electron scatteTLng is an ideal probe of the 

structure of other more complex objects such as atoms, nuclei, 

and hadrons. By bombarding a target with the beam of known 

energy and detecting only the outgoing electrons, one can 

determine the charge and magnetic moment distributions 

within the object and hence, gain information on the consti­

tuents inside. Thus, we possess a unique opportunity as if to 

glance into the composite object and in this meaning one could 

speak about the "leptonic illumination" ( Bjorken). 

In the case of hadrons like the nucleon we know V•Jry 

little about their basic structure eler;lents, though we believe 

that we are dealing with composite objects in that sense or 

another. So much interesting appeared the results of the 

experiments on the deep inelastic electron-nucleon scattering, 

which revealed the point-like behaviour of cross sections for 

these inclusive processes. The idea about such a kind of 

behaviour of the total cross sections for lepton-hadron 

reactions time was first pur forward by prof. M.A.Markov more 

than ten years ago. 

The discovered behaviour of the cross section may be 

interpreted in such a way, as if electron ( muon) scatters on 

quasifree point-like elements ( partons) constituting a nuCleon. 
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Tn addition to a large ( point-like) magnitude of the 

cross section, experiments revealed also a remarkable 

regularity, namely, the scale invariant ( automodel) behaviour 

of inelastic structure functions, i.e.,the absence of 

any dimensional parameters, characterizing the structure of 

nucleon constituents ( Bjorken, Bogolubov, Matveev, Muradyan, 

Tavkhelidze). 

In the other language, employing the duality ideas, one 

can say that a substantial part of the scaling behaviour 

emerges as a result of averaging over a sum of large number 

of nucleon resonances, exited by an incoming lepton ( Bloom 

and Gilman). 

While preparing this section we widely used lectures and 

reviews J-6 

1.1. Kinema,tics of the process 

Consider the inclusive reaction of inelastic electron-

nucleon scattering 

e+N ~ e/ + ~hadrons 
n 

unobserved 
(1.1) 

where only the final electron is detected. This process in 

one-photon ( e 2 ) approximation is shown graphically in Fig.l. 

• 
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where k and k' are the initial and final four-momenta 

of an electron of mass m ' '(-= k- k / is the four-momentum 

transfer carried by the virtual photon, and p is the target 

nucleon's four-momentum with p 2. = M 2.. 

Hadrons in the final state \ ~) owing to the conservation 

law have the total four-momentum 

?n = p+ q 
and the effective invariant mass squared 

p )\2. :: s = ( p + 'l ) 2 
""' M 2 

... q 21- 2(P·4) • 
(1.2) 

It is also helpful to introduce the invariant variable ( ~ 

is the nucleon 
mass) (p.q) 
'))::::: M 

which in laboratory ( lab.) frame of reference ( initial .... 
nucleon at rest, p = 0 ) is equal to the virtual photon's 

energy ( or the electron energy transfer) 
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where 

V == ao = E- E 1 

lla€ 

E = ( p· k)/M E /= ( p· }:t )/..M. 

are the energies of the initial and final electrons in the 

lab.frame. The invariant momentum transfer squared 

1 z = ( k- k 1) z = 2 m'- 2 ( k· k') ) k 2. = ¥.t z.'"' l11' 

in the lab.frame takes the form 

92 ==- 2.t:=t
1 (i-~9)= 

= - /fEE I Sill 
2 f < 0 } 

(1.4) 

where e is the scattering angle and the electron mass has 

been neglected compared to its energy. We adhere this 

approximation throughouti inwhat follows. Sometimes we shall 

also use positive-definite variable 

Q2.=-qz>O (1.5) 

Knowing )) and ~ Z from measuring the incident and 

scattered electron, one can easily determine from eq. (1.2) 

the effective mass squared of the final hadrons 

s = Mz.+ q2 -+ 2 rv\)} (1.6) 

Using the selfevident inequality 

s ~ M 2 
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one immediately obtains the boundary of the physical region 

of inelastic electroproduction 

q2
+ :ZHv~O 

(I.7) 
) Q2.~ 2t--\'V. 

In the following we shall often use the dimension variable 

w=- 2M1J 
qt. 

2 Mv 
- Q2. -

s- Mz. 
Q2.+1 

in terms of which inequality (I.7) takes the form 

w ~ i. 

The inequality q 2. ~ 0 ( W < ~ ) serves as an?ther 

(I.8) 

(I. 7a) 

boundary of the physical region, which is shown graphically in 

Fig.2. 

Q~-~2. 

Fig.2 
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According to the rules of quantum electrodynamics (QED) l, 2 

the amplitude of inelastic electro-production can be written 

in terms of the S-matrix element 

s+l = <f l$1i>==<fli)+i(2;r)48{p ... +k~p-k)11:t 

Tti = <-t\T\1>=-

- t;Jfd. g:v u (k')~ ~JACk)< P>t l dv<o)\ r>' q (1.9) 

where ~Y (X) is the hadronic electromagnetic current operator 

single-particle states and the Dirac spinors are normalized 

by the condition 
~ 

< f ' f ~> :::0 .f~) c2 7r) 
3 ~ cf-r J 

1:{(f)U(f)= 1.. ' £Cf)-= ~f~+Mt' 

and o( = e 2RT = d./131 the fine structure constant. 

We are interested in the differential cross section for 

the process (1.1), where only the final electron is detected 

and various ( unobserved) hadron states are produced. 

According to the usual rules 2 the invariant differential 

cross section for this process has the form 

d 6' }'11 M 'V } \2 * ~" ~ d 
3 k/ = 2. 2. L T,f. (rr) 0 (p+q-p,.)l .'\3ct ~ 

(p· k) - »t:z. M h l ~._21; c: rn 
(1.10) 

'WI'Z.. Cl \ 2.. (?If cPk' ~ - '' T_i., \ (271) 11 
0 (D+~-p .. ) -3 " ' E."==~kll:..pt£ 

E ~ -J 1 (n) c,.. "" ' 
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f, 

where the final states )11) are summed over. On account of 

eq. (1.7) a phase space element in the lab.frame looks like 

J3 k; = lk;\dE./dS: = j/cl~;d9z 
£~ 

(l.lOa) 

In the generalmse of a reaction with both polarized initial 

electrons and nucleons the double differential cross section 

summed over the final electrons polarization in the lab.frame 

can be represented as 

d2b = l;ot•£' L:'v(l>) ~. (s) 
d £1 dE/ 1 "£ 

where the leptonic tensor 

(1.11) 

L (o)==tnz.Zu6"(k)t,. U
6(xjuo(K')Yvllb'(k)= 

:.-uv o" ~ 
(1.12) 

[ 
f\ i\ A 1 

= : Tr- { (1+% c)(k+~)~ (k'+m)Y)) , 

and the hadronic structure tensor 

~Js) = (2•)~ (p,sJ~(•>I r~) <~ .1 ~ J•>l p,s) 8(p •q-r.) . 
(l.lJ ) 
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The lepton and nucleon polarizations are characterized by the 

spin four-vectors 6' .-M and S r< satisfying the conditions 

gZ = 6'2=-i 0• k = s. p ::: 0 

-+ 
so that in the rest frame, e.g., f == 0 

? = c M i-o ) ) s = co) r ) , ·s 2 = 1.. , -where S is the usual spin pseudovector. 

From the hermiticity of the electromagnetic current 

operator -t 
~fA(){)= ~rC><) 

the hermiticity properties of the structure tensor W,/"'-V 

follow 

:;:; .!-" v = w v .)A • 
(l.lJa) 

Exploiting the translation invariance property 

-('.p'rl\ ~rt(x)\ p) = e i(pn-p}X <~1-1 \d_,...(o)\p~) 
it is straightforward to verify that the hadronic tensor 

describing the nucleon structure can be written as the Fourier 

transform of a aatrix element of the current commutator: 

~v(s)= 2~ ~J"xei9·x <r,s\[~f"ClC)/(f)o)]\p,~, 
(I.14) 
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where the second term vanishes due to energy conservation 

for )) > o. 

Expression (I.l4) shows that tensor W~v up to a 

constant factor is the "imaginary• ( absorptive) part of the 

forward off-shell Compton amplitude for virtual photons of 

mass squared equal to q4 . In fact such an amplitude up to 

some real finite polynomial in q 0 
( irrelevant to demonstra­

tion of the above statement) can be represented as 

~/q)=iez jJ'f e 11·X <r\T~}'Jd.,<o)\ p)' 
(I .15) 

where the time-ordered product of currents 

l d/' (x) dv(o) = f)(XO)dfl(x) d)o) + e(-Xo)JJo)'Jr (x). 

Making use of the T-product definition and integral 

representation of the G-function, we finally obtain a 

dispersion-like relation 
o<J 

<;/~) = e2 \Jq'[~v ( q:, q) J ID a/- a - i o 
0 

-lo -,o 

Hence, employing a symbolic formula 

~ 
X-io 

~ g> .l -+ i 1T 'g(x) 
X 
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w~" (~ q;, cDl 
q:+q 0 -toj 

(1.16) 



we immediately find 

Im c_?V Cq)= ~T2-cJ. ~I)(~) (1.17) 

Graphically eq, (1.17) is presented in Fig, 3 

Fig.J 

!.lore precious meaning of eq. (1.17) consists in that the 

hadronic tensor ~ll is given by the discontinuity of the 

forward off-shell Compton amplitude across the S-cut ( in \.>­

variable): 

/;;r'-t).li~v {vlqa) =discs Crv (s, 92.) -

=- {C .,-M" {s-rio, 92.)- C ?v (s-ic,~ z.)} . (1,17a) 

Decompose leptonic tensor L_,MY (6) into pieces symmetric 

[S] and anti symmetric [A j under permutation _.;A~ V 

L,?V 
L [s] 

,f-<V 
(1.18) 

-+ t 
L[A] 
~\i ' 
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where neglecting the lepton mass 

L [s] ::=. i [k k 1 + k k 1 + q '-J = L [:s J 
J'l v 2. r v )I :r ~flv 2 ~/'1 

L[A] 1 c ) 'L = - m c. v I'( a 6 
J-1 v 2. _,)A "' I 

=-- L(A] 
1:'JA 

Actually decomposition (1,18) follows from the hermiticity 

property of L _..,ua> 

'* 
L/4v L~,M. 

The symmetric piece as one should expect, coincides with 

(1.19a) 

(1.19b) 

the result of averaging over the polatizations of the initial 

1 epton 

[sJ- j_ ~ L (fi') . L -2 L-. .td. 
~~~ 6 / 

(1,20) 

Now owing to the hermiticity property (l.lJa), the hadronic 

tensor VV~vcan be decomposed in a similar way into 

symmetric and antisymmetric pieces 

w.P." 
vJ [s1 

_,..MV -+t 
\~[A] 

_,.M 11 ' 
(1.21) 

where , as in the previous case, the symmetric part corresponds 

to averaging over the initial nucleon polarizations. Utili­

zing the relativistic and gauge invariance of the theory we can 

put the spin idenepdent part ~[S] into the form 
~~~ 
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W r~J = 1 I: ·\v (sJ = \v c~J 
_f<il 2 ~~~ Y.,r< -

.s (1. 22) 

_I_ + t..qv]""· r ( 1:) I 0' o 1.r( Qz) -l- ~?v qz. VV.i V)Q + M2. r.r l-yVV
2 

V; ); 

(p·'l) ( e.a)=u _, q2.. ) I 

./'V 

D = f - q 
I I" /-' /"' 

which insures the implementation of the requirements of 

current conservation 

9~ w;~J-= q~ -wj;] 
~ 

and of PT-invariance 
w [sJ = w[s] 

/"' v v/"" • 

In order to find an explicit gauge and Lor8ntz 

invariant decomposition into structure functions of the spin 

dependent piece w.t<[lf]we notice that it must be linear in . v 
the spin vector S • Indeed, this follows from the expression 

for the spin 1/2 density matrix 

A 

1( s (f) t{ s Cr) = ? + M l ( i + Y, s) 
'2~ 2. ? 

