

coobmenna obreanieniori ииетитута пдеринх nceraberanim аубпа

E2-87-85

A.S.Galperin* ${ }^{*}$ E.Sokatchev

N=2 SUPERGRAVITY IN SUPERSPACE:

THE INVARIANT ACTION

[^0]This paper is a continuation of /1/. There we introduced a geometric framework in barmonic superspace consisting of a gauge group with analytic parameters (λ group) and unconstrained analytic prepotentials for $N=2 S G$. The latter turned out to be the vielbeins H^{++}of the harmonic covariant derivative \mathcal{D}^{++}. Inspection of the W /fauge showed that those prepotentials contain the set of components of off-shell version of $N=2$ Einetein $S G$ given in $/ 2 /$ Then we developed the differential geom-try formalism for that theory. The vielbeins and connections far the spinor and vector covariant derivatives were expressed in tems of the vielbeins H^{--}for the harmonic covariant derivative 5^{--}. The latter were rolated to the prepotentials $H^{-"}$ by a linear differential equation, and we gave the perturbative solution to that equation. We built from ${H^{--}}^{-1}$ a number of useful quantities with simple transformation laws. They allowed us to easily construct a density for the full supervolume of harmonic superspace in the analytic basis.

The remaining problem which is solved in this paper is to write down the invariant action for the version of $N=2 S G$ under consideration. We do this in section 1. The action turns out to be covariantization of the action for the Maxwell-like superfield H^{++5} (the latter is the vielbein of \mathscr{D}^{++}responsible for local central charge transformations). The rest of the paper is devoted to the proof of the invariance of this action, which makes use of a new "hybrid" basis in superspace. The appendix contains the proof of some importent identities.

In this paper a number of results from $/ 1 /$, we refer to, are numbered by Roman and Arabic numerals (e.g. (III.5)), and those in this paper only by Arabic numerals (e.g. (5)).

1. The action formula

We shall bhow that the action is the following integral of the
correct dimension ($\left[H^{s}\right]=m^{-1}$) correct dimension $\left(\left[H^{s}\right]=m^{*}\right)$

$$
\begin{equation*}
S_{S G}^{N=2}=\frac{1}{k^{2}} \int d^{4} x_{A} d^{4} \theta_{A}^{+} d^{4} \theta_{A}^{-} E^{-1} H^{++5} H^{-5} . \tag{1}
\end{equation*}
$$

We point out that this is nothing but the covariantization of the flatspace action for a Maxwell superfield $/ 3,4 /$. This is not a coincidence. According to $/ 5 /$ the version of $N=2 S G$ under consideration can be viewed as the coupling of $N=2$ conformal $S G$ to an $N=2$ Maxwell multiplet and an $N=2$ "non-linear" multiplet. Actually, the Maxwell multiplet is represented by H^{++5}
, with ite transformation law (II.24) wheras the non-linear one is gauged away in our scheme. More details on conformal $S G$ and the various compenators for it will be given in $16 /$.

The proof of the invariance of (1) consists of two parts. The easy one involves the tranaformations of $x^{m}, \theta^{\hat{\mu}} \quad$ (II.17). Under them H^{++5} and H^{-5} behave as acalars, and E^{-1} compenaatea the tianaformations of the volume element (IV.14). The difficult part conceims the x^{5} tranaformation (II.17) (which is in fact an abelian gauge transformation for H^{++5}). In the process we will learn how to integrate by parts the covariant derivatives \mathscr{D}^{++}and \mathscr{D}^{--}. A very useful new concept will be introduced. It is a "hybrid" basis in superapace, in which the epinor derivative Δ_{α}^{+}(II.33) becomes aimply ∂_{α}^{+}. We will also make use of several non-trivial identities, for quantities built from the prepotentials. They can be (and have been) proved directly using an identity derived in the Appendix. Instead, we prefer an indirect proof. It is based on showing that the identity under investigation transforms as a tensor, and then checking that there are no fields of the same dimension and index atructure in the WZ gauge.

Before plunging in the details of that proof, we would like to demonstrate that (1) contains the right component action $/ 2 /$.

