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1. Introduction

By the variational principle of Neugebauer (1974, 1977)

a beautiful, comprehensive and practicable method ie given to
derive the equations of irreversible thermodynamics and con-
tinuum mechanicas as well as the field equations of gravitation
and electromagnetism from a first principle. It is also app-
licable to media with internal degrees of freedom and order
parameters (Meier, Salié€ 1979, 1980) and other additional
fields. Purther, Wulfert , Zimdahl and Salié (1983,1984) could
show that the Neugebauer principle forms the natural base of

a general relativistic fluctuation theory in the sense of
Lendau and Lifshitz (1957, 1966, 1968).

But as many eimple approaches to relativistic thermo-
dynamics, also this principle has a serious disadvantage pro-
viding noncausal transport equations; e.g. for heat conduc-
tion one receives a covariant but parabolic equation a&s in
classical phyeics. In the case of superconducting media this
problem could be avoided (Meier, Salié 1979, 1980). The
general relativistic Ginzburg-Landau equation resulting from
the variational principle is a hyperbolic one. But a too
simple choice of the superconductivity contribution to the
free energy would also lead to a parabolic equation.

To remove these difficulties, one can chesnge the free
energy, the Onsager ;elations or the thermodynamics itself. |,
Here we consider the first two possibilities. But before, a
brief survey of the Neugebauer principle is given.

In the first part a causal heat conduction equation is
derived by using & free energy depending on the temperature and

its first derivatives. Por simplicity we consider a fluid

1

;e e

BODE s wall BHCTHTYY
QRLENLIE S0oseg0osauEd l



though the method works also in the case of more complicated
media. The result i8 & third order heat conduction equation.
The third order terms form a hyperbolic expression in f_=Tluk
(T - temperature, u* - four velocity). These terms determine
the causal structure of the equation and guarantee a finite
heat flow velocitys But the coefficients themselves will be
very small. Additional to these third order terms the normal
heat equation witp the well-known coefficients appear. This
part of the equation dominates in the usual laboratory expe-
riments. Because of the low accuracy of thermodynamical measu-
rements it was impossible up to now to determine experimentally
any additional copductivity coefficients being relevant in
this connection.

In the second part the usual unchanged free energy and mo-
dified Onsager relétions are considered. Also here one can get
a causal third order equation again.

A certain change of variation prescription would lead to a
second order telegraph equation often discussed in this comnec-
tion, f.i. by Cattaneo (1948), Vernotte (1958), Kranyd (1966),
Miller (1969), Israel and Stewart (1979). Also higher order
equations were trested, e.g. by Miller (1967). In this connection
it is remarkable that Cattaneo (1948) derived first an expres-
sion for the heaf current from statisticas providing a fourth
order equation. FOT small coefficients and near the equilibrium,
nevertheless, he could approximately transform it into a tele-
graph equation againoln our cage, however, one cannot prove the
entropy production density to be the divergence of the entropy
current. Therefore this equation is not further treated here.

Since the Neugebauer principle is a phenomenological

oﬁe, the investigated modifications provide only the func-

vy

tional structure but not the actual values and functions.

It is not the subject of thiq paper to determine these quanti-
ties in the sense of a relativistic kinetic theory as it

has been done by Chernikov {1963), (1963), Israel (1963),
Israel and Stewart (1979) for gases. I would also be very

difficult to extend calculations like that to 8o0lids and
liquids.

2. Neugebauer's variatiopel principle

The system is characterized by a set of field functions
Vo ¢+ Por & fluid we choose (V) :=(%Jiﬁ . © éi). Here
%4& is the metric, £ the particle number demsity and
g‘:= lLL/-T— the temperature vector ( ».° - four velocity,
T - temperature). The variational prescription is the fol-
lowing: Along g’é the \49 are changed to virtual func-

tions V@ \/e = \/@ + 5\/9

'V, = ;Eg\/e BTN ™

-V, is the Lie derivative, &> is an infinitesimal func-
A
tion with ’

o
-0, (dw}gL 0. @)
] Loy

1}; is an arbitrary four-dimensional volume, The Neugebauer

dw >0 ;mU; ) dw

variational principle reads as follows: For any thermodyna-
mical system there exists & time-like vector field géza;/T—
such that the action W in the virtual states ‘% corres-~
ponding to this field is never smaller themn the action in
the actual state Vb




