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1ntroduct10n 

In a constra1ned mechan1cal 8yetem,' some of 'the canon1cal va­
r1ables cannot be var1ed 1ndependently of the other9 because of the 
ex1etence of oonstra1nt funot10ns </>0< ('f I P) ~ducing the phase 
space ava11able. These constra1nt functions bave been class1f1ed 
by D1rac/1/ 1n tIrO cluses': To the f1rat class the oonatra1nts belong 
tbat have weakly/1/ van1sh1ng P01sson brackets with the Hamilton1an 
as .811 as among themselves; to the second class all the others. 

In a s1m11ar fash10n, 1t 18 useful to classify gauge f1x1ng 
cond1t10ns X~(iIF) 1n two groups: Degenerate gauges, for which the 
Pois80n brackets with the constraints ~X~/~~J weakly vanish, pre­
serving the 1-class nature of the system; Bnd non-degenerate gauges, 
for which the system is reduced to a 11-cla8S one, because f Xdl f f 1 
ia not weakly equal to zero. 

In other words, a gauge 1s degenerate prov1ded the gauge free­
dom 18 restricted but not oompletely suppressed by the gauge fixing; 
lt is non-degenerate otherwise. 

Accordingly. ther8 are two methoda to deal with a constrained 
dynamical 8ystema Dirac approach, that uses a non-degenerate gauge 
fixing to define Dlrac brackets/2/ that are conslstent wlth the 
reduced phaae .pace; and Bata11n-Pradkin-Vilkovisky (BFV) approach/3~ 
that instead does not require a 11-o1ass eyetem becauae the res1­
dual gauge symmetry, left oTer by the degenerate gauge f1xing. 18 
made 1nto a global SYllllll8tryl The BR8'l symm.etry/4/. 

Whether a gauge 18 degenerate or not -and hence .hether the 
BPV approaoh ia appropriate - dependa on the gauge fix1ng as .eil 
.. on the boundary oond1t10nD for the gbost Tar1ab1.a (or for the 
gauge tunot10na, that 18 equ1Talent). Por instanoe, tbe presenee ot 
a rea1dual gauge freedom 

(1 )
Á~('<) = A..(,c) t 'J#,,~(x) 

."1ttiil~ ..;~ :fP;ii mfCTIn'yT I 
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restricted by the condition 
OO(L"")::: o (2 ) 

ia a familiar aspect of class1cal electrodynamics in toe Lorentz 
gauge ('d'A "o) • However, aucn a residual gauge symmetry can be 
eliminated by choosing an appropriate boundary condition, i.e. that 
on the boundary all gauge transformations vanish. This defines a 
boundar,y problem for Eq.(2) toat a110ws only the trivial solution 
~(~); o everywhere. Therefore, the Lorentz gauge is non-degenerate 

for thess boundar,y conditions, wh~reas rt would be degenerate for 
other choices. 

It ia interesting to examine what happens to the BRST symmetry 
when the boundary conditions reduce the degeneracy of a gauge. In 
electrodynamics the BRST symmetry is obtained by replac1ng the gauge 
function t.«x) by W1{l<.) ,where W is a constant and "1 (~) a ne.. 
dynamical field: The ghost. Eq.(1) becomes the syatem (Feynman gauge) 

JAr()() s: WJt"'1{~) ; J1{j.) = u: -Jf'A""()() O) 

that defines the BRST transformation for the gauge f~ed Lagrangian 

(4)L z: - (11 +) Ff-'v F r v - (\h. )(J .A) 1. + ( \/2 ) dr"1 'J f'I~ • 

'lhe equation of mot1on for toe ghost coincides with Eq.(2), the 
cond1tion on the residual gauge symmetry. As expected, BRST trans­
formations are exactly this residual symmetry of tbe degenerate 
Lorentz gauge/5/ . Boundary conditions on the gauge function are no. 
cond1tions on the ghost field. If tbe atandard boundary conditions 
(van1shing of fields) .ere app11ed" the on-shell ghost field .ould 
vanish every_here and there _ould be no BRS'l symmetry. !his ia ano­
ther expected featur&1 the reduction of degeneracy 1n a gauge condi­
t10n may break down BR8T sy.mm.etry. 

