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1« Introduction

This paper is a continuatior of /1/. There we introduced the
framework for the formulation of N=2 SG in harmonic superspace
and worked out the example of one of the Einstein versions of the
theory. Here we generalize this approach to incorporate conformal
5G, Then we study the possibility to compensate the super conformal
transformations by coupling conformal SG to a Maxwell and various
matter multiplets. In this way we reproduce all previpusly known
verasiona of N=2 Einsteiln SG and find a new one. The latter involves
an off-shell complex hypermultiplet with its infinite set of suxiliary
field. This new version proves to be the only one which does not impose
any restrictions on the possible couplings to matter.

Throughout this paper we frequently refer to various results
from/1/. The equations in are nump2red by Roman and Arabic numerals
(e.g. (I1.13)), while here we use only Arabic numerals (e.g. (2.13)).

2. Gauge group and prepotentials of conformal 5G

We begin with a brief summary of the realization of the rigid

superconformal group ES(} (2,2!2) in N=2 harmonic supersDace/zl.

The most significant point is that SSK)(ZjE!Z) preserves the struc-

ture of the analytiec subspace ( J:“; el‘;f Mt{. ). In particular,
E] i

the harmoric¢ coordinates have the following peculiar transformation
laws

Su*t, = AW,
- (z.1)
Sut :O9
where
A= i (A +ikgy 6589 +
+19°“'13 in LB (2.2)

is a superparameter contalnin& the parameters % a of ES{}(Z) kd& of
conformal boosts and Q,Q of conformal supersymmetry. Clearly,
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only 9+— 9" u+ oceurs in (2.2), so the transformations
(2.1) do not break analyticity (the same is true for ‘Zfr and
*e f‘“ 27y, The transformations (2.1) preserve thel defining
condition U+t U7 = = A for the harmonics but not the complex
conjugation relatlon (u*‘-) = u . However, the natural conju-
gation for the analytic Buperapace ('x'h 9 * u_ \ ig the
operation -~ ( = in ), end wa see that (2 1) preserves
reality of analytic superspace under -~ conjugation ( ,/T’:" /\H' ).
A straightforward implication for (2.1) are the transformation

laws for the harmonic derivatives TV DT, D° {th
s e pro-
perty DYTAY =0 ig used): ’
- P o -- TN
§D7<-ATD , §D--(NK
s D°
(2.3)

The above formulae suggest the following generalization to curved
harmonic superspace. We begin with the central basis { ZM =

™
(.1'_ 9'4») , L(“i } - There the suitable general coordinate
transfomatlon group is

o™ -fr:‘“(z)

sohi - T (z)

su*; = (uk u‘}'(;‘d(z))w

suy = 0- (2.4)

It is chosen 80 that the characteristic feature of the central ba-
8ig, namely the flatness of the harmonic derivatives DY ]).- ])
is preserved, The transformatlon laws (2.3) remain unchanged {with

A= utut t¥t@) .

The tfiost important feature of N=2 supersymmelry ig the exlstence
of analytic superfields depending on 9!“" but not on 9!“’
Therefore we have to define ariother basis in whieh & new group acts
leaving invariant the analytic subspace ( '3:'“ 9 ?“' [Tk )
i

- {5 b s of )

.

:

(2.5)

= A" (35, %)
) &A?** = A (3,,0)
gu:“’ =')r“'(5,,)uk)‘u'ki Swl=0

i

)
89:" "‘)ﬂ-(}hﬁ;,@ A ). (2.6)
Here ').:“) ')H“W ‘ N

and 'Af*' is & general non-analytic one,
The least obvious part of (2.6) is the choice of Suf and
Sbl.“ . To a certain extent they resemble the rigid group (2.1):
they preserve analyticity, the relation u*iu} = A , ~
reality ( ¥+ = "' ). However, the rigid case property
DAY= O does not hold any more. This, as we shall
see shortly, gives rise to a new specific prepotential for conformal

are general analytic superfunctions,

supergravity. )
The change from central to analytic basis is wade with the help
of bridges:

