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I. INTRODUCTION 

The study of particIe-like behaviour Df nonlinear fieIds 
originally initiateo' by Einstein to systematically derive the' 
motionequations of particle in a~ externaI field, made a new 
turn with the discovery of the so Lí t on solutions /1/ • 

The soliton-type properties have been found by now in a 
great variety of nonlinear physical systems such as KDrteveg 
de Vries (KdV) , sine-Gordon, nonlinear Schrodinger, (NLS) , etc. 

In the seventies theoretical physics bas developed a new 
fruitful conceptiün of sypersynnnetry with main ide~ to treat 
bosons and fermions equaIIy l 2 ! • 

The interesting advantage of sypersymmetry is the natural 
way of incorporating fermions into the soliton system; it was 
firstly done for nonlinear eqtiations via direct sypersymmetri
zation in r ef s . /3,4/ • 

From tbis supersoliton theor.y, which is given by ~he super
soliton Lagrangian in (1+1) space-time dimensions: 

L == .!--{(a cp)2 _V2(cp) + ~(ia + V'(cp))t/Jl, (1.1)
2 11 

wh€re cp is a Bose fieId and t/J is a Fermi fieId, we can obtain 
SSQM as a restriction to (0+1) space time dimension (the pri
me oenotes differentiation with respect to the argurnent). 

Really if we substitute in (1.1) the following restriction: 

cp ~ x(t), ap' ~ a ,
t 

- T
t/J ~ t/J u2 ' i ~ ~ iat t12 ' 

where 1/J == ( ~~ ) with components being interpreted as anticornrnu

ting c~numbers, a k denote the PauIi matrices, then L~LSSQMand 

= ~ ( (a x)2 - V2(x ) + t/J T'(i at + u 2 v' (x » t/J 1. (l .2)L SSQM t 

The corresponding Hamiltoni~n has the known form 

HSSQM 
1 2="2 p 

ibU}Jb"Ht' linbJil RHc-myr I 
1 2 1+"2 v (x ) + '2 1 [1/1 1 ,VJ2 ] V' (-X ) , (I. 3) 

. fla~.§ti.. I:3.x E.tC)H~110Blu~ft . 1 
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which was proposed by Witten/5 / and also by Salamonson and 
Van Holten / 6 / • 

In the present work we want to show the role of ?SQM for 
the nonlinear equations such as NLS and KdV. 

The application of SSQM to the Zakharov equations/7/ and 
the,generalization, first given in/S/ , are discussed. 

We also demonstrate the correspondence between:a new class 
of the soliton solutions for the U(N) NLS/9/ and the corres
ponding results in SSQM. 

2. SUPERSYMMETRIC QUANTUM MECHANICS 

We shall start with the Schr6dinger factorization in QM~ 

Assume the,one-dimensional Schr6dinger eq. 

(-~ +U(x))I/;(x) = EI/;(x), (2. t)

dx2
 

and the factorization in the form 

d d(- + v)(-- + v)1/; = El,Ú.	 ; (2.2)
dx dx 

Lf we denote 

± d
A = ± - + v,	 (2.3)dx 

we can write A+ A-I/; = E l,Ú =	 H+ t/J, bu t i t g i ve s' 
+ _.. 2	 2

2 dAA =H =_JL. + v + v = - -2' + V+. 
+	 dx2 x dx 

+ + + - +Letus choose the ground state t/J to be H+l,Úo =A 'A l,Ú o = Oo 
implying from 

- +A l,Úo = o.	 (2.4) 

This is a first-order differential eq. 

d +(--- + v(x ))l,Ú = 0,
dx . o 

leading to 

t/Jo;' 
v = ..--.	 (2.5)

t/J+ 
o
 

lf we consider the factorization in the forro
 

2 

... 

d d
(--+v)(-+ v-)t/J = El,Ú,

dx dx 

we get 

- + d 2 2 _ d 2 
AA =---+v -v - -d;2 + V = H .	 (2.6)dx2 x 

Now suppose l,Ú+ to be any eigenfunction of H+ 

H t/J+ == E «',	 (2.7)+ + 

then 

A- H t/J + = E (A- l,Ú +) = A-A+A-	 t/J +. 
+ + 

Either A-t/J + = O (s o that E+ = O and l,Ú+ is the ground sta
te) or H_(A-l,Ú+) = E+ (A-l,Ú+.). 

