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1. Introduction 

This paper is a contin~atio~ of 11/. There we introduced the 

framework for the formulation of N=2 sa in harmonic superspace 

and worked out the example of one of the Einstein versions of the 

theory. Here we generalize this approach to incorporate conformal 

SG. Thel; we study the poasibili ty to cDmpensate the super conformal 

transformations b;r coupling conformal SG to a Maxwell and various 

matter multiplets. In this way we reproduce all previously known 

versions of N=2 Einstein sa and find a new one. ?he latter involvos 

an off-sholl complex bypermultiplet wi th its infinite S\lt of auxi Iiary 

field. This new version proves to be the only one which does not impose 

any restrictions on the possible couplings to matter. 

Throughout this paper we frequently refer to various results 
from/1/. The equations in/11 [lye numo'>rej by Roman and Arabic numerals 

(e.g. (II.I))), while here We use only Arabic numerals (e.g. (2.13». 

2. Gauge group and prepotentisls of conformal SG 

We begin with s brief summary of the realization of the rigid 
/2/ •superconformal group SU (2.2\2) in N=2 harmonic superspace

The most significant point is that 5 U (2,'2\ 2,) preserVeS the struc­

ture of the snalytic subspaCe (:x:": e~" lA t, ). In particular, 
,... t ", i-

the harmorric coordinates have the fDllowin~~ peculiar transformation 
laws 

Su+ = A++U.~ 
(.. ~ 

(2.1 ) 
~ u.--: = O.

~ 

where 

A-t-1- tlAt (,\\~ .\ eG(i-.;;~~ +
1\ = U· . /I (l + ~ \( old V' 

L d 
. oiL ~ • 'n ~ f\ ~~ '\

+tl:f ~ol.-+LL.;tcr ) (2.2) 

is a auperparameter containing the pl!!rameters Ai~ of SU (2.) kd.~ of. ) 

conformal bool'lts and 1"fl of conformal supersymmetry. Clearly. 

IhtlU;,:tC:LiD KHCTi!TYT I 
tlI~ltr.i;iX I>!i.C :,2.!1.0B1Uit 
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+ . + 
only e = 9' U t occurs in (2.2), so the transformations 
(2.1) ~o not break analyticity (the same is true for 'b'"r~W\ snd 
~e~+ /2/). The transformations (2.1) preserve the defining 

condition j.A+i lA-· =. i for the harmonics but not the complex. -- ­
conjugation relation (U+i.) = u.-~ . Howe"ver. the natural conju­
gation for the analytic supers pace (tj;.::" n /"-+ IA±. "\ is the

13/ .. , I::r It) ~ )
operation "'-' (!! in ), and we see that (2.1) preserves 
reality of analytic superspace under rv conjugstion ( 1i.'t''t' = 1\++ ). 

A straightforward implication for (2.1) are the transformation 

laws for the harmonic derivatives 1)++ I 1)-- ) DO (the pro­

perty 1)++1\++ "" 0 is used): 


b D++ = _AHnO ~lY-:. -(D--I\.++) 1)--) 


r DO = o. 

(2.) ) 


The above formulae suggest the following generalization to curved 

harmonic superspace. We begin with the central basis t 2 M .. 


= (XVIII) e~i.) I IA ±~ '3 . There the suitable general coordinate 
transformation group is 

5;x Wl = '1: Wl (2) 
'" • f\ • 

~ e f4" : 't ~I. C~) 


S u \ := (1.(+" If'i1:Jd (c)) tt-:;' 

sU-i ~ O· (2.4 ) 


It is chosen so that the characteristic feature of the central ba­
sis, namely the flatness of the harmonic derivatives 1D~+)1>--,])O 
is preserved. The transformation laws (2.) remain unchan€ed (with

A++ = u+ u~ 't. let (:2) ).
1C 

The most important featuTe of N=2 aupersymmetry is the existence 
of analytic superfields depending on e 'fA.... but not Oh e,.­
Therefore we have to define another basis in which j new group acts 
leaving invariant the analytic subspace 'X WI 6) 'H IA,t h 

,. I A 	 I t 
A

A B .. {}r = (:r,,~, er+) } U;t . e fA-}) A 
(2.5 ) 

2 

~ X -; '"' 'A m (d A ) L\) 

'i; fJA~'" = A~+ (~A' u) 
(\ +L 	 ,\+1" ( II) I.e ~ ~ IA.~~ -::. 0l> IA A = 	1\ }~ ) lAA • " 

~ A 	 )Se:- =1f'l-(jA)U"J 8 A 	 (2.6 )• 

1\ 

'\ 'rn '\ fA" i'\ H­ are general analytic superfunctions,Here "" I 11 1 II 
and AfI'- is a general non-analytic one. 