<§W:<§jwaT3—c4x >0 . (3)

The Lagrange deneity L. consists of & field-theoretical

and a thermodynamical part

, R
L(Vej vé,g ) \"e,{,e ) = - 7. 5 'IK “w

(R - curvature invariant, 3 = cld ‘%(‘ ] , %, = Einstein's

gravitational constant, /F_ - molar free energy).

Performing the variation in (3) one gete
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By the Noether theorem Neugebauer (1377) (1980) showed
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with Sh and S being the densities of entropy flux and
production. The sum (6) takes the form

Z}GXC\:&-)O (7

with the thermodynsmical currents }e and forces Xe

¥& 4 EL) "
Vg8,

Xo = fg Vi (9)

These quantities are connected by the Onsager relations

N — o052
3T -2 e

[STow)
The symmetric coefficients [ form a positive definite
quadratic expression Juaranteeing 6 > O in (7). On the

other hand (10) with (8) and (9) represent the field équa- '
tions

S(LV3) < r en . ‘
\%'W@g = %L ig\/sg . (1)

For a medium with the Lagrengian @) one gets (Neugebauer
1977)

A - {k
R £ 157 R s
o d «(Q
e, * _r;w vy = _r(;n-) I (12)
Y/
(trev) .?eu e /C - S‘& . (13)

The left-hand side is given by variation of [. with the

use of the particle number conservation ( ow* ))-;;= O and
the relations for the thermodynamical potentials (e = ﬁ*
T 2§/?T =~ internal energy, S°% - stress temsor). Tiieny

is given by the Onsager relations

-k , A <4 L 2
T(;rr) = - SLu\u) + (C} " ¥ 1 - )/C > (14)
ar phs vk
@i‘) - 2 KR Yy P E b > (15)
N . e [\“‘(T} v b Ter) (16)

( s N L 4 _ k ' ‘é/ x 3
Q" - heat current; n . - g, v/ e e, -
coefficients of viscosity and heat conductivity).

3. Modificetion of the Lagrangian of the Neugebauer principle

3.1. Pree energy
In the usual thermodynamics and fluid mechanics the

molar free energy is a function of g and T
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ﬁ:{l(f‘—l_), (17)
In this section we postulate a weak dependence of «]ﬂ on
T, » In the Appendix some ideas are discussed which possibly
could explain a atructure of this kind. Here we investigate
the consequences of that ansatz. In the theory of elasticity
auch structures are investigated concerning the derivatives
of the deformation variables (Bressan 1978).

Being an invariant, Jr phould also depend on invariant
expreagions. The simplest invariant is T = T W* . But
because £§ EL = O , for convenience we use E‘ asg vari-
ables instesd of «~ . In (11) the whole variational term is
vanighing therefore, Forming the simplest invariants out of

%""" f*' and 1_,4 one gets

.& - .

—- 18

T.5 - T/T, (18)
A (19)

B =3 T T,

Then the amount of the spatial gradient %f T is given

by

LT, = BaeTAYE ()

and { has the shape

£ - F(s T,A,B) o

Since g"au‘/T , 1 1is expressed through the variablee&‘

and %;@

. T -
Vg, 8¢

(21)

ﬁ 88;k

»

3.2. Variational principle and field equations

With the variables (g ; ¢, §") the equations (3)
and (5) take the form

sldizi-5 - s F . A B >0

1 6 gL ;“'—%*L \
Y-3 ’53;g 6&3;@ + Sg (£§§):6>O(23)

with the Lie derivations

y (22)
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£ygie = Gl 1 (30, - 16 e
i (v *f“* == T) (24)
cL 'S )

u* 1 2 . o Lk
;E‘Ef e S g T e (25)

% (¢v*)e — 3 ¢ A ‘ff e

Because of the particle number comservation
(guwi)s= O (26)
,;Eija is expressed in terms of ;{—3 Gt and (23) reads

S V-4 L. <& 8
2

with the field equations

[



A longer straightforward calculation provides
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The left-hand side follows from (28) by variational deriva-

tion; the right-hand side, by the Onsager relations using
(14), (15) and (16). .

e = F-TRFENAT | (30)
P o= fl'ér/ﬁg.