A AL A*
=" rt(z0) el - ot w2 UMY
ti i ‘ -1 - -
W, = wrsuttew-ut o, o= uw 2.7

Their tranaformation laws follow from (2.4) and (2.6)
] * e i3
SU™ = ')U"-«’t”’ QU= AT —utu T
Rt s i T*tg T
UM = ‘)\f“ ”z;"‘ 9" M (2.8)
Fa
o - . Fi -
§v AP —hiy .
The reader might bave noticed that the framework for conformal Se
developed so far is rather similar to thet for Einstein 3¢ /1/. The
differences are the absence of xg and its bridge on the one
hand, and the presence of local transformations of u*"’ and of
the corresponding bridge 'U”H' .
Let us turn out attention to the harwonic covariant derivative

P . In the T basis it is simply B =
and correspondingly transforms aes in the rigid case:

]



DL = -Tt"9P°

. (2.9)
{ 9 is also flat). Going to the A basis we not only
change the coordinates according to (2,7), we also redefine %++
g0 thet it transforus with 'X"* rather than ’C“H' :
++ 4 +4 o
D DT -VUTD
“—)’? S %§i~ %‘Q“i’ %0
(2.10)

C . R
Writing % cut in detail i
one finds a number of ha i
vielbeins: -t mene

+ Vb)) - A
%17',0;*_‘_{( ',ak-rH m@h

™
where {2.11)
H(H‘q) 4 e o
= %'t v ....( ++)
*iwm +
H = %—: flj'}“
H**F"* o a4 A
+
= Cb"{ LA 'UHQE
F%**F— —-§ﬁ+* ?‘ PO S
=0,V vyt +Bt‘°u\;i.
2.
Note that %0 in the {)\ basig 4 . (2.12)
rigid form: 8 does not differ from its
o 5 .
Y - u; Qu‘ - u;g«c’ +
od, U,
la)
+8}:*.2’:"9§‘.2t. (2.13)
. (b‘QA 99‘1: )

Its function is, as nlways, to count the U(i) charge (recall
that all our objects are by definition eigenfunctions of %o ).
The rigid operator 'D‘H’ has the crucial property of preser-
ving the analyticity of the superfields it acts upon. This allows
to write down action formulae for such analytic objects as the
4t - hypemultipletﬂ'd'/. In the curved case the concept of an
analytic superfield satisfying the constraint

9—” - - - w ?n- +
(2)9:*#) ° = Cb ‘-5?(’13,9“,“,\) (2.14)

is covariant (in the analytic basis). If we wish that CZ)"&;)
remains analytic, we have to demand

(M) . ++m rA*
A Ut W an U 0

A (2.1%)
( H**H- is allowed to be general since it is accompanied
by ’3:4 in (2.11)). Note that the redefinition (2,10) was also

made for congistency with analyticity. We also see that the tranas-
formation laws for the vielbeins H‘H following from (2.10), (2.12)
(2.18) are in agreement with the analyticity requirement {(2.15):

PHHY - @r
(5 HM‘M - %«-f '/\\M

o +\-Flt :%"’"’ ?‘t - Bf”" fv.
oH )‘ MR 9‘ (2.16)

Thus we have reached the centrel point in our construction., We
postulste that the vielbeins H®Y W**™ , U**R* and_the
group (2.6), €2,16) are the unconstrained prepotentials and the
gauge proup of N=2 conformal SG., This claim is justified by the
Wess-Zumino gauge /2/:

W™, U= 167690% ¢ + (@) er \}/; ) W4
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WY (SA .ufa)‘ @y '{7}: (AM* LB )+

+ (06 Lo e (6978 XU, (2t
A N .