(1. 2J) 

and from the constraints imposed by PT-invariance: 

CAJ [AJ 
wj-Ol (s) =- Vv/-<1.1 (- s) ( 1. 2Ja) 

• 
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Thus the spin dependent tensor t~il (s) can be reprosented 

as 

• [A] 1 I r: II A G '] 
l w/"'V r!: J =If M 1 ,.. L c r + M) r5 s ..,u v ) (1.24) 

where in the most general from 

G.l'v = 2~ {[~,tJ(p<j)- [~JJ P, -[q,y.J e..} G~ (v, Q') + 

+ 1 {[~,rvlql--[Yr,q]q,-[~,Yv]9r~G/v)Q~. 
(1.25) 

The invariant structure functions ~d, 2 are defined 

according to Bjorken 1 , The trace calculations lead to a 

simpler expression 

w.uu_ P.6' z. 
J-AV - E._/<v_,rr q- s G-i (v, Q) + 

+ ~ E.P-v Jr; q P [Cp·9) ss- (s·q)p6]Giv,Q~. 
(1. 26) 

The requirements of current conservation on account of anti­

symmetry of the tensor £_/-''J"O are identically fulfilled 

a~ W[A] 
I ,flV 

- avW[A]=O 
I ,J-4 II • 
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The hermiticity properties (l.lJa) of the hadronic tensor 

W provide the conditions 
~v 

* w [s)AJ 
.)"lV 

= w [tS';A J 
_,.uv ) 

which result in the reality of the structure functions 

anu G,>:z. . 
The product of the hadronic and leptonic tensors 

(l.lJb) 