The least obvious part of (2.6) is the choice of ~ U.+ and 
~U- . To a certain extent they resemble the rip,id group (2.1): 

they preserve analyticity, the relation U+ i:. u.-i. = 1. I f"'J 

reality ( 7f+ -= 'Xl"+ ). However. the rigid ~ase property 
J)++ A+-I- = 0 does not hold any more. This, as we shall 

see shortly, gives rise to a new specific prepotential for conformal 
supergravi ty • 

The change from central to analytic basis is made with the help 
of bridges: 

" A. " 
~ ~ 'jII\( ) ert - e-r~IA±. +15r!(i,u)":£A"'':£ +V =,Ll ". ­ • 

. 	 . - ~ -~ui"1. =- U. +L + 1J++(,l!,U)' u.-\ 	 (2.7 )U. AU.· ~ 

Their transformatibn laws follow fr~m (2.4) and (2.6) 

b1J WI :: 	 1\ WI .... rc; W1 ~1f ++ '" 'AH - Let, ut 1: ta 

1\) • d 


blJ r+ = ?1~+ ~L ~i.(ti - "[let er'~ IA~ u\ ll~ (2.8) 
i\ " 1\Ii1) ,. - = ?- 1"""' - 't. f4 i I.e,; . 

The reader might have noticed that the framework for conformal SEJ 
dev~loped so far ia rather similar to that for Einstein SG /1/. The 
differences are the absence of JC~ and its brid~e on the one 
hand, and the presence of local transformations of U+1. and of 
the corresponding hridge 1)'*"" 

Let us turn out attention to the harmonic covariant derivative 
~ ++ • In the '1:' basis it is sil!lplyq)T.... =0++ 

and correspondingly transforms aa in the rigid caae: 

I 



b 'JjH := - 'l: ++ 9)0
-c: 

(2.9) 
(2:)'" is also flat). Going to the 'A basis we not only 
change 	the coordinates according to (2.7), we also redefine ~+~ 
so that it transforms with A++ rather than '"C ++ 

CfJH :: CJJH -1J++9;)0 ~ 
". 

~ b2)H = _ A-t-+~o. 

(2.10) 
Writing <;l)++ 

out in detail one finds a number of harmonic 
vielbeins: • 

O\'I'-t ~+ H(+t.) -- . II'HI'Y\ A . IIHpt A:+ 
~ '" U A + '0 /It + t1 I'()m + n ?r 

(2.11)where 

H(+4) -: q.t~ '1rH 
- (1r++Y 


1-\ .;. l' 'rY'.,,'. <{) +1" lJ)VI 

'"C. 

" 	 1\ 1\HH fA l' _ a-H 15 r'" _ tr+"I" e r + 
- -z..J1: 	 .. 

1\ " "I' ..HH r- = CZJ+~ '1J r- _'1)1'+ 1rr- + er" lA!l. 
(2.12) 

Note that CfJO in the ~ basis does not differ from its 
rigid form: 

9)0 = uti. tU . U-L' t2 , + 

A tl>fi +t It (bu.-I. 


A A 
1\ 

+ er~. tJ r- f) 
/It 	 ~er+ 8 A • "OfJr- (2.1)) 

Ii. A 

" 


Its function is, as always, to count the U(i) charge (recall 
that all our objects are by definition eigenfunctions of <;60 ). 

The rigid operator ])++ has the crucial property of preser­
ving the analyticity of the superfields it acts upon. This allows 

to write down action formulae for auch analytic objects as the 
1\.... - hypertnultiplet/J ,4/. In the curved case the concept of an 

analytic superfield satisfying the constraint 

1,:= 1 (r:t:'" eri" U± ) ~e~- ~ := 0 ~ c.y If A) Al A 
(2.14 )

A 

is covariant (in the analytic basis). If we wish that Cit... ~ 
remains analytic, we have to demand 

/,:,\'" \1\+"') - . + ~+1"W\ + W"'Tr+ 0'u1 _1"lI" _n.I\ ­
A", vAd. - liAr/. ­

(2.15 )" ( H++r- is allowed to be general since it is accompanied 

by ra:A in (2.11». Note that the redefinition (2.10) was also 
made for consistency with analyticity. We also see that the trans­
formation laws for the vielbeins 1-\++ following from (2.10), (2.12) 
(2.18) 	are in agreement with the analyticity requirement (2.15): 

f H(~4) "" <))++ "tot­

b W'+ WI '" q),'1" AWI 

,. 