Thus, every eigenstate of H+ except for the ground state 
gives rise (via A-) to an eigenstate of H with the same 
eigenvalue. 

The ground state in H+ with the zero energy does not cor
respond to any eigenstate of H_ . 

lt means t~at the Hamiltonian'H has the same spectrum as 
H_ plus one ground state more. + 

lf we denote the solution by l,Ú- of the zero-energy Schrõ
. H	 odinger eq. w~th 

2 
d - - 2 

(--- + V ) t/J = - I/; + (v -	 v ) l/J = 0, (2 8)
dx2 - o oxx x o	 • 

we get 

t/J:X
v =-	 (2.9) 

1/;
o 

and by comparing with (2.5), we have 

+ 1 
t/Jo - -;;;=-.	 (2.10) 

o 

The factorization presented here can be written in a super
syrnrnetric way. 

In the matrix forrnulation H 
SSQM 

(1.3) becomes a 2x2 matrix 
as well 

_ d2 2 
H _ 1 dx2 + V (x ) + V (x \. 

SSQM _ _ x J O )
(	 d 2 (2. 11 ) 2	 2O --2+ V (x ) - v (x )

dx x 

3 



Then, 

H O A+ A- O
 
= (+ ) = ( +) = {Q -, Q + },
 HS 2HSSQM O H O A-A (2. 12) 

where the "supercharges" are defined as 
O O O A+ 

Q- = (A- O ), Q+ = (O O ). 

The other relations are 

(Q_)2= (Q+)2 = O, [H ,Q-] = [H , Q+] O. 
S S (2. 13) 

The eigenfunctions of H are s 
t/J+


t/Js :::: ( t/J-)
 

and they have the properties 
O 

Q- t/Js = ( t/J-) un l, e s s A- l/J + = O, 

+ t/J+
Q ~ :::: ( O ). + O 

We can call the Leve l s (r/Jo ) "bosonic" and the Leve l s ( t/J-) 

"fermionic" in the view of the "fermionic" nature of the "su
peralgebra" in the relations (2.12) and (2.13). 

In the theory of the spec t r a l transforms and soli tons /10/
 

there.is shown that the Schrodinger factorization (2.2) is
 
equivalent to the Miura transformation between V+ and v:
 

2
 
V+ = V + Vx '
 

coupling KdV and modified KdV (MKdV). The same is valid for~, 
because MKdV is invariant under the transformation v -+ - V • 

In this sense the Miura transformation represents the su
persynnnetric "square root". 

There a deep connection between the N-soliton solution of 
the KdV, reflectionless potentials 

u (x ) = - N (N + 1) b2 sech 2 b x , N =: 1,2 •.. , (2. I t~) 
N 

and SSQM exists: 
i) L~t us take N=I, b= __1__ in the synnnetric reflectionless 

potential (2.14) Lv;r

1 2 X 
U ()x = - ::-2 sech -=..
 

L Ly2
 
4 

Then, tt(x) can be regarded as a one~soliton solution of 
the KdV eq. for t = O, i.e. of the eq. 

u - 6u·u +U ==0. (2. c15)
t K IIX 

The KdV one-soliton so Iutíon for a l I t is 

u ( x , t ) = _ 1.. sech 2 ( x - (2!L 
2

) t ).
 
L2 L y2
 

'l'he saroe 1s valid for higher N. 
ii) Let us consider now a function v(x, t) sa~isfying MKdV 

v + 6 (~ - v2) v + v = O. (2. 16) 
t 2Li;: . X xxx 

Then, if we define 

2 1V = v - v - - (2.17) 
x 2L2 

as is usual in SSQM, it can easily be shown that v_ satis
fies KdV. The same is valid for 

V = v2 + v 
1 

(2.18)+ x 2L2 · 

In this way we can see fhat there exists the general con
nection between N-soliton solutions of ~dV, SSQM, inverse 
scattering method and the construction of the reflectionless 
potentials. 

We shall now be concerned in the application of these re
sults of SSQM to the Schrodinger eq. with selfconsistent po
tentials. 

3. THE ~PLICATION OF SSQM TO THE NONINTEGRABLE SYSTEMS 

Here we discuss the nonintegrable system 171 

i t/J +' .1. - n .1. = O (3. ~ a)t ~xx ~ , 

nu - nu :::: lt/J I:
2 

(3.lb)u 

and the sys tem 18/ 

it/J + t/J . '- nf/J = 0, (3.2a)t xx 

n tt - nxx - a (n 2 ) xx - f3 nxxx x o. (3.2b) 

5 



Here' t/J(x,t) and n(x, t) are respectively complex and real func
tions; a ,f3 are the real parameters. 

