

K-74

E2-87-918

B.Z.Kopeliovich, N.N.Nikolaev*, I.K.Potashnikova

LIPATOV'S QCD POMERON AND SppS DATA ON THE PHASE OF pp ELASTIC SCATTERING

Submitted to "Physics Letters"

L.D.Landau Institute for Theoretical Physics

1987

1. Introduction

By virtue of the dispersion relations the ratio $\rho = \frac{Re F(t=0)}{Im F(t=0)}$ for forward elastic scattering amplitude is sensitive to energy dependence of $\mathcal{O}_{tot} = Im F(t=0)$ at energies higher than that ρ is measured at. QCD predicts a very specific structure of the pomeron. Namely, in the perturbative QCD pomeron was found/4/ to be a series of poles in the complex angular momentum plane at

which accumulate at j = 1, rather than a single isolated pole at j > 1, since long supposed in the conventional phenomenology of the diffraction scattering of hadrons⁶.

Obviously, the higher the energy the bigger is a relative contribution of the rightmost singularity in the j-plane, which rises like $E J^{-1}$, so that the "center of gravity" of Lipatov's pomeron moves to higher j with rising energy^{*}). In recent paper^{/1/} by the authors a strong evidence for the QCD suggested asymptotics of $p(\bar{p})p$ scatte-

^{*)} Retrospective view at $\mathfrak{O}_{tot}(\mathfrak{p}(\mathfrak{p})\mathfrak{p})$ vs. energy is very instructive: $\mathfrak{O}_{tot}(\mathfrak{pp})$ has been decreasing at BNL-CERN PS energies, which has been attributed to the secondary Regge poles. With secondary poles still alive, at Serpukhov came the first surprise, flattening of

 $\mathfrak{S}_{tot}(pp)$ ($\Delta = 0$), followed by a still bigger surprise-steep rise of $\mathfrak{S}_{tot}(pp)$ from Serpukhov to ISR - , which gave rise to a supercritical pomeron with intercept $\Delta = j - f = 0.07^{/6/}$. However, as an extrapolation of that fit up to SppS grossly underestimates $\mathfrak{S}_{tot}(pp)$, the SppS data call for still bigger Δ .

> Объсяваенный енститут насреных исследований быс приготогия

ring has been inferred from an analysis of the Akeno^{/2/} and Fly's Eye^{/3/} data on absorption of the superhigh energy cosmic rays in the Earth atmosphere. The corollary of this analysis was a prediction of still steeper rise of $\mathfrak{S}_{tot}(\mathfrak{p}p)$ beyond $\sqrt{s} = 1$ TeV. Typical prediction for Tevatron, $\sqrt{s} = 1.6$ TeV, is $\mathfrak{S}_{tot}(\mathfrak{p}p) = 80-90$ mb^{/1/}.

Obviously, the steeper the rise of $\mathfrak{S}_{tot}(pp)$, the bigger, and positive, is QCD pomeron^{4/} for the phase of pp forward scattering amplitude at SppS - Tevatron and beyond. Our principal conclusion is that recent finding^{5/}that $\mathfrak{P}_{\overline{p}p} = +0.24\pm0.04$ at $\sqrt{5}=540$ GeV is still another evidence for the QCD pomeron.

2. QCD pomeron and its unitarization

The lowest order, two-gluon exchange, QCD perturbation diagram corresponds to a fixed singularity at j = 1 and constant \bigcirc_{tot} . Remarkably, it reproduces well the absolute value of \bigcirc_{tot} in NN, \Re N and KN scattering at moderate energies $^{7/}$. The higher order QCD perturbation theory diagrams give rise to poles at $1 \le j \le 1 + \Delta$, which accumulate at j=1. As it is explained above, relative contributions of different poles depend on energy as $\exp[\frac{1}{2}(j-1)]$, where $\frac{1}{2} = \ln(s/s_0) - i \frac{\pi}{2}$, $s = 2 m_{\rm p}E$, $s_0 = 1$ (GeV/c)².