Por our problem it is not necessary to define new expres-

(31)

slone for e and P .

Remark: Using, besides £, z and Fit, T as an additional
variable with the subsidiary condition (21) in the form

, Tlg‘.‘f"g’ﬁ + ¢t = O, one can simplify the calculation.

' Also (26) (Vr-_g 5T§ ;)J ,=0Ocan be taken as subsidisry con-
dition with & Lagrangian multiplier.

3.3. Heat conduction equation

and characteristics

The heat conduction equation follows from u;r*&. = 0.

>

Using (29) one gets
T dF e *
[e fT(T}A +?(§§§T ))Z]

3 'aF —(ﬁ- lk
+ puj‘}gm W, ﬁzﬁraB >L
ok
- Z'7r‘€‘ 1 s““(;;k)“u,x) - Y= (“{i‘,\’)'

— o (BT pieT7)),y —oet (To w5 T/)= O G2)

' The largest contributions ere given by ¢ (Pe /3T) -T=paT

&6—

and - 2¢ ,4 ¢ » the terms of the usual heat equa-

tion. The propagation velocity of the first signal of any event,

however, is given by the characteristicfi, To form the cha-
racteristios, one needs only the terms of the highest order.
with (18) and (19) one gets

%(Svc\,—l; — ”‘ﬁurﬁ,c_*“ ) -+

'b]?_(e

-
_ F ke

+2l-,£“3, T&,e**L“T TTEQ

' b= O (33)

From (33) the equations for the characteristics follow

N & 3F - :
™ ’.)A‘ * 4?A9Bj T“?"P

’a -
4 +2T =— 5 9 ?‘Cﬁt-f*[f":aB;TT(ﬁE(ﬁ‘)‘ﬁo =0, G8)

The second factor

Sl 2P _ e % W2
P= e T “u {'Bx‘v ﬂ»a&‘x)ax“}_ @] (35)

9



defines a characteristic (g (x £)= O . The velocities
u';(x‘) are ‘assumed to be limited and continuous differenti-
able in a certain region. Then by W, = — > at least
one w” is non-zero (e.g. =" ) and a solution of (35) exists
(Kemke 1979). For the propagation velocity given by the

characteristic @ ( ><4) = O

(36)

’B Cs) 4
dcf;’a) - 5% dx = O)
through the solution procedure (Kamke (1979), Courant Hilbert
(1962)) one receives the same velocity w*® aa in (35).

Being & time-like vector inside the light cone, wu* can
only provide a propagation slower than that of light.

Phe first factor in (34) provides obviously a quadratic
form which is indefinite (hyperbolic) if the coefficients
have appropriate values. While the old parabolic heat con-
duction equation was in contradiction with the principle
of relativity, it can here be considered to be valid,providing
only some restrictions on the coefficients.

If only a dependence of F on A exists, one gets

1 4

¢ = O as in the case considered first. If all second de-
rivatives of T~ are sufficiently small as compared to

9 T2F/?B , the (hyperbolic) term g“ﬁo& ¢, dominates.
Its only presence would provide ¢ as the heat propagation

velocity.

4. Modifications of the Onsager relations

There was never any doubt that the Onsager relations
(10) are linear approximations of a general physical law con-

necting thermodynamical currents '}e and forces X o
A ]

F(3° %)= o, on

10

where the F;_ could also be func’tionala containing deriva-
tives Xgz 88 well (see the Appendix).