2. Checking the component action

To make sure that the invariant (1) coincides with the desired component action, it is sufficient to show that at least one of the auriliary fields enters (I) properly. The remaining fields will then have their correct action terms due to supersymmetry and gauge invariance. The easiestauxiliary componert to look for is the field $S^{i} \delta(x)$. In the W gauge (II. 28) it appears in the prepotential H^{++5} only. Suppressing all the other fields one finds that E^{-1} in (l), which does not depend on H^{++5} or H^{-5}, reduces to 1. Further, in this case H^{++5} is simply $H^{++5}=i\left(\theta^{+}\right)^{2}-i\left(\bar{\theta}^{+}\right)^{2}+\kappa\left(\theta^{+}\right)^{4} S^{i j} u_{i}^{-} u_{j}^{-} ;$
one can also check that H^{--5} becomes (see (III.3))

$$
\begin{aligned}
& H^{-5}=i\left[\left(\theta^{-}\right)^{2}-\left(\bar{\theta}^{-}\right)^{2}\right]+\frac{k}{3}\left(\theta^{-}\right)^{4} S^{i j} u_{i}^{+} u_{j}^{+}- \\
& -\frac{2 k}{3}\left[\theta^{+} \theta^{-}\left(\bar{\theta}^{-}\right)^{2}+\left(\theta^{-}\right)^{2} \bar{\theta}^{+} \bar{\theta}^{-}\right] S^{i j} u_{i}^{+} u_{j}^{-}+ \\
& +\frac{k}{3}\left[\left(\theta^{-}\right)^{2}\left(\bar{\theta}^{-}\right)^{2}+\left(\theta^{+}\right)^{2}\left(\bar{\theta}^{-}\right)^{2}+4 \theta^{+} \theta^{-} \bar{\theta}^{+} \bar{\theta}^{-}\right] S^{i j} u_{i}^{-} u_{j}^{-} .
\end{aligned}
$$

Plugging all this into (1) one finds

$$
\begin{aligned}
& S \rightarrow \frac{1}{k^{2}} \int d^{1,2} z d u H^{++5} H^{-5} \sim \\
& \sim \int d^{4} x d^{8} \theta d u\left(\theta^{+}\right)^{4}\left(\theta^{-}\right)^{4} S^{i j} S^{k l} u_{i}^{+} u_{j}^{+} u_{k}^{-} u_{i}^{-} \sim \int d^{4} x S^{i j} S_{i j}
\end{aligned}
$$

which is indeed the right action term for this auxiliary field.

$$
\text { 3. Integration by parts for } \varnothing^{++} \text {and } \aleph^{--}
$$

As explained in sect. 1 , the hardest part of the proof of the invariance of the action (1) concerns the transformations $\delta H^{+5}=D^{++} \lambda^{5}\left(Z_{A}, u\right) \quad$ and $\delta H^{--5}=D^{--} \lambda^{5} \quad$ (see (II.24). (III.2)). Varying (I) one obtains

$$
\begin{align*}
& \delta_{S}=\frac{1}{K^{2}} \int d z_{A} d u E^{-1}\left[D^{++}\left(\lambda^{5} H^{--5}\right)+D^{--}\left(\lambda^{5} H^{++5}\right)-\right. \\
&\left.-\lambda^{5}\left(D^{++} H^{--5}+D^{--} H^{++5}\right)\right] \tag{2}
\end{align*}
$$

Each of the three terms in (2) will be separately shown to vanish. In this subsection we deal with the first two terms. For this we need to prove the following two rules for integration by parts for D^{++}and D^{--}:
$\int d z_{A} d u E^{-1} \partial^{++} \phi^{--}=\int d z_{A} d u\left(D^{++}+\partial^{++} \ln E\right)\left(E^{-1} \phi^{--}\right)=0$
$\int d z_{A} d u E^{-1} D^{--} \phi^{++}=\int d z_{A} d u\left(D^{--}+D^{-\ln } E\right)\left(E^{-1} \phi_{(3)}^{++}\right)=0 .(6)$

In order to calculate $D^{++} \ln E \quad$ we first consider

$$
\partial^{++} \ln \operatorname{det} e_{2} \hat{\mu}=e_{\hat{\mu}}^{-1} \hat{\alpha} \partial_{\alpha}^{+} \partial^{++} H^{--\hat{\mu}+}=
$$

$$
=e_{\hat{\mu}}^{-1} \hat{\alpha} \partial_{\hat{\alpha}}^{+}\left(\chi^{--} H^{++\hat{\mu}+}+\theta^{\hat{\mu}}\right)=
$$

$$
=\partial_{\hat{\mu}}^{-} H^{++\hat{\mu}+}-\partial_{m} H^{++\hat{\mu}+} e^{-1} \hat{\mu} \cdot \partial_{\hat{\alpha}}^{+} H^{-m}
$$