lA!:;, ']_ 

entering eA~ression (1.11) for the differential cross section 

with the help of decomposition into symmetric and antisymmetric 

pieces can be rewritten as 

L_/-{1) T~r = J_,Mil W csJ _ L.).lll 
~;.n' La [~J ;.-t.l {AJ 

wtAJ 
~~~ (1. 27) 

According to eqs. (1.19), 0..20) and (1.22) the first term in 

eq. (1.27) corresponds to averaging over the spins of the 

initial lepton and nucleon1so that the spin independent piece 

of the differential cross section (1.11) has the form 

lE>av = lfiL£'1.[2li(V;Q2)s/n21 +11/{V;fl~C'JJ.rzj]. 
d£1

df' {;;" 1.. 2. (1.28) 

Exactly this quantity was measured till now in the experiments 

on the deep inelastic electron-nucleon scattering in which 

the remanrable phenomenon of scaling was discovered. 

18 

The second term in eq. (1.27) describes the spin dependent 

effects and, as is obvious from its expression, in order to 

observe them one needs to scatter polarized electrons (muons) 

on polarized protons. Such experiments are planned at a 

number of laboratories ( SLAG, FNAL). Under the assumption 

of time reversal (T) invariance the spin components normal to 

the scattering plane gives no effect. It is therefore sufficient 

to restrict oneself to the two independent configurations for 

the proton spin parallel and transverse to the beam direction 

in the electron scattering plane. 

Hence, it follows that one must measure two asymmetries 

in the lab.frame: 

1) 6'-
k ...... 

2) 

dz.6'N 

d.S:'JE' 

d2ot~ 

d£ 1dE' 

• p 
~s 

iz6'H /1o/.2£1 c:l _ "~' · r, 1 (1.29a) 

c\2'dE:'- QZ.£ L(E-.E ~se)q(v,Q2)-

Cl ~ 
t~ s 

Q 2 G
2 

Cv~.Q:z.)] 

' 

d Z.b f~ l;iX2£ I 
d£/dE' = {)2£ E~~;n&M(!-~QZJ+ 

+ 2E G-
2 

(v1 Q2
)] 
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Thus is principle it is possible to separate G{ and G2. . 

1.2. Unitarity and positivity conditions 

As is shown above, hadronic tensor w.)-41/ is proportio-

nal to the imaginary part of the off-shell Compton amplitude 

for the forward scattering of virtual photons on nucleons. The 

optical theorem, Which is the consequence of the S-matrix 

unitarity, relates this forward amplitude to the total 

cross section for the absorption of virtual photons. Unlike 

real ones virtual photons in addition to the two transverse (T) 

polarization states possess a longitudinal (L) one as well. 

Thus, it is possible to express the invariant structure 

functions w,,'2. ) ~12. in terms of the Ihotoabsorption cross 

sections for various polarization states. It is convenient to 

utilize the formalism of the helicity amplitudes: 

. * ~ 

<~ 1 s1 1 Tl A ~\::::: €;4 C (s 1 s) £ 
) '/ .X' ._)J-'IJ I ~ 

(l.JO) 

where the virtual photon~ helicity wave functions in the lab. 

frame have the form 

c T -i (' • ) 
<- .:± 1. = \[2: 0) ± i ) l ,o ? 

£. L- - .( ( ~ 0) 
0 - ,r--:; \ Q I } 0 I 0) q ,- ql l ) 

q =. (9°) O,o,lql) I f=V) \ql==vv~-Cjz.'' 
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and satisfy the conditions 

* * t?T J"i i L~A 7 E.,.:::- '£._...., cL=+iJ q.r~;L==O. 
For the ~ -channel forward helicity amplitudes for virtual 

Compton scattering we introduce the abbreviated notations: 

(d. J 
112 \ T l i 1 Yz) = T1h. 

.:( i ) - '/2 \ T \ 1)- l/z > = T31z. 

< 0 ) I I 2. \ T \ 0 ) 
1/2 > = T \... 

( ± j_ ? ± 1/2 \ I \ 0 > + '/z) = T Vz L 

(l.Jl) 

The tensor Compton amplitude ~v can be also splitted 

into the symmetric and antisymmetric pieces 

c = c [tJ 
~v /11.> -+ 

• 
1 

C [AJ 
,/-,(1/ 

' which have exactly the same invariant decomposition as their 

"imaginary" parts W[~, AJ displayed by the expressions 
_,-'lv 

(1.22) and (1.26). 

functions entering 

entering C CAJ 
-"""' 

We shall denote the invariant structure 

c rs1
Jas c (v_ Q'Zj and the ones 

-"""' -t,z 
as H,,

2
(v,QZ) • ThUS on the basis of eq. 

(1.17) we have the relations 

r )1.-\ c ~~'2. = lt1r 2
r:). 1vA.,2. 

I '\'It\ H = 4T2 d.. G-
'1,1. -1, 2. 
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where as before the "imaginary" part means the discontinuity 

across the S- cut ( in 'V- variable). 

It is quite evident that the number of independent helicity 

amplitudes must be equal to the number of invariant structure 

functions, i.e.tin the present case to four. Thus they can be 

linearly expressed in terms of each other: 

Ty2. = C1 + [vHi + q2. H2 J 
1 

T 3/ z_ = c i - L v t-\ 1 4- q 2. H '1 ) 
(l.JJ) 

T=C-i-£)c-c. \..... 92.. 2 :1 

~lz L = '-J-2 q 2' [ \-\ i + )) H 2J . 
As is well known the optical theorem in the case of real 

photons states 

I)\.\ T Cs) = s-- M2. b t.,+, 
2M 

(l.J4) 

where S is the centre-of-mass energy squared equal to the 

effective mass squared of a produced hadron syste~. 

At present it 1s common to adopt aand~ convention 

concerning the kinematic flux factor for virtual photons. 

Namely, the imrariant nux factor is taken to be the same as 

in the case of a real photon w1 th energy \) producing a 

final hadron state of mass ~ • Thus the "equivalent virtual 

photon'S energy" 

22 

K = s-t--12- = V+..i! = v--~z.. 
2M 2M 2M 

(l.J5) 

Using eqs. (l.J2), (l.JJ) and (l.J4) we find the helpful 

relations 

f) T =~ (oy:~-+5)/z )= 2.~ r~ [Ty:~.+ ~h. j = ~~ol ~' 
(l.J6) 

£-' - I I -r ltJrz.ol.. G( vz.) 1 
Q L - K ~ I L = T Ll i + Q z. Wz. -~ ) 

~ ( ~ V2.- 6'312.) = 2~ I~ [Tyz.- 't;z.] = ~~oL ~Gt-G
2 G2 j) 

6\;1 L= ~l~T'I:z.L-= qyzol.~1Qz.'tG-1.+11G2l. 
In addition the asymmetry ~ 

A (v; Qz) = 6"' Y<t. - 63;2. = v G11 - Q 2 &z. 
'2bT ~ 

(l.J7a) 

and the ratio of the cross sections for longitudinal and 

transverse "photons" 

6'L- = ( ~+ ~~) w2- ·- i 
tOT w~ 

(l.J7b) R-= 
are often employed. 

It is easy to write down the inverse relations 

v -~ (]. 
i- Lt;r2c}.. T 

w =- _K_ (5' -+D.) QL 
2 'f"X 2-J.. T l...... Q z.+V2 

(l.Jaa) 
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G k [ ~ z. SvtL- A 1 v =- ·-+ 0. -
i. lf7r 2.o{ -;y- V 2 Q z' T ).) 2-1-Q2. 

G - ~ [-v Ely;z.L - A G": -, '1 . 
.,.-'2.- 'llf 2 oJ.. V 2. Q z.' T j \) "'+Q z. 

(1.3Sb) 

In terms of the above introduced total photoabsorption cross 

sections the measured double differential cross sections take 

the form in Hand 1 s parametrization 5 

d 2.6' 
d£1dE' = r co + <!_ 6' ) T L , (l.J9) 

J2s>t~ d26'H {(. E' 1./(ii' } 
d£'dE'- d£~E' =2r \{-C:E )A6'T+£~ £ 6'y2.L. 7 

l2.6t~ d2 t~ 
d -

0 - 2r r{' . I w lf"r(- E'J 1 d~idE' d£'dE' [ -z£(l+£) y AbT -v~+E 1 
tE 6'~LJ) 

where 
rt 1'\ £ z 

Qz.. £1 (1-£) ' (1.40) fl= 1fJT2. 

i.-=- d.+ 2 (1. + v2.) faz2. e Q~ ~ 2 
Note that in the case of real transverse photons 

Q2.= 0; /"("=).) 
(l.J6a) 

b t- ( v, o J = G'v:z. L r v1 o J = o > 

6 (v,o) 
T 

ltJT 2d. I ~ ] --v- ~ (~o) == 2 L ~ (v) +6"'p(v) 
1 

24 

i L 6'y2 - b3;i] = 4Yr2ci bi (v,o)::::: ! [6'A (v)- t>1JvJ], 

where f)A, e are the total cross sections for the absorption 

of real photons with spin parallel (P) and antiparallel (A) 

to the proton spin. 

The introduced above notions of the total photoabsorption 

cross sections allow one to present in a transparent form 

some of the properties of the invariant structure functions 

entering the hadronic tensor ~ l) • In particular the 

before mentioned hermiticity property of this tensor (l.lJa) 

leads to the positivity condition 

a:,Mw"' av >O ? 

for any complex vectors a.,.... 0 Making reasonable choice 

(1.41) 

uf the vectors a ..... = c.; ( s: is the nucleon spin 

index) it is possible to obtain 8 restrictions on the 

values of the invariant functions. However their complete 

proof is rather involved. It is considerably easier to see 

the origin of these restrictions from the conditions of 

positivity of the total photoabsorption cross sections. We 

emphasize, that despite the seeming obviousness of this 

method it cannot be considered as completely rigorous, since 

the positivity of the cross sections for unphysical processes 

involving virtual photons is not so evident. Nevertheless in 
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view of the existence of a more rigorous :proof we accept that 

the following conditions are fulfilled: 

6T? 0 > 6'L ~ o ) b.12 ~ o) ~~z. :;:::o 
(1.42) 

r->2 'c· 2. ' 2.. A2. o T = 7i oy}_ + ~/2.) ~it (6'~-~;2.)' ~ 1. . 

Hence, with the account of relations (l.J6), the positivity 

constrP.tnts follow 

""'· r = '·' ? o VV T - V\1 1 ,;r ' 

v') "''r 
W = ( i +- Wz.. ·- w:1. '">-:- 0 > L- Q2. 

(1.4J) 

wi. ~ \ v G-i- Q 2. G-2. \ • 
One more constraint may be obtained with the help of a 

Schwarz ty:pe inequality: 

r t \ t <o<l TT}~)<JITTif>~ <o(\TT\f)\2
• (1.44) 

Since, owing to the optical theorem ( s-matrix unitarity) 

T 
~ o<: I~ zo( 1 T 1 o<> = i <o( 1 T T \cl) ~ o 

t . 

~~ oC I }1-1 <(:X \T \f>= ~<~\'TT \f) J 

inequality (1.44) can be rewritten like 
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o'o( E)f3 ~ s:~ (1.45) 

As a specific example of inequality (1.45) we have 

bljz. b1- ~ 6.;2 L 

(1.46) 

or introducing the ratio (l.J7b) 

e>L.= R ST 
2. (1.46a) 

~'h. ROT ~ 61/:z. L 
Hence using relations (l.J6) we obta.;b another constraint for the 

structure functions 

[W~_+vG1.-Q 2G2l~Wi. ~ 2Q 2 [&~ + vG2l
2

• 
(1.47) 

For some applications it is more convenient to employ 

inequality (1.47) in a different form. Since according to the 

last of the bounds (1.4J) 

~ ~ v Gi- Q 2 G2. 
from the constraint (1.47) it follows 

n w2.. 2.l- J 2. (1.48) 
l"' i > Q G-i + )) G-2. 

We shall utilize the latter bound for an estimate of the 

hadronic structure contribution to the hy:perfine splitting 

of the hydrogen energy levels. 
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l.J. One-nucleon state contribution 

How consider at more length the contribution of one-nucle­

on intermediate states in expression (1.12) for the hadronic 

tensor W M v • Such a contribution corresponds to the elastic 
/ 

electron-nucleon scattering. To this end we make use of the 

well-known parametrization for the matrix element of the 

electromagnetic current between one-nucleon states 2 

<~~s,.ljr(o)\p)s)=::U 51(p 1) 0J4) u 5 Cp)) 

• 
rr (q) = ~ F:. ?9 ~ + 2 ~ ~ v q 1) F:. f9 z) J 

where 

~ ~ = ~ [ ~ , Yv] q= f'-p. 
The form factors F 1 1 2 are normalized in the following 

way ( p-proton, n-neutron) 

F p (o) == 1. J 
1 

F!(o)-=aep) 

11 F, {o)=O ) 

F2."' co):: <~\, . 

(1.49) 

(1. 50) 

Usually electric and magnetic form factors are also introduced 

G - F Q2.. F 
E.- 1..- LfMz. '2.. J 

Gtt:::. F1. + f2. 
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In terms of these form factors one-nucleon contribution to 

the invariant structure functions reads as: 

W el( 2) Q2. G2 . z) ~ Ql.} 
1. V, Q =It M z. M { Q O ( V - 2M J 

w:' (v, Q') = [F,'(Q9+ "~: F,'(Q'J] O{v-2~')= 
- GE2.{Q~ + $. e-:,«lv 9{ Ql.) 

d_ + Q: 01 V-2M J 

iiH Q.5i) 

Gief(v) Q~) = 2 ~ F; ( Qzj G M (a~) d (v-Jf;/)) 
J"?ff{V Ql)=- j_ f;_(Qz) a-M (Q9 8( l)_g2-) 
c:r2 I ) '1M2 2M • 

It is straightforward a to check that the following relations 

are valid 

)) G ef-. Q 2 (} ~,/ = \V. ~,f 
! 2. d. ' 

G ~f + 'J G ef = _..!_ G G J (1J- .!2..z.) 
i 2- 2M t:. M 211 .) · 

(1.5.2) 

Wei { -y '2..} ef ~~ G.2. (l (, Qz.) 
L = 1- ,f-{iz- W2 - W1 = E 0 (. ))- 2M • 
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In th~ parton model a paxton ,is defined as a point~ike 

object the mass (four-momentum) of'which is some fraction 

of the nucleon mass ( four-momentum) and the parton charge 

is equal to eie . In the case if a parton is the point-like 

Dirac JU.rticle ( i.e. of spin l/2 and with f",(qz) =i J ~_(92.)=0) 

we find changing 1'1. into X .M. in eq. (1,51): 

. 
2. fvl W/ - e~ 

l J'(x- ~)' 
w:; z. q I) v 2 = e i x o ( x- w - 2M w~ 

- .1 ) (,<.) 

Z-MvGl 
1 

' Gl 
2. 

- e~ 
l 

0 

6 {x- ~) 

) 
w-

2fviW 1 

i ) 

2Hv 
Q2. 

1.4. Scale invarianoe C au:!:.2!!l£\ll!ll.Y~.L§.!!!!!...!~ 

(1 ,15 3) 

The peculiar property of deep inelastic electron-nucleon 

scattering is the scaling ( automodel) behaviour of the structu­

