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I. INTRODUCTION

In the first part of this paper n/ we expressed
‘the generators of the Lie algebra of the pseudoorthogonal
group O(m,n) by means of matrices, the elements of
which were the polynomials in the quantum canonical
variables p’! and q, . This is what we call the matrix
canonical realization of the algebra o(m,n)*. We proved
a.o. that these realizations are Schur-realizations, i.e.,
that all Casimir operators are realized by multiples of
the identity element. Now we are interested in their
”eigenvalues’/’ .

In ref. ' we described two sets of matrix canoni-
cal realizations of o(m,n) . Every realization from the first
set was determined by a sequence of n real numbers
and if m—n>2 by some finite-dimensional skew-hermi-
tean irreducible representation of the compactLie algebra
o{(m—n). As any such representation is uniquely (up to
equivalence) determined by its signature (a 1 a[ ™ —n ]),
i.e., by a certain sequence of integrals of half-integers *.'2/
we can say that every realization of o(m,n) from the first
set is determined by the sequence “m,n=(";”|""’ a[y;_n] ),

where the first [ -~a—-) numbers correspond to the sig-
nature of the representation of o(m—np)and the remaining
n  numbers are the mentioned real parameters; we call
this sequence the signature of realization. .

* For the exact definitions of all the concepts used
here and details we refer- to ref. 1/,

** The only exception concerns the algebra o(2) when
the number @ 2 assumes any real value.
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The realizations of the second set are the usual
canonical realizations, i.e., generators of o{m,n) in
them are realized as polynomials in canonical variables
only. They are similarly determined by the signature
(d;a],...a[&])»dd,z,.,n—l,where now a;=..= Cmin]_ 4 =0
and the reszt are real numbers. 2

In this paper we shall give simple formula for calcu-
lation of generating Casimir operators. They are expres-
sed in it as the sum of matrix elements of powers of
a certain n()a . The ’exceptional’’ generating Casimir
operator I '™ in the case of o(m,n) with m:n even
is given explicitly (theorem I).

It will be shown that, with the exception of
all generating Casimir operators are certain symmetnc
polynomials in variables (8))5.... (B [Lm=n=24) 3
(ia ) ..., Gia )2 2

[mtn=2d]y

’l' (m,n)

where 8 ,s=1,...,[-m——2£2—d—],

of a_- Casimir operator 1

is a certain linear function

ma) s also a symmetric

polynomial, however, only in the first degrees of con-

stants ﬁl yeees @ . Due to this symmetry property
[ m+n ]

there is a finite number of realizations in boih the sets

with the same *’eigenvalues’’ of Casimir operators only.

As the order of numbers in the *’subsignature’(q,..,a [m_n])

is fixed, the signatures.of all these realizations ditf%r,
with the exception of some cases if m+n js even, either
in the permutation of the last d components or in the
signms d’<d of them.

In the last part of the paper the connection with our
earlier results /3/ is briefly discussed.

2. PRELIMINARIES

A. For o(mn) ,m2nx 1, we conventionally use the



metric tensor in the form g, = diagig |,.--.8_, o ., _»~1+D-
Together with the tensor pll;asis L V:-.L‘,‘T(J;f,wl":f:.,m m),
the elements of which obey the é‘ommutation relations

[IL#V 'ILPT ]=guplL[U' - g#p 'LVT + %!T‘LP# faed g#f ILPV (l)

we use also the following one:

L ,P. =L +ILi.m+n—l ,Qi=‘L

—
ij i i,m+n i,m+n L i,m+n—1"

R=L

m+n—1, m+n

=12, men —2 *, As we said in the introduction, to
every signature a o =(d;“l 3oeny a[ m+n ;) there corres-

ponds the Schur-realization r=r(a =) . of o(m,n) in
Wz(mH_ " )Nf . We obtain this realization using the
recarrent 10t mulae (see theorems 1,3 of /1/ ):

T(P‘-)=pi ’ rﬂ‘ij )=qipj—qui+Mij >

r(R)=-(qp)-[-;_-(m +0-2)—iell , acR,

2
rQ;)=—q2 p, —Zqif(R)~2quki , ®

(@p)=q'p, » ¢?=q4',

where Pi =8 ij P! ) qi=gij ql and Mi' == i‘ is the reali-
zation of generators of o(m—l,n—l):in\i’zN'ﬁ*- The differen-
ce between both the sets of realizations is that in the first

* Indices i,j, k, ¢ will run always from 1 to m +n—-2.