Here we used the fact that ∂_{2}^{+}and D^{++}commute (in the gauge (IT.29)), (IV.6), (III.3) and the analyticity of H^{++A+}. In a aimilar way one finds

$$
\begin{align*}
& D^{++} e_{2 \hat{p}}^{m}=e_{\hat{\beta}}^{n} H_{n}^{++m} \\
& H_{n}^{++m}=\partial_{n} H^{++m}-\partial_{n} H^{++\hat{\mu}+} e_{\hat{p}}^{-1} \hat{\nu} \partial_{\hat{\nu}}^{+} H^{--m} \tag{4}
\end{align*}
$$

As a consequence of (4) one gets

$$
\begin{aligned}
& D^{++} f^{\alpha \dot{\alpha}}=D^{++}\left(e^{m} e_{m}^{\alpha \dot{\alpha}}\right)= \\
& =e^{n} H_{n}^{++m} e_{m}^{\alpha \dot{\alpha}}-e^{m} e_{m}^{\beta \dot{\beta}} e_{\beta \dot{\beta}}^{k} H_{k}^{++\ell} e_{e^{\alpha \dot{\alpha}}}=0
\end{aligned}
$$

therefore (see (IV.12), (IV.13))

$$
\begin{equation*}
\partial^{++} F=D^{++} F_{\alpha}^{\dot{\mu}}=0 \tag{6}
\end{equation*}
$$

in agreement with (II.31), (II. 32).
The net result for $D^{++} \ln E \quad$ is
$D^{++} \ln E=\partial_{m} H^{++m}-\partial \hat{\mu} H^{++\hat{\mu}+} \equiv$

$$
\equiv(-1)^{M} \partial_{M}^{A} H^{++M}, \quad M=(m, \hat{\mu} \pm)
$$

pinally,

$$
\begin{align*}
\partial^{++}+D^{++} \ln E & =\partial^{++}+H^{++M} \partial_{M}+(-1)^{M}\left(\partial_{M} H^{t+M}\right)= \\
& =\partial^{++}+(-1)^{M} \partial_{M}\left(H^{++M} \ldots\right. \tag{8}
\end{align*}
$$

which proves (3a).
Por the proof of (3b) we ehall ure the existence of centrel basis. We start by calculating

$$
\begin{equation*}
D^{++} \ln \operatorname{Ber} \frac{\partial z_{A}^{M}}{\partial z^{N}}=D^{++} \ln \operatorname{Ber}\left(\delta_{N}^{M}+\partial_{N} \sigma^{M}\right), \tag{9}
\end{equation*}
$$

where $\mathscr{U}^{M}(z, u)$ are the bridges from central to analytic basis (II.15). In the central basis $D_{C B}^{++}=\partial^{+}$ commutes with $\partial_{N}=\partial / \partial z^{N}$. Using (II.23) we find

$$
\begin{gather*}
D^{++} \ln \operatorname{Ber} \frac{\partial Z_{A}}{\partial Z^{\prime}}=(1+\partial v)_{M}^{-1} \partial_{N} H^{++M} \cdot(-1)^{M}= \\
=\frac{\partial}{\partial Z_{A}^{M}} H^{++M} \cdot(-1)^{M}=D^{++} \ln E \tag{10}
\end{gather*}
$$

This means that

$$
\partial^{++} \ln \left[E^{-1} \operatorname{Berc}\left(\partial Z_{A} / \partial z\right)\right]=0
$$

which implies

$$
\begin{equation*}
D^{--\ln }\left[E^{-1} \operatorname{Ber}\left(\partial z_{A} \mid \partial z\right)\right]=0 \tag{11}
\end{equation*}
$$

Repeating the ateps (9), (10)with D^{--}we obtain
$D^{--} \ln E=(-1)^{M} \partial_{M}^{A} H^{-M}$.
4. Hybrid basis in superspace

The last term in (2) is the trickiest one. Using (III. 3) one can rewrite it as $-2 \lambda^{5} E^{-1} D^{--} H^{++5}$