re functions ~l 2 • EXperimentally it was found that as both 
' \) and Q2 reach sufficiently high values ( compared to M2

) 

the functions v w2. and -w! become nontrivial functions 
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of the dimensionless ratio W =: 2MV/Q'. 

There exist various theoretical models which predict the 

observed scaling behaviour • Since the hadronic tensor ~~v is 
expressed through the current commutator, it is possible to 

show that the asymptotic behaviour of ~' 
2 

as q 2 J V .....,._ e>o 

is intimately related to the nature of singularities in the 

vicinity of the light cone X2 =o. The most complete investic;a­

tion of this question on the basis offue Jost-Lehman-Dyson 

representation for the causal commutator was carried out by 
· lo Bogolubov, Vladimirov, Tavkhelidze and in the subsequent 

papers 11 • 

Briefly explain why the asymptotic behaviour of structure 

functions in the Bjorken limit ( ./.'m 8 ) 

2 "2Mv • d 
Q ~ l><1 1 ))- 0<1 1 W=- ·-- f1Xe -, q z. 

is connected with the behaviour of the current commutator near 

the light cone X2 = o. To this end recall the Fourier 

representation (1.14) for the tensor \AI~v • Choose the 

reference frame, where 1> = (M,o), q = (v) o, OJ .J vz-q.z'). 
Then the scalar product ( q•X) in the exponent can be 

obviously written down in the form 

(q•X)= I (qo-q3)(Xo+X'3) + i (qo+ch)(Xo-Xs). 
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In the chosen reference frame 

( q o- q 3) == v- fv).-qz 
/i'M8 
~ 

qz.=- 1i 
'2V w 

( q c + 'h ) = V -+ V V '-1 2
' 0;:.. 2 V = - CJ 2. .!d 

.M 
It iR well known that the main contribution to the Fourier 

integral comes from the region of values of ( Cf•)()'"" i J 

i.e., 
2w 

\)(o-+X3 \ 
'1.. -

f""\.1 \'lo-'1~\ M ) 

\ Xo-X3 \ rv \q~+ 'hi == 
ZH --\qz.\w • 

Hence, the essential values of )( 2. are 

2 ( ...,, 
X = X'e1-)(3)(Xc+X3)-X.l. ~ 

( ( 
4 -1/Ms 

.:::;. X'o-){'3) Xo+X>) I'\/-~ 0 I qz\ 
The parton model assumes that a nucleon is composed of 

quasifree point-aike constituents, named partons. This model 

rests on such an experimental fact that the electroproduction 

cross section integrated over the energy I) at high fixed q2 
has the same order of magnitude as the Mott cross secti~n on 

a point-like nucleon. The structure functions 

are thereby obtained by integrating over X 
w11 2. 

the parton 

functions (1.5J), multiplied by the distribution functions of 

the fraction X of longitudinal momentum and summing up over 

all partons: 
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-1. 

2.M-VJ: ( V
1 
Q 2.) == 4-.' e/ JJx f. (x) o (x-jJ = F; (t.Jj 

i l l (1.54) 
0 

i 

v W2 (v,Qz)=fe/J Jx xf;tx) 8{t-d)=~lw)=~~(w) 
D 

R= Ct..~ 
6'T 

Wz. ( 1 -+ v·z.\ -1 = 4M
2 -"~ o, 

w:i ~ Q2.. J Qzwz. 

where f. (X) is normalized by the condition 
I ' 

\ J X f· (x) = L: !Vi P ( W,·) =- < N i > } 
J l N: 

6 l 
(N;) is the average number of partons of charge ei.. 
Thus deep inelastic electroproduction in the parton 

model reduces to the sum of elastic scattering processes on 

point-like partons • We have assumed above that partons are 

spin 1/2 particles which may be identified with the usual 

quarks. There is extensive literature dealing with the detailed 

consideration of this model 12 and , in particular, with the 

deduction and analysis of various sum rules. 

In the case~ spin dependent electroproduction one needs 

in addition to take into account spin degrees of freedom 

of partons 6 • For spin 1/2 partons two distribution functions 

emerge, which correspond to the parton helicity directed parallel 

or opposite to the nucleonhelicity: 

2: .f. (x) <i,~ \A\ i,~) = 
>- 1)\ 

= ~ \_ t: (X) - f ~ ( x)} 
2 t 1 • 

(1.55) 
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It is evident, that the function used before 

Ji (x) = ~ L fi~ (x) + +!(X)] . 
As a result on account of the expressions (1.5J) for the 

parton functions G i 2. we find 
I, 

2..M.V Gi. (ll,Q 2
) = gi (w)== 

= .2: .!. e~ ~dx- xr-r: (x)- _f_~ (x)l b iy_l) (1.56) 
. 2 t ) ' t 'T 1 J J l• w ) 

l 0 

G/v/S<;!.) = 0 • 

In the simplest quark-parton model ,where the nucleons are 

composed as 
p-= (uud) ) n=(udd), 

2 1 
eu::: 3 ) ed =- 3 . 

Employine the explicit form of the U(6) wave functions we 

obtain lJ 

~ [1~(X)- 1-~ u)1= Cf- !) -fu(x)= ~ fL{CxJ 

~l f:cx)-~:(~~~C~- ;)fJcx)~-if./x) 
Hence, the scaling functions given by eqs. (1.54) and (1.56) 

take the form: 
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P. f?f.· 1. F; (w)c: T u{w) + 9 6(w)J 

c/(w) =.!§_f. {w)- L f {w) 
<h 2 t- u 2.] 'cl ) 

~ n(w) = ~ f«(w) +% fd (w), (1.57) 

Qn(w)= .!!_f. (w)- !{ f (~) 
QJ_ 27 u 2.1 J • 

Relations (1.57) lead to the bounds on the magnitude of the 

asymmetry (l.J7a), namely, 

A c w ) = 91 r w J ) 
f}(w) 

(1. 58 ) I Ap 2 n 
-.3~ (w)~ 3 ;-~~A {w)~ 1 

3 • 

If, in addition, we assume that f {w) _ 
tl « 

then ~~ ( w) = 0 J 
fd (k') ' 

A 
p . !) 
(w) = g ' Anr~!)=o 

and the following sum rule is valid 

0<1 C>4 

\~a Cw) = c dw A(t.;) F.(w)~ 5"" 
) w2. d1. J w' i. a i i J 

or on account of eq, (1.59) 
Co 

\ dw f:(w)=i J w:z.. :1.. 

1 

(1.59) 

(1.60) 

In a more eencral case on the basis of ci1iral cun·ent al,.::~b:ca 

Bjorken 1 s famous sum rule can be deduced S,7 
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04 

\ ~ l aP(w) _a_n(w)l = l \ G.4 \ (1.61) J wz. d! <fi 'J 3 Gv ' 
i 

where G A / G v is the ratio of the axial and vector weak 

interaetion constants. 

The application of the low energy theorem at Qz=o 
leads to the Gerasimov sum rule 

1><1 e4 

~ 2.- - r dv {1 ( 1\ - f r d \) ~ ;;-) 
l.fM'- j )} l:r! 'V)OJ- g;rzd. J -::j L Q'.P(v)- 6A6'h • 

v~ vT 

One of the intrinsic parton properties is their point-like 

nature. It is tempting therefore to abstract this property and 

to formulate it in a form of the general hypotkesis regarding 

the absence of any dimensional parameters ( except the nucleon 

mass) fixing the scale of invariant kinematic variables and 

cross sections for deep inelastic lepton-hadron processes. 

Under the additional assumption that at high energies and 

momentum transfers, when 

·\ q 2 
\ :$> M 2 , ~h> = ( p · q) » M 2_, ~ ~ fi )(e d , 

any nontrivial dependence on the hadron masses squared drops out, 

all physical quantities are expected to become the homogeneous 

functions of kinematic variables, This actually means that 

under the scale transformation ( dilatation) of the four-momenta 
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r~.A P ) ~~Aq 
the invariant structure functions, cross section and so on 

transform according to their physical dimensionalities 

L F(p,9)] = m\ 

F ( p > 4 ) ~ F (A p , .A~) = .A~ F ( p) 9), 

since there is only one dimensional unit, namely, that of mass. 

Such a general hypothesis was first formulated by 

Matveev, Muradyan, Tavl:helidze 14 and is known as the auto­

modality principle. 

In particular, sine e the basic ldnematical i!lV'ariants 

have the dimensionality 

[ 42.] = [ M v] = mz. 
it is clear that dimensionless invariant functions may depend 

only on the dimensionless ratio,e•$•• 

q1 w 2Mv 

and quantities of a type of cross sections having dimensionality 

[6'] = m-2. 

can be represented in the form 

t)(v,~•)= ~· FCw). 
(1.6~) 
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Now we a:pply this simple reasoning to considering the 

properties of structure functions W 
112 

and G_,,z. · 
Then formulae (l,J8) with due regard for the definition (l.J5) 

of the virtual photons flux 

qL 1 ) k'=2M(i.-w)=v(i-w) w fi.x{>cl 

and eq, (1,62) lead to already familiar relations: 

Q M_ \\!!1. (v)~JL) = ~ (w)., 
v w 2. ( V; Q') .= t=2. { w) , 

2M v G i (v) Qz.) = ~1 (w) > 

Q.MV2.6-
2 

(V, Q:t) = ~2 (w), 

(1.6J) 

To deduce the latter of relations (1,6J) some additional 

assumption is required, however, we shall not dwell o~it 6 

Unlike the analogous relations within the parton model there are 

no connections between the scale invariant functions f=~,~ 

and 9 1, 2 and moreover ~ 2 =/= 0 • The scaling function 

satisfies the superconvergent sum rule 
(>d 

~ dtv ~ (w) =0 , 
~i ~ 

which can be most easily deduced with the help of the light 

cone current algebra 5• 6 , 

Scaling is rather well confirmed experimentally at SLAC 5 • 
15 

However, recently in~periments carried out at FNAL using 
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a muon beam some small deviations from scaling vrere observed, 

In general it was noticed that scaling sets in earlier and 

is better fulfilled in the variable 

I Hz. s 
cv = w + Qz. = Q + d 

In favour of this phenomenon there are some reasons based 

on the daality idea 16 , Namely, the nucleon and nucleon 

resonances of mass ~ at low energy build up, in the sense 

of finite energy sum rules, the nondiffractive component 

of the off-shell forward Compton amplitude on the average, 

Thus a subs,antial part of the scaling behaTiour of the virtual 

photon-nucleon amplitude is due to a non-diffractive component 

which corresponds to the non-Pomeron exchange at hieh energy, 

If the possible deviations from the scaling behaviour 

of the functions wi. and y w2. are parametrized in the form 

of the :factor 5 

(1 2Q2..) 
1\i 

. 
) t=d 2. 

} ) 

then for 1.5< W < J the best fit to the data requires 

2. 
A_.,= 62 ± 9 GeV 2 > A~= -75"± 1 GeV 2 · 

If one uses the variable w/ then the fits with /\~ = 00 
t 

are perfectly acceptable and with a 95 ~ confidence level the 

1 ower limits on the 111 are 

A~ >8ft GeV 2 A 2 > 179 GeV 2 

:L ' 2. 
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The results of the FNAL experimnet at 150 GeV and56 GeV 

can be summarized as follows: 

1) Scaling is good to ~ lo% for Q2. > 4'. 5"" Ge V 2 . 

2) If the ratios of data at 150 GeV to the data at 56 GeV 

and to the SLAC data are parametrized in the form 

N 
-R = ( i-+ Q2-1\.2 )2 

then the fits to both the ratios are consistent with 

.!\> 10 GeV 
1 with 90'1> confidence, averaged over a restricted w range (high(). 

and low w ) • 

J) There are indications of low Q2. or large W 

deviations from scaling. An overall fit gives a two 

standard deviations effect. 

The virt~kl photorrs scattering is primarily transverse 

employing dominantly scattering off spin 1/2 constituents ( par­

tons). The experimental value of the ratio 

6' R = -1:: = o. 18 ± o.w 
E)T 

The experiments on the spin dependent deep inelastic 

electroproduction are planned in the near future. For that one 

needs polarized lepton beams and polarized nucleon targets. 

Muon beams at FNAL, BNL and CERN automatically possess a 

longitudinal polarization due to their origin in the weak 

decays of pions. At SLAC a polarized electron source is being 

installed. 
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2. Hyperfine splitting in h1drogen and deep inelastic 

electroproduction 

The magnitude of hyperfine splitting of the singlet and 

triplet ground-state energy levels of a hydrogen atom is 

at present the most accurately known physical constant. 

The hydrogen maser measurements yield the value 

~ ).)1 = i 1t20 Ito~ 15"i. 76G2 (3) Hz 
n-fs 

with the fantastic accuracy of lo-13 • 

(2.1) 

Theoretical evaluation of this quantity is based on the 

employment of quantum electrodynamics 19 and relativistic 

equations for bound states 20 • As such an equation it is the 

most helpful to utilize the L0 gunov-Tavkhelidze quasipotential 

equation 21 in the momentum representation 

(E- vp 2
+tt1

2
.-vt·+ ~2·) ~f)= .fc~;;:v(r)P'>E)~cf')) 

(2.2) 

where the wave function ~(p) describes the relative motio'n 

of an electron of mass m and of a proton of mass M in their 
._. 

centre-of-mass frame with the relative three-momentum p 
The electron-proton interaction is determined by the quasi­

potential V(p;~';E) which is in general a nonlocal ( i.e., 
~ ·~ dependent not only on the difference (r- p') ) and explicitly 