* Remember that W,y -,  (matrix Weyl-algebra)de-
notes the associative alﬁebija generated by N’ canonical
pairs p' ,q; ,I[pi, 4l=8{1, with complex MxM -mat-
rix coefficients; r is a’homomorphism of o{m,n) into

W2(m+n =-2+N),M
*** For m+n=2,3 wedefine M i =0.



case ‘we continue the ’’reduction’’ to realization of the
compact algebra o(m—n), while in the second one (d<n) we
use the trivial realization of o{m—d, m-d).

B. The number of generating Casimir operators of the
algebra o(m,n) equals to [—'“z*L]- Formin odd they can
be all f>and among Casimir operators

(m,n) " 4 "
Y AL T I =
. # "y L#r » 1=1,2,3 ..
{m,n) " (m,n)
(we understand I, "= Ly, =0 anddefinealsol j=mn ).

For m+n even we must add to them the Casimir operator

( ) #lul "'Fm Y min
~ (m.n iL mtn
I =¢ 2 2L ..L ,
#1¥1 Hmin Y min
2 z
o e B . . . .
where ¢ is the completely antisymmetric Levi-

Civita tensor in m+n indices with normalization:
p 12....m+n =1.

C. The statements of the part B are, of course, valid
also for compact algebra o(m,0) = o(m). As we have
reminded, every irreducible skew-hermitean represen-
tation of this algebra is uniquely (up to equivalence) de-
termined by the signature (e, @ i) ). Values of
the generating Casimir operators in this representation can
be expressed explicitly by means of its signature 5

To this purpose we shall define special sort of sym-
metric polynomials in [m/2] variables X |,..Xx[,.a
Let us firstly define recurrently the m xm — matrices

Sm(xl s X[ /g ] ):



3
m=2 + 0
—y —-€ ’
x[m/2]+ 2 m—2
reey E, —e
SR R 0 .S _f x['—"z-“’-l)+ w2 m-2
m—-2
0 . 0 » X +—=—
2
Here e’ ,=(1,1,...,1)(e _,) is the (m-2)-dimensional

row (column) consisting of unities and E ,_2 is the
identity (m-2) x(m-2) -matrix. This recurrent relation is
solved explicitly in iy (see eq. (16) and Table 1). The

polynomials o :")-= o r“‘) (x,, X)) are defined
as follows ’ :
er S (X X )e 1.2
(m) . m m [ 2o [m,2] m? r=1 ,z,...
o =1 4)
m ,r =0,

(
Note 1. The main important property of 0,"" is that any
a‘:") is a polynomial function of Newton sums of even
degree S9,84,...,8 ) where
2(r2]

{m72]
s =3

X,
r i

i=1
and on the contrary any Newton sum S;, is a polynomial
function of o{™,...,0 “r'" (see eq. (90) of '3/ ).

The value of the Casimir operator [(m0 w2

7
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in the representation characterized by signature (a_,....a )
i S [ [ma2]

(m)  (m
1" . (ﬁl S A B SN

r r

Boma 4y, ay =378, s=12, [m/2].