These nonintegrable \in general case) systems have appli 
cations in the ~nteresting areas in Physics /11/ • 

We shall now demonstrate using (3.1) that the basic role 
for finding soliton-like solutions plays eq, (3. Ia) with n(x,t) 
being the syrnrnetric reflectionless potential. 

The same will be valid for system (3.2) 
Now we shall discuss the so-called quasi-static limit of 

the Zakharov (Z) eqs • (3. Ia, b ) neglecting the term n • Then,
·tt eq. (3.lb) has the form 

2
(n + I t/J I) = O, (3.3)

xx 

which implies n = -It/J 1

2 if n and I t/J 
2 

are square-integrable.1 

Substitution of this expression for n into (3.la) yields 
the NLS e q , I 

i t/J t + t/J xx + I t/J 12 
t/J = O• 

lt is well known that the Z· eqs. (3.la~b) have a one-soliton 
solution 

1 x - x - vt 1.. 1 2 1 )
t/J=-secb[ o -lexp[-lvX-l('4V - 2 2 t + (3.4a) 

L L Y2(1 - v2) • 2 2L (1 -v), + i (7 1 
o . 

and 
2 

n =_ ·1t/J1 
l ~ v2 ' (3.4b) 

where L> O, v , x o and eo are cons t ant s , 
It is clear that solution (3.4a) tends to the particular 

one-soliton solution 

t/J(x, t) exp (i.L-) -!. sech _x_ (3.5) 
2L2 L 'Ly12 

and 

n(x) = -1t/J1 2 
, (3.6) 

for v = O x = O (J = O'o 'o • 
lf ,we put solutions (3.5) and (3.6) into eq.(3.la), we 

obtain 
2 

(_ d _ 1 ) ij; (E ) E 1 t/J 1 (E 1 ) , (3.1)d"";2 L2ch2 (x/ L y1 2 ) 1 1 

6 

t ha t is the eigenvalue eq. H1 t/J1 = E 1 t/J 1 corresponding to 
eq.(1.1a). 2 1 

In eq.(3.7) we denote the eigenvalue by E1 =-Y1 =- --2

and it corresponds to the eigenfunction 2L 

1 xt/J1 = - sech -- .
 
L Ly2
 

Now we.shall think of the n(x) 

n(x) = _ \ t/J I Z = _ _1_ sech 2 _x. _ 
1 L 2 LY2. 

as the syrnrnetric reflectionless potential ip the eigenvalue 
problem (3.7), and using the results of S$QM we shall const
ruct other syrnrnetric reflectionless potentials as "superpart
ners". 2 

He can see that H =- L + n is the superpartner to the 
11 dx 2 

2 
H = __d_ +- n ,where the potential n 1 supports a simple bound 

o dx 2 o 
1 . " 

state at the energy E = - -- meanwhi Le n supports no bound
 
states. 2IJ o
 

Choosing no = O, H is then the free particle Hamiltonian
o 
and reflection coefficient of n is R (k) = D for the positi 
ve energies E = k 2 • o o 

The reflection coefficient of the H1 is given by 

Y1- ik 
R (k )r 'Yi + ik Ro (k ) , 

which is zero for R o(k ) = O. But i t is the case oL the reflec
tionless potential in (2.14) for N = I, b = (1/LV2). 

From SSQM let us suppose 

2 1V=v-v=-- {3.8)
 
x 2L2
 

Eq.(3.8) is a very simple Ricca~i eq. whose solution is given 
by substituting 

t/Jox v = --- '(3.9) 
t/Jo
 

and we have
 

t/J oxx 1 (3.10) 
2L2- •t/J a 

7 



;". 