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energy dependent function. In the nonrelativistic limit 

p24 WI z., M 2.. 
) W = E-l-11-M.~ t1-1+M. 

the quasipotential eqaation (2.2) turns into the usual Schro­

dinger equation 

? 2. r d3 
/ 

(w- 2r ) ~rqn = 1c;>, Wp,n ~p-;, (2. 2a) 

where the reduced mass 

~ -
J-HM 

fi-1+.M • 
The quasipotential V is usually given in terms of the 

scattering amplitude off the mass shell with the help~ an 

operator relation 

V = l+ (~ + GoT+ )- i = ~ - T+ Go 1:_ +. . . ;J 

(2.J) 

which can be obtained from the corresponding Lippmann-Schwinger 

equation for the off-shell scattering amplitude 

T* = V+V~4 
The Green's function of free particles 

Go {f> p/; E)= 
(2")3 8'3 Cp-p') 

(2.4) 

E- -.Jfz+ m2·_ yP2.+M:,: 
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The scattering amplitude projected onto the positive frequcnce 

states 

4 (p~?i E)= u,t,(f> uMC-p') T CP,f; E) u.., Cp) uM c-p) 
(2. 5) 

where the amplitude T is given in terms of a sum of Feynman 

diagrams, parametrized as is shown in Fig.4 

m ~ 

rn+.ME +£ , p 

M c -+ 
h'\-t-.M.l:-£ ,- p 

Fig.4 

h'\ 
""'._.E+£" • 
rrt+ rl J p" 

M -E / ... WI+.M -£ ,-p" 

Examples of one-photon and two-photon exchange diaerams 

of the lowest order in E?~ are displayed in Fig.5 

Fie.5 

In the initial approximation, as should be expected, VIe 

have the purely Coulomb interaction, VIe are mainly intersted in 

the contribution to the hyperfone splitting of the two-photon 
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exchange diagram since it includes the amplitude for the 

Compton scattering of virtual photons off the proton. 

The combined contribution to the hyperfine splitting 

of the one- and two-photon exchange di~grams can be written as/221 

AE Y 2r ,,,,, )\2.{2rol. ~ ~ 
Ll ~t5 + ..1 £ h-\S =. '±'c \o 3l-11M (1+a?) <~· 0, > + 

<.,..... (~ -+)> itT ( ,,./.,..- '\1cJ3q ~ (q)} + l 2 v 0 1 0 - -.M.~1+J'.;\ 6e·O,t _ .,.2 ] (2.6) 
o 3m (2ii"?lW. _ .i. 

~ 2_..M ' 
where T2r {0,o) is the two-photon exchange amplitude 

taken at zero values of the proton and electron three-momenta, 
~ ..... 

ce is the proton anomalous magnetic moment, 6' e ) or 
are the usual Pauli spin matrices and symbol ( ••• ) means 

the matrix element with respect to singlet and triplet states. 

The Coulomb potential 

Vc (~) =-
ez. 
q2 -

the Bohr energy 'levels 

ol.~ 
We. =- 2 n.2. ) 

'nol. 
~ q 

(.2. 6a) 

l1. = 1) 2' 3 J ... (2. 6 L) 

and the modulus squared of the Coulomb wave funotion in the -coordinate representation at the origin r=o reads as 

) 'lj[ ( 0 )\ 2. = ~ o{) 
3 
· (2. 6c) 

c.. Ji )13 

In the end, the expression for the triplet-singlet hyperf1ne 

splitting in the ground state takes the form 22 
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t1 t?hfs~ E(3SJ- E(iSo)=jvF(-1+ o), (2. 7) 

where the so-called Fermi splitting 

..A 1) = 'i?7i J. (I + (t ) \ 'Y[ ( 0) \ z 
F 3~M c 

and the correction 

(2 _ o(~ \ 3M1.f d4q /"., p -
() -7T(i+a>).M L4iJrz. j 7 N e (1) Nr'v (~)- (2.8) 

_ 8 M (I+ a:>) r d~ } 
~ q 2_;_ 2_;i w 

N e,p -1 -r: [• ( He>p] C [A] e>p 
_)AV = 2: I Y'" 2 \+to) r;- ¥:; :?V ;=: ~V ( s

3
) 

s~ ~ ( o, o) o, s3 ) 

Thus, tensor N.,tL<iJ coincides with the spin dependent ( anti-

symmetric ) piece of the off-shell forward Compton amplitude -if the spin threG-vector S in the particle rest frame is 

directed along the Z-axis. In particular, the electron 

amplitude 

Ne(c)- -LtM'f2 -1 ,rAJ 
~v ~ - ( 9 'I_ 'fml v2) • rnl 1--J,;.Iv ( ~) . 
In the integral (2,8) it is possible to perform the Wick 

rotation of the qo__ a.""<is in the complex plane and thus to 

integrate over the four-dimensional Euclidean space G( with 
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Q o= iqo= l I) 1 Q2.= -q Z. • 

As a result utilizing the invariant decomposition (1,26) 

and expression (1,19), we find 

(1_ 2a.mNS d"Q rc2 Q.z+)J2.)H (iv)Q2)+ a - Ti2(f+£J Q2.(Qii+1fm2v) Ll 1 
od 

~ J>o~m( dQ 
+ 31vQ2 H2.(iv,Q2~- -;:r J

0
Qz.-2_?Wc • 

(2.9) 

For the invariant functions H~,:z. (-v 1 Q
2

) with Q2 > 0 the 

dispersion relations can be rigorously proved 1 

e><J) d \)I 2. 

\-t (vJQ 2
); . /').. 2. G- (vjQ 2

) (2.lo) 
..,,'1. v V -V 1,2 

e 
where the point 'I) '= Q2 12M) corresponds to the position of the 8 /~ ' 
proton pole ( the Born term), and the cut starts at the pion-

nucleon threshold 

V = ...L(Qz.+rn 2 )+m 
Jj 2M. JT 1T • 

Inserting the dispersion relations (2.10) into expression (2.9) 

we separate the correction ~ into three pieces 

3 = ~/3 + ~ + ~ J 

where the "Born piece" corresponds to the contribution of 

the Feynman diagrams shown in Fig,6 with the real protons 

form factors at the vertices 
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(2.11) 

II X 
Fig.6 

This contribution can be easily calculated 19 , 20 , 22 

tf8 =- (34.5"±2.)pprn, -6 
1 rr,.,= 10 (2.12) 

The remaining two pieces are expressed directly in terms of the 

proton spin de)endent structure functions 

d - _ol. WI LJ. 
.J.,2-2JTM(I+~) i)2' 

<><I t><) 

d~ = j ~~'{: F2z{Q')- 4.r-e) d: f1(~:)~(ljQ')}, 
0 )111" 

cx:J 00 

11,_ =-\2M'} ~~'Sdv J2 c~:) G. ( v,Q')' ('2.13) 

where 0 v,. 

fi(e)= 3&-29 2
- z(2-e)y&(e+J.)') 

f 
2

{ e) := 1 + 2 cg - z V e ( r; 1-1) ) & -;:_ v )./Q 2. 

and F'l. (Q') is the Pauli form factor of the proton. 'rhus, 

the two-photon exchange corrections to the Fermi hyperfine 
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splitting can be evaluated with the help of the experimental 

data on spin dependent inelastic electron proton scattering. 

'!lhile determining the contribution of the L1i term 

one may utilize also the data on the spin dependent total 

photoabsorption cross sections for real photons, since 

at Q 2 =0 (see eqs. (1.36a)) 

ez Gi (v)o) = i [6'f (\))-SA (vJ] 

and it satisfies the Gerasimov sum rule. As a result one 

mana~es to obtain the estimate 

I 01. \ A/ 1+ 2 ppM . (2.14) 

The situation is more complicated as regards the l:J. 2 contri bu­

t ion. In the absence, presently, of any direct experimental 

information about the structure function (7
2 

, we can 

make use of those bounds which ensure from the positivity 

conditions for the proton tensor lAf~v • Then, from inequa­

lities (1.43) and (1.48) it follows 23 that 

G (v/(2) ~- ~ {v,Q2) (i + R V v?-') 
2 V'l..+Q2. Ql. ' (2.15) 

G
2 

( lJ, a'")~ 

R~ 6"'­
oT 

wi {v, Ql) 

v·l.+Ql.. • 
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( 1 + Y) Rv2..~\b 
8 Q2.. ) Q2. 

(._ r:-v-r \ )) 2 . 

\\JR<Iz. -i)) RQ2 >1b 

Employing inequalities (2.15), one can find the corresponding 

limits for the quantity i1
2 

defined by eqs. (2.13). The 

existing experimental data for the structure function ~i 
and the ratio R permit one to make a numerical estimate 23 

of the upper and lower bounds for the J(2 correction: 

-2 frY!-\ £. 8'2. ~ ~ ppY~-1 (2.16) 

The comparison of the theoretical ( with radiative correc­

tions) and experimental values of the ground-state hyperfine 

splitting leads to the relation 

.1 Ve)(p- ~ L)th 
( 2. I) :t 4 .. 0 ) p p ~-gi- ~ 

' b. vth 
which is consistent with estimates (2.14) and (2.15) for 

the structure correJ:tions 8-:1.. and [)
2 

• 
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J. lli.£j;.£2.!1-TIOs1 tron annih:i,lation into hadrons 

The process of electron-positron annihilation into hadrons 

is characterized by the following experimental data 24 

1) The ratio R of the cross section of hadronic annihi­

lation to the cross section of annihilation into a muon pair is 

larGe and is rising from the value 2.;-J at \j(fi' ~ J GeV to 

about 476 at ~ ~ 5 GeV. 

2) The single-particle inclusive distribution q'-d 6"/dw, 
where {A,):::,)(= 2E}I'/~ for e+e-- JT' H fails completely 

to scale and increases rapidly with q.z. for u) ~ o. 5. On the 

contr~ry for W ::;::; 0.5 it is consistent with scaling. 

J) The angular distribution d 6"/d .£ of charged particles 

is close to an isotropic one for J <.Jej'i'.<( 5 GeV and\cos9\~ 0.6. 

4) The single-particle inclusive distribution 

l:::.ll'd6',1~J3p oCE'l<pfEr./T) with T~ {70 MeV for not very 

high momenta, i.e.,it is very similar to the single-particle 

inclusive distributions found in hadronic reactions. 

5) The mean momentum and multiplicity cf charged particles 

rise slowly with <. \'c > ~ 400 MeV and < ttc) ~ 4. 

6) As a result the fraction of the total energy carried by 

charged particles, evaluated assuming all particles are pions 

and d 6' /d 2 is isotropic, is small and decreases gradually 

from -~ 0.6 at \['Cf2' ~ J GeV to ~ 0.55 at V"q"Z' ~ 5 GeV. 

7) In the region ~ > J GeV several new vector 

resonances were discovered with quantum numbers 

and properties 

~PC= 1--

tn (GeV) ~ct (M€V) re (keY) 

r~. J.l05 o.os 5.2 

'f.z. J.695 0.5 2.2 

r3 4.15 250-JOO 4 

where ftot is the total width of resonances and re 
is the partial width of the decay into a charged lepton pair 

(e+e-) , (/1+/r) 

While preparing this section we have used papers 24-JO • 

J.l. Kinematics of the process 

Consider the inclusive process of electron-positron annihi­

lation in the one-photon approximation with a single detected 

hadron in the final state 

e- + e+ ~ ( ~ h.+ 2: haclr-ons 
~ \'\.. .J 

unobs~r-ved 

(J.l) 

The diagram of this process is shown in Fig. 7, where k:t are 

the momenta of the colliding electron and positron with mass h1 
q = k -t + k __ is the four-momentum of the virtual photon with 

qz.>oand p is fue momentum of the detected hadron with mass 

~ • The rest of the hadrons ( unobserved) in the final state 

owing to conservation laws carry the momentum 

?~ = q- f 
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ELECTROW HADROt-l 

Pn 
HADRONS posrrRoN 

Fig.7 

with the invariant mass squared 

r>:=s= (q- p)2...= qz.+ Ml.-2 Cf'·9). 

Introduce, also the invariant variable 

V=·- (p·q)<o 
t1_ 

., f2= M2.. 
) 

which in the centre-of-mass frame of the colliding leptons 
.-+ ( q =0) is proportional to the detected hadron energy E 

M ))=- t:: q 
' 

and the hadron three-momentum squared 

-+ . ~'2. ) 
p 2 = E 2._ Mt. = M ( ~- i . 

(J. 2) 

(J.J) 

(J.Ja) 

(J.Jb) 

The scattering angle in the same frame of reference is defined 

relative to the direction of the lepton beams 
-+~ - _. ( k. p) = \ k \ \ ~ \ ecs e (J.4) ' 
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I 

·I 
I 

and four-momentum squared of the vi.rtual photon 

~ 

qz~ /ik.z.+ Lth1z. > 0 
2. 

In terms of the invariant variables q and V the 

effective mass squared of the unobserved hadrons 

s = Mz. + q2 + 2 f'vlv. 

Since the lowest final state is the hadron-antihadron pair, 

it is clear, that 

s->112. 
' 

(J.4a) 

(J.5 ) 

(J. 6) 

and hence from eq. (J.5) we obtain the boundary of the physical 

region 

q :z ~ - 2 f'vtv , (J.7) 

Introducing as before the dimensionless variable 

w=- _2Mv =X= 2E = s-M'Z.+ i 
q2. yCfZ -qz ? 

(J.s) 

we rewrite inequality (J.7) in the form 

o~cu~i 
(J. 7a) 

The other boundary we can find from the positivity 

condition for the three-momentum squared of the detected hadron 
-+ 

in the lepton c .m. frame ( q = 0 ) 

p 2 ~ 0 ) t == V~p2_+_M___,"2.., ~ M . 
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Then from eqs. (J.Ja), (J.Jb) the inequalities follow 

).) 2. ~ 'f :z. ) 
E M=-~??d. 

which determine the second boundary of the physical region. 

The domain singled out by inequalities (J.7) and (J.9) is 

displayed in Fig.8 

q1 

4M'-

_ 2Mv 

Fig.8 

According to the Feynman rules the amplitude of the 

process (J.l) is of the form 

T..= 4~~ v-(h)r~u(kJ<p,pn\H {o)\ o) 
·h q+IO ~ J 

(J.9) 

(J.lO) 

where v- ( k} is the negative frequency spinor normalized as 

1J.v-=- i , and the invariant differential cross section, 

averaged over the polarizations of the detected hadron with spin 

s, is equal to 

(21r)3E d! = 2m' M e?S• ~· " \ T.fi \2 (27r)* g"{q- p-Pn) • d3p vcr-(9l_ ljm2. ~ 
(J.ll) 
