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Introduction

In a constrained mechanical ayatem, some of the canonical va-
riables cannot be varied independently of the others because of the
existence of constraint functions 4L(7;FU reducing the phase
space available., These constraint functions have been classified
by Dirac 1 in two classes: To the firat class the constraints belong
that have weakly/1/ vanishing Poisson brackets with the Hamiltonian
a8 well as among themselves; to the second class all the others.

In a similar fashion, it ie useful to classify gauge fixing
conditions z;ohp) in two groups: Degenerate gauges, for which the
Poipson brackets with the constraints Y7.,4.§ weakly vanish, pre-
serving the I-class nature of the system; and non-degenerate gauges,
for which the mystem is reduced to a II-class one, because {1;,4?ﬂ
is not weakly equal to zero.

In other words, a gauge is degenerate provided the gauge free-
dom is restricted but not completely suppressed by the gauge fixing;
it is non-degenerate otherwise.

Accordingly, there are two methods to deal with a constrained
dynamical system: Dirac approach, that uses a8 non-degenerate gauge
fixing to define Dirac brackots/2/ that are consistent with the
reduced phase space; and Batalin-Pradkin-Vilkovisky (BFV) approach/3{
that inatead does not require a II-class system because the resi-
dual gauge symmetry, left over by the degenerate gauge fixing, is
made into a global symmetry: The BRST symmetry 4 . ’

Whether a gauge is degenerate or not -and hence whether the
BFV approach is appropriate - depends on the gauge fixing as well
as on the boundary conditiona for the ghost variables (or for the
gauge functions, that is equivalent). For instance, the presence of
a residual gauge freedom

Ay = Al 1 pa(x) M
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restricted by the condition
Qux(x) = © (2)

is a familiar espect of clagsical electrodynamics in the Lorentz
gauge (3'A=¢ ) ., However, such a residual gauge symmetry can be
eliminated by choosing an appropriate boundary condition, i.e. that
on the boundary all gauge transformations vanish. This defines a
boundary problem for Eg,.(2) that allows only the trivial solution
A(X)= © everywhere. Therefore, the Lorentz gauge is non-degenerate
for these boundary conditions, whereas it would be degenerate for
other choices. .

It is interesting to examine what happens to the BRST symmetry
when the boundary conditions reduce the degeneracy of a gauge. In
electrodynamics the BRST symmetry is obtained by replacing the gauge
function «(x) by luq(x) s Where W 1is a constant and M(x) @ new
dynsmical field: The ghost. Eq.(1) becomes the system (Feynman gauge)

SAW(x> = W0 | I4lx) = tw AT (x) 3)

that defines the BRST transformation for the gauge fixed Lagrangian

L = = C/e) R FPY = CRYQRAT + (2 gua by, (4)

The equation of motion for the ghost coincides with Eq.(2), the
condition on the residual gauge symmetry. As expected, BRST trans~
formations are exactly this residual symmetry of the degenerate
Lorentz gauge » Boundary conditions on the gauge function are now
conditions on the ghost field. If the standard boundary conditions
(vanishing of fields) were applied, the on-gshell ghost field would
vanish everywhere and there would be no BRST symmetry. This is ano-
ther expected feature: the reduction of degeneracy in a gauge condi-
tion may break down BRST symmetry.

~ One 1e therefore lead either to Dirac approach ~ in the non-
-degenerate gauge defined by the standard boundary conditions above
= or to choose boundary conditions appropriate for a dynemical field
instead, namely incoming and outgoing plane waves. In this case, the
boundary problem of Eq.(2) admits non-trivial solutions, e.g. prog-
regsive plane waves, and the gauge is degenerate. The BFV approach
can thus be used.