SHH rt = <;b-t-... Ar! + e:t r1", 


(2.16 ) 

Thus we have rea(:hed the centre1 point in our construction. We 
. jJ~~) H++ m IJ++r·rpostulj;!te thst the vl.!j!lbeins M) • t'\ and the 

gr~_,(g.(,), (2,16) are the unconstrained p~el1.otentia16 and the 

gauge group of N=2 cOllformal SG. Tbis claim is justified by the 
Weas-ZUmino gauge 1211 

\-\H-mCdA,U )= i8+6'qa1'~:(';(,) + re1')1. &r+ t;t:t.A) !A.-I:-t 
A

\- (ft1')'2. 1}}t JIll (l~) IA-,; ... (tr)' (9+)
1 V~ (:r~) I,l- ~ u..-d 
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\-rTj1 
1- Q",. ,UI'): (e")"Z ~ (AiY1-1" t.B,A4f )+ 

+ (e+Ye v+ t f" ,M);- eery Cej2 J.~ LfAi , 
,_. ,~ 	 1\ (2.17) 

l-\Hft+ :: (H+-")H) Hl+4): 0 H+'Y"~::::. oJ. 
I 1 A 

Here one f:l.nds the components of the N=2 Weyl multiplet /5/: the 

graviton. e:: and gravitino ~'7. ' the U(2) gauge fieldr; ~7) 
and Af'/1 , and the auxil iary fields t(flJ) 111 ) ~ -= 'd,."15 ~'1 
(the field 15 ~ undp.l"goes gauge transformations with a divergenceless 
parameter). A 

One can see from (2.17) that the prepotentials Hit4) a.n4 H+0­
are pure p~uges. In what follows we shall use the gauge 

0, '" '"H(-t4) :=. HHf1- :: f!Jf:. 
'\ 

(2.18) 

It imposes restrictIons on the parameters iytt and )/'\ ­

<A /I .., '" 

;f0 .... + X·+:: 0 ) ~H ,kl-t-::: XA + _ of;. -.i\i-'+ (2.19) 

which make them (and the gauge group structure constants) field-de­
pendent. However, we will gain significant simplifications of the 

forthcoming expressions. 
Passing to the gauges (2.18),(2.17) involves fixing the diver_ 

gence of a real vector gauge paramet er f I4Y:iJ in IV'+ (~ .UA) = 
=...-+(y~/le#·la(~ +.. (dWf,...,{:l) is used to remove the SU(~):,sing_ 
let component 1>(::t) enteringH(+4) as a coefficient Of(eY) (fj+J2. ) 
The divergenceless part of f .... (~ remains unconstrained. Suprising_ 
1.1, there exists anoth~r Wess-Zumino gauge /2/ where the flv! _ free­
dom is entirely fixe,j to gau.";e away the vector component J!,~' 
in Ht+)-\t C)A,1(AI 

1 
while leaving a non-zero piece in H{+4) 

\-{'"y-tt+ = (eTJ~~)"(XIl)t_ .. 1 H{+4)~(6+y(e~Y])(.xA) (2.20) 

Note that the gauges (2.17),(2.18) are ill defined P,loballY(J)(Jr) 
and its gauge parameter (3~..,tJ<.t(X) may have different asymptotic 
behaviour). No such a defect is inherent to the gauge (2.20) though 
the latter is less conveneint as regards some technical points. 

In principle, having introduced the prepotentials one could go 
on and develop the full differential geometry formalism for N=2 con­
formal SG. This includes vielbeins and connection for ~-- , the 
spinot covariant derivatives ~±~ etc. Our prime interest in this 
paper is in studying the coupling of conformal SG to N=2 Maxwell 
and matter multiplets. For this purpose we shall need only two new 
objects; 2)-- and a density for the full harmonic superspace integral. 

(, 

3. 	Conformal properties of the building blocks and 

supervolume denSity 


In 	/6,1/ it is shown that the vielbeins of the covariant deriva-
a""'-	 HHtive.u can be expressed in terms of the prepotentials 

and can be subsequently used for constructing the superapace inte~ral 
density and fo.r the Maxwell action. That p:,.:-ocedure can be repeated 
in the conformal case with minor modifications. 

In the cenh~al basis (2.3) q,-- is simply 'i)-~ 

and transforms as follows 

~ <t)-: :: - CCf.(~ 1: +... ) <.t) ~- • 

(3.1 ) 

To make 'l)-- fit in our analytic frame with parameters It 
(2.6), we redefine it with the help of the bridge 1J"+ (2.7 ): 

9)-- .. ! '()-~. 