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The phase space element with the help of eq. (J.Jb) 

may be written as 

J3p 
I= 

- \ p l dE d £ = M [~~- i] j E J £. , 

J y-== 21r d e()se. 
(J.l2) 

Neglecting the lepton mass, compared to q~ and on account 

of eq. (J.l2), we represent the differential cross section 

(J.ll) infue form 

J 6' _ 4rP (2S+l) ~· \ _.MVW 
d ~dE - Cf'i q2. .M \ ~ \ ~ ~ v , 

(J.lJ) 

where averaging over the spins of the initial leptons gives 

the tensor 

~ L:v = ~2. I:« ~(kJYPv-~(kJ v-~(kJrvu 6'_{k_)= 
6"'+,6:. 

1 ~A . " -~ 
-:::: 16 TrL(k_+m)0;-<(k;-m)0vJ 

(J.l4a) 

i [ k ~ k" + k ~~ k v - ~ q2 qr v] 
Lf +-- + 2. a 

" ~=Y.k ~ 
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and the hadronic tensor 

- (2r) 3 \' . g'l w;.v = (2~+1) ~ <o \ d)o)jp,p,)<fi)P,}'JJo)lo> 0 (q-f-Pn) ~ 
) 

= La + qj-l 9.; \T J { v a 2) +_I rvp p \A r ( l) ail 
\ d~v ql.) wi ) I M2. /" v vv2. ) I J) (J.l4b) 

p = f- (J~~)q 
"'-' 

cp.q)=o) 
where the spin of the detected hadron is averaged over, and C 

denotes the connected part. 

As a result, making necessary transformations we obtain 

the expression for the cross section (J.lJ) in terms of the 

structure functions ~, 2 

d2o rJ.2. Mzvr, q2.·11/2{ -
d~dE-= Cf4 (zS~l) vqr ~- v2;J 2\~ (v)q 2

) + 
(J.l5) 

+ (~>i)~Cv1 q') sin"&} , 

from which it, also, follows, that 

d EJ z. r 4 2 J Y2 \ _ 
du-' = ~~ (2$+i)U! L{-q,%" i_ 2!1 ~(v,q 2) t 

(J.l5a) 

+ (A) \i- tfMz_ ll) \if (vla2) 1 
3 L q::z.wz. '2. t J J 
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qz ~! ~ Jio(z.(2$+i)w{2M~(l19~-4- ~v ~i(~q1} 
q 2-+ fX1 > w fixE'd • 

In close analogy with the case of electroproduction we 

may introduce the Wlongitudinal• structure function ( note the 

change of signs compared to eq, (1.36) ) 

iifL = ~ + C¥z
2

-i)VJ;. · 
Then the positivity conditions are of the form 

WT·= \Vi~ o 1 w~.- >-o , 
and the differential cross section (J.l5) may be rewritten as 

d26 
= rJ.2. (2S-ti)Nlpl ((1 +eos 2e)~(v)~~) ·+ 

c::l£dE qlf l _ 
+ (i-e&s 2 e) WL(1i,q2.)}. (J.l5b) 

Consider the process of •elastic• annihilation when in the 

final state only particle and its antiparticle are produced, 

i.e., S= p . .,Z._: _1'1.2. , pl.= ~z.(1- ':(:..Z)• Then the structure 

functions wll'Z. are expressed through the elastic form 

factors of a hadron as follows: 

a) case of a spin 0 particle 

<f~p\ d.,M(o>\o)=iM (p-p)-"" f(~1)' q= p+p, 
- --. { 2.<0 q2.) wi = o J W2 = f:" c~~) \ o C v- 2 M } 

b) case of a spin l/2 particle 

W1 Cv,~:z.) == 4~2. \ GM (q 2
)\

2 Scv- 2q~), 
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WL(viqz.) = \ GE(q 2
)\

2 S(v-
2
::). 

In particular, for a point-like spin 1/2 particle 

( e.g.1 muon) we find the cross section 26 

J Sl/1. -=- £ ~- LfN)]i/z{i + 4m); +[i- ~JCJJsze1 
clS: 'lf-LJ ~'Z. qz. '1 2 S 

w.2 2.. which in the limit rr~ <<. q turns into the "parton" cross 

section 

d 01/1.::: £ (1 + CMze) ~tot= Lfrrol. z. 
<1 £. 'lq2 ' l/2 3 q2 (J.l6a) 

In the case ~ point-like scalar particles ( spin 0 partons) 

dx 
o/.1.. I, 4Mz.J 3/2... ( ze) 
)If~ Li- cr- i- ~ 

dtJc _ 

(J.16b) 

and the total oro ss section in the limit M 2. ~ q Z 

f5 tot= Jrd. t. = _j_ ~1 it>t" (J.l6c) 

o 3 Cj :z 'I Y2. 
In the general case of spin S particles the "elastic" 

differential cross section reads as follows 26 

a) for integer spins 

d6' 
d~ 

o<'C>$•1> (1- 1fl;:t· {(1.-eos•e) EWJ t 

+ ( d_ + ~osz (j) lrJ~_ J1 {1 2
)} > 
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i 
I 
J 

l 

b) for half-integer spins 

~ = o(z{zS+J.) M2 (1_1t~)Yz{({-~s2e)E (92) -t-
d5?. 2q" l~ 1 } 

+ (1. + ecsze) $-1. M (~ 2) 
where t=_ ( q2) is the sum of the moduli squared of the 

electric form factors with E (o) = 0? 2 the square of electric 

charge and fvl (q 2) is the sum of the moduli squared of the 

magnetic form factors 111. th 

M (o) =:: $+1 )At.. 
3$ 

the square of the dipole magnetic moment. The total cross section 

for point-J.ike particles ( Q = ,;«-=- i ) 1n the limit q 2 » .M.z. 
i~ of form 

a) integer spin S ~ 1_ 

~ t()t = ird. 2 (2 S+t)(S+JJ 
$ 3..Mz. 6$ == t!'onst, 

b) half-integer spi~ S 

6 t()t- liTo('- (2$ ... ~){$+1.} oC ~ 
~ - 3~2. 6$ 12. . 
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Note that for point-like particles of integer spin s' ~ 1 

the total cross section tends to a constant value as 12. _.,. t><:1 

J. 2. ~~:':~!~~1lati_E~~~~2..!;~.Pr~~~~ 

Thus we see that the description of the inclusive 

annihilation proceeds quite in parallels to the description of 

the inclusive electroproduction. Accordingly, if the scale 

invariance is Rtill valid, then on the basis of eq. (J.l6) and 

dimensional analysis ( the automodelity principle) we should 

expect, that 

in the limit 

2M Wi cv192.) = ~ (wJ 

-)) w'2. c v, qz.) = 1;_ cw) 

w- f/.t'ed. 

(3.17) 

\) ~ q 2 -~ IC><' ' 

However, the experimental data up to now show, that q 2d~w 
fails to be a scale invariant function ( i.e., a function 

depending on ~ only). So the question arises, whetker the 

straightforward connection ( of the type of crossing symmetry) 

exists between the structure functions of inclusive annihilation 

and electroproduction. 

For the beginning note, that in distinction from the oase 

of electroproduction the hadronic annihilation tensor 

cannot be represented in the form of a matrix, 'element of the 
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current commutator ( or product ) Jl and consequently, do~not 
coincide with the •imaginary• part of the forward Compton 

amplitude for the vi-rtual photons w1 th tJ 2 > 0 and }.) ~ 0 • 

In fact, when qZ>o the Fourler transform of a matrix 

element af the current commutator 

\ i1·.X 
(z7r)~v(p~~)= JJ*xe \rf[~Jx),d/oJ]\e) , (3.18) 

besides the familiar contribution displayed in Fig.J contains the 

contributions of different~es of intermediate states, shown in 

Fig.9 

AAAAf". I 
1 

·~···yv1 ! n= :1) ! cr 
' ......., 
I 

I 

'-' I 

Fig.9 

Only z-type diagrams in Fig.9a are relevant to the process 

of single-Particle conclusive annihilation. In order to avoid 

the appearance of the graphs in Fig. 9b,c it is necessary to 

consider the discontinuity (•imaginary• part) of the nonforward 

Compton scattering amplitude for the virtual photons with 
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).. 
• Denote it by 

qt * q. n ( s, t, '1/, 'ID, 
l.t...,uv t== (CJ,-92.) 2 

• 
The substitution rule tells us that under the interchange of 

the initial and f1 nal hadrons with - p ::1. ~ p 
2

., hadron -anti­

hadron ~/"v behaves as follows ( depending on the hadron 

statistics and asswning invn.riance under chs.rge conjugation). 

c_,uv ( s, t) q12J o/z.2) = + c;v ( u, ~ qf, 9z2.)' 

where 
g-+-u) z.J~-}.) 

U:::: 3- l.f M l) = ( q,- fz) z. 
J 

S= (1,+f1) 2
) 

and the upper (lower) sign refers to the interchange of bosons 

( fel'!nions). 

Recalling eq. (1.17) we have in the case of electroproduction: 

~~ (p,'f) oC [C~11 (s+io,0,~ 2,~l.)-~v(s-ioJo,q 2)'fz)]= 

= discs C~~~ (sJ o, qz.,'}z.) • (J.lSa) 

Since here q2 4( 0 we are not in a region where C ~ 1.1 

has cuts in q2. , and, therefore, it is not necessary to 

shift the values of q2 from the real axis. 

Similarly, in the case of inclusive annihilation the hadro­

nic tensor \\l~v is given by the discontinuity 
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~,,/p,ri) oe[CJAv(~+io,o,q~io)q~io)-~v (s-io, o) q~io>q~io~= 
d. c /. ~ . z. • ) (J.l8b) 

'!0::. tSC
5 

_JAIJ L$, 0, q +10 1 q -tO 7 

whioh is shown graphically in Fig.lO 

- p1. 
Fig,lO 

Note that now q:z.>o and we are 

in the region of cuts ( physical thresholds) in the variables q2 
1)2 • 

Aa it follows from eqs. (J.lO), (J.ll) one must take a2 
• • IL 

above its cut (+tO ) and q2 below its out (- 10) , 
2.. -

to insure the correct selection of the hermitian~ensor ~~ 

and consequentl7t the real structure functions w,,2.. . 
We illustrate the aforesaid by a simple example 28 • Let the 

eleotroproduction structure fUnctions be of the form 

w('VIat) = ,ft'J-H Cf(q/)~(9/)f(v) = ({l2(9t) f(v) 
I q,"..,.q; J, 

Then the armihilation structure functions are evidently equal to 

W (v,qt) = 1 <f'('ft) lz fCv) ' qz >o , 
and, generall7 speaking, cannot be obtained from the function 

without additional assumptions. 
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Now assume that from field theory we know the Compton 

amplitude C_,-uv for 9/-:/: Cb.2 and in particular its analytic 

properties. Namely, one expects that c;..v has ( for f < 0 ) 
'!­

the right• and left-hand cuts in S and right-hand cuts in "\ 

Then discontinuity of C~11 in S while not being an 

analytic function in S , may still have simple analytic pro­

perties in ~ ~ . variables. Since the lines of fixed S > ..M. 2 

I -

pass through the physical regions both of electroproduction 

and annihilation, we may get from one to the other by continuing 

diSc. S C .uv in q2 at fixed values of S 
.r· t,'Z-

( Fig.ll ) 

Fi~. H 
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It is obvious that in the scaling limit one must introduce 

a pair of scaling variables 

w,,2= +1. 

and consider the generalized Bjorken limit (/irn8 ) S, qtz_.....;;. 00 

with t , ~1:z_ fixed. Then the correct analytic continuation 

leads to the statement 

Fi. (w) = F=-1. ( w+io > w-- i<?) 
1 (J.l9) 

F
2 

(w) ::: F
2 

( W+ io, c.J·-<o), 
where 

F! (wl) wz_ ) = .-fi m B 21'1 w:i ( s) t=o) q~ )qi)) 

'F'2. ( w iJ Wz_) = fiYH B J) w2 ( s) t=o) q 12 Jq~)} 

~, 2(w)= \=",,2 (wJw). 
In various models more simple relations were obtained. 

For instance, if the Compton amplitude is taken to be a sum 

of ladder diagrams in the field theory with a out-off of trans-

verse momenta 32 , then naive continuation relations hold 

Fi (w) = + Fj_ (w) , (J.20) 

F (w) = + 2 -
F~ (w), 
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where the upper ( lower) sing refers to fermions ( bosons). 

Summing up leading logarithmic terms f/.2. fn r2. 
in the scaling region in some (~eutral ¥"5" and )"' ~ ) renorma.­

lizable field theories, Gribov and Lipatov JJ have found 

reciprocal relations 

w (w) in q2)=-~ w(-~? fn(-q 2~) 

W=2M~=WV~. (J.21) 

In this case scaling is violated by terms in ~h q 2 

Relations (J.21) are interesting because unlike analytic 

continuation ( e.g. 1 naive formulae (J.20) ) they relate values 

of W in its physical region {c.;~ 1.} to the values of W 
also in its physical region ( 0 ~ W ~ 1 ). 

There is an important theorem 34 pertaining to the thres­

hold region near the point ~= 1. The theorem is true under 

ratker general circumstances and states: 

If as (.,<) ~ i+ 

F (w) ~ A (w-1.)o~. 
' 

(J.22) 

and as w ~ -i-

Few)--+ A ( 1.-w)ol.. 

then 

-
A=A eX. d.. 
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The proof is based on the assumption that the Bjorken limit 

is controlled by generalized ladder diagrams with exact propagators 

and vertices. This assumption is~id for all simple models. 

At the same time in some models 28,16 it is possible to relate 

the index e>( in eq. (J.22) to the power 

decreasing of the elastic hadron from factors: 

of asymptotic 

eX--= 2n-1.. 

G~f ( )-n (qz) = qz 2 q ~CXJ. 
Presently one is used to take l'l. = 2, then o<. = J, which 

seems to be consistent with ·experimental data •• 

(J. 2J) 

Gilman 5C nade a comparison of reciprocal relations 

(J.21) with the available experimental data. Under some simpli­

fying assumptions he finds that the reciprocal relation between 

e +e--. p H and e- p __,. e- H is in rough agreement 

with the data, while analogous relation between e+.e--+ 1r H 
and e- JT-+e-H would predict, using annihilation data at W= 0.5, 

for e7T- electroproduction at W = 2. the result by an order 

of magnitude larger than that measured for e- p ~ e- H , 
which seems quite unreasonable. 
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+-