- Thus, one has to show that the integral
$I=\int d^{4} x_{A} d^{4} \theta_{A}^{+} d^{4} \theta_{A}^{-} d u \lambda^{5} E^{-1} D^{--} H^{++5}$
(13)
vanishes. The idea of the proof can be traced back to the flat case. There the corresponding integral is ($D^{-\infty}$ is the flat value of \mathbb{D}^{--})

$$
\begin{aligned}
I_{0} & =\int d^{1} z_{A} d u \lambda^{5} D^{--} H^{++5}= \\
& =\int d^{4} x_{A} d^{4} \theta_{A}^{+} d^{2} \bar{\theta}_{A}^{-}\left(D^{+}\right)^{2}\left(\lambda^{5} D^{--} H^{++5}\right)=0
\end{aligned}
$$

aince $D_{\alpha}^{+} \lambda^{5}=0,\left(D^{+}\right)^{2} D^{--} H^{++5}=-2 D^{+\alpha} D_{\alpha}^{-1} H^{+14)}=0$
(H^{++5} is analytic). The covariantization of this procedure is not so easy. First of all, the Berezin integration rule

$$
\int d^{2} \theta_{A}^{-} \rightarrow \partial_{A}^{+\alpha} \partial_{A \alpha}^{+}
$$

produces a non-aovariant operator in our case. Indeed, $\partial_{A \alpha}^{+}=\frac{\partial}{\partial \theta_{A}^{-\alpha}}$
transforms es follows
$\delta \partial_{A \alpha}^{+}=-\partial_{A \alpha}^{+} \lambda^{\beta-} \partial_{A \beta}^{+}-\partial_{A \alpha}^{+} \bar{\lambda} \dot{\beta}-\bar{\partial}_{A \dot{\beta}}^{+}$
In order to perform the trick (14) covariantly, one should be able to goto a epecial basis in which $\partial / \partial \theta_{\alpha}^{-}$tranaforma homogeneously. Fortunately, such a basia exists. To see this let us consider (II.38) ${ }^{\text {) }}$. Its solution is
$F_{\alpha}^{\dot{\mu}}=\Delta_{\alpha}^{+} \bar{\psi} \dot{\mu}-$
(17)
where $\bar{\psi} \mathrm{M}^{\text {- }}$ is a new bridge with the following tranaformation law:
*) The easiest way to prove (II.38) ia to show that $\Delta_{(\alpha}^{+} F_{\beta} \dot{\mu}^{\dot{\mu}}$ transforme homogeneously (using (II.33) and (II.34)). However, there is not any suitable component of this type in the $W Z$ gape (II.28) of the prepotentials, so $\left.\Delta_{(\alpha}^{+} F_{\beta}\right)^{+}$must vanish.
$\delta \bar{\psi}^{\dot{\mu}-}=\bar{\lambda}^{\dot{\mu}}-\bar{\rho}^{\dot{\mu}-}, \quad \Delta_{\alpha}^{+} \bar{\rho}^{\dot{\mu}-}=0$.
The λ-term in(18) corresponds to the inhomogeneous term in $\delta F_{\alpha} \dot{\mu}$ (II. 34), and the $\bar{\rho}$ term is a "pregauge" transformation. Further,
(17) is an algebraic equation for $F_{\alpha} \dot{\mu}$ which can be solved:
$F_{\alpha}^{\dot{\mu}}=\partial_{\alpha}^{+} \bar{\psi} \dot{\beta}-(1-\bar{\partial}+\bar{\psi}-)_{\dot{\beta}}^{-1} \dot{\mu}$.

Then one sees that after the following change of coordinates:

$$
\begin{align*}
& \bar{\theta}_{H}^{\dot{\alpha}-}=\bar{\theta}_{A}^{\dot{\alpha}-}-\bar{\psi} \dot{\alpha}- \\
& \left(x_{H}^{m, 5}, \theta_{H}^{\hat{\alpha}+}, \theta_{H}^{\alpha-}\right)=\left(x_{A}^{m, 5}, \theta_{A}^{\hat{\alpha}+}, \theta_{A}^{\alpha-}\right) \tag{20}
\end{align*}
$$

the operator $\Delta_{\alpha}^{+}=\partial_{A \alpha}^{+}+F_{\alpha}{ }^{*} \bar{\partial}_{A \dot{\mu}}^{+}$
becomes simply

$$
\begin{equation*}
\left(\Delta_{\alpha}^{+}\right)_{H}=\frac{\partial}{\partial \theta_{H}^{\alpha}} \tag{21}
\end{equation*}
$$