Here, ~o is the solution of the zero-energy Schrõdinger eq. and 
2with H_ 

n 1 = - 2 -d In ~ (E 1 ) . (3.15)d 2 2 dx2 o(-~ + V - V ) ~ == O,
dx x o 

for no = O. 
The solution ~ form eq.(3.10) is 

o 

r/J == const. ch _X__ (3.11 ) 
-o - y2L 
and from (3.9) it follows 

1 x v =---tanh--· (3. 12)
ytlL {2L
 

The superpartner to the V_ has the form
 

2 1 1 2 X

V V + V = -- - ---- sech --. (3.13)+ L2 x 2L2 Li'2 
Now, if we denote 

2 1 
n (x ) = V - V = 0, 

o x - 2L2

= v2 + V __1_ = _ ...!_ sech 2 _x_ ,n 1(X) 
x 2L2 L2 Ly2 

we can see that H1 ís the superpartner to H o ' 
Using the receipt from SSQM we s~all now demonstrate how 

to construct a synnnetric reflectionless nj(x) , j = 1,2 •.•N. 
For arbitrary j we may now assume n , 1 (x) to be known and 

J'defirre Vj by 
2
 

n j. 1 = v] - Vj x - E j
 

Then, the sup~rpartner has the form 
2
 

n j = Vj + V jx - E j •
 

The crucial point for the construction is that the super
symmetric reflectionless partner can be expressed via the 
eigenfunctions of the corresponding Hamiltonian. 

This can be seen from the following .(j = 1): 
2 

H = A+A- = H + [A+. A- ] = H + 2)LV = H - 2 ~ ln ~ o • (3.14) 
+, - _. dx - dx 

From this
 
2 2
 

H = __d_ + E + n 2_d_ In'" (E 1 )
 
+ d 2 1 o dx 2 o• x 

8 

We can apply this procedure to the Z system (3.1). 
It was shown by Sukumar/1! 1 that the symmetric reflection

less nN(x) may be expressed interms oi the normalised bound'i) state eigenfunctions in the form 

\ N 
2 

l n N (x ) - 4 2 [Yl~N(El)]· (3.16)
1 = 1 

Using the results of SSQM a vector version of the NLS 
(VNLS) was presented/ 121 in the form: 

iat~N + ~Nn. - nN~N = 0, (3.17a) 

N 2 (3.17b)In N + 4 2 I v11 ~ N (E 1 ) 1 ] Ixx = °, 
. 1 = 1 

w~ere ~N(El) are bound states given by eq. 
2 

(-~ 2 + nN (X )}~N (E 1)' = E 1 ~ N (E 1) (3. 18) 

with n N being "synnnetric" reflectionless potentials. 
For the physical application the interesting case is when 

1 2 X N(N + 1) ()n (x ) = - N (N + 1) -- sech --= = - n 1 x r , ( 3 I 9) 
N 2L2 Ly2 2 • 

Mathematically, formula (3.19) corresponds to the so-called 
Lame-Ains N-zones elliptical potential/13 / • 

In this case the VNLS system (3.17) has the form: 

N(N+l) 2 
i at ~ N + ~Nxx + I) \ ~ 1\ ~N = 0, (3. 20a) 

I N(N + 1) 2 .r [ n N(x ) + I) \ t/J 1 I ] xx = O. ( 3 • 20b) 

/j In these eqs. there exist the envelope solitary wave solu
tions 1 t 

j 2i21 yN(N~_x 
1, ~ = e - sech

N L 2L '
 
for arbitrary N I ,2. •• •
 

I 9 



... 

. 2 
We now show that this admÍts another presentation first do '<1) ;;.J + N (N + 1) b sech b y '<1l N,J = - A i'~ N .r' (4.5)

• 19/
nel.n 115/

It is known (see, e.g. ref. ) that eq.(4:5) for arbitra
~. • 2 2 . 

ry N has N e i genvaLue s A j =-j b , J = 1,2 ..• N. 
4. TRE U(N) VECTOR NONLINEAR SCRRODINGER EQUATION, The corresponding eigenfunctions may be found by using the 

FACTORIZATION AND TRE IffiLATION WITR TRE SSQM RESULTS ~ factorization which is equivalent to the SSQM "square root",,:
 as it has been mentioned:
 
The U(N) vector NLS has the form I'I
 We can d ef í.ne Af in the same way as in (2.3), name Ly

X, 
(4.1) ± d d 

i cPNt + ~Nxx + (~N c/J N ) cP N: = O, A o = ± - + e b th by = ± - + Vf (y) , 
L dy dy, 

1
where where ve has the form (3. 12) for e = I, b = 'LJ2 . 