J.J. T£Jra.l cross section of e e -&np1hilation and 

hadronic vacuum polarization 

trow we proceed to considering the inclusive process of 

electron-positron annihilation into hadrons with no hadron 

singled out: 

+ - ~ e + e ~Y --L...hadrons (3.24) 
n. 

The one-photon Feynman diagram for this reaction, is shown in 

Fig.l2 

~LECTRON 

HADRON$ 

f>OSJTJ(ON 
Fig.l2 

with the notations already adopted. The amplitude of the process 

(J.24) in the ~2-approximation has the form evidently 

( Cf.eq. (J.lO) ) 

Tti = 
4;: v-(k.) l'"'u{k_) < Pn \ 'J_jo)\o> , (J. 25) 

and the total cross section according to eq. (J.ll) is equal to 

1. - 32 7
3 

o(2. I L::l) k 
bh (q ) - V q1.(9z._ lfml)- ~J) ' (J.26) 
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where the leptonic tensor L_r.v is given by eq. (J.l4a) and the 

hadronic tensor 

y;v(~) = G'(P~ <ol ~(o)j >1)<.,1 ~/o>Jo) g"(CJ- fr.) = 

~ 
• X (3.27) 

- j_ d11x e rq· /o\ r~ (x), ~~,(o)]lo)j = 
2'Ji <....: L a)"( y q">o 

- (- ~J-''~~ q 2. + qr q v) J h ( q:z) 
satisfies the requirements of gauge invariance .)i oh - v ~, q J,l<ll-qp,...t/=0 
Neglecting the lepton mass compared to q 2. we finally obtain 

1Gl! 3oi. 2 ;, 
E)~ C9 2.) = ~ :z f (92J (J.2s) 

), 
The hadronic spectral function ,_!J {9 1.} is closely 

connected with the hadronic vacuum polarization, namely, it is 

just the imaginary part of the hadronic polarization operator 

11~., ( 9) = l J "x e i 9·x <o\T 1,. (x);j)o )\o) = 
- nh =_(-~~I) q2 + Cfr CJv) c9~) 

As is well knoWR/l/, the invariant function n(q&) satisfies the 

Kallen-Lahman spectral representation with one subtraction 
C><J 

(3.29) 

D c 9 z) = e 2. 9 2. r J s P cs ~ . 
j s(s-~ -tO) (3. JO ) 

l( Mz. 
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under the condition of convergence of the integral. From eq. (3.30) 

it i~ediately follows that ( see Fig.l3) 

I m n (s) = lt:;rz.cJ.. f (S) 0 (3.3oa) 

Imf1= 
Fig.l3 

The photon propagator then takes on the form ( see Figol4) 

n~-'" c~) =- c r~- q;~") n cq·J 
1 

D (s) ~ s [ i + n (s)J 

(3.31) 

·D(s)e~+~+~ 
Fig.l4 

Now applying the Cauchy theorem to the function 

is is possible to obtain finite energy sum rule (FESR) 35 

I L ~ 
27 1 Js [ n (s)- n>cs)J == ~ c\s ll'YI I ncs)- n >{~)l== o 

C5 0 
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go So 

~ ds I~'~ n CsJ - )ds 1m n>cs) J 
(3.32) 

0 0 

where n > (s) at sufficiently high s:;, Sc behaves like n (s)_, 
i.e. 1 

() ( s- s 0) [ n ( s) - n > { s) J :=: 0 . 

It is interesting, also, to note that the integral of 

can be directly related to the so-called Schwinger term in the 

equal time current commutator 28 : 

r , 1 rd co r \4 iq·X 

1 _rr fJC?') = czlil_t q v 1; Jd ,e <ol[~,«>,~.~·~'~ q~~ 

_ == -; ~ Jx• S (d jJ'x X; <o\ L~,(xJ,;J;(oJ] \€>, 
0.::1 

~ dq' yCq')=-i ~cl'x X't <o1[1.1o,"X},J;IoJ]Ie), 
tJ 

Now if the equal-time commutator contains the c-number 

Schwinger term of the form 

[ ~o (olx), ~i (oJ] = ~ c ~x~ 8 3
{x) , 
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then integrating by parts we easily find 
e>Q 

c= s f(s)ds • 
0 

Usually C is a diverging quantity. 

It is customary to relate the total cross section of 

annihilation into hadrons, to the cross section of annihilation 

into a muon pair. In the lowest e .2.- approximation the lap­

tonic spectral function is given by 1 ( nn, is the lepton 

mass) 

f ( 2mz ~ 
f 

(s) = _j_ 1 -+ - 1 ). '_ l.fm} 
121i 2 'L s ~ ·s- ~ 

1 
f2JT 2 

S >>rn; 

Thus in the ~~approximation the total cross section of 

this reaction according to eq. (J.28) is equal to 

o; {s) = 
LfJTo{ 2.. 

3S 
) s >> ;n./"'2 

and the corresponding diagram is presented in Fig.l5. 

e ./'-"-

e+ .,M+ 
Fig.l5 
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(J.JJ) 

(J.J4) 

Then the quoted ratio ( in the e2_ approximation) 

oho (s) 
R (s)= fi'c(s) 

h 
= 121rz.f (s) · 

,.u 

(J.J7a) 

Replacing in eq. (J.25) the photon propagator by its modified 

expression (J.J2) we find the cross section ~ with the 

account of corrections on the hadronic vacuum polarization 

/;ro(2.\ ~ (s) = ?;$ S D (s))
2 = 

ltJTol'" o; (s) 

- 3s)i+nJ,(~)l2. \1+ n~(s)l2 
(J.J5 ) 

Similar corrections to the total cross section of annihila­

tion into hadrons eq. (J.28) lead to the expression ( on account 

of relation (J.JOc) ) 

6h (s) = 16;3olzf(r) js D(s>}2. = 

- t;;ra~. ]11-1 nhrsJ = LtJfo< ]m D(s). 
- s /1. + n"rs)/l. 

(J. J6) 

As a result we obtain 25 that the ratio (J.J7a) remains 

unmodified 

R (s) == 
6h(.r) - .z A ()_;/')- f21f f {s)= ~ J,., n \.) (J.J7) 

• 
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If, besides, we take into account the contribution to 

vacurun polar:i.zation from lepton ce and_;«) pairs given by 

eq, (3,33) as well, we find, on using eq, (J,J7) 

~ h - l 
I~ln= 1~n +21mn ~ ~LR-t-2] (3,38) 

This relation allows one to deduce rather a strong bound for 

the one-photon contribution to the total annihilation cross 

section into hadrons 36 , According to eqs, (3,35) and (3,37) 

we have 

1fy.x2.R 
~h = R ~ = 3 s [Ci +~e n)'+(ltt~nl] 

• 

< I!Jiol.z R 
3s(I~ n)2 

Substituting there expression (3,38) we, finally, come to the 

important inequality 

1Z:w R 
6), ~ ·s (R+z) 2 

(3,39) 

This bound can be obtained in a different way using unitarity 

condition 36 under the following approximations and assumptions: 

;') The whole process of annihilation occurs from the 

~PC = J -- state, Only the state with opposite lepton ( e. 
and _;.;. ) helicities enters in the reactions ( in the limit 
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of zero lepton mass)~ 

\ l~l->= \ t > = J [\+1 ,-~ ~ \-i ,+d> J 1 J=1.. 
This is connected with the presence of only the single­

-photon state in the s-channel and conservation of the helicity 

by the electromagnetic vertex ~· 
b) Final states with photons are neglected, Hard photon 

contribution to 6"'1.~ is of order o{ higher than the 

terms which are kept. Both real and virtual soft photons 

should be neglected in order to preserve unitarity. Thus,the 

bound applies to the cross sections, obtained from the 

experimental data after subtracting radiative corrections 

due to both real and virtual soft photons. The cross sections 

so defined should be indepeBdent of lepton mass. 

c) Final states of ~ ?C= 1-- with lepton pairs and 

hadrons are neglected, which means the neglect of processes 

like 

l+ + ~- ~ 1+ + f-+ hadrons · 

The cross section of this process is of order o( Z. 

relative to o h J/" and 1n the state 1-- is bounded 

by const /s . 
d) _,.u- e universality is assumed. 

Now consider the 8-matrix in the subspace of !:1 p"= 1-­
\h) , where \ €"> > i_,M> 

e+.e-, ;<-C:ju- ana t -n) 1s 

states le> \)A) and 

are the relevant states of 

75 



the set of hadronic states distinguished by the index Yl • 

The following relations for the g_matrix elements hold: 

<:e\$\e>=~\S\t')>= ~-e2iF, 
<(-€ \ S I~)= <r \ $ I e> = i f > (J.4o) 

~ e \ s \ Y1 ') = ~ 1 S \ n) = i 1 n ~ 
The total cross section for the process Q + _g ~ F' 
with a fixed value of the total angular momentum is expressed 

through the helicity ~~plitudes as follows 2 

olj(-Aa,-"g)f")= Tic~:+.i) \<r:\T~IAa)s)\2 <3 •41) 
J 

where k is the relative momentum in the centre-of-mass frame. 

In the case of inelastic reaction it is obvious that 

i < F 'T~ \ I'> = <' F \ 3~ \I) 
where S 1 = i + t T1 . Averaging over the initial electron 

and positron polarizations, we find that the cross section 
+ - + -for the reaction e e -+ _,.u /M 

6' -== _i 
/'{ 4 ~~ I f J 

2 ~ ;n I f 12 

+ -and the cross section for the reaction e e _.,. hadrons 

~h = ~r ~I :F.,Iz. 
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(J.42) 

(J.4J) 

The S-ma.trlx can be written as 

213 
if i fn 7e s = (if rze2.i3 i fn (J.44) 

. . . . ~ . • • • 
Then the unitarity of the S-..natrix 

t 

s~ s~ =i 
yields the relations 

~ < /1 1 s 1 F > < F \ S \ 1 > = 6.re , 
F 

(J.45) 

or more explicitly 

~ \<F\ S)e)\ 2
== ~'+\f\ 2 +~\f)lf-=i 

F n 

(J.45a) 

t 
~ <r t s\ F)<F\S\e>= 
F (J.45b) 

:::::_- 2>z I~ (fe-2 jor) + h I ·L,I 2-o. 
'n 

Sinoe ~ 2 ~0, relation (J.45a) on account of eqs. (J.4J) 

and (J.42) directly leads to the simple but weak unitarity 

limit 25 

~~-+ 0/A ~ 
3T 
s 

n 

• (J.46) 



Relation (J.45) with the account of eq. (J.45a) gives rise to 

the following inequality 

[~ \ 1Y\ \21z-= Lj ~2 [Irn ( f e-2id')J~ 

~ 4~2.~ t 1
2 

·=: 41 f\2.(1- \t\ 2-~ !fn\ 2
) 

)'\ ) 

which after substituting eqs. _(J.42) and (J.4J) gives 

(f), + 2 6' ) 2. ~ /2Jf ~ 
k :,.u -..;;; s ~ 

c)z.. 
h 

< /2JT b 
s .~ 

' 

Using ratio (J.J7) we rewrite inequality (J.47) as 

( 1-+ _g_ )2 <:::::. (2 JJ 
o'h R -...: s R ' 

(J.47) 

which immediately leads to the strong bound given by eq.(.J.J9). 

J.4. Scale invariance and some models 

We make use of the automodelity principle 4 •14 over 

again. Then naive dimensional analysis of the type presented by 

eq. (1.62) leads to a simple result that the total annihilation 

cross section into hadrons eq. (J.2$) as q2 _. oo behaves like 
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eonst J, 
6'h (q 2 ) = 2 , f (~ 2 ) =- const ; (J.48) 

Cf 92..-- C>o 

and the ratio defined by eq. (J.J7) is equal to 

R (f)=::: 12 ,-z. f Y1 2
) =: lW~ flh c,2 )=eonst. (J.

49
) 

The same result can be also obtained from the analysis of the 

Wilson's operator product expansion in the vicinity of the 

light cone under the assumption of normal (canonical) dimen­

sionality of the current operator and from asymptotically free 

field theories. 

In the parton model 29 •30 the operator of hadronic 

vacuum polarization takes on a simple form, shown in Fig.l6 

~ 
anti par tort 

~ 
pa .. ton. 

Fig.l6 

Hence, the imaginary_part of this operator in the case of 

spin 1/2 partons is given by aq. (J.JJ) as for leptons. In this 

way we get 

I flh It ~ ol 2 
~ t l~)= '1:J1Zo(ft(S) = 3 Qt 
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(J.50) 
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where ~z is the i-th parton charge and the total annihila­

tion cross section into hadrons eq. (J.28) is equal to ( of. 

eq. (J.l6a) ) 

6 (s) = /;Jrd.z 2; Q~ == 0 ~ Q~ . h 3$ . L :;-t , 1 
'l 1 

(J.5l) 

If spin 0 partons also exist, then expression (J.5l) is modi-

fied according to eq. (J.l6c) as follows 

6 (5)= !trot'-{~ Qf + J_ L Q~} 
h 3S sp:nl/z. 1 L{ SpinO t • 

The ratio R takes on especially simple form in the 

part on model 

R =: L Q~ 
• ,, t 

S~"'h 

J. " Q2 -+--~ . 
I.J sp~nO 1 • 

(J.5la) 

(J• 52) 

Specific realizations of the parton model with the help 

of spin 1/2 quarks yield the following values of fZ : 

R= 2.. 
3 

the usual fractionally charged triplet: 

R= ~·+~== 1~ 

(Q - ;?_ - j_ ) - j_ ) 
- 3 ) 3 3 

the fractionallymarged quartet with the 

charge of a charmed quark Q ~ :=. ;-
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R==3·;=z 

R =24- 4- IO 3-3 

R=- 2+2=4 

three coloured fractionally charged 

triplets 

three coloured fractionally charged 

quartets 

three integrally chareed triplets 

( 
0 -i -i) Q-= i 0 0 
i 0 0 

R = 2+ 4 = 6 three integrally charged quartets 

(
o-i-i o) 

Q= i 0 0 i 
i. 0 0 i 

The separation of R into two terms refers to a separation 

of the electromagnetic current into 

'} = ~N + ~c 
where the "normal" part ~ N has the usually assumed 

transformation property of an octet under SU(J) and singlet 

under oharm, colour,etc. groups that is 

·'j,v = 1C8J1)=~3 +i3=Ja. 
The part de is associated with new hadronic degrees of 

freedom ( new quantum numbers such as charm, colour and soon). 

And transforms differently ( in particular as a singlet under 

usual SU(J) in the models considered above). Thus, one may 
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think that at relatively low energies ( ~ ~ 3 GeV) 

these additional degrees of freedom are frozen out and ~= 2. 

However, after the "thaw" at higher energies the value of 