The meaning of the change (20) is that a new basia is defined where the constraint
$\partial_{H \alpha}^{+} \phi=0 \rightarrow \phi=\phi\left(x_{H}^{m, 5}, \theta_{H}^{\hat{\alpha}+}, \bar{\theta}_{H}^{\dot{\alpha}-}\right)$
is covariant. Indeed, in the basia (20) $\delta \partial_{H \alpha}^{+}=-\partial_{H_{\alpha \alpha}}^{(22)} \lambda^{\beta-} \cdot \partial_{H \beta}^{+}$ The new kind of analyticity (22) ia a bybrid of the analyticity $\partial_{\alpha}^{+} \phi=\bar{\partial}_{\alpha}^{+} \phi=0 \quad$ and of chirality $\partial_{\alpha}^{+} \phi=\partial_{\alpha}^{-} \phi=0$, therefore we call the basis (20) the "bybrid basis". We point out that the bridge $\bar{\Psi} \dot{\mu}$ - is not an independent object. One can show that the following expression (see the Appendix)
$\bar{\psi} \dot{\mu}-=\bar{\theta}_{A}^{\dot{\mu}-}-\bar{H}^{--\dot{\mu}+}-H^{--\mu+}\left(A B^{-1}\right)_{\mu}^{\dot{\mu}}$,
$A_{\mu}^{\dot{r}}=e_{\mu}^{-1} \dot{\mu}-e_{\mu}^{-1 \nu} F_{\nu} \dot{\mu}$
$B_{\dot{\mu}}^{\dot{\nu}}=e^{-1 \dot{\mu}}-e^{-1 v} F_{\nu}^{\dot{\mu}}$
atiefies (17) identically.

Armed with the new tool, the hybrid basia, we can atart the covariartization of the procedure (14). The change of variables (20) in the integral (13) produces the following Jecobian;

$$
\left(\operatorname{Bez} \frac{\partial Z_{H}}{\partial z_{A}}\right)^{-1}=\operatorname{det} \frac{\partial \bar{\theta}_{H}}{\partial \bar{\theta}_{A}}=\operatorname{det}\left(\delta_{\mu}^{\nu}-\partial_{A \dot{\mu}}^{+} \bar{\psi}^{\dot{\nu}}\right) \equiv J
$$

$$
\text { Ther, (13) becomes }\left(\lambda^{5} \text { is analytic, i.e. } \partial_{H \alpha}^{+} \lambda^{5}=0\right) \text { : }
$$

$$
I=\int d^{4} x_{H} d^{4} \theta_{H}^{+} d^{4} \theta_{H}^{-} d u \lambda^{5} J E^{-1} D^{--} H^{++5}=
$$

$$
=\int d^{4} x_{H} d^{4} \theta_{H}^{+} d^{2} \bar{\theta}_{H}^{-} d u \lambda^{5}\left(\partial_{H}^{+\alpha} \partial_{H \alpha}^{+}\right)\left(J E^{-1} \partial^{--} H^{++5}\right)=
$$

$$
\begin{equation*}
=\int d^{4} x_{H} d^{4} \theta_{H}^{+} d^{2} \bar{\theta}_{H}^{-} d u \lambda^{5}\left\{\left(\partial_{H}^{+}\right)^{2}\left(J E^{-1}\right)_{-} D^{--} H^{++5}\right. \tag{25}
\end{equation*}
$$

$\left.+J E^{-1}\left[\left(\partial_{H}^{+}\right)^{2} D^{--} H^{++5}+2 \partial_{H}^{+\alpha} \ln \left(J E^{-1}\right) . \partial_{H \alpha}^{+} D^{--H^{++5}}\right]\right\}$
The two terms in the last integral in (25) vanish separately. First cansider the tern

$$
\begin{aligned}
& \left(\partial_{H}^{+}\right)^{2}\left(J E^{-1}\right)=J E^{-1}\left[\left(\partial_{H}^{+}\right)^{2} \ln \left(J E^{-1}\right)+\right. \\
& \left.+\partial_{H}^{+\alpha} \ln \left(J E^{-1}\right) \cdot \partial_{H \alpha}^{+} \ln \left(J E^{-1}\right)\right]
\end{aligned}
$$

The quantity $\varphi_{\alpha}^{+}=\partial_{H \alpha}^{+} \ln \left(J E^{-1}\right)=\Delta_{\alpha}^{+} \ln \left(J E^{-1}\right) \quad$ (26) has a simple tranaformation law (aee (IV.14), (18), (19), (24)):