The value of Casimir operator T(""m = T(

in this representation is the following:

m (for m even)

1.2 (DB, B
2

3. REALIZATIONS OF CASIMIR OPERATORS OF o(m,r}.

(m,n) r r (m,n)
"
Lemma 1. Let J S=0( s .
(1,0) : -
and I "~ =34 . Then in the resalization of o{m,a) ,

m+n> 3 , given recurrently by the formulae (2) the fol-
lowing formulae are valid:

* In paper ‘4’ the Casimir operators C, ,r=1,2.... and
Cn/2 » m— even, of the Lie algebra o{m) are defined. The
definitions of operators C, and C’.’n/z ..‘aI;e formally
the same as the definitions of our K™ and 1™, however,
another (twoindexed) basis is used. The connection between
these two bases has the usua} ensorial character so that,
as C, Dbehave as scalars, 1;™aC,,r=12,... .On the other
hand, Casimir operator Cp/2- )is a pseudoscalar and
therefore the connection with 1 (™ has the form

- " =0 ¥ c;, .
where (i) m/2 is the detcrminant of the linear transforma-
tion (eq. (3) in/4/ ) inducing the mentioned tensorial

m
transformation of bases. The signm factor (-1)
arises due to distinct normalization of the Levi-Civita

tensor.



{m,n} o — — r—s—1 -
. =8 +ﬁ'-z<ﬂ“‘ BT 4 = )
B -8
(5)
Am—Ln-l) _ (m-la-i) (m—1,n-1)

X g _ZJr—l +]J, ,1=01,,
where S =ia+ —(m+n 2) and in the case when m+n is
even

~ ~I,n~-1
l(m.n)= la(m+n)l(m I,n ) ®)
Proof: Any element $ €W, = . . canbe written
in the form
i
1 P=3 . qf. pSs
l‘ e Gyg*q P
(a q"-p® za x

)
1 m+n —251 s m+a-2

r
+n-~2 81 Smtn—
m -p e p MM 2
m+n—2 1 m4n—-2

where a_ G WZNM w2(m+n—2+N),M ).

Let us introduce the ’’projection’ nperator “‘abs™ in
¥2(m+n-2+n),u DY the relation
abs ¥ = Cgo -
Directly from the definition we see that
9
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abs q, P = abs Pp, =0

absM. P =M _ abs® ,
ij ij

(7)
abs(P+P)-abs ? + abs¥’
abs(plql) = abs(qlpl+1) =1, etw.
As we proved in ref. A (see proof of thecrem ), the

realization 7 (z ; of any Casimir operator z of o{m,) in
the realization (2) does not depend on canomcal variables
q9;:P, - We can write therefore for - (l("' N the rela-
tion ,
( ) {m,n ’, (r
(") absr (1 ") 2gR abs (T ).

- (r)

Here i o is defined recurrently:
(n (e=1) {0
"L et T, T -g
ur R pr wr i

As the proof of formula (5) for r= 0 is trivial we can
cassume r> | and further write:

(m, -1 S
r(lrmn) )~absriR(T ] {r—1

m+n—l m+n  m+n.m+n~—| )+

+ ZL(Pi +Q') (Tm('_” -T,(r_” )¢,_12_(Pi—Qi ) x

+n,i i.m+n

(r—1) (e~1) ij i {e—~1)
AT et Vit J+ M g p ~-q p)T f.
This expression can be, due to the special form of reali-
zation of the basis elements (2), simplified by means of
the relations (7) to

(m,n) (r=1} =1
r ( ; -

a+n—i, mtn min,m+n—1|

)—-B abar(T Y+

(r=1) (r=1) (r—1) (r=1)

1 i
-f»i—absr([P ’Tm+n,i —Ti,m+n +Ti,m:+n-l"T m+n—=1l, i D+

10



i (r=1}
+Ml absr(Tr ),

where 3bsR=-B=ia~ —-(m +n-2).. Using the commutation
relations
(r) (r) (r) (r (r)
Ly, Ty 1=g e T 8 Ty m 8Ty

we further obtain

(m,n) (1) T (r=1)

r(lr )=ﬁabsr (T )+

m+n—~I,m+n m+a,m+n — |

1
+M abs (T(r ))

In order to prove the formula (5) we need to express the
right-hand side of the last equation in terms of Casimir
operators of o(m-1),n-1). Let us define

(r)

+n—l m +n - m+n,m+n ~1}

A —absr(T )

(
B,:abSr(T(') v

-7
m+n, m +n m+n—1 ,min—

)

Using the same calculation as above we derive easily
the recurrent relations for these quantities:

(r—1)

A =iaB,_ + 5‘- (m+n-2)A_, -g" abs - (1,7 ),
It further gives
Ar _Br =B_ (Ar—l -B. ) (8
from which
B, =A + ZB'

FERR YA VICE P

S S

2
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Substituting it into the above relations for A, , B, ,
we obtain the single relation

(r~1)
=BA, | +2ia B"“ -gh abs 7 (T , ! )=

- = (r=1)
=RA_, +(B-B)B -3 "absr(T ).