R (W) W00 ofes g

Here one finds the components of the N=2 Weyl multiplet /5/1 the "

graviton e;‘: and gravitine Y7 s the U(2) gauge fields VL;‘)
Jage X Tas £, A w9

and AMM agd the auxiliary fields Couy) ‘x‘; ,%=9;«B

(the field R "™ undergoes gauge transformations with a divergenceless

parameter), ”
One can see from (2.17) that the prepotentials Hﬁ") and H*%—

are pure gauges. In what follows we shall use the gauge

HED=0 | 1A= ofi

It imposes restrictlons on the parameters }'H' and A""’
T \bE T N )
DTAT= 0 LD A (A oA~ (2.19)

which make them (and the pauge group structure constants) field—de—
rendent, However, we will gain significant simplifications of the
forthcoming expressions. '

Passing to the gauges (2.18),(2.17) involves fixing the divera
gence of a real vector gauge parameter f”’(x) in A"*(&‘l{/\) =
:.,,*6'@“5"&(%) + ... (Bwfmﬁ) is used to remove the SU(?):sing-
let component ‘D(;,z) entering VH(‘M') as a coefficient of(@')z(é*jz )
The divergenceless part of w(‘x) remains unconstrained. Suprisinge
lys there exists anothar Wess-Zumino gauge

(2.18)

where the fm - free-
dom is entirely fixed to gausme away the vector component 3"}"‘"

in Httmt (5/"2(,‘\ , While leaving a non-zero plece in H(+4) H
= @80 A7y HE < 0@ D) Gauro s
Note that the gauges (2.17),(2.18) are i1l defined P,loballyCD(._r)
and 1its pauge parameter 2“‘&, (X} may have different asymptotic
behaviour). No such a defect is inherent to the gauge (2,20) though
the latter is less conveneint as regards some technical points.

In prineciple, having intyoduced the prepotentials one could go
on and develop the full differential geometry formalism for N=2 coOnw
formal SG. This includes vilelbeins and connection for %"‘ s the
spinot covariant derivatives o? etc, Our prime interest in this
paper 1is in studying the coupling of conformal 53¢ to N=2 Maxwell
and matter multiplets. For this purpose we shall need only two new
°b390t3‘b'_ and 8 density for the full hermonic superspace integral.
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3. Conformal properties of the building blocks and
supervolume density

In 16,1/ it is shown that the vielbeina of the covariant derive-
tive %;' can be expresged in terms pf the prepotentials HH‘
and can be subsequently used for constructing the superpgpace integral
density and for ﬁhe Maxwell action, That procedure can be repeated
in the conformal case with aminor wmodifications, .

In the central basis (2.3) D™~ is simply
and transforms ea follows

§D, = - (9.T™) D7
(3.1)

To make Q)w' fit in our analytic frame with parameters ﬁ
(2.6), we redefine it with the help of the bridge J*+¥ {(2.7):

e ——m— D

-
LDV (3.2)
The new transformation law is
SP 7= - (D7) 9.
{3.3)

firiting out %“ in the analytic basis we define the vielbeins H" H

- J— .-_ --A
%‘?,+HMQ:+H’“tQﬁa'
M (3.4)

They car be expressed in terms of the bridges (2.7) but we shall not
need this. Instesd, we can relate them to the prepotentials H¥*
by imposing the conventional constraint

[2",97] -9
(3.5)

It is easy to check the geuge invariasnce of (3.5) (gee {2.10),(3.3)
and the gauge condition (2,19)):


http:2.17),(2.18
http:H{+4)~(6+y(e~Y])(.xA
http:2.18),(2.17

[-39e 2] +[2, - (X% ] -
- (%ﬁ%--»w) 2" =0 -

S‘ [%N’CB“] =
= 27D

Plugging the expressions (2.11) for %‘ﬁ (in the gauge (2.18))
and (3.4) for @ into (3.5) one obtains a set of linear dif-
ferential equations for [~ which exactly coincides with the !
analogous pne (III.3) dimcussed in'”/., Therefore we refer to

for details of the solution. Note that the gauge choice (2.18)

greatly simplifies the equation (3,5). With the :&'H'
unconstrained we would have to use H*4