Here we used the relations $\Delta_{\alpha}^{+}=\partial_{\mu \alpha}^{+}$
and $\partial_{\mu \alpha}^{+} \bar{\rho}^{\dot{\mu}}=0$

$$
\begin{aligned}
& \delta \varphi_{\alpha}^{+}=-\Delta_{\alpha}^{+} \lambda^{\beta-} \varphi_{\beta}^{+}+\Delta_{\alpha}^{+}\left[-\partial_{M} \lambda^{M}(-1)^{M}+\right. \\
& \left.+\left(1-\bar{\partial}_{A}^{+} \bar{\psi}-\right)_{\mu}^{-1} \dot{\nu}\left(\bar{\partial}_{A \dot{\nu}} \bar{\rho} \dot{\mu}-\bar{\partial}_{A \dot{\nu}}^{+} \bar{\lambda}^{\dot{\mu}}+\bar{\partial}_{A \dot{\nu}}^{+} \lambda^{\hat{\gamma}-\partial_{A \hat{\gamma}}^{+}} \bar{\psi} \dot{\mu}-\right)\right]= \\
& =-\Delta_{\alpha}^{+} \lambda^{\beta-} \varphi_{\beta}^{+}+\Delta_{\alpha}^{+}\left[-\partial_{m} \lambda^{m}+\partial_{\hat{\mu}}^{-} \lambda^{\hat{\mu}^{+}}+\partial_{\mu}^{+} \lambda^{\mu-}+\right. \\
& \left.+\bar{\partial}_{\mu}^{+} \lambda^{\mu-} F_{\mu}^{\mu}+\bar{\partial}_{H \mathcal{F}^{\mu}}^{+} \bar{\rho}^{\dot{\mu}}\right]= \\
& =-\Delta_{\alpha}^{+} \lambda^{\beta-} \varphi_{\beta}^{+}+\frac{1}{2} \Delta^{+\beta} \Delta_{\beta}^{+} \lambda_{\alpha}^{-}
\end{aligned}
$$

transformation law for the quantity $\Delta_{\alpha}^{+} F$ in the expression (II.36) for the Lorentz connection $A_{\alpha \beta}^{+} \beta$. In fact one can show that $\varphi_{\alpha}^{+}=2 \Delta_{\alpha}^{+} \operatorname{lm} F$

From (27) it follows that the expression in the brackets
in (26), $\Delta^{+\alpha} \varphi_{\alpha}^{+}+\varphi^{+\alpha} \varphi_{\alpha}^{+}$, is a tensor. So, it must correspond to a Lorentz scalar inotriplet (charge +2) field of dimension 1. The only auch field in the $W Z$ gage (II.28) is in the prepotential H^{++5} but the ingredients of φ_{α}^{+}do not involve H^{++5}. The conclusion is that the above term vanishes. This result means that the full invariant volume of
superspace vanishes as well:

$$
\begin{aligned}
\int d z_{A} d u E^{-1} & =\int d z_{H} d u J E^{-1}= \\
& =\int d^{4} x_{H} d^{4} \theta_{H}^{+} d^{2} \bar{\theta}_{H}\left(\partial_{H}^{+}\right)^{2}\left(J E^{-1}\right)=0
\end{aligned}
$$

This fact was first establiahed in a different approach in $7 /$.
Pinally, we turn to the second term in (25). Uaing (III.2) and the analyticity of H^{++5} we find

$$
\partial_{H \alpha}^{+} \partial^{--H^{++5}}=\Delta_{\alpha}^{+} H^{--m}, \hat{\mu}+\partial_{m, \hat{\mu}^{+}}^{A} H^{++5},
$$

so it is sufficient to show that
$\left(\Delta^{+}\right)^{2} H^{--m, \hat{\mu}+}+2 \varphi^{+\alpha} \Delta_{\alpha}^{+} H^{-m, \hat{\mu}^{+}} \equiv W^{m}, \hat{\mu^{+}}=0$.

The quantity tranaforma as follows (see (III.2), (27) and use the analyticity of $\lambda^{m}, \hat{\mu}^{+}$):
$\delta W^{m, \hat{\mu}^{+}}=\left(\Delta^{+\alpha} \lambda_{\alpha}^{-}\right) W^{m, \hat{\mu}+}+W^{n, \hat{\nu}+} \partial_{n, \hat{\nu}+}^{\hat{A}} \lambda^{m, \hat{\mu}+}$
Once again, we deal with a covariant object of aimension O (for m) or $1 / 2$ (for $\hat{\mu}+$). Inspection of the $w z$ gauge (II. 28) shows that no such fields are contained in the prepotentisis $H^{++m}, \hat{\rho}+$ involved in (28).

This concludes the rather lengthy proof of the invariance of the action $/ 6$ (1). All these resulte will be used in the accompanying applications.