Then in the same way as in SSQM we define . r - m 2 
1...1.. .1,

cP N (x , t) = (<P-N.1 .... ,cPN.m) ,- ifJNcPN = I. I'fJN.J (4.2) +
i = 1 (4.6)
A f + 1 '<1) e,i '<1) e+ i, i ' 
mzN 

(4.7)Af+ 1 '<1l f , i '<1) f • 1, i .' 
A new particular class of the soliton solutions of eq.{4.1) 

has recently been obtained / 9 1 via the so-called factoriza From (4.6) and (4.7), using 
tion method and the technique in a sense similar to that de (4.8)'~o • == O 

L. J
 
We show that these sol~tions are equivalent to the reflec

veloped by Krichever/ 141 • 

for e> N , we' obtain alI the soIutions to eq. (4.5) • 
tionless symmetric potentials of the oue-dimensional Schrodin Some of them follow directly: 
ger eq. and in the case when the potentials nN(x) have the for N j = f we get
form (2.14) it exactly corresponds to the results given in 
Sections 2. and 3. via SSQM. A 

+
N '<1) N. N = O, 

W~ can show this by the following way: 
Wri te, the solutions of e q, (4. 1) in the form and from this
 

iW
 
cPN(x,t) =Ce <1l N ( y ) , (4.3) N
 

'<1)N.,N - sech by. (4.9) 

where <1l (y) = (<1l N .1'; o., • '<1lN •m ~~, C = díag (C 1 ••• : C m) N Generally, we have the recurrent formula 

W = díag (e 1 •...• em) ,ej = ~- (x - ~ t ) - A i t, Y = x - v t , '<1) = A+ A + A+ <1) (4. 10)
f.i f e-i ... i + 1 i,i 

and put (4.3} into (4.1) to get: Thus we obtain for N = I = m, i.e. f j I from (4.9) 

(4.4)'<1) " 
N.J n N '<1l N ,i = - A J<1)N ,i I '~1,1 sech by, (4.11)

I 

m 2 2 r: but it corresponds to the SSQM relation (2. lO) with ~; from'\n = - I. IC i \ '<1l N i . 
N , 1 • (3.11). 2'

J = [!. Really, .the potential V+ = V 1 + Vix has a zero-energy bound 
Supp-ose .rhe potential n to be in the form (2. r4), thenN state whose eigenfunction is 

(4.4) hecomes + x 
~ - sech --. 

o LyTF 

10,
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2 
For = 2 we have the two solutions corresponding to A1=-b 

A 2N. Then, from (4.9) it follDws
2=-4b 

'" 2.·....2.2 ~ sechby..	 (4. 12a) 

and Írom (4.10) and (4.11) we get 
l'+	 (4.12b) i Ictl 2.1 = A 2 '<11 1 •t ~ th by sech b y . 

So, we ob~ain from the relations (4.3) and (4.11) the known J 
orre-soliton solution of the U(l) NLS eq. 

18 1 (4. 13)cp 1 (x , t) = C e sech by • 

whére \C1 2 
= 2 b2 

•
 
For N = m = 2 i~ follows for the soliton solution to the
 

U(2) VNLS the expre~sion:
 

181

C e sh by
 

cP2(X. t ) ( 
1 

182 ) sech 2 b y , (4.14)
 
C e
2 

2 2 2
 
where jCl\ :OI IC2 \ = 6 b .
 

Analogously for N = m = 3 and so on.
 
The general expression fnr the symmetric reflectionless
 

pote~tials nN(x. t) in (4.4) can be giveri following Sukumar/ 
16 

/
 
. 2
 

dn = - 2 - In det D •	 (4 15)
N. di N	 • 

where the elements of the matiix DN are given by 
1 J - 1 YK x J + K - YKx (4. 16)

[ D N ] JK = 2"( YK ) [ e + (-1) e ] 

and the normalised eigenfunctions for the eigenenergy E.=-y~ = 
. . h f	 J J = A

j 
may be wr1tten 1n t e orro 

N 
_ Y 2 2 l;í -1j	 (4. 17)
cP N (E j ) = {-2- 1 \ Y K - Yj I~ [ D N ] j N '
 

K ~ j
 
I 

where j = 1,2 .•. N. 
for N = 2 from the relations (4.15-17) it follows '} 

... 