Using once more the above calculation and eq. (8) we
derive easily the recurrent relation for abs (T () ):
i

abs 7 (T frl) )___ﬁ,:absr (T;(T”)- gij,g' -

wbera

-

M. =M +g..
l] lj 1}
One can solve this relation as follows
(r) el r—-s—-l (s)
-2 B ;

»
s= i

abs (17 )=
ij
where

M. r=0,1
= (r} By My ’
M-

=
-
A\
—

-~ ~ 5
M1 M°2... _
1 b | St

Using it we obtain
= (r) r—l—r—s—l = (s)
C g i abs r (T ij }J=M - §Oﬁ M,
. o=
where M@ ﬁ(') gl and

iy ~ 1 ~ _ 1 - ~
M abe(Tji )=M(’+ ) +(1-p) % Br-s~! YRt
S5=

(men=2)g L o M) oy,
+(1-8) 2 ﬁ'—s-' M4 (man-2)F"

12
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The relation for A, we shall now write in the form
ain =1
A=BA_ +(B-F)B" -C
which is solved by .
- = . |
A=p =B _sz=oBr A (e=1)
Substituting now for M s (T ™' ) ard A into
the equation "

(m,n)) BA |+Mii absr (T r-l))

we finally obtain

{m,n) - r—2 r~s5-—1 - r—s8-1

(1 )= ﬁ +8 - ZO[B +B +

S r=s-=l r—a—
. B -8 T ICEP G )

~ ~

)
From the definitions of MM " we ottain directly
M7 - 3D,
8=0 S

where

(m+n-2)(1 —-r) r=0,1

As the elements M, .i.j=12,..mmn-2, gemﬁate a given
realization of o(m—1, n—1), the quantities M are just
the Casimir operators (more exactly: their realizations)

of o(m-1,n-1), Le., (ot )
-1 nel ~ o (m=1 e
M(r)= (m ,n ) (r) =

> M
and tormula (5) is proved.
As to the formula (6), the realization of generating

14
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Casimir operator -i(m’n) does not depend also on cano-

nical variables and we can write

- #4Vy o F min YV mtn
r (l(m’") )=absr (e 2 2 L ..l )
vy Fmtn? mtn
2 2

Let us denote h= -;—( m+ n)and notice that since the only
non-zero terms are those having all the indices g ,
1 s B, s K mutuaily different, we are absolultely
free in ingercﬁanging 'Lu',, s (see the commutation rela-
tions (1)) so that we can write

(

~ (m.n) mn—l, 0, ig v fgreen iy 4
r (1 y=2habsr (e BRI M)

L....
m+n—1,m+n big

i,m+o-1 sioman, g, jaent gy

2h
) R P A | }—2h] absr ( ¢
h 2

ll'l',

x L L L L. )

famtnel men i §

where the latin indices run from 1 to 2h-2. Further
with the help of egs. (1), (2), (7) we have:

LRI S R [—Zhﬁ—absr('Li2j2...L.h. )-

—h(h- L, L, )=
hh=Dabsr (L P, Q; TL, ooy )

= igig e ipiy -
= 2h(-B+h-1)e absr[(Miljzmizpj2



_ igig - iy ip,
<2h(- B+h-1)e izie M

But since Mii , i,j=1,2,...,2h—1, generates thereali-
zation of o(m-1,n-1), the last equation cne can write in
the form

P _(-20F +20(h-1)11 ™Y,

According to the definition
~B+h-1<iq - -;—-(m+n—2)+ ;—(m+n)—1= ia,2h=m¢n

and the validity of the formula (6) is proved.