A crude approximation to a complete QCD phenomenology of the soft hadronic scattering at high energy is a two-pole pomeron exchange amplitude:

$$\begin{split} & f(\vec{q}) = i h_{26}(\vec{q}) + i h_{p}(\vec{q}) exp[\Delta \mathbf{k} - \varkappa_{p} \mathbf{k} \vec{q}^{2}]. \end{split} \tag{1} \\ & \text{Here } h_{26}(\vec{q}) \text{ and } h_{p}(\vec{q}) \text{ are residues of the two-gluon exchange and} \\ & \text{of the effective singularity at } j - 1 = \Delta > 0. \text{ Lipatov's QCD pomeron} \\ & \text{possesses specific conformal properties in the impact parameter space,} \\ & \text{and the residues are basically determined by the quark wave functions} \\ & \text{of the colliding hadrons. In view of that, } h_{26}(\vec{q}) \text{ and } h_{p}(\vec{q}) \text{ are} \\ & \text{expected to have similar } \vec{q} \text{-dependence, so that we simply put} \end{split}$$

$$R = \frac{h_{2G}(\vec{q})}{h_{\mathbf{p}}(\vec{q})} = Const.$$
⁽²⁾

In the conventional single-pole model $^{6/}$ the intercept Δ defined as $\Delta = d \ln f(\xi, \tilde{q} = 0)/d\xi$ is a constant. The two-pole approximation (1) results in $\Delta_{eff} = \Delta / (1 + Rexp[-\Delta\xi])$, which rises with energy, what is a major novel feature of the QCD pomeron. Regarding $h_{26}(\vec{q})$, it can be computed explicitly^{/7/} and gives a correct magnitude of the diffraction slope. In approximation(1), where 2G and \mathcal{P} terms do rather comprise in the j - plane, we use simple Gaussian parametrization $h_{26}(\vec{q}) = \bigcirc_{26} \exp\left(-\frac{1}{2}B_o\vec{q}^2\right)$.

The resulting partial wave amplitude in the impact parameter representation

$$\begin{aligned} u(\vec{b}) &= -\frac{i}{2} \int_{\overline{(2\pi)^2}}^{\overline{d^2}} f(\vec{q}) \exp(-i\vec{q}\cdot\vec{b}) = \\ G_{26} \left\{ \frac{1}{4\pi B_o} \exp(-\frac{\vec{b}^2}{2B_o}) + \frac{1}{R} \frac{\exp(\Delta \tilde{s})}{4\pi B_{IP}} \exp(-\frac{\vec{b}^2}{2B_{IP}}) \right\}, \end{aligned}$$
(3)

where $B_{\rho} = B_{o} + 2 \swarrow \beta$, overshoots the unitarity bound $\mathcal{U}(\vec{b}) \leq 1$ at high energies, when $\Delta \xi \gg 1$. The unitarity is restored summing up the eikonal s-channel multipomeron diagrams:

$$F(\vec{b}) = 1 - \exp[-u(\vec{b})].$$
 (4)

The complete unitarized amplitude is affected by inelastic shadowing (IS) coming from the diffraction dissociation (DD) transitions like $h \rightarrow h^* \rightarrow h$. A convenient approach to IS is a method of the diffraction scattering eigenstates (DSE) which can be summarized as follows^{/8/}: Diffraction scattering eigenstates $|\alpha\rangle$ do diagonalize the diffraction amplitude $\hat{F}: \langle \beta | \hat{F} | \alpha \rangle = F_{\alpha} \delta_{\alpha\beta}$. The real hadrons, the mass matrix eigenstates, are superpositions of DSE: $|h\rangle = \sum_{\alpha} C_{\alpha}^{b} | \alpha \rangle$, so that

$$\langle \mathbf{h} | \hat{\mathbf{F}} | \mathbf{h} \rangle = \sum_{\alpha} |C_{\alpha}^{\mathbf{h}}|^{2} E_{\alpha}(\vec{b}) \equiv \langle F_{\alpha}(\vec{b}) \rangle =$$

$$1 - \langle \exp[-u_{\alpha}(\vec{b})] \rangle.$$

$$(5)$$

A more realistic model should allow for DD of both the projectile and target. In view of factorization of residues, one can write