1 +<t):;1f+-+ 


0.2 ) 

The new transformation law is 

S'CZ)--:::: - (~'-A++) .2)-­
0.3) 

Writing out Cfj-- in the analytiC basis we define the vielbeins H-- : 

1\

9)-- :: '0-- + ~--m t}" 11-- r 1: :i: A 
... M q,.A toL­ ,.. 0.4) 

They car. be expressed in terms of the bridges (Z.7) but we shall not 
need this. Instead, we can relate them to the prepotentials H~+ 
by imposing the conventional constraint 

[ <"l> H I ~--] ... <})0 
, 

(3.5) 

It ia easY to cbeck the gauge invariance of (3.5) (see (2.10).(3.3) 
and the gauge condition (2.19»: 

7 
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S'"[9.)H /q)--]:: [_~H~O/<;()--] t[9JH)_(~"->tt)~J-= 

'" 2. )tt2:r _ (~T+~--~H) ~-- :::: 0 . 

Plugging tbe expressions (2.11) for 2l-t" (in the gauge (2.18» 
and 0.4) for ~-- into 0.5) one obtains s set of linea.r dH­
ferential equations for j·r- which exactly coincides with the 
analogous one (III.) discussed in/1/. Therefore we refer to /1/ 
fe>r detail(l of the solution. Note that the gauge choice (2.18) 
grestly simplifies the equation 0.5). With the ~++ parameter 
unconstrail1ed we would hsve to use Ht-" to covariantize 
(J.5h 

[ 2)H - H(+4)2:)-- J ~--1 ~ <J:)0 • 

0.6) 
This equation is quadratic in H-- , and cannot be solved 
as easily as ().5). 

From ().4), ().) and (2.6) one derives the transformation laws 
for W-M 

b~--"'::: - (<i)--,>tH). W-M + <1)-- AM . 

0.7) 
The only new term in 0.7) compared with (II.2) of/1/ is the weight 
transformation with parameter ~-- A't"+ • In /1/ we constructed 

building blocks e:{& (IV.5) and ep,-o (IV.6) from W­
and later used them to find the supervolume density E (IV.15).Here we 
shall show that precisely the same expression for E serves as a 
density under the conformal gauge group including the new parameters 
A++ .The second term in ().7) leads to the same coordinate trans­

formations of the building blocks and E as in /1/. 

• The ~--Att tern. in ().7) yields the following new trans­
formations of e!~ and e .. ~ 

r 

A A :l
~,tte~ =_(~",\H)e¥ - e~ [~A+~ (W"Yft_ w-r1- -e-~'" ~~ ~--1rI)J 

) 

8 

c;- ¢ (9)--A++) e"v 
.... 

O).,H e"r "" r 
)\ " _(~~ W-"":? fl\ e. s -0: AH') ~ --yt. , 

t' )t't r J ().8) 

To check this one makes use of 0.4) and the analyticity of l H­

'1>t~ .:\ ++ :<- 0 ). The transformation of e ":t p looks 
like a world vector rotation of the index ~ • so the Quantity
5of:t =e-m €""oJ.:t (IV.1 0) remains invariant. Taking a 11 

this into account one obtains 

~)•• E =X')~ l,u(e:.) kt-~e/H(Ht) '- 5'r'1= 

: (rf~ ~++ _CfJ--,\t+). ~ . 
(J.9 ) 

On the other hand, the coordinate transformations (2.6) of U+; 
contribute to the volume element transformation the following term 

U+&. 
(\ +\. '0--A"'\ t-+'0 . bU~ ;: .

(1) ,. 0.10) 

Consequently, the conformally covariant volume element of superspace 
oan be formed with tbe help of E.-i 

b(J1~AJuAE-1) :; (<f)--~H). (/22A J.u." E-1) 
(J.1l) 

We conclude that the integrandD an invariant integrsl must bave 
weight -i under the ~~. transformations. In the next section 
we apply tbese results to tbe construction of the N=2 Maxwell action 
in a superconformal background • 

4. Coupling of conformal sa to Maxwell and non-linear mUltiplets 

Our main aim in this paper is to construct actions for different 
off-shell versions of N=2 Eir-stein SG. Following /5/ we started with 

9 



the cor:formal SG multiplet with its full gauge group. Next we have r 5to compensate the Weyl, and SU (2) gauge transformations 

by coupling the conformal supergravity multiplet to a Maxwell multip­
let (for Weyl and rS" )and to various matter multipleta (for 

S U(2) ). In superspace there is a natural way to descr:j.be the 

Maxwell multiplet. It c[~nsiats in introducing an extra space-time 

coordinate X~ • The gauge group ,is also extended by the transfor­
mations of ':( S­

A 

bX",. = 'A"C~4.i() 
(4.1 ) 

which we choose so that they preserve the analytic structure of 

harmonic sU;Jcrspace. 0orrespondingly, the harm9nic derivativeEl 
<0+1' (2.11) and <t)-'- {).4) acquire new vielbeins: 

<.bH --"'> 'f)H +W,,-S- ~S Cf)---"" Cfj-- +W-S- tlr ' 
(4.2 ) 

Note that neither the gauge parameter ~5 nor the vielbeins 

Hrt Ii' I H-- II depend on the new coordinate X~ • It 
is only matter euperfielde with central charge which are allowed to 

depend on X~ ; the SG multiplet itself has no central char-

p;e. In order that <t:J+1" preserves analyticity, the vielbein H++ 5 

must be analytic (sce (2.15»: 

raT II+t i,) 
A J M :; 0 . 