Lemma 2: Let a realization of o(m,n),m+n> 3, of the
type (2) be given. If the corresponding Schur-realization
of o(m—1,n-1) is such that the values of the Casimir
operators can be expressed as

l(m—l.n—‘z).g(N) (8 5 .2]),N=m+n—2, r=0,1,

r
for some complex numbe.s (8y....., 8y2))  then the
values of Casimir operators in the realization of o(m,n)}

arel(m,n) (N+2)
r =9 S[N 2] °

Proof. From the definition (3) one can prove easily
by induction the relation between r -th powers of the mat-
rices SN(xI y eens "[N,‘Q]"SN and SN+2 (xl "[N+ ]), sz B

-2 r—s—l r—s-—l

r + it r—s—1 s Yy
AT S OSBRI ):

+EN)e

y—-z
rl

Swas| © (SN+EN)r’ -3 (SN FN)eN

9

N N
—2—, Z=—X[N+2]+—2—.

where y=xM] +
2

5
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Using the definition (4) of the polynomxals a N)

the relation between a(N) (%, 5 [/2]] and

(N+2]
o (xl yeeny X [N 2] H
2
(N+2
(x] [ CALH X[M] )=
2
. r—s—1 _ r—s—1
- Yr izf =S ( r-s=1 _r=s=1 ) x
z—y
% (N) 2 :T)l +cu(:”, 10)
where
MN)_ (N) + r
, =@ (xl ,...,x(N/ 2])=eN (SN +EN ) en =
r r (N)
= szo( . )as ()u:l ""’X[N/zl)' r=0,1...
Substituting into the relation (10)
Xl =81 ,...,X[N/2]=5[N/2], N=n+m-2 ,
=ia =>y=08, z-= _,
[ ] £
(m=l,n=-1) (N) (m—1,n=1} N}
I A CR S -
) 7 el e @ @1 ’BIN/zl)

we obtain with the help of formula (5)

1 (m,n) o (m-- n) (6 Jia)

r r ’ 8[m+ n—2]

which just proves the lemma.

6
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Now we are in the position to prove our main theorem.
Theorem l. Let « =d;a, ,..a ) Dbe signa-
m,n i [min)
ture of the realization (2) of Lie algebra o(m,n),m>n > 1.
Then the values of Casimir operators are

. (m, “) (mn) . .
L lr r (Bl’ Blmn—Zd{laIMn—Zl‘l 141 » et [m-}n])’
2 2 7 2
r=0,1,..., a1
where
-2d -2d
ﬁs =as +}’E > }'5 =m+n_—_2 —S:S=1y2y'"1[—m+‘; ~ ]’ (12)

ii. for m+n even wen +n

T{m,n)
prm.nt o Bdn . (2 1) ( m+n)| ﬁ ....Bm_na ment2 % min
2 2 2

Proof. By induction: i. a) Let us firstly consider
the realization of the type (2) of the algebra o(m,1 ) with
signaturee =(,a,,a .2 ),m>2 As it was pointed out

m,1 12 sy
in the part C of Preliminaries the Casimir operators
l‘:“*l-m in the realization of o(m—1,0)=0(m—1) charac-
terized by signature (al yores a[ El] ) have just the

form (11) in variables 8, ,...., /3[m_|] so that lemma 2

can be applied. In the case of 0(2 1)  the assertion
follows also from lemma 2 if we put 1(1.0Lg ()5,

(see remark p.5 and eq. (4)) and for o(l ,1) 1t can be
verified dlrectly b) Suppose now that the asscrtion i. is

valid for o(m-1,n-1) | m3>n 2, and let us take
realization of © m,n)} corresponding to signature
L=Wia ., @ min) ). For d>1 the realization of
2
10(m=1,a-1) from the formulae .(2) corresponds to the
signature (d-1; @y e @ )
{ m; ny_ -
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and because, by induction assumption, Casimir operators
have the desired form, the lemma 2 can be applied.