T

Boundary Conditions

The discussion in the Introduction suggests that no a priori
boundary condition should be enforced on the ghost fields. In parti-
cular, a vanishing ghost field on the boundary may endanger BRST
symmetry. This feature is not a peculiarity of electrodynamics but
rather a general property of the BFV approach. In fact, from the
BPV action

Sty = S ALt A 4 P K, )] o)
(where !
0 = mP b - (/2) gty P, (6)

is the BRST cherge, <3:c the structure comstant of the group gene-
rated by the constraints 4, end 77, , and ¢ is an arbitrary funce
tion containing the gauge fixing condition) the ghost equations of
motion are in the form (see Appendix)

ﬁ; + F&)ﬁd + G(f)ﬁ‘ =0, (1)

where F and ( are two functions containing the other canorical
variables. A complete discussion of Eq.(7) requires a specific sys-
tem and a definite gauge choice. Nevertheless, Eq.(7), when re-
-written as

Vo= f0) v, (8)
can be solved perturbatively (the non-perturbative case is consi-
dered below) in the couplings 9) between the ghostas and the other
variables. Por

I3 I
v = V + 9V P (9)
and imeginary time, Eq.(8) leads to a Direchlet problem

s
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/
vy - v = o
that has only vanishing solutions.

The case of an infinite number of degrees of freedom is aimilar,
with Eq.(7) replaced by am hyperbolic second~order differential
equation.

Since Eq.(7) is by definition also the Poisgon brackets bet-
ween the gauge conditions and the constraints, the boundary ocondi~
tion requiring vamnishing ghost fields at the end points leads to a
non-degenerate gauge, in contradiction with the BFV approach.



It is now possible to consider the boundary problem in a quite
general manner. The boundary condition on the ghost variables must
be such as to insure the BRST invariance of the BFV action (5).
Since §H, 0} and {{¥2},2} weakly vanish, the only change in the
action caused, by a canonical transformation generated by /). 1is

(PPl - | =0 (1)

S, 's being the momenta.

Ordinarily (see, e.g., the review in rof./s/), the vanishing
of (11) is attained by requiring that both terms in the equation be
independently equal to zero. By inspection, there are then three
sets of boundary conditions that make (11) vanish
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However, the previous discussion suggests that a further criterion
is the degeneracy of the gauge, that must be preserved. Conditioms
2. and 3. do not satisfy this criterion because they require vani-
shing ghost fields. Set 1 also is not completely acceptable because
of the vanishing momenta.

Therefore, it appears that the independent vanishing of L
and 29 /¢, 18 too strong a condition to be enforced. Such & condi-
tion ie sufficient only in the trivial sense that it produces, by
the «conservation law, a BRST charge that is, at any time, strongly
z6ro on-shell, On the other hand, that such a condition is not ne-
cegsary can be seen already in the simple case of a free relativis~
tic particle, where the vanishing of E}.(11) is a comsequence of )
the equations of motion solely (ref./7 notwithstanding). Condi-
tions (12) are also particularly worrisome on physical ground. The
initial and final states are physical because of the presence of
ghost fields and the resultant quartet decouplingle/ of all un-phy-
sical degrees of freedom. Imposing the vanishing of these fields
to make a state physical is therefore wrong.

Unfortunately, one is thus left without a comprehensive pre-
scription on the boundary conditions. This is a rather unsatisfactory
situation: the vanishing of (11) has to be verified in each new sys-
tem; if necessary, boundary conditions can be imposed, but being )
caréful not to spoil BRST symmetry.

-

Gribov's Ambiguity

An interesting by-product of the preceding discussion is a
new angle on a problem of Yang-Mills theories: Gribov's ambiguity.
Gribov 9/ pointed out that in the non-Abelian case the boundary con-
ditions considered in the Introduction for the Abelian case, namely
the vanishing of the gauge function A{xY at infinity, may not be
sufficient to make the Lorentz gauge (as well as the Coulomb one)
non-degenerate.