(3.5):

parameter
to covariantize

v ylrl)gy -~ -~ ©
[9%- K99, 9] = @°.
. (3.6)
This equation is quadratic in H , and cannot be solved
as easily as (3.5),

From (3.4), (3.3) and (2.6) one derives the transformation laws
for H“M

SH ™. — (A U™ 297N

(3.7)
The only new term in (3,7) compared with (II.2) ofh/ is the weight

transformation with parameter QY )\*Y . In we constructed
building blocks € 7. (1v.5) and ep‘o (1v.6) from H™

and later used them to find the supervolume density E (IV.15).Here we
shall show that precisely the same expression for E serves as a
density under the conformal gauge group including the new parameters
At .The second term in (3.7) leads to the same coordinate trans-
formations of the bullding blocks and E as in

. The @) term in (3.7) yields the following new trans-
formations of € 7. and Q@ .V
&g #

5 AL _.n&--Au)e“ - ekp [Qn)kh( —m H--r+ ‘}‘3 ‘é:e H--hﬂ )

Y ’
Yo _(27)3) €s

, A A
_(@; H-‘m‘gmqﬁ* eé\S (3_% XH) H v

SA“ ei}

(3.8)

To check this one makes use of (3.4) and the analyticity of 'X*r
( ’ng A‘H' = ). The transformetion of e”‘aﬂ looks
1ike a world vector rotation of the index m , 50 the guantity
fdvl = eme,; oL & (IV.10) remains invariant. Taking all

thia into account one obtains
e =5 [At(eDs) it o) 9T
- (@~ E

(3.9)

i
On the other hand, the coordinate transformations (2,6} of UA
contribute to the volume element transformetion the following term

q{. %ul = (3"; )\*‘*‘
uy (3.10)

Consequently, the conforwally covariant volume element of superspace
can be formed with the help of [ ~% :

S(“‘RZAA“A Eﬂ) = ( “/\H)‘ “ﬁza duc E‘i) ‘ (3.11)

We conclude that the integrand in an invariant integral wust have
weight — 4 under the ™ transformations, In the next mection
we apply these results to the construction of the N=2 Maxwell action
in a superconformal background, :

4, Coupling of conformal SG to Maxwell and non-linear multiplets

Qur main aim in this paper is to construct sctions for different
of f-ghell versions of N=2 Eirstein SG. Pollowing /51 we started with



the conformal SG multiplet with its full gauge group. Next we have

to counpensate the Weyl, and SU (2) gauge transformations
by coupling the conforwal supergravity wultiplet to a Maxwell multip-~
let (for Weyl and Y% ) and to various matter multiplets (for
SuU2) ). In superspace there is a patural way to describe the
Maxwell multiplet. It consists in introducing an extra space~time
coordinate ’x‘; . The gauge group is also extended by the transfor-
mations of '3:?‘; .

5 XS, = AT (3,.4)
{4.1)
which we choose so that they preserve the analytic structure of
harmonic superspace. Correspondingly, the harmonic derivatives

%‘Hﬁ (2.11) and P~
e 2T EIAN — - .-
DT> PTIHTO P AU g

Note that neither the gauge parameter ?\5 nor the vielbeins
H"’"s . H"‘r depend on the new coordinate :x;S; . It
is only matter superfields with central charge which are allowed to
depend on Z’.Ils; 3 the SG multiplet itself has no central char-
#e. In order that P  preserves analyticity, the vielbein HHS

must be analytic (sce {2.15)):

(3.4) acquire new vielbeins:

4.2)

+ +v i
qsﬁu =0-

v (4.3)
The trarsformation law for %w' (2.10) does not change, so
s R transforms as follows:

TH™ -

(4.4)
The snalytic superfield with the transformation law

(4.4) is indeed the prepotential for an N=2 Maxwell multiplet/:”/.
The difference from an ordinary Maxwell superfield is that we pos~
tulate that H'*5 "has & non-vanishing flat 1limit

H™ . i@y -:1@Y. :

H+~t5‘“

(4.5)
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This makes it a compensator for the Weyl and 'g’g gauge transfor-
mations in the group (2.6).