If signaturea =(1;0,....,0,a ), the realization

m,n [mtn ]

of o(m-1,n-1) wused in egs. (2) it trivial and we have to
prove that Casimir operators 1(m—‘v“°”=0 can be
expressed as the values of polynomials o (m+n—2) at
the point (yl s eens y[ o _2]) This fact is however proved

in ret. /% (see, e.g., relations (55)-(57)) 50 that lemma 2
sgain can be applied and the proof of assertion i is comple-
ted.

ii. The proof is a simple consequence of eq. (6) and
of the form of the Casimir operator '™ ™ given in
Preliminaries, part C.

Now we shall deal with the question how the values of
Casimir operators differ ior different signatures of rea-
lizations. We denote by Q. , the following subset of
the set of all signatures with fixed m and n:

Q. =1ldia ""’a['_";_ll] 1053, 48, (e l—aK)gaK+l<_._.

m-—n .
..Sa[mzﬂll, K=[ 2 T+1;

if m—n  is eventhen d4n-1 and « =0=>a 2 0*|.
[m—n J+1 m2—n

Theo rem 2: i. For every signature « there

exists o’ &0 such that the values of any Casimir
0n

operator in t.he correspondmg realizations are the same.

ii. The signature am IR is determined uni-
quely, i.e., for two different signatures from Q, the
corresponding realizations differ by the value of at least
one Casimir operator.

- -

* This condition is automatically satisfied if either d<n
or m=n.



Proof: i. The assertion is a simple consequence of the
symmetry of polynomials in the last d squared compo-
nents of the signature o, o If m—n js even, the signa-
tures (n-1;0,...,0, a[m_n] 9 ,a[m+n])may be excluded from

2

Q,, . because they give the same values of Casimir opera-

tor: as the signature (n;1,..1,0,a v see eqs.
s g [mon,y ["'—PJI( eq
1)-(12)). As to signature a_ =(nja .., a [mml) , 1
2
even , a " # 0, when also exceptional
[2=nler 5, ["“‘"]
invariant f{mn) has to be considered, the signature
a’” €0 has the forin
m,n m,n
© = (n; T , verey ) ),
a . CH a[mz—n]'rﬁmn Iasll l“.-.n, I
where ¢= sgng .a and Sy oS, ”n’“'"_ﬁmn'

Bt 45,  (mn]

2
is such permutatlon of indices [E——hl v n,..,l'_“_'l‘.l that

|« [Zlag 1. la.. |.

hlli. As uf"e pomted out in Preliminaries, any Newton’s

N 2r
sum of even degree Sy, = 3 I(x., ) can be written as the
polynomial in variables vw‘ ‘N{xl X s =1,2,
Even Newton’s sum Slr can be cons:deredas the Newton s
sum s_  in variables x| = xl ,8=1,...,N.
Con51der now the so called elementary symmetric
polynomials &N r=1,2, » in variables x|  defined
as follows;
(N) .f(N LX) X xT LLx’ s
N (N',...,Nr) | S

where summation runs over all sequences (S, 1eees S, } with

1<s) <9< <s <N. Itis known ¢’ that every symmetric
polynomxal .f (N can be expressed by means of Newton’s

sumss = 2 (x ) and therefore any symmetric poly-
s=1



e

&

o

. (N)
nomial ¢ can be expressed also by means of polyno-
mials ofN) .

So, two signatures a"l a’ % giving the same
values of any Casimir opnrator glve also the same values
m+n]
of £ 2 - polynomials:
55 > 2
£ =¢ 8; % s Gia o seeslia’ ) )=
o [mig=2d_]. [ma)
[I'IH‘II 2 2
2 ~2 . ig ”’
=£, (B ,(m[ mino24”_)., ) B (Am["_&l]) ).
2 2

It is however, further known /6/ that the set of all solu-
tions of the ["‘—%—ﬂ-] - th order equation

m+n m+a
[ LS y[ 7! R y+€ =0
[=32) -1 [

equals just to
.2 . _ ’ 2
i8; ,...,(‘.a[m;n]fxzml olinnye) )