Here we shall prove that the expression (V.23) for $\overline{\Psi^{-}-}$satisria (V.17). Since $\Delta_{\alpha}^{+} \bar{\theta}_{A}^{\dot{\mu}}=F_{\alpha}^{\dot{\mu}}$, one bes to show that

$$
\begin{equation*}
\Delta_{\alpha}^{+}\left[\bar{H}^{--\mu^{+}}+H^{--\mu+}\left(A B^{-1}\right)_{\mu}^{\dot{\mu}}\right]=0 \tag{A.1}
\end{equation*}
$$

The left-hand side of (A.1) car be rewritten as $-H^{-\mu+} \Delta_{\alpha}^{+}\left(A B^{-1}\right)_{\mu}^{\mu}$,
so the problem is to prove the identity $\Delta_{\alpha}^{+}\left(A B^{-1}\right)_{\mu}^{\dot{\Gamma}}=0$.

We introduce the notation
$C_{\hat{\mu}}^{\dot{\alpha}}=\binom{A_{\hat{\mu}}^{\dot{\alpha}}}{B_{\dot{\mu}}^{\dot{\alpha}}}=e^{-1 \dot{\alpha}}-e^{-1 \dot{\mu}} F_{\alpha} \dot{\alpha}$
and calculate
$\Delta_{\alpha}^{+} C_{\hat{\mu}}^{\dot{\alpha}}=-e_{\hat{\mu}}^{-i} \hat{\lambda} \Delta_{\alpha}^{+} e_{\hat{\lambda}}^{\hat{\rho}} C_{\hat{\rho}}^{\dot{\alpha}}-e_{\hat{\mu}}^{-i} \hat{\beta}_{\alpha}^{+} F_{\beta}^{\dot{\alpha}}$
With the help of the identity (which will be proved later on)
$\Delta_{\alpha}^{+} F_{\beta}^{\dot{\alpha}}=-\frac{1}{2} \varepsilon_{\alpha \beta}\left(\partial^{+\gamma} e_{\mu}^{\hat{\xi}}+A \bar{\partial}^{+\dot{\gamma}} e_{\dot{\gamma}}^{\hat{\hat{j}}}-2 F^{\eta \dot{\gamma}} \partial_{\mu}^{+} e_{\dot{\gamma}}^{\hat{\rho}}\right) C_{\hat{\rho}}^{\dot{\alpha}}(1.5)$
and $F^{\alpha \dot{\alpha}} F_{\alpha \dot{\alpha}}=2 A \quad$ (see (IV.12,13)) we find
$\Delta_{\alpha}^{+} C_{\hat{\mu}}^{\dot{\alpha}}=-C_{\hat{\mu}}^{\dot{\beta}} \Delta_{\alpha}^{+} e_{\dot{\beta}}^{\hat{\rho}} C_{\hat{\rho}}^{\dot{\alpha}}$.
Using this result it is very easy to check (A, 2).
Finally, we have to prove (A.5). From (IV.12) and $A=\frac{1}{2} F^{\alpha *} F_{\text {ox* }}$ one derives the identity
$\Delta_{\alpha}^{+} F^{\beta \dot{\beta}}=\left(\Delta_{\alpha}^{+} f^{\mu \dot{\gamma}}+A \Delta_{\alpha}^{+} \tilde{f}^{\mu \dot{\gamma}}\right)\left(\delta_{\mu}^{A} \delta_{\dot{\gamma}}^{\dot{\beta}}+F_{\mu \dot{\beta}} \tilde{f}^{\beta \dot{\beta}}\left(1-f \tilde{f}-A \tilde{f}^{2}\right)^{-1}\right)$.
(A.7)

This reduces the problem to calculating
$\Delta_{\alpha}^{+} \tilde{f} \gamma \dot{y}$
$\Delta_{\alpha}^{+} f^{\gamma r i}$
and

$$
\begin{align*}
& \Delta_{\alpha}^{+} f^{\gamma \dot{\gamma}}=\Delta_{\alpha}^{+} e^{m} \cdot e_{m}^{\mu \dot{\gamma}}-f^{\rho \dot{\rho}}\left(\Delta_{\alpha}^{+} e_{\rho \dot{\rho}}^{m}\right) e_{m}^{\gamma \dot{\gamma}} \\
& \Delta_{\alpha}^{+} \tilde{f}^{\gamma \dot{r}}=\Delta_{\alpha}^{+} \widetilde{e}^{m} \cdot e_{m}^{\dot{\gamma}}-\tilde{f}^{\rho \dot{\rho}}\left(\Delta_{\alpha}^{+} e_{\rho \dot{\rho}}^{m}\right) e_{m}^{\dot{\gamma}} . \tag{A.8}
\end{align*}
$$