 $\mathcal{U}_{\alpha\beta}(\vec{b}) = \alpha \beta \mathcal{U}(\vec{b})$, where $\alpha(\beta)$ are relative residues of $|\alpha\rangle|_{\beta}$ scattering, normalized by $\langle \alpha \rangle = \langle \beta \rangle = 1$. Then, the net result of IS is that γ -pomeron exchange amplitude will be enchanced by a factor $\langle \alpha^{\nu} \rangle \langle \beta^{\nu} \rangle$, where

$$\langle \alpha^{\nu} \rangle = \langle (1 + \Delta \alpha)^{\nu} \rangle =$$

$$1 + \frac{1}{2!} \nu (\nu - 1) \langle \Delta \alpha^{2} \rangle + \frac{1}{3!} \nu (\nu - 1) (\nu - 2) \langle \Delta \alpha^{3} \rangle + \dots$$
⁽⁶⁾

One can relate $\langle \Delta q^2 \rangle$ to the inclusive forward DD cross section:

$$\frac{d\vec{O}}{dt}DD\Big|_{t=0} = \int dM^2 \frac{d\vec{O}}{dt dM^2} D\Big|_{t=0} =$$
⁽⁷⁾

$$\frac{1}{16\pi} \left(\left\langle \mathcal{G}_{\mathcal{A}}^{2} \left(1 + \mathcal{P}_{\mathcal{A}}^{2} \right) \right\rangle - \left| \left\langle \mathcal{G}_{\mathcal{A}} \left(1 - i \mathcal{P}_{\mathcal{A}} \right) \right\rangle \right|^{2} \right).$$

We notice that $\langle \Delta \alpha' \rangle$ is an energy-independent factor. In what follows we only retain terms $\sim \langle \Delta \alpha' \rangle$, borrowing $\langle \Delta \alpha' \rangle = 0.35$ from an analysis^{/9/}.

3. Total cross section and $ho_{
m pp}$ at superhigh energies

We have fitted the accelarator data on $\mathfrak{S}_{tot}(pp)$ and pp diffraction slope at $|t| = 0.02 (\text{GeV/c})^2$ above E=100 GeV, including the SppS data^{/10/}, adding in the Regge term \mathfrak{S}_R/\sqrt{s} on top of the pomeron cross section. We have assumed the conventional Regge-like vanishing $\mathfrak{A}\mathfrak{S}_{tot} = \mathfrak{S}_{tot}(pp) - \mathfrak{S}_{tot}(pp) = 70 \text{ s}^{-0.56} \text{ mb}$, so that at SppS and beyond $\mathfrak{S}_{tot}(pp) = \mathfrak{S}_{tot}(pp)$. The fitted parameters are cited in the Table.

Table.	Sets of fitted parameters of the bare QCD pomeron
	at different choices of the ratio R and intercept 1+2

R	Δ	б ге тр	B o (GeV/c) ²	∀ہ (GeV/c)	- 2 mb
36	0.32	4.8.7	10.15	0.105	8.3
8	0.22	37.9	9.88	0.132	31.5
0	0.097	28.7*)	8.87	0.141	65.0

*) This entry for the single-pole fit is the residue of the pole at $j = 1 + \Delta$

R and Δ are very strongly correlated and cannot be fixed uniquely. R - Δ correlation is shown in Fig.1.The entries in the Table correspond to fits with fixed R.

The resulting predictions for $\mathbf{O}_{tot}(pp)$ are shown in Fig.2. The Akeno $^{\prime 2\prime}$ and Fly.s Eye $^{\prime 3\prime}$ data points, plotted in Fig.2, were obtained by us in Ref.1. We warn the readers that the often quoted in the literature previous determinations of $\mathbf{O}_{tot}(pp)$ from the cosmic ray data $^{\prime 2}, ^{3\prime}$ on $\mathbf{O}_{abs}(pAir)$ are quite wrong (for more details see Ref.1). The cos-

mic ray data do obviously favour high $-\Delta$ fits with $\Delta \ge 0.2$.