Asa’ 'a* a“’n‘nG Q. - the elements of these sets are
orderé ’ ’
L2 , 2 . 2
B >322> w>fB7 24 >0 (ia 2’ ) 2n2lie” ),
mta=2d’ min-2d 7 m i
{ ] { 5 ]+ 1 [“‘2 ]

*See also eq. (12) and remember that for d=n and
m—n > 2 the components a ,...,a[m_n ]form the signature

of an irreducible skew-hermitean r(zepresentatlon of o(m—-n)

and they are ordered:a; >a, >. >am_nj % >0
m—n is odd and Ll Ia[ o ]| ifm—n is even.
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2002 "2 NPT 2 . 2
B>, > ...>ﬁ[ min =24 >0>(ia” ine2d” ) >.w>(ia o ).
— [(———— . J+1 L n ]

For w+n odd 8° >0, 8" 0 even (see eq. (12))

[m+n—2d ] [m+n—2d 1
—T —z
and therefore d"=d’ and, consequently,a’ = a” R

m,n
i.e., assertion ii. is proved

If however m—n is even, then, beside possibility d° =d”
which implies again o’ =a’” ¥ also B ' nip—2d” =

m,n m,n [_2____]
=0=a”" . or B _age=O=a’ 4. could
[mtn—2d ]“( [mip=2d T (meac2d” )
be allowed which implies d’2d—1(d=d”" —1). For
d’<n it contradicts the equation g3y ~Y1—Bl =y{ SO
that d’=n, d”= n—1. The signatures withd"=n—1 arenot
however included in the set Qg , and uniqueness of

a ;n’n is proved in this last case too.

4. CONCLUSION

In the first part of this paper we proved that two
described realizations r and r° of the Lie algebra
o{lm,n)  c¢haracterized by different signatures are non-
related, i.e., no endomorphism 6 of Wy, 0(1)=1,
exists such that either § c7=7~ or fo r’=r. It may
happen, of course, that by a prcper embeddmg of sz M
in a larger structure (e.g., in the caseof W, embedding

" he uncertaint @
208 Qacag, s rmen s,
arise for d=d”=n  is excluded either by definition of
mJl(a[m—n ]+_|0_>a[m_1=_ﬁ[m_n]=0) or by means of Casimir

which may

operator | f(m.n)
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in its quotient division ring) when more general endo-

morphisms are aliowed, the non-related realiza- .
tions appear as related in the generalized sense, (e.g.,

non-related realizations (2) of o(2,1) in W, with

opposite a’s are related in quotient division ring

D OW% the endomorphism 6 hastheform: é(p)=p;,
6(q, )= q—l 2). This possibility is, however, excluded in the

case of ou Irealizations, the signatures of whichlie in Q. .,
The reason is that the element z from the centre of the

enveloping algebra of o{mn)  existssuchthat r(z)=az 1,

ri(z)=a’®, ! ,a,,a,c C with a, £a;  andtherefore

for no endomorphlsm 8,0(1)=1 of any structure con-

taining Van M equation 00r(z)=r (z) is valid because it

implies immediately a, :

It means that as related realizations in the genera-
lized sense the realizations with signhatures differing
only in permutation of the last n components and their
signs (with the exception of some cases if m+n is even)
can appear. ,

In our earlier paper dealing with the mlmmal
canonical realizations of the complexification o (m n;
of the Lie algebra o(m,n)*, we studied a.o. also the
question of the mutual dependence of Casimir operators
in canonical realization in Wy, , ... 2) (i.e., when
generators of o(m,n) are expressed as polynomials in
min—2 pairs of canonical variables). We showed that if
m +n>7 In any such realization r, realization of any
generatlng Casimir operator 7 ( l("""’ ) ( and square
r(J(mm) )2 if myn is even) depends polynomially on
r(13™" ); there are at most two types of these polyno-
mials and they do not depend on realization 7. The one-
parametrical set of realizations with signatures

(l;0,...,0,a[m2+n] ) lies in W2(m n—2) and we can

* Note that in Cartan classification of simple Lie al-
gebra o _(m,n)=D mn if m+n is even ando (m n=B .. _
C e m+n
T—

if m+n is odd.
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easily see that the above assertion is va'id in this case.
The realizations r(l2('r“'“ are now symmetric polynomials
in one variable «2  only and «2 is a linear function of
r(lé“"“ 5; the fact that this polynomial dependence is really
one of the two above-mentioned dependences needs, of
course, a special proof. The realization of Casimir opera-
tor I'™"  equals zero.