2h 2. 22 2 ,y2 cy1 x +.y1 sh2..y2 x 
n2 (x ) = -2 (.Y2 -Y1 ) - -~-2' (4. 19) 

(y2 oh Y2 x ch y1 X - Y1 sh Y2 x sh y1 x ) 

..... Yl 2 2' Vz ch Y2 x 
cP (E ) = [- (y. - ,y)] ---,	 (4.20a)

2	 1 2 2 1 det D 2 

x	 (E ) = [~( 2 _ 2)] Vz ch 'Y_1_x_ , (4.20b)
'fJ 2 2 2 Y2 Y1 det D2 

Formulae (4.19) and (4.20) coincide with (22) and (25), 
(26)	 of ref./9 / , when K = -(Y

1
- Y

2) 
, IJ = Y1 + Y2'
 

We can also see that
 
- 2 -2
 

n 2 ( x ) = - 4 [ 'Y2 cP 2 (E 2) + Y1 cP 2 (E 1 ) ] :
 (4.21) 

' . 1 'f 2 4 2 h 1 ' . 1 .an d 1n part1cu ar, 1 'y = Y t e resu t1ng potent1a 1S . 2 1 

n 2 (x) = - 6 Yl 
2 

sech 
2 

y1 X.	 (4.22) 

i.e. exactly corresponds to the potential (2.14? forn2(x) 2,AN = 2. There ex is t two bound states at A1=-yJ=-b 2=-4yi-::-4ti2
and (4.20a,b) correspond to the (4.14),	 . 

5.	 CONCLUSIONS 

In this pape r after short introduction to the SSQM we app
lied the methods of SSQM to obtain soliton-like solutions to 
some nonlinear evolution equations. 

The application of SSQM to the vector version of the NLS 
gives a possibility to investigate soliton sector of certain 
nonintegrable systems such as Z system and system (3.2)'. 

The symmetric reflectionless potentials are obtained here 
as linear combinations of the eigenvalue solutions. 

This gives the possibility of looking for the physical 
realization of these new soliton solutions in the whole area, 
where. eqs. (3.1a,b) and (3.2a,b) can be applied. 

It should be noted that the symmetric reflectionless SSQM 
potentials and those obtained via the familiar factorization 
method naturally 'coincide up to reparametrization. 

Ultimately since above vector solitons are direct descen
dants of soliton-like solutions with the selfconsistent poten

sn 

D2 ( ) , (4.18) 
I 

tions in many-layer crystals as well as of power Langmuir tur
Y1 sh Y1 X Y2 ch Y2 x bulence in p lasma/ 11,127 

oh"l x Y2 x	 tials, they may be utilized in the study of localized excita

12	 13 
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fpyObl ~. ; MaxaHbKOB B. r. 
0 cynepCHMMeTpH4HOH KBaHTOBOH MeXaHHKe 
H HeJlt.fHeHHbJX ypaBHeHtHIX 

E2-87-890 

06C~AaeTCH MeTOA nonyqeHHH cynepCHMMeTpH4Hb~ llOTeH
~H8JlOB B paMKaX cyrtepcHMMeTpH4HOH KBaHTOBOH MeXaHHKH 
/CCKM} B CBR3H C HSy4eHHeM HenHHeHHb~ 3Bonro~HOHHb~ ypaB
HeHHH C 6e30Tpa*aTeJlbHb~H rtOTeH~HanaMH. 06c~aeTCH COOT
BeTCTBHe Me*AY HOBb~ KJlaCCOM COJlHTOHHb~ pemeHHH U(n) He
JlHHefiHoro ypaBHeHHH llipeAHHrepa H pemeHuli, nonyqeHHb~ c 
noMO~h~ MeTOAOB CCKM. 

PaooTa BbJOOJlHeHa B na6opaTOpHH BbNHcnHTenbHOH TeXHHKH 
" aBToMaTH3aUHH OH~~. 

Coo6WeftHe 061tenHHeHHoro HHCTH'tyT& IUlepHhlx HCCJJe~oallHIIA. ,Ily6Ha 1987 

Hruby J., Makhankdv V.G. t2-87-890 
On the SSQM and Nonlinear Equations 

The method for obtaining the superpartner potential 
in the supersymmetric quantum mechanics (SSQM) is dis
cussed in connection with the nonlinear equations and 
the reflectionless potentials. The correspondence between 
a new class of the soliton solutions to the U(N) nonli
near Schrodinger equation is obtained via application 
of SSQM and those known earlier are also discussed. 

The investigation has been performed at the Laboratory 
of Computing Techniques and Automation, JINR. 

Communication of the Joint Institute for Nuclear Research. Dubna 1987 