THEP FNAL ISR 300 Sods Akeno 250 **o** Fly's Eye 6_{tot}(pp) mb Δ 150 0.1 0.22 100 032 50 2 6 8 10 lg£ Fig.2. The energy dependence of the pp total cross section versus Δ . ---- R=36. Δ =0.32: ---- R=8, $\Delta = 0.22$; ---- R=0, $\Delta = 0.097$. Shown are also the values of pp total cross section determined from the Akeno-Fly,s Eye data on $\mathcal{O}_{abs}(pAir)$ and the fitted accelerator data on $\mathcal{O}_{tot}(pp)$.

In order to fit the FNAL-SPS-ISR-SppS data on $\sigma_{tot}(pp)$ in the single-pole, R=0, approximation one needs Δ =0.097(see the Table) vs.

 Δ =0.07 fit to the FNAL-SPS-ISR energy range, but even so enlarged Δ =0.097 grossly undershoots the cosmic ray data /2,3/.

4

5

One could constrain Δ much better at Tevatron. Our prediction

The energy dependence of the ratio P = ReF(t=0)/Im F(t=0)for the forward elastic scattering amplitudes for pp (solid curve) and pp (dashed curve) scattering. For the legend of the curves see fig.2. Shown also are the data /5, 11/

(8)

0.2

·N2

The single pole fit, R=0, predicts $\rho_{pp}=0.12$ at $\sqrt{s}=540$ GeV, half of the experimental value $\rho_{pp}=0.24$ Lipatov'QCD pomeron

predicts $\rho_{\bar{p}p}$ =0.16 with R=8, Δ =0.22 to $\rho_{\bar{p}p}$ =0.21 with R=36, Δ =0.32. We conclude that recent data on $\rho_{\bar{p}p}$ do corroborate con-clusion^{/1/} on a steep rise of pp total cross section and, consequent-

ly, QCD suggested asymptotics of the diffraction scattering of hadrons.

One more comment on $P_{\bar{p}p}$ is in order. QCD pomeron predicts slow increase of $P_{\bar{p}p}$ by $\Delta P = 0.01 - 0.02$ from $\sqrt{s} = 540$ GeV at SppS to \sqrt{S} = 1.6 TeV at Tevatron.

Our approach was a conservative one, assuming the conventional Regge-like vanishing difference of pp and pp total cross sections. The novel feature of QCD is a possibility of the so-called odderon, the crossing-odd singularity at $j=1^{12/2}$. Such an odderon might give a nonvanishing contribution to P_{pp} and $P_{\bar{p}p}$, particularily to $P_{\bar{p}p}$ - P_{pp} . However, according to the perturbative QCD estimations odderon, s residue at t=0 is numerically very small and the odderon can safely be neglected for purposes of the present analysis.

References

1. Kopeliovich B.Z., Nikolaev N.N., Potashnikova I.K.JINR, E2-86-125. Dubna, 1986.

2. Hara T. et al. - Phys.Rev.Lett., 1983, 50, p.2058 Hara T. et al. - In: Intern.Symp.Cosmic Ray and Part.Physics, Tokyo, INS, 1984

3. Baltrusaitis R.M. et al. - Phys.Rev.Lett., 1984, 52, p.1380 Baltrusaitis R.V. et al. - In: Proc. 19-th Intern.Cosmic Ray Conference, La Jolla, 1985, v.6

Linsley J. - Lettere il Nuovo Cimento, 1985, 42, p.403 Gaisser T., Halzen F. - Madison preprint, MAD/PH/248 (1985) Takagi F. - Tohoku University preprint TU/83/265 (1983)

4. Lipatov L.N. - Preprint LNPI - 1137, Leningrad, 1985 Levin E.M., Ryskin M.G. - Preprint LNPI - 568, Leningrad, 1980

- 5. UA4 Collab. Bernard D. et al. Phys.Lett., 1987, B 198, p.583
- 6. Dubovikov M.S., Kopeliovich B.Z., Lapidus L.I., Ter-Martirosyan K.A. - Nucl.Phys., 1977, B 123, p.147
- 7. Low F.E. Phys.Rev., 1975, D12, 163 Nussinov S. - Phys.Rev.Lett., 1975, 34, 1286 Gunion J.F.; Soper D.E. - Phys.Rev., 1977, D 15, p.2617 Levin E.M., Ryskin M.G. - Yad.Fiz., 1981, 34, p.1114
- 8. Kopeliovich B.Z., Lapidus L.I. Pisma v ZhETF, 1978, 28, p.664 Kopeliovich B.Z., Lapidus L.I. - In: Multiple Production and Limiting Fragmentation of Nuclei, JINR-D12-12306, Dubna, 1978, p.469 Nikolaev N.N. - ZhETF, 1981, 81, p.814