Following the procedure of the preceding sections the
variational principle provides (6) and (7) rsp. (23) and {27).
By (6) the second law of thermodynamice is fulfilled. The
shape of (37 ) has to guarantee & 20, generating a quadra-

tic form in (7). Using an expansion of 3—5 with respect to
X and Xy, (instead of (10)) one can discuss several
2 ;

gimple ansatzes (providing G 2> O )

e roR
i S e R (T Xe (38a)

7° - T Xe ¥ o2 (1 Xg - expd ¢ Kaje I =

~ al
- 1% Xe t PommyXa {4 v g7 Kaper k? (380)

rp)(2q)
}e eﬂxg_ + l:eﬂ( P XS?_ CX(’)J‘P (XA),1 . (38c)
. OS2 e ,
The coefficients K“‘ R L , Ly have to be very

gmall. The forms of the latter are positive definite (at
least together with %% XX, )e (38a) leads to a second order
equation. By the factor Xg ('£§3~'l) the signs in the quadra-
tic form, however, depend on the varidbles and its deriva-
tives (e.g. on 1 , =255 Je Por special processes (special
jnitial values) one can generate elliptic forms. Thus omne
camnot use (38a). (38b) and (38¢) provide similar third
order equations. We consider (38b) more in detail. Here (11)

rep. (28) takes the form

. . ik
P*&~ j£3~’t-R . e L .h o+ P,ﬂL =
C‘L

e

11
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(39)
.T‘{
R ko - = Caeey
For the usual coefficients L:° and the ansatz
rs € e - - ~
g7 = kT e (S ) o e (40)
formed coveriantly out of the variables +.° and £’ .
one gets with
563 Joo = Gl Thpe v Ca/Th e = Loy, /T 2 ue T, /T “1)
g ), = 2 TR S 2e  THF
= 26T AT —(are) T} 4.
(42)

= 2 >|7.l DUT + ..

where only the terms with the highest derivatives are writ-
ten down. These are also the highest derivatives in the

whole equation (39), which provides the heat conduction equa-
tion with wu . T"‘.& =0z
)

(gc,f—AT)+. = +

2L FENN
— o (B 'f—‘g?m.. erp{ c(‘?ﬁﬁ" )/.J'Z.,%JT—L'-DuT,k (43)
PN RN §
The factor w. L £ g is a vector and cap be

guessed as a covariant expression formed out of £  .%
L SO

e J‘;k“&%‘“ = At (44)

ik ma : -
provided by L - auwubdy, This leads to

v
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(SDC"T'*_g"T Vi = — 26, (A/TY) exF{KW%%?«)Je}D“T (85)

s -

with the same structure of characterisitice as in (34).

Appendix

In a small region of the medium the thermodynamical va-
riables V, (e.g. the temperature) will be noarly constant
but in fact they are space-time functions. One can define
a mean value with & certain distribution funotion K(x,x’)
being relevant only for small distances from the considered

point
Ve(><) = fK(x,x'yv@(Hx'>ol"xf) (1.1)

j K (x, x") d¥'x' = 1. (h.2)
Such expressions could also be provided by statistics.
Developing \/9 in the neighbourhood of x one gets by a well=-
-known technic

Ve(") ?\/e (x) + \[-K(X)K'}x'l‘o(“x‘-\/@)‘(x)
ot ROt Vo i,e G+ (A3)

Vox) = Vg (0 + cloo. v@,& o+ o Vo,ge0o* - (A.4)
with (small)coefficients Q{) *¢ . If the free energy is formed
with this mean value one gets an expression containing the gra-
dient of T in the first approximation

F(T ) = FUT+teaTee 580 (4.5}
Another possibility would be to comsider T as & functional
formed in the epirit of (A.1). Then similar to (4.4) one would

receive

13
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unu deHoMeHONOTHYeCKUX ypaBHeHHiHl QHcarepa nojaydaercs
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OUAH .
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Salié N. E2-87-886
The Variational Principle of Neugebauer
and the Problem of a Causal Heat Conduction

Equation

It is shown that Neugebauer's variational principle
does not necessary lead to a parabolic heat conduction
equation. By slight modifications either of the free
energy or of the Onsager relations a causal structure

is produced.

The investigation has been performed at the Laboratory

of Theoretical Physics, JINR.
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