In fact, the non-Abelian nature of the fields introduces in
Eq. (2) an additional term:

Hal) + qAn> Gy = o (13)

For g large, Eq.(13) admits a non-trivial solution vanishing at
infinity. The consequent ambiguity in the definition of the poten-
tiale makes the Lorentz gauge degenerate. Although the non-pertur-
bative nature of this ambiguity has made it possible to dodge it in
all current application, in principle, in the non-Abelian case, the
Lorentz gauge (and Coulomb one) are always degenerate, and Dirac
approach should not be used,

Moreover, & similar ambiguity could exigt for Eq.(7) as well.
This suggests a generalized Gribov-like ambiguity for all gauge
theories with a non-Abelian algebra.

The non-perturbative degeneracy, originated by these special
solutions, cannot be used to define BRST symmetry because this re-
quires the existence of infinitesimal transformations. Therefore,
the perturbative result of Eq.(10) still holds.

At the same time, the previous discussion makes clear that,
in the BFV approach, these Gribov-like ambiguities, as well as Gri-
bov's original ambiguity for Yang-Mills theories, are Jjust a par-
ticular BRST transformation and no additional care is required in
dealing with them.

Appendix
In this Appendix, Eq.(7) is obtained from the action (5). In
the BFV method, the gauge fixing is in the generally covariant form

M i Xalq,p, M) =0 (14)
In order to integrate out the ghost momenta, it is convenient to '
chooge

vo= g X+ PaA" (15)
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to make the functional integral
- S v .
=~ /d/ai 2 bF (16)
Gaugsian in J° and lﬁ .
After integration in these momenta,

31.;5} = ffu T [77 crtkﬁ v X, 4>P}41 1. an

Eq.(7) is obtained by using the additional condition NI»«‘ l‘, =
that is BRST invariant.
Note that Eq.{(17) can also be written as

2 . .
St = LM A, O (At Xa) a8

because 3\, = g et aigd , by definition.
a4 2 P CiA 41
In this form,

5,1(>;v+)<,) = JAatxa, ¢, 8 =0 (19)

the equations of motion for the ghosis are identical to the condi-
tion defining & degenerate gauge.

Only syatemn with a closed algebra have been conaldered. The
condition H,l c{g,} v, while not necessary, has been usad to simp~
1lify the notation.

I would like to thank A.T. Filippov for helpful conversations
and the Laboratory of Theoretical Physice of the JINR for kind hospi-
tality.
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®a66pukesn M.E.
BulpoXaeHHHe KanubpoBO4YHLIe YCJIOBHSA,
0606meHHNEe HeomHO3HayHOocTH ['pu6oBa u BPCT-cuMMeTpHA

E2-87-883

PaccmaTrpuBaercss BOB-BPCT nmoaxon K kKanuOpOBOYHBIM TeOpH—
AM. YTBepkpaeTcsa, 4TO o6bMHO Hcnonb3yemole BPCT-uHBapuaHT-
Hble I'pAaHHMYHBIE YCJIOBHsi He 00O51afalT HeOOXOOHMbIM BhHIpOXIOEHHEM
npH éuxkcanmuH KanubpoBKH. B cooTBeTCTBHHM C 3THM, NOpejpilara—
eTcsa cymeCTBOBaHHe O6GO6GmMEHHHX HeoAHO3HAayHocTeH ['puboBa,
TemM He MeHee IOKas3aHO, YTO 3TH HEOJHO3HAYHOCTH MNpencTaB—
JAKT coboit yacTHe® cnyuaii BPCT-npeo6pasoBaHuii.

¢

Pabora BbmosiHeHa B JlaGopaTOpPHH TeOopeTHYECKOH (H3HKH
OHSH .

Ipenpunt OOBeRHHEHHOTO HHCTHTYTA ANEPHBIX HccnemoBaHuit. [ly6ua 1987

Fabbrichesi M.E.
Degenerate Gauge Conditions, Generalized
Gribov's Ambiguity and BRST Symmetry
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The BFS-BRST approach to gauge theories is considered.
It is argued that the BRST~invariant boundary conditions
ordinarily used do not maintain the necessary degeneracy
in the gauge fixing. As a by-product of this discussion,
the existence of a generalized Gribov-like ambiguity is
suggested. This ambiguity is however shown to be just
a particular BRST transformation.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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