The vielbein H™°F is obtained as the solution of the
QS- torsion congtraint following from (3.5) and {(4.2). The
explicit expression was given in eq. (I11.8). With the help of
H~® one can congtruct the quantity F (IV,12) which trans-
forms as shown in {II,34):

?(e’wF) = éA+¢LQd--

This is precisely the compensator for the Weyl and 'K‘V gauge
parameters contained in A%~ .

At thie point we have a framework which is very similar to the
one described 1in 1 . The only difference is that now the gauge
group is bigger, it includes the rr parameters (2.6), (2.19)
(containing locsal SU(a) ). Therefore the same set of prepoten-
tiale describes a smaller set of fields, the so-called "minimal
representation” of N=2 SG’;S/. It is well known that one cannot
write down a correct action for this multiplet, although there
exigts an action-like invariant integral. It is the action for the

Maxwell superfield H‘Hg in a conformal SG background:
' 1 S I -4 J++5 -5

(4.6)
Its forw coincides with the action { 1) for the off-shell version
of N=2 Einstein SG considered in but it has a larger gauge
symmetry. Its invariance under the 3A™% , At:!’ transformations
has already been proved in 1 . Here we have to check if it is invarl-
ant under }*t tranaformations as well, Indeed, from {3.3),(4.2)
and (4.4) we find

U0, ST @A) e

ATt

Comparing this with (3.11) we conclude th:t the action {4.6) is super—

conformally invariant.

In order to obtain a full N=2 Einstein 56 action from (4.6) one
has to compensate the A ** transformations by coupling certain
matter multiplets to the conformal SG multiplet. We discuss here how
to get the action given 1n/1 . To this endy note that (4.6) is inva-
riant under superconformal gauge group before imposing any gauge,
i.e. wlth HM) 75 0 and ?\*’* 8till unresctricted. Them a careful
inspection of eq. (4.6) shows the presence of a troublesome term

1


http:descr:j.be

in (4.6) linear in the component D(x) of H(+4), namely -~
A‘I.])(I) . Passing to gauges (2.17),(2.18) involves & gauge
transformation 6])(;(_): om gm (x)+... . If one assumes as
usual that the integrals of full derivatives vanish this transformag-
tion cannot be used to remove the above D-term. Thus we conclude
that the gauges (2.17),(2.18) are not implementable in eq.(4.6)
(while the gauge (2.20) still is). On the other hand, one easily
observes that putting 4) = ¢ 1in eq.(4.6) and in the equations
which define H™ ™™ in terms of WY'™M | simultaneously with the
restrictlon of original gauge group to )\'H':O y yield just the

N=2 Einstein SG action considered in 1/. This reduction HGO: o,

X""' = () can be performed consistently with the whole supercon-
formal group (2.6),(2.16) by meang of the trick exploiting the
so~called "non.linear" multiplet 5/. In flat harmonic superspace
it is desoribed by a real analytic superfield N++sat15fy;mg the
nonlinear constraint

2
DN+ (W) =0 (4.8)
(C£. the comstraint D'/ *++=( for the linear multiplet 11/ e
It can easily be put in a conformal SG background by replacing

(4.8) vy
. @+*N+++ (‘NH)Z_ H(““): 0 (4'9)

assuming that A/Tt transforms as follows:
SNz )+t | (4.10)

Now we may view eq. (4.9) as a superconformally covariant definition
of H(M) in terms of N++. (This involves a noncanonical redefi-
nition of :D{x) which starts now with the divergence of a vector
component of /V‘"" ). Then we substitute the expression for H('M)
in eq. (4.6) and in the equations for H"H and finally choose the
gauge