(4.3) 
The 	transformation law for 9J~'" (2.10) does not change, so 

H+ l' '3 transforms as follows: 

¥ ~ t+5' =- <t:l1' 'A" . 
(4.4) 

The analytic superfield 11 +-+!) with the transformation law 

(4.4) is indeed the prepotential for an N=2 Maxwell multiplet/3/• 

Tbe difference from an ordinsry Maxwell superfield is that we pos­

tulate that \-t ++ (; has a non-vanishing flat limit 

HUS""= i{&i)l. -;.(e+f', 
(4.5) 

10 
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This makes it a compensator for the Weyl and 0''> gauge transfor­

mations in the group (2.6). 

The vielbein M-- S" is obtained as the solution of the 

rq> torsion constraint fOllOWi~ from (3.5) and (4.2). The 
explicit expression was given in 11 eq. (111.8). With the help of 

H--~ one can construct the quantity F (IV.12) which trans­

forms as shown in (11.34): 

~(~F) :: ! /J.+d.f)..t-. 

This ia precisely the compensator for thf.l Weyl and 0" gauge 
parameters contained in AtJ.­

At this PQint we have a framework w\1ich is very similar to tbe 
one described in/1/. The only difference is that now the gauge 

group is biggel', it inclu,des the A+"- parameters (2.6), (2.19) 

(containing 10<;lal S U (~) ). Therefore the same set of prepoten­

tials describes a smaller set of fields, the so-called "minimal 

representation" of N=2 3C/5/• It is well known that one cannot 

write down a correct action for this multiplet, although there 
exists an action-like invariant integral. It is the action for tbe 

Maxwell superfield H++ 5' in a conformal SG background: 

s =- 1. f JUJ! dAA r- -1 IJ 1'1- S' lJ --6" 
Mo.'r\IV It"" J A A C n n . 

(4.6 ) 

Its form coincides with the action ( 1) for the off-shell version 

of N.2 Einstein SG considered in 111 but it has a larger gauge 

symmetry. Its invariance under the A""·'" I ,;\ ~ t transformations 
has already been proved in/'I, Here we have to check if it is invari­

ant under A++ transformations as well. Indeed, from (3.3), (4.2 ) 

and (4.4) we find 

(4.7)h ~++s- =- 0 ~A++ ~ --S- = -(<t)--rJ· ~ --~ 
.A tt J 

Comparing this with (J.ll) we conclude tht the action (4.6) is super­

conformally invariant. 

In order to obtain a full N=2 Einstein SG action from (4.6) one 

has to compensate the A ++ transformations by coupling certain 

matter multiplets to the conformal SG multiplet. We discuss here how 
\ to get the action given in/i/. To this end, note that (4.6) is inva­, 

riant under superconformal gauge group before imposing any gauge,

I i. e. with H{+.{) F 0 and II:"· still unresetricted. Then a careful 

inspection of eq. (4.6) shows the presence of a troublesome term 

II 
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in (4.6) linear in the component 7J (X) of H(+~), namely ,.,....,. 
\~~~:b(JC) . Passing to gauges (2.17),(2.18) involves a gauge 
transformation 6])(x.)::: O~ g~ (x) + '" .• If one assumes as 
usual that the integrals of full derivatives vanish this transforma­
tion cannot be used to remove the above D-term. Tbus we conclude 
that the gauges (2.17),(2.18) are not implementable in eq.(4.6) 
(while the gauge (2.20) still is). On the other hand, one easily 
observes that putting t-&-4)= 0 in eq. (4. 6) and in the equations 
which define H--M 1n terms of \i..... t1 , simultaneously with the 
restr1ction of original gauge group to )1.++; 0, yield jU$t the 
N=2 Einstein SG action considered in 11/. ThiS reduction H(H)::= 0 
}ttT+ =0 can be performed consistently with the whole Sl~percon­

formal group (2.6),(2.16) by mean, of the triQk exploiting the 
so-called "non_linear ll multiplet 51. In flat harmonic superspace 
it is desoribed by a real analytj.c superfield t/++satisfy:lng the 
nonlinear constraint 