9. Dakhno L.G. - Yad.Fiz., 1983, 37, p.993 10.Carrol A.S. et al. - Phys.Lett., 1976, B 61, p.303; 1979, B 80, p.423 Ayres D.S. et al. - Phys.Rev., 1977, D 15, p.3105 Amaldi U. et al. - Nucl. Phys., 1980, B 166, p.301 Barksay L. et al. - Nucl. Phys., 1978, B 141, p.1 Ambrosio L. et al. - Phys.Lett., 1982, B 115, p.495 Bozzd M. et al. - Phys.Lett., 1984, B 147, p.385; ibid, p.392 Rushbrooke J.G. - Rapporteurs Talk at the Bari Conf., CERN, EP 185-124, 1985 Burg J.P. et al. - Nucl. Phys., 1983, B 217, p.285 Amaldi U. et al. - Phys.Lett., 1971, B 36, p.504; Phys.Lett., 1977, B 66, p.390 -Fajardo L.A. - Ph.D. Thesis, Yale University, 1980 11.Camilleri L. - Phys.Rep., 1987, 141, p.53 12. Donnachie A., Landshoff P.V. - Nucl. Phys., 1986, B 267, p.690 Donnachie A., Landshoff P.V. - Phys.Lett., 1983, 123 B, p.345 Donnachie A., Landshoff P.V. - Nucl. Phys., 1984, B 231, p.189 Fischer J.-Z.Phys.C., 1987, 36, p.273 Bernard D., Gauron P., Nicolescu B. - Phys.Lett., 1987, 199, p.125 13.Ryskin M.G. - Yad.Fiz., 1987, 46, p.611

> Received by Publishing Department on December 29, 1987.

Копелиович Б.З., Николаев Н.Н., Поташникова И.К. Е2-87-918 Помероч Липатова в КХД и данные SppS коллайдера для фазы упругого pp рассеяния

Анализ^{/1/} данных космических лучей^{/2,3/} по σ_{abs} (p Air) привел к заключению о быстром росте σ_{tot} (pp) при энергиях выше $\sqrt{s} = 1$ ТэВ, что хорошо согласуется с предсказаниями схемы померона Липатова в КХД^{/4/}. быстрый рост σ_{tot} (pp) приводит к большой фазе амплитуды рассеяния вперед, которая хорошо согласуется с результатами недавних измерений^{/5/} $\rho = \text{ReF}(t=0)/\text{Im}(t=0)$ при $\sqrt{s} = 540$ ГэВ. Сделаны предсказания для энергии Теватрона $\sqrt{s} = 1,6$ ТэВ: $\sigma_{tot}(\vec{pp})=80 \div 90$ мбн, $\rho_{\overline{pp}} \approx 0,2$.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Kopeliovich B.Z., Nikolaev N.N., Potashnikova I.K.E2-87-918 Lipatov's QCD Pomeron and SppS Data on the Phase of pp Elastic Scattering

An analysis $^{\prime 1\prime}$ of the cosmic ray data $^{\prime 2.3\prime}$ on $\sigma_{abs}(pAir)$ has lead to the conclusion that σ_{tot} (pp) rises steeply beyond \sqrt{s} = 1 TeV, which nicely agrees with predictions of Lipatov's QCD pomeron $^{\prime 4\prime}$. A large, positive, phase of the forward pp scattering amplitude implied by this rapid rise of σ_{tot} (pp), is shown to fit perfectly recent SppS data $^{\prime 5\prime}$ on $\rho_{\overline{p}p}$ = ReF_p(t =0)/ImF_p(t =0). Predictions for σ_{tot} (pp) = 80 ÷90 mb, $\rho_{\overline{p}p} \approx 0.2$.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987

8