N=0 = \t=0 (2,11

thereby eliminating the entire gauge freedom in XH' including local
SU(2). At the same time HU4 =0 ag a consequence of (4.9), so
the action (4.6) involves H™s » HM and is invariant under the

)\W'5 y ;\ﬁ gauge %oup only. Thus one recover7 the off-shell
version of Einstein SG / as 1t was described in 1/

Concluding this section we briefly mention that it }s possible
to use the so-called "linear® multiplet as a compensator 9/. Its
formulation in harmonlc superspace and coupling to conformal SG have
been discussed 1n 7 .
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5. A new Einstein SG version and general matter couplings

We claim thet the most natural and least restrictive (in matter
couplinga) version of N=2 Einstein S¢ is obtained when using a

hypermultiplet/3+4/ gg g compensator for the W' ( SU(2))
transformations. The Fayet~Sohnius hyperxm}ltiplet is deécribed by
an unconstrained analyﬁc superfie_ld q;"' forming a pseudoreal
SU2) doublet, 4*i = £;4% . Note that this SU(2)
is an external (Pauli-Cursey) group, unrelated to the imner super-
symmetry sutomorphism SU(?.) « The flat space free action is given
by the anslytic superspace integral

Sgr = -2 (i de g0
(5.1)

It can be coupled to conformal 567/ by replacing the rigia T**
by the povariant one and ascribing the following transformetion law
to q*b :

LESEEET AN

(5.2)
where f\ is the infinitesimal transformation of the analytic
supervolume element,

™ pr
- -~ n bt
A‘ qn'mq '9”1}\ + .
(5.3)
Then the action
erzved .
_ i -y + + 0t
S'L’ EPYS A’aﬂ"‘a‘i R
(5.4}

is invaeriant, because the term ‘{“(%‘”‘A)' q,fi
tically.

te
To eef*that q, does compensate the remaining freedom
of the ") transformations, we assign a non-~vanishing flat

space limit to W q*t (e.g. (U3 T’")o =41 ). Then we fina
from (2.6), (5.2) that

S (ut%*f) =)
u} 1+

. ++
80 the parameter ')‘ is indeed compensated.

vanishes iden-

(5.5)

13
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It is important to realize that the compensator q;‘ adds
infinitely many new fields to the wminimal (32 +32) set
described by H¥™™ . %, p+ . The reason is that the off-shell
deascription of the complex hypermultiplet neceasarily requires an
infinite set of auxiliary fields 10 » Note that in/5/ & "short"
version of the complex hypermultiplet was used as a compensator,

It involved a central charge satisfying the off-shell constraint

_Pz' = 22 » In our version this constraint is removed. Thus,
we can have a non-zero central charge (e.g., letting Qf‘ depend

on ¥ like €™%F g+i(3, u) ) without tying it down
to the off-shell value of 2,

The most remarkable feature of this version is the existence of
a scalar dimensionless and chargeless density. This 1s the quantity

(i), SW'= -Aug) e

Since it is analytic, one can use it to construct an invariant volume
element for the analytic superspace:

&) - ?)z
Aéu dut,- (u7g)" (5.7)
This allowa us to couple the Qf version to any kind of matter.
Indeed, all types of matter can be described by analytic superfields
(e.g., hypermultiplets Q3% or W linear multiplets ™"
ete, 3.4 ). Their Lagrangiane are analytic too, so it is sufficient
to simply covarisntize matter and integrate it with the me-
asure {5.7). The matter superfields are not required to transform
as deneitiea, ao there are no restrictions on their self-couplings.
Thus, one concludes that the 11* version allows for the most
general matter couplings.

Actually, in/13/ we have shown that the most general NwZ matter
gelf~interactions can be described in terms of just the (D* hypermul~
tiplet*). This includes the general 4n-dimensional hyper-Kahler

')As shown in/4/, all the other matter multiplet (linear, relaxed
hypermultiplets, etc.) self-couplinge can be reduced by means

of duality transformations to subclasses of ()* self-interac—
tions.,

i4

Sa” g SN \Hm@:“) AU
. ;(‘*"’(Q,u)] .