])++ Nt-T + (N++)'l.:: a (4.8) 

(cr. the constraint 'J)++L+1".=O for the linear multiplet 171 ). 
It can easily be put in a conformal SG background by replacing 
(4.8) 	by 

:/)++ tJ+++ (Nt-tY:Z. - H(+.(L= 0 (4.9) 

assum1ng that N++ t:mnsforms as follows: 

8 N++ = ;\++ 	 (4.10) 

Now we may view eq. (4.9) as a superconformally covariant definition 
of Ht*"4) in terms of N++. ('!'his involves a noncanonical redefi ­
nition of '1)(7.) which starts now with the divergence of a vector 
component of ,,+-+). '!'hen we SUbstitute the expression for H(+«J 
in eq. (4.6) and in the equations for H--H and finally choose the 
gauge 

/V++ = 0 :l!)- >.1-+ ::" 0 (4.11) 

'\++thereby eliminating the entire gauge freedom in A including local 
SU(2). At the saJDe time Hl+J,) =0 a~ a consequence of (4.9), 50 

the action (4.6) involves H... ·5' , HP and is invariant under the 
"AVtiI ,5', ;...A gauge ~oup only. Thus one recover, the off-shell 

version of Einstein SG I as it was described in 11. 
ConclUding this section we briefly mention that it ,s possible 

to use the so-called "linear" multiplet as a compensator 9/. Its 
formulation in harmonic superspace and coupling to conformal SG have 
been discussed in 171 • 

5. A new Einstein SG version and general matter couplings 

We claim that the most natural and least restrictive (in matter 
couplings) version of N=2 Einstein SG is obtained When using a 

tt+ hypermUltiplet /J ,41 as a compensator for the l'lt:"'C SU('2.) 
transformations. The Fayet-Sohnius hypermultiplet is described by 
an unconstrained analy~c superfie.ld tt:,.' formi:q.g a pseudorealI.. 

So Ul'2.) doublet, l\.+~ '" E~J ,\T~ • Note tliat this SU(2) 
ia an external (Pauli-Gureey) group, unrelated to the inner super­
symmetry automorphism S U (2.) • The flat space free action is given 
by the analytic superspace integral 

S'1: :: - tr.~ 1J~-: tk t(~ D++~\ 
(5.1) 

It can be coupled to confo~al SG/71 by replacing the rigid t>+T 

by the covariant one and asoribing the following transformation law 
to qH 

~r~: "iAfi 
(5.2) 

where A is the infinitesimal transformation of the analytic 
supervolume element, 

" f\ I'll (').. 1\ tH - - tj tt-
A .. t)A", 1\ - PA P. /I + ro A /I 


(5.:3 ) 
Then the action 

cu'Zved .... 1. rJ -~ J.u5f .. 	 2):2 J a,. A f~~Ht\ 
(5.4)

ia invariant, because the term l.+~(2}"+A). '1,\ vanishes iden­
tically. 

If-t iTo see that does compensate the remaining freedom 
of the ~+T transformatiOns, we assign a non-vanishing flat 
apace limit to u.i, 1.+ i. (e.g. (IAi. r i.) 0 = i ). Then we find 
from (2.6), (5.2) that 

f 	

b (u~q,+~ '\ :::: r+ 
/Ai fd ) 

(5.5)'\ ++so the parameter A is indeed compensated. 
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It is important to realize that the compensatClr tt,+i adds 
infinitely many new fields to the minimal (~'2. ,+ 3.'2. ) set 
described by ~.p.+lt1. '5i) r-+ . The reason is that the off-shell 
description of the complex hypermultiplet necessarily requires an 
infinite set of auxiliary fields/1Q/. Note that in/5/ a "short" 
veraion of "'he complex hypermultiplet was used as a compensator. 
It involved a central charge satisfying tbe off-sbell constraint 
p 2. =l. 2. • In our veraion tbis constraint is removed. Thus. 

we can have a non-zero central charge (e.g•• letting t+~ depend 
on 'X.: like e~'rY\::rc.l 'l+iC~A}Ll) ) witbout tying it down 
to the off-shell valUE! of p2. 

The moat remarkaQle feature of thia version is the existence of 
a scalar dimensionless and chargeless density. This is the quantity 

(tCi ri.)'? ~ (Ll-rf-:: -A (It-f)~· 
(5.6 ) 

Since it is anslytic. one can use it to construct an invariant volume 
element for the analytic superspace: 

J.{~~) tka' (IJ..-'\.t)2., 
(5.7) 

ThiS allows us to couple the 't+ version to any kind of matter. 
Indeed. all types of matter can be described by analytiC superfields 
(e.g•• hypermultiplets Qt or W linear multiplets e+ 
etc./J •4/). Their Lagrangians are analytiC too. so it is sufficient 
to Simply covariantize ~ matter and integrate it with the me­
asure (5.7). The matter superfields are not required to transform 
as densities, ao there are no restrictions on their self-couplinss. 
Thus. one concludes that the t+ version allows for the most 
general matter couplings. 