Increasing d, the number of independent Casimrir
operators in realizgtion also increases.

Ifd<n then r(l2:"’")), t>d, is the polynomial function
in the variables r('1{™™),...,r(1{™"), which considered
as the functions of the parameters a yeres & ,

[-'%—“—-]—d +1 (-"%]

are mutually independent and r(f(m'") }=0 if m+n iseven.
In accordance with note 1 and theorem I Newton’s sums
Sy -S89y POlynomially devend on s (lé';"") )saé';'*“? s<d .
The remaining Newton’s sums Sa(gslp - depend on the
first d even ones, as they are, following our assumption,
functions of d variables only. Therefore allr(l‘z":"') )

depend in this case on Newton’s sums § enSyy only,
i.e., on r(l;""“) ) ,...,7(1(23'") ).
If d=n the realizations of all [ m2+“ i gererating
R (m,n) {m,n) (m,n)
Casimir operators r(l, " },...r(L and
p g ) r(2[ y ]_.?) n r(l[ £ ])

(m,n)

(or r(] ) if m+n is even) are independent *. The

* In the case d=n when part of the parameters can
allow only discrete values we generalize the concept of
independent polynomials in the following way:

a) Let subset Qc RN have the property: if a polyno-

mial P(x)=0 for all xc @ then P(x)=0 for all

xc RN
b) the set {P{! ,...,Iﬁ} of functions on 0  which are
restrictions of some polynomials P, ,...Py to Q
gret called independent if P, ,...,PM are indepen-
ent.

The copdition (a) guarantes uniqueness of extension P; to
any P3¢ .It is clear that the condition (a) is respected by
the set of all signatures (n; q;,..., @ [m+n ] ) considered

as the subset of R
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proof is the same as in the preceeding case; only if m+n

(m,n)

2[‘%1] can

is even the [%ﬂ.] -th Casimir operator {

be substituted by 1™

If m-n=0,1,2 then no ’'right’’ matrix canonical
realizations of o(m,n) exist in our set, i.e., the reali-
zation with any signature is an usual canonical one. In

this case the maximal number [ﬂzi'-'-] of independent

Casimir operators is achieved taking maximal d=n , i.e.,
considering the set of realizations with maximal number
of canonical pairs N(a) =n(m-1).

On the contrary if m—n>2 the canonical! realizations
form the proper subset in the described set which is
characterized by the signatures with d<n or d=n and

al = e =Q [m—n ]= 0.

In this case at most n<[ -TX2] jndependent Casimir
2

operators can be obfained in the set of canonical realiza-
tions with N(n)=n(m-1) canonical pairs.

So to reach the full number [-ﬂ}"—] of independent Ca-

simir operators the use of right matrix canonicalrealiza-
tions is necessary.

Formulae for the eigenvalues of Casimir operators in
matrix canonical realizations of noncompact Lie algebra
o(m,n),n21 derived in this paper are closely related to
formulae for the eigenvalues of Casimir operators in
irreducible representations of compact Lie algebra o{mn)
derived by Perelomov and Popov /4:5/ Our formulae (l1)
and (12) arise, essentially from the formulae of Perelomov
and Popov (see Preliminaries part C) simply by sub-
stitution ofﬁ[ by .la[m+n;2d i ['"'TH’
This interesting circumstance should indicate some sort

of exceptionality ot the niatrix canonical realizations of
o(m,n) described and investigated in our paper.

m+n—2 d 2B m+n -esia
=24 ), ¢ P
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