(5.8)

M +
Here Q=1 ., 20, H n and i( 4 are arbitrary func-
tions of Q'h and the harmonic variables, which can be regarded

a8 the prepotentials of hyper-Kahler geometry. The rigid action
(5.8) can be coupled to the qr-vereion of N=2 SG by replacing
DYt by the following combination

+ +i o
VARSIt *(M P°.

ujq* (5.9)
*
Using (2.10), (5.5) amd aspuming that (} a traneforme as a
weightless scalar, one can check that §7**(};” is a scelar as
well,

Furfher, one should replace the harmonic variables ut appe-
aring explicitly in (5.8) by the following variahles:

+

. 4.
R
il

wi- o

(5.10)

"« which are inert under the SG group. Finally, covariantizing the

supervolumj ag shown in (5.7), one obiains .
ave .
Q = Sdé(:) JIXA (u”‘f)z‘ [HQQ(Q.U)VHQZ, "
+ M (Qar ] .
Zf (Q’ ) (5.11)

A further generalization of (5,11) could be achieved by letting
(% depend on the central charge coordinate €% and coup-
ling it to the Maxwell gauge superfield HMV™S .1n this way one can
obtain the most general SG-matter coupling.
The other versions of N=2 SG are much more restrictive due
to the absence of a proper analytic density, In fact, in all versions
there is a density coinciding with the RBerezinisn of the vielbeins

135



A
E:‘ y where A= (a,&') 3 M= (m, f""') . The explicit
expression for it is (see (11.32), (1v.12), (1v.15))

x:E"‘M*(Eg’A‘)f-@E)-Q-X IR i

. (5.12)
where )ﬁ does not depend on ‘{ . However, this denmity
is not analytic. Indeed, ?bt; is a tensor (the parameter
A in ¢5.12) is analytic). In the W 2 gauge the only suitable
component of the same type is contained in \lg , and clopse ins-
pection of (5.12) =hows that it appears in C{fﬁ Qw]p y 80 Y
cannot be analytic, Purther, if one is able 1o construct another
(analytic) density with the help of a compensator superfield, the
ratio of the two densities must be a dimensionles invariant scalar,
The only compensator which contains such a scalar is Qf .

The discussion above showed thet the different versiona of
Na? off-shell Einstein SG are not equivalent in the presence of
matter, However, when there is no matter, one is able to perform
duality transformations from the * vyerasion to the oiher ones.
Dual equivalence to the version with compensation by linear multiplet
was already proven in 7 . Here we consider the transformation to the
version with nonlinear compensator N . One mokes the following
change of variables?

qj": = (u“.}- - N**. u'—i'.)w

(5.13)
or vice versa,
4t
g Nt = wq
W= uan ) u"q/‘l"
(5,14)
Putting this into the 1; action (5.4) one obtains
i A(Jﬂm wz [%ﬁ-f”**"{"wf* 2‘_ #‘H‘)-}
Supre = i Vol '
(5.15)

Varying (5.15) with respect to W
multiplet constraint (4.9 ), Clearly, in the presence of matter
the constraint (4.9 ) will be modified by matter terms, since the
dernsity W will appear in the matter action, We have observed a
similar phenomenon in the so-called nflexible"” version of R=1 30/11A
We find a deep analogy beiween the m* version of N«2 5G and

the minimal version of N=1 SG/12{In poth cases the matter compensators

reproduces the non-linear
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are unconstrained snalytic superfields ( qr Uﬁa,u“) in the N=2
case, and a chiral superfield k?fal) in the N=1 case)., Both
compensators can be used as densities for the corresponding analytic
superspace integrals, which allows one to couple 3G to matter in

the most general way., All the other off-shell versions of those
theories are classically equivalent to the former (by means of dua-
lity tranaformations), but only in the absencc of matter.