Actually. in/1J/ we have shown that the most general N.2 matter 
self-interactions cen be described in terms of just the (j+ hypermul­
tiplet*). This includes the general 4n-dimensionsl hyper-Kahler 

*)AS shown in/4/. all the other matter mUlt5plet (linear, relaxed 
bypermultiplets. etc.) self-couplings ~an be reduced by means 
of duality transformations to subclasaes of Q+ selt-interac­
tions. 

I. 

sigma-model 

SQ == ~ dt;ltk l~ tQ.(Q 11A) n++ Qi"L t 

+ t(·~)(Q,u.)l· 

(5.8 ) 
11'1'1). '-"tit)

Here It:: t • ,", I "a n., t"I and J....' are arbitrary func­
tions of Q+(l and the harmonic varia\l1es, which fan be regarded 
as the prepotentials of hyper-Kahler geometry. The rigid action 
(5.8) can be coupled to the tt -veraion of N..2 SG by replacing 

1>++ by the following combination 

0\J H :::: 9:J+'<' + (Ut tf:~) Cfj 
, ttj rA 

• 

(5.9) 

Using (2.10), (5.5) amd assuming that (}+~ transforms as a 
weightless scalar, one can check that ,1'I'+Q:" 1s a scp.lar as 
well. 

Further, one should replace the harmonic variables U! appe­
aring expl1ci tly in (5.8) by the following variahIes: 

W~::: '1-\-,~ 

Ujfd 
1.V::- :::: u:1, 

(5.10 ) 
which are inert under the SG group. Finally, covarjantizing the 
supervolume as shown in (5.7), one obtains 

rt euJtved _ 
-:Ja - ~ J{:' M.A (lA-f)'- [ltyq,ur) \r"QtL + 

+ t,+4) (Q IV)1. 
(5.11) 

A further generalization of (5.11) could be aChieved by letting 
Q+ depend:m the central charge coordinate X,. and coup­, ling it to toe MaX1fell gauge superfield I-( +ots" • In this way one can 

obtain the most general SG-matter coupling. 
The other veraions of N=2 SG are much more restrictive due 

to the absence of a proper analytic denSity. In fact, in all versions 
toere is a density coinciding with the Berezinian of the vielbeins 
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E::', where A.:;:. ( a ,l-) , M-:::. (¥n, ~+) • The explicit 

expression for it is (see (1I.32), (IV.12). (IV.15» 

l' ~ E-!U -1 (E .tr) ;: (F r-) -! X ) ~1': -Ar· 
_ ~ (5.12) 

where X doel;! not depend on I-t • HO\fever. this denai ty 
is not ana*ytic. Ind~ed. ~+a ~Ir is a tensor (the parameter 
A in (5.12) is BllIillytiC). In the W r. gauge the only suitable 

component of the same type is contained in"S • and close ins­
pection of (5.12) "hows that it appears in c::t:/" J. ~ 'f ' so l' 
cannot be 	analytic. Further. if one is able to construct another 
(analytic) density with the help of a compensato:r superfield. the 
ratio of the two densities must be a dimensionles invariant scalar. 
The 	 only compensator which contains such a scalar is ~t 

The 	 discussion above showed that the different versions of 
N=2 	 off-shell Einstein SG are not equivalent in the presence of 
matter. However, when there is no mstter, one is able to perform 
duali ty transformations from the 1.-t version to the other ones. 
Dual equivalence to the .version with compensation by linear multiplet 
was 	already proven in/7/ • Here we consider the transformation to the 
version with nonlinear compensator N • One makes the following 

change of 	variables~ , 

~\ :::: (u\ - N-I"';- tl-i, ) W 


(5.13 ) 

or vice versa. 

N++:: ~t 
W= 	U~ r" IC'fr+ (5.14) 

Putting this into the t+ action (5.4) one obtains 

(i .,. i.. \ f-;)In. W"2. [~1"1"NH +lJr~?·- ~+lt)1 

;::> W}WH 2.t1. J ~A ,. 