Ono ia therefore lead e1ther to Dirac approach - in the non­
-degenerate gRuge defined by the standard boundary conditions above 
- or to chooae boundary oond1tiona appropr1ate for a dynamical field 
instead, nBlllely inoom1ng and outgo1ng plane _aves. In thia case, the 
boundar,y problem of Eq.(2) admita non-tr1v1al solut1ons, o.g. prog­
ressive plane waves. and the gaugtl 10 degenerate. '.lhe BlV approach 
can thuS be used. 
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Boundary Condit1ons 

'lhe discuss10n in the Introduotion Buggests tnat no a priori 
boundary cond1t1on ebould be enforced on tne ghost fielda. In parti­
cular, a van18h1ng ~ost field on the boundary may endanger BRST 

aymmetry. Th1a feature i& not a peculiarity of electrodynamics but 
rather a general property of the BFV approach. In fact, from the 
BPV action/3/ 

'I... 

z: ScH [ í i f; f ~~ rr" t 1~ F t t JP'"- H() f fr,Jd1 (5 )~FV 
'1 

(_here 

-1l. -= 71.,.rI' i 0/0/. ío'- - (Ih.) 1b1"c,. ~<. IP", (6 ) 

i8 the naST charge, C 
q

b<. tne structure constant of the group gene­
ra'ted by the constraints 4>ol and 7I~ , and 'f' ia an arbi trary func­
tion conta1n1ng the gauge f1xing cond1t1on) tne ghost equations of 
motion are in the fo~ (see Appendix) 

~(~ + F(O'~J. t ~(t)~", = o, (7) 

_here ~ and Cr are t_o functions containing the other canonical 
var1ables. A complete discussion of Eq.(7) requirea a apecifio 8Y8­

tem and a defin1te gauge cho1çe. Nevertheless, Eq.(7), _hen re­
-written ali 

V.::}(l)V, '(8) 

can be aolved perturbat1velY (the non-perturbative case i8 consi­
dered 'belo_) in the oouplinga ~j bet_een the ghosts and the other 
variables. Por 

10\ (nv == V ... CJ j V +. (9) 

and 1mag1nary time, Eq.(8) leade to a D1rechlet problem 

• " (<>\ V(ti:: 0j FU) V(O);V == O (lO) 

V li> (1) V{t/(2.) = o 

that has only vaniahing lIolutions. 
'.lhe case of ao infinite number of degre.s of freedom i8 similar, 

.ith Eq.(1) replaced Qy ao byperbolic a8cond-order di!!erential 
equation: 

Sinoe Eq.(7) ia qy def1n1t1on also the Po1seon brackets bet-,;1: 
_••n, the gRuge oondit1ona and tha oOnBtra1nts, the boundary oond1­
tion requiring vaaishing ghost fieldà at the end points leade to a 

I]) 
non-degenerate gauge, in contra41ction ~ith the BPV approaoh. 
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It is now possible to consider the boundary problem in a quite Gribov'a Ambiguity 
general manner. The boundary condition on the ghost variables must 
be such as to insure tne BRST invariance of the BFV action (5). 
Since l~·LJl.J and H't',·'l.),:~ ~ weakly vanish, tne only change 1n the 
action cauaed , by a canonical transformation generated by.J2. 1s 

(';).0_/;)6";. ') 6"k -..IL O (11)I: -::: 
~k 's being the momenta.
 

Ordinarily (see, e.g., the review in ref. / 6/ ) , tbe vanishing
 
')


An interesting by-product of the preceding discussion is a
 
new an,le on a problem of Yang-Mills theories: Gribov's ambiguity.
 
Gribov 91 pointed out that in the non-Abelian case the boundary con­

ditiona oonsidered in the Introduction for the Abelian case, namely
 
the vanishing of tne gauge function ~~<~) at infinity, may.not be
 
sufficient to malte the Lorentz gauge (as well as the Coulomb one) 

~ non-degenerate. 

of (11) is attained by requiring tbat both terms 1n the equation be 
independently equal to zero. By inspection, there are tben three 
sets of boundary conditions that malte (11) vanisb 

1 , rr..... I l :: I2 = IP I I z:,.4, o 
1 '-t"'", 'I u<.-1 (12 ) 

1 1 
2,111 1 -= fP 1 -= u 

~ 1 '" . 1 

~ , 1.... I: ::: iT.... li' z: o­
Ho_ever, the previous discussion suggests that a further criterion 
is the degeneracy of the gauge, that must be preserved. Conditions 
2. and ). do not satisfy this criterion because they require vani­
shing ghost tields. Set 1 also is not completely acceptable because 
of the vanishing momenta. 

Therefor8, it appears that the independent vanisbing of ~ 

and 'J.Q IqÇ,,- is too strong a condi tion to be enforced. Sucb a condi­
tion i8 sufficient only in the trivial sense that it produces, by 
the 'conservation la_, a BRST charge that La , at any time, strongly 
zero on-abell. On the other hand, that such a condition is not ne­
ceasary can be seen already in the aimple case of a free relativis­
tic particle, _hera the vanishing of Ej.(11) ia a consequence of \ 
the equations of motion solely (ref. / 7 not_ithstanding). Condi­
tions (12) are also particularly worrisome on physical ground. The 
initial and final statea are physical because of the presence of 
gnost fields and the resultant quartet decouPling/ 81 of all un-phy­
aical degrees of freedom. Imposing the vanianing of these fields 
to malte a state physical ·is therefore wrong. 