6. Conclusions

In /7 and in the present paper we have developed the unconst-
rained off-shell formalism for N=2 SG. We have shown how to construct
the most general N=2 50 matter couplings. This can be achieved only in
the version with a %f hypermultiplet compensator. According
to such couplings give rise to a c¢lass of quaternionic wanifolds,
80 we can claim to have found the prepotentials for such manifoldsg.
This subject will be studied in a separate paper.

Another possbile applications of the formalism developed is &
manifestly supersymmetric quantization scheme for N=2 SG, It is

also interesting to try to formulate SG in 6 dimensions in a similar
manner.
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Fanenepun A.C. w ap.
N = 2 cyneprpasvutauyMa B CynepnpocTpaHcTBe:
pa3nuMuHbie BEepCuM M MATEepuasibHue CBA3M

‘E2-87-86

B panHoi paboTe 3aBepwaeTcs focTpoemue N = 2 cyneprpagutaumMm B rapMOHK™=
4eCcKOM CynepnpocTpancTBe. Panee palsuTuwit noaxoa obobuaeTcA Ha cnyuan KOHPOPMS
HOWM Cyneprpasutauywv. 3atem CyNepKOHPOPMHAR FPYNNa KOMNEHCMPYeTCA NyTeM BKND-
UEHUA MAKCBENNOBCKOrO M PA3NUUHLIX MaTepranbHuX MynNbTunnetToB. Ha 3aToM nyTtu
moryT GuTb BOCNPOMIBEAEHH BCE PaHEe M3BECTHWE BEPCHMM IAHWTenHoBCckon N = 2
Cyneprpasntaumm. Mo g3em OfuH ABHLINM MPuMep /C HeNMHENHNM MyNbTUNNETOM B Ka-
uecTBe KOMNeHcaTopa/. Haw rrasHui pe3ynbTaT - HOBAR BEpPCHA 3NHWTEMHOBCKOM
N=2 Cyneprpasutauum, COAEpKalan KOMNNEKCHUMA ., runepMmynsTUNNeT ¢ GeCKOHEUHbM
uMCNOM  BCNOMOrateNbuix fonew., 3rta BepcuA” ﬂpeACTaBnﬂeTCﬁ nanbonee Pynfamen-
TanbHoi. TOonbKO B ee pamMkax CymwecTayeT nnlapuanvauu ‘alanuTMYECKHi cynepoG\eu
YTO NO3BONRET NOCTPOUTL. HamGonee obume saauuoaeucrsun maTepum. B apyrux sep-
CHAX OTCYTCTBME NOAXOARMHEN AHANUTNUECKOW NNOTHOCTH Hanaraew CUNbHBE OFPaHn=
UYEeHMA Ha BMA narepuanunux cBRseii.

PaGota sundnueka 8 flabopatopun TeopeTuueckon Puaukn OUAK,

.Coo&nu.ie(ﬁhennucnnonolacnnywannepmuxnmaumo-nuui.ﬂyﬁli1987 '

Galperin A.S. et al. E2-87-86
N = 2 Supergravity in Superspace: Different Versions

and Matter Couplings

This paper concludes the formulation of N = 2 supergravity.in harmonic
superspace. We generalize the approach developed earlier to include confor-
mal supergravity. The superconformal group is then compensated by coupling
to a Maxwell and various matter multiplets. All the previously known versi-
ons of N = 2 Einstein supergravity are reproducible in this way. We give
explicitly one example (with the nonlinear multiplet as a compensator). Our
main result is a new version of N = 2 Einstein supergravity which involves
an off-shell complex hypermultiplet with its infinitely many auxiliary
fields. We believe this version .to be most fundamental. It is the only one
in which the analytic. supervolume can be made invariant. This property al-
lows us to write down the most general matter couplings. In contrast, the
absence of a proper analyt:c density in the other versions imposes severe
restrbctnons on matter couplings.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1987