(5.15 ) 


Varying (5.15) with respect to W reproduces the non-linear 

multiplet constraint (4.9 ). Clearly. in the presence of matter 

the constraint (4.9 ) will be modified by matter terms. since the 
density LU will appear in the matter action, We have observed a 
similar phenomenon in the so-called "flexible" version of N.1 SG/1'~ 

We find a deep analogy between the t· version of N.2 SG and 
the minimal version of N=1 SG/12{In both cases the matter compensators 
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are unconstrained analytic superfields (~~(1AIU~) in the N=2 
case. and a chiral superfield lfL)L) in the N=1 case). Both 
compensators can be used as densities for the corresponding analytic 
superapace integrals. which allows one to couple SG to matter in 
the most general way. All tbe other off-shell veraiona of those 
theories are classicslly equivalent to the former (by means of dua­
lity transformations). but PPlY in the absence of matter. 

6. Conclusions 

In /1/ and in the present paper we have developed the unconst­
r/ilined off-Shell formalism fO~~ N.2 SG. We hsve shown how to construct 
the most general N.2 SG matte}.' couplings. This can b£l achieved only in 
the version with a ~t hYPermultiplet compensator. According 
to /14/ such couplings give rise to a class of quaternionic manifolds. 
so we can claim to have found the prepotentials for such manifolds. 
This subject will be studied in a separate paper. 

Another possbile applications of the formalism developed is a 
manifestly supersymmetric quantization scheme for N.2 SG. It is 
also interesting to try to formulate SG in 6 dimensions in a similar 
manner. 
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ranbnepHH A.C. H AP· 
N = 2 cyneprpa8HTa~HR 8 :ynepnpocTpaHCT8e: 
pa3nM4H~e 8epCHM H MaTepHaflbH~e C8.113H 

E2-S7-86 

B AaHHOH pa6oTe 3a8epwaeTCR nocTpoeHHe N "' 2 cyneprpa•HTa~HM 8 rapMOH11-
4eCKOM cynepnpoCTpaHCT8e. PaHee pa38HT~H OOAXOA o6o5~aeTC.II Ha cny4aH KOH$opM 
HOH cyneprpaBHTa~HM. 3aTeM cynepKOH~pMHa.ll rpynna KOMneHCMpyeTC.II nyTeM 8KflD~ 

4eHMR MaKceenno8cKoro H pa311H4H~x MaTepHanbH~x MY1lbTHnneT08. Ha 3TOM nyTH 
MOryT 6wTb 80cnpoH38eAe~ see paHee H38eCTH~e eepcHM 3HHWTeMH08CKOH N = 2 
cyneprpa8HTa~HH. M~ AaeM OAHH .118HWM npHMep /c He1lHHeHH~M MynbTHn1leTOM 8 Ka-
4eCT8e KOMneHCaTopa/. Haw rnaBHWH pe3ynbTaT - H68a.ll 8epCI1.11 3HHWTeMH08CKOH 
N = 2 cyneprpaaHTa~HM, ceiAepiKa~aR t<oMnneKcHioiM. nmepMynbTHnneT c 6ect<OHe4HWM 
4MCOOM acnoMOraTellbHWX none.::i. 3Ta aepcM.II·t\PeACT~snRe'rcR HaM6onee 41YHAaMew 
TanbHOM. Tomot<o a ee paMKax cyllleCT8yeT MHiiiJ)Hat~.f-Hw.::i ·:a~·¥MTH4eCKHH cynepo61.eM 
4TO no380nReT nocTpOHTb HaM6onee o6!11Me S3aMMOAeMCT8HA MaT&PHH. B APYrMX aep­
CH.IIX OTCyTC'I'BHe OOAXOA~eH aHanHTM4eCKOH nno~HOCTH ka~araeT CM1lbHWe orpaHH-
'IeHM.II Ha BMA MaTepManbHbiX CIRSeH. .. . 

Pa6oTa BwnOnHeHa B na5opaTOPHM TeopeTM'IeCKoM 41H3MI<H OMRH. 

Coo&u-~ro aacnnyra ll,llepHWZ IICClJUoa8Hidl • .lly6D 1987 

Galperin A.S. et al. 
N • 2 Supergravity in Superspace: Different Versions 
and Matter Couplings 

E2-87-86 

This paper concludes the formulation of N = 2 supergravity in harmonic 
superspace. We generalize the approach developed earlier to include confor­
mal supergravity. The superconformal group is then compensated by coup\ ing 
to a Maxwell and various matter multiplets. All the previously known versi­
ons of N = 2 Einstein supergravity are reproducible in this way. We give 
explicitly one example (with the nonlinear multiplet as a compensator). Our 
main result is a new version of N = 2 Einstein supergravity which involves 
an off-shell complex hypermultiplet with its infinitely many auxiliary 
fields. ·we believe this version .to be most fundamental. It is the only one 
in which the analytic supervolume can be made invariant. This property al­
lows us to write down the most ·general matter couplings. In contrast, the 
absence of a proper analytic density in the other versions imposes severe 
restr~ctions on matter couplings. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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