I( increases to 4~6 ( Note, however, that it may pose 

serious problems for electroproduction). 

For single-particle inclusive cross sections, naive parton 

model gives the following predictions ( see eqs. (3.16a,b) ) 

d 6 """' 1:-J l.( 2 )' l " 2. - oC L 1...'<; 1+{'0S e)+- LJ. Q. (i-eos 2 e) 
d () . \/; 2.. . l (3.53) 

.L Sf•" 1- Spll'\ 0 
d6' ( I ). q.2. dw =. f (w) + 0 \:1%w2. 

and leads to the two-jet structure of the energetic hadron 

emission ( a rapidity plateau) while experimentally the angular 

distribution is consistent with isotropy, scaling fails at 

~~ 0.5 in contradiction with eqs. (3.53). Spin 0 partons 

cannot compensate the spin 1/2 partons, since such a large 

contribution of~in 0 partons is not seen, in electroproduction. 

The isotropy of angular distribution, the absence of 

scaling at W < 0.5 and the exponential fall of the inclusive 

single particle momentum spectrum with the specific cut-off 

parameter T ~ 170 MeV are well explained within the 

framework of various thermodynamic and statistical models of 

hadron interactions. However, such models fail to explain 

scaling at W > 0.5, energy crisis and they can say nothing 

about the absolute value of the total annihilation cross 
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section and apparently fail to describe the spectrum of highly 

energetic hadrons. 

The ratio R , found experimentally at {Cji' ~ 5 GeV, 

reached the values of order 4-6 compared to 273 at W ~ 3 GeV. 

A linear rise of R o(; q; corresponds to a constant total 

cross section of annihilation into hadrons, which contradicts 

scale invariance ( automodelity principle), parton model 

and above all rigorous unitary bound ( 3.39). With the existing 

experimental data ( 6h ~ 20 nb) this bound is saturated at 

1qi' ~ 30 GeV where the rise is expected to stop in any case • 

A lirear rise of .g (5) leads also to the •diverging integral 

in representation (3.30) and therefore a new subtraction 

constant is required. 

One of the possible explanations of the observed rise 

of R (s) is given by the model of giant resonance in a quark 
37 system of the type which occurs in nucleon system ( nucleus) • 

3.5. ~lications for Quantum electrodynamics ( QED) 

According to eqs. (3.32) and (3.37) the photon propagator 

can be written in the form 
C4 

D(f)= ~/ :~ ri+ ~ qz\ ds R (s) J-1 l 31r j S(s-a2.-iO) ""''l.. -1 
Jr 
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(3.54) 



At low momentum squared 

eq, (3,54) that 

qL ~ lfmJ it follows from 

where 

DC91:)~i [1.- ~ fJ 
~2. 31r mk , 

-z. 
mh 

o<J 

~ ¥.Res) 
4 )K:t 

]T 

(3.55) 

is the effective hadronic inverse mass squared required for the 

lepton anomalous magnetic moment and atomic physics applications. 

It is also helpful to note that the Coulomb potential 

C-lol./1" ) becomes modified to 
• -+-+ 

V )
d3 ~ tq·r' 

( r) =: 'IJT lot. _j D(-az) e :::: 
(2.JT}~ -1 

ewl 

= _ Fr:J.[i + ol \ ch R (s) e -fS'l"J 
1 3Jr J s J 

/jnf: 

(3.56) 

which is a sum of Yukawa type interactions. As follows from eq. 

(3. 55) at large \'"' 1 :P4m-2. the hadronic modification is 
'J( 

effectively given by 

L.{ oL. V c•) ~- "i:o1. -r 4- 311" 
g3(~) J 
YYl. h. • 

(3,56a) 

In general for qL spacelike the electromagnetic interaction 

is increased in strength by hadronic vaouum polarization. 

For estimates we set · 
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R Cs)= R Ci)n 
) 
s~A2 0~ )1.!Si 

) 
(3.57) 

up to some large S /f'IQ.,x = A 2 and 

( "z.)n R (s)= R s; , S>A2. 

for higher values of S with S
0 
~ 25 Gev2 and 

Then from eq. (3,54) for qz. ~ Az. we have 

R ~ 5. 

a) 0 < n <. i. 

D ( q ~) = .i..-l i- oi. R (-l) 11]- 1 
q:z. 3 Strt:J/11. Sc 

(J,58a) 

b) n= i 

D(az) = .i Li + of.. R 1_z .f (-~z.),l-i 
I qz. 37r SG 11 12 ~ 

(J.58b) 

Note tllat for time like q 2. > 0 one must take in eq. (J. 58a) 

( z. • ) according to the :rrr ascription q + t 0 

. 
(- i)n = 

- l JTn • • e = ~sJTn- 1 SJn.Jftl 

In a special case of h :: o, ~ (s) = R = const which 

correspondes to normal QED of point-like particles 

we obtain a well-known result 1 

D(az) = j_ [1- ol. R ~n.. t_£ ):1-i 
I 9 2. 'J. 3JI \: 'rn z. 'J · 
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It ~hows, in particular, that the effective charge squared 

ee~f = e2 Cfz DtrzJ 
grows as }q2 } gets large. In contrast to that in non­

abelian ~auge theories we have an opposite sign in front of 

log in the denominator of eq. (J.58c). 

In such a case the effective charge at large qz. 
becomes equal to 

2. 3'1 ~ 0 q2.~ C><J 

~efl ~ N./n.(qYmz.J ) 
and asymptotically vanishes at small distances ( large 9 2 ). 

Thus the theory is asymptotically free since there is no 

interaction and implies a constant value of R at high q2. • 
The real part of the photon propagator is of special 

experimental interest since only it interferes with the lowest 

order 28 • From eq. (J.58a) we find: 

Re DC~•) = ~· li + ~ ci~:n-n R (~')li o<n<i. (M9 l 

Note that for h=- 1/2 the hadronic modification of Re D(~t) 
vanishes identically and hence there is no hadronic correction 

to the process e +e-.... _,..u~- since only the annihilation 

diagram enters there. For the process e+.e_-~ e+e- only 
/ 2. spacelike L q :: t<:o) modifications are important if YL = 1/2. 

The modifications of the photon propagator due to hadronic 

vacuum polarization yield corrections of order several percent 
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( ~ o{ R ) to the lowest order cross sections of lepton 

processes e+e- ...... e+e- and e+e-~ ~~-for values 

of q 2 of order several tenths GeV 2 and e = 9 0 °. 
In general the perturbation theory for QED would 

breakdown completely, when \ ncs) \rvl,i.e.,at {<(s)~ 3 =411. 
eX 

which :Is reached for R (S) <X. S at {$ = 40 GeV. 

The contribution of hadronic vacuum polarization to muon 

anomalous magnetic moment can be expressed directly in terms 

of the annihilation cross section ( the corresponding diagram 

i s shown in Fig • 17 ) i. 

A r \ d-r ~2.(1.- ~) 
Llh ~:::: lirr3 y!s oh(s) j ~2.+(1.--z)CslmJ) 

Jim; o 

(J. 60) 

For 

$ > s 0 '» If 'YH; (J.!SOa) 
0() 

..:1 a - d. 2. 111 z. r J.s b (s)- ..:!... 2.. m~- 6'.1x I0-9 

h f'< - '37r2. ~ J 52. 1' - JTi2. fi1hz - n:i 2 (GeV' • 
So h 

Fig. 17 
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A detailed analysis of hadron:1c contributions to tl 1.. a_(' 

leads to the following results 39 , 40 

L1h a? ( 4mf. < s < LfGeVZJ ==(6.6 ±0.9)x10-a 

t:1 h a .fl ( S > Lf G e V 2 ) ~ o. 1J x 1 o -8 

which gives in total 

~ha~ ~ (7.i ± 0.9)x ::10-
8
. 

(J.61) 

The comparison of theoretical and experimental values of Cl)4 
leads to 

a;r- a.~k(QE.D+ had)= (271+ 3i)X'i0-8
., 

where the quoted error is taken from the experimental 

value of ~ • Thus, one needs to rise the accuracy of 

measurements by a factor of 10 in order to reveal the 

contribution of hadron:1c vacuum polarization. Such experiments 

are in preparation at CERN and Los-Alamos. 

J.6. llill!.:..Y~!l.I....P~~s and e+e- ann1~all2!1 

Recent discovery of new vector mesons ,/~ ~}2) ~) ... 
at SLAC and BNL apparently change desioively the whole· situation 

in hadronic annihilation. In fact, since presently the 

experimental data are obtained in the region, where several 

resonances are found, so in analogy with the deep inelastic 

electroproduction one should expect scaling only on the average 

in the sense of a "new duality• with respect to vector mesons35 , 38 • 

.. 

From the other point of view if the new vector particles bear, 

in some form, a new quantum number ( of the type of "charm" 

"colour", etc), then the rise of R (<;) between '{S' = J GeV 

and 5 GeV may be explained as a threshold effect of opening 

(thaw) of a new channel ( of the type of charQed quark 

production) • SCaling in the single-particle inclHSiVe distribu­

tions may also fail in this region. 

We illustrate the above considerations by a simple example 

of enlarged ( generalized) vector dominance model 35 • 38 

The main assumption of this model is the existence of an infinite 

linear rising spectrum of vector meson masses squared: 

m~ = rn; ( i+ cu1.) . (J.62) 

Such a spectrum is characteristic for dual models. The total 

ann:1hilation cross section in this case is equal to an infinite 

sum of the Breit-Wigner terms l 
) 127i ~ ]'n; r:. r: 

6'h (s =s- L>. (s- h?Z.) 2 + m' r2. 
~ h h h 

(J.6J) 

where ~ is the total meson width and the partial decay 

width into a lepton pair reads as 

1.1 = _lf;rc:X z m, 
1'\ 3 } 2 

Yl 

In the infinitely narrow width approximation eq. (J.55) takes 

the form 
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12;;2 I 
6'h (S) = 7 z m, r:, F {~- trTn

2
) = 

11 (3.64) 

" )112.. 
:: ~ 12 JT2 ~ f~ 5' {s-h111

2
). 

... " 
Now it is quite, obvious, that in order to obtain scaling 

behaviour of 6": ~ l/s one should require 
.k ~ 

'IAA f1 = coYJst ~ = ~ons"t: 
rn"' In ) f'2. 

so that 

r\1- r: h1o 

Wln. 

)'1 

4 Jr o/. 2 J11o2.. 

3m, fo2. 
This condition directly leads to the result 

6': = -12Jr' r:t Mo =- (}_ (2'JTZ. 
h s a m; /'< a fc:l.. ' 

R= ~ 
6'.? 

/2Jr2. -
Q f/- • 

For usual vector mesons f> w
1 

<f one should take 

Jn 2. = }112. 
D f } 

f/- .;_z. 
a= 2. - = 1 = 2. !i6 

) L!JT ~7i 

(3. 65a) 

(3. 65b) 

and multiply eqs. (3.57) by a :!!actor of ~ = d..+ (~)2. 
which accounts for both the~ovector and isoscalar components. 

Thus 

~ - '271 
J> w,!f - ff2 /l.fx ~ 2.!) . , 

(3.66a) 
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For the family of new Teeter mesons assuming that ¥i 
aa excited state of ~~ we haTe 

• 

A 2 ll .2. 2 '2.. "'-' 
.Ll Wt. 4' = 1.-{t mt

1 
= m't'2.- m'l! :::::. 4.1 GeVL 

' 
l l 

\
0 

= f:v -=:: 1). 2 ke V 
T1. ) 

fz. -
'/'1.. A; 1 0. 'J ' _...,.,.. 

4Jr 

1. '2. 
12Jr m~ ~ 

-Amrf~ 
311 Rt- 2.. i . 

ar +;/'lr 
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In the end, th~ total value of 

R = Rf>WI'f +. Rt ~2. 5"+ 2.i = 4. b 
(J.66) 

which is cons'istent with the present experimental data. 

The same result may be obtained with the help of the sum 

rule ( J.J2). Really, recalling relation (J.J7) and choosing 

R> Cs) =~ Im n>(s)= R (;o)rt 
we write the sum rule (J.J2) in the form 

r s,.,4J( 
J d s I! C s) = R s ~" ( S IVICIX) }t \. s;- ) 0 ~ )1 ~1 (J.67) . 

0 
Saturating the left-haad part of eq. (J.67) by contributions 

(J.56) of vector mesons 

h12 

R (s)= {21rz. -" 8(s-h1 2
) 

y t~ v J 
we find 

d_2Jr2. ~ 
v 

)r)z. 
v -

t~ -
R s~qx ( ~M:~) ~. (J.68) 

In the case of scaling behaviour we have R (s) = const) n=o 
hence 

R= f2JT2 m~ -f: J 
2: 

v 

(J.6Ba) 

S'~'l)( 
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and the sum rule is also valid locally. 
2J 2 trow assuming the usual SU(J) ratios for the constants mv/ft' 

v = p) w) If that is 9:1:12 and taking as before sm~x=2m; 

we come to a familiar result ( Cf. eq. (J.66a)_, note that again 

A 2. 4) {-+9-+9=3 
8Jr2. 

R .f1wl'(! = 
-f2. 

f 
Similarly for the 

2. 

I.J;-meson contribution we find, choosing 

S 111~x =A l11q; l27i 2 mt 
R "\' ·= .6 m z. :f. .z. 

'in accordance with eq. (J.66b). If r 
In the case if a ~ meson is the pure cc-state ( C 

the charmed quark) the SU(4) symmetry predicts the ratio 

'WI 2. l'YI 2. 
w, .___!_- i•8 
~ • tz. - • ' 
1-'-'-' '+' 

which is well satisfied by the experimental values. 
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0.4~ 1 l 

0.31-

vW2 

0.21-

0.11-

00 

R= 0.18 w > 2.0 GeV/c2 

'+ .lJ. I 

++ i 1t+?+f'f'H * + 

+ ·t 
~#? 

~y· 

-

·~* 
«> 

<P 

I 
0.5 

+ 

• 

w' = 1 +w2,/q2 

5 <w1 < 15 

15 <w 1< 25 

1::. 25<w1< 35 

x 35<w 1< 45 

0 45<w'< 55 

0 55<w 1< 85 

I 
1.0 

q 2 (GeV/c)2 

Fig. 18. Approach to Scaling 
for e-p scattering. 
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Fig. 19. 1'-P scaling results. 
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