Unfortunately, one ia thus left _ithout a comprehensive pre­
scri~tion on the boundary conditions. Thia ia a rather unsatisfactory 
situation: the vanisbing of (11) has to be verified in each ne_ sys­
tem; if necessary, boundary conditions can be impo.sed, but being 

'"careful not to apoil BRST symmetry. 

In fac~, the non-Abelian nature of the fields introduces in 
Eq. (2) an additional term: 

tJo«(>t) ... c1A,... ClC ){J rd ( ,e ) == O- (1) ) 

Por ~ large, Eq.(1) admits a. non-trivial solution vanishing at 
infinity. The con~equent ~biguity in the definition of the poten­
tials maltes the Lorentz gauge degenerate. Although the non-pertur­
bative nature of this ambiguity has made it possible to dodge it in 
all current application, in principle, in the non-Abelian case, the 
Lorentz gauge (wld Coulomb one) are always degenerate, and Dirac 
approach should not be uBed. 

Moreover, a similar ambiguity could exist for Eq~(7) as well. 
This suggests a generalized Gribov-like ambiguity for all gauge 
theories with a non-Abelian algebra. 

The non-perturbative degeneracy, originated by these special 
solutions, cannot be used to define BRST symmetry because this re­
quires the existence' of infinitesimal transformations. Therefore, 
the perturbative result of Eq.(10) still holds. 

At the same time, the previous discusaion makes clear that, 
in the BFV approach, these Gribov-like ambiguities, as well 8S Gri­
bov's original ambiguity for Yang-Kills theories, are just a par­
ticular BRST transformation and no addition~l care ia required in 
dealing _ith them. 

Appendix 

In this Appendix, Eq.(7) is obtained from the action (5). In 
the BYV method, the gauge fixing is in the generally co~ariant form 

Ào( -I X ..... C1,P,>-) ;;:0- (14) 

1 In order to integrate out the ghost momenta, it is convenient to · 
chooae 

"f ~ i o. i.L + IPu< Ao( (15 ) 
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to	 make the functlnnal integral 

z.	 z: Jei? ..e- 5 B1=V (16) 

Gausslan ln 1P and ir>
 
After integratlon in these momenta,
 

,s'j"'" " ~ ~f t [i~' C;,Jt,{ I {i ~ "'1'1'1(' ] , 117l 
_	 1 

Eq.(7) is obtalned by using the additlonal condltlon "1 .. 1., =o , 
that	 ls ~ST invari~t. 

Note that Eq.(17) can also be wrltten as 

I f 2, .	 (18) 
~ ~~~,J ,~ 1 <i ( i" J- cf" (À.", t x. ) 

because J"l À... "::" 1d c ~t1 À'1 01 , by definition.t 

In	 th18 form, 

(19 )
~1 ( ~v t X" ) i À", t x: I <tr ~ = O 

the equatlons of motlon for tbe ghosts are ldentlcal to the condi­


tlon deflning a degenerate gauge.
 
Only systema with a closed algebra bave been considered. 'lhe
 

condltlon i l-LI oi }-=v. whlle not necessary, has been uaed to simp­


llty the notation.
 

I would llke to thank A.T. Plllppov for helpful conversatloDS 
and the Laboratory of Theoretical Physics of the JINR for kind hospi­

tallt,r. 
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~a66pHKe3H M.~. E2-87-883 
Bbipo:>IQJ;eHHble Ka.JIH6poBoliHbie yCJioBHH, 
o6o6~eHHble Heo~H03HaliHOCTH fpH6oBa H BPCT-cHMMeTpHH 

PaccMaTpHBaeTCH B~B-BPCT no~xo~ K KarrH6poBOliHbW TeopH­
HM. YTBep:>IQJ;aeTCH, liTO o6blliHO HCnOJib3YeMbie BPCT-HHBapHaHT­
Hble rpaHHliHble yCJIOBHH He 06Jia~aiOT He06XO~HMbiM BbJPO:>IQJ;eHHeM 
llPH ~HKCa~HH KaiTH6pOBKH. B COOTBeTCTBHH C 9THM, npe~ara- 1 

eTCH C~eCTBOBaHHe 06o6~eHHbiX HeO~H03HaliHOCTeH fpH60Ba. 
TeM He MeHee noKa3aHo, liTO 9TH Heo~H03HaliHOCTH npe~cTaB­
JIHIOT co6oH liacTHbiH CJiyliaH BPCT-npeo6pa30BaHHH. 

Pa6oTa BbiUOJIHeHa B fla6opaTopHH TeopeTHlieCKOH ~H3HKH 
OIDIR. 
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The BFS-BRST approach to gauge theories is considered. 
It is ~rgued that th~ BRST-invariant boundary conditions 
ordinarily used do not maintain the necessary degeneracy 
in the gauge fixing. As a by-product of this discussion, 
the existence of a generalized Gribov-like ambiguity is 
suggested. This ambiguity is however shown to be just 
a particular BRST transformation. 
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