A straightforward calculation produces the following results

$$
\begin{aligned}
& \text { (} \mathrm{see} \text { (IV.5,6,8)): } \\
& \Delta_{\alpha}^{+} e^{m} \cdot e_{m}^{\gamma \dot{\gamma}}=\frac{1}{2} F_{\alpha}^{\dot{\rho}} e_{m}^{\mu \dot{\varphi}} k_{\dot{\rho}}^{m+}+\frac{1}{2} \partial^{\rho+} e_{\rho}^{\hat{\mu}} \cdot M_{\hat{\mu} \alpha}^{\gamma \dot{\gamma}}, \\
& \Delta_{\alpha}^{+} \tilde{e}^{m} \cdot e_{m}^{\gamma \dot{\gamma}}=\frac{1}{2} e_{m}^{\gamma \dot{\gamma}} L_{\alpha}^{m+}+\frac{1}{2} \bar{\partial}^{\dot{f}}+e_{\dot{\rho}}^{\hat{\mu}} \cdot M_{\hat{\mu} \alpha}^{\gamma \dot{\gamma}}, \\
& f^{\rho \dot{\rho}}\left(\Delta_{\alpha}^{+} e_{\rho \dot{\rho}}^{m}\right) e_{m}^{\gamma \dot{\gamma}}=\frac{1}{2} f_{\alpha}^{\dot{\rho}} e_{m}^{\gamma \dot{\gamma}} K_{\dot{g}}^{m+}+\frac{1}{2} f^{\rho \dot{\rho}} F_{\alpha \dot{\xi}} e_{m}^{\gamma \dot{\gamma}} L_{\rho}^{m+}+ \\
& +f^{\rho \dot{\rho}} \partial_{\rho}^{+} e_{\hat{\rho}}^{\hat{\mu}} M_{\hat{\mu} \alpha}^{\gamma \dot{j}}, \\
& \begin{aligned}
&+\tilde{f}^{\rho \rho} \dot{\rho} \\
& \tilde{f}_{\rho}\left.e_{\dot{\rho}}^{+} e_{\rho \dot{\rho}}^{m}\right) e_{m}^{\gamma \dot{\mu}}= \\
& \frac{1}{2} \tilde{f}_{\alpha}^{\dot{\rho}} e_{m}^{\gamma \dot{\gamma}} K_{\dot{\rho}}^{m+}+\frac{1}{2} \tilde{f}^{\rho j} F_{\alpha \dot{\rho}} e_{m}^{\gamma \dot{\gamma}} L_{\rho}^{m+}+
\end{aligned} \\
& +\tilde{f}^{\rho \dot{\rho}} \partial_{\rho}^{+} e_{\dot{\xi}}^{\hat{\mu}} M_{\hat{\mu} \alpha}^{\mu \dot{\gamma}},
\end{aligned}
$$

$k_{\dot{\rho}}^{m+}=\bar{\partial}_{\dot{\rho}}^{+}\left(\partial^{+}\right)^{2} H^{--m}-\bar{\partial}_{\dot{\rho}}^{+} \partial^{\gamma^{+}} e_{\hat{\gamma}}^{\hat{\mu}} \cdot e_{\hat{\mu}}^{-1 \hat{\nu}} \partial_{\hat{\nu}}^{+} H^{--m}$,
$L_{\alpha}^{m+}=\partial_{\alpha}^{+}\left(\bar{\partial}^{+}\right)^{2} H^{--m}-\partial_{\alpha}^{+} \bar{\partial} \dot{\gamma}^{+} e_{\dot{\mu}}^{\hat{\mu}} \cdot e^{-1} \hat{\nu} \partial_{\hat{\nu}}^{+} H^{--m}$,
$M_{\hat{\mu} \alpha}^{\mu \dot{\gamma}}=e_{\hat{\mu}}^{-1} \dot{\gamma} \delta_{\alpha}^{\gamma}-e_{\hat{\mu}}^{-1 \dot{\nu}} F_{\alpha \dot{\gamma}} \tilde{f}^{\gamma \dot{\gamma}}+e_{\hat{\mu} \alpha}^{-1} f^{\gamma \dot{\gamma}}-e_{\hat{\mu}}^{-1} \gamma_{\alpha}^{\gamma} F_{\alpha} \dot{\mu}$.
Putting all this in ($A . B$) and then in ($A .7$) one observes that the terms containing K and L cancel and one easily derives (A.5).

The identity ($A .5$) can be rewritten in the equivalent form
$\Delta^{+\alpha} \Delta_{\alpha}^{+} H^{--\hat{\mu}+} \cdot C_{\hat{\mu}}^{\dot{\beta}}=0$.
With the help of (A.9) one can prove a number of relations which were established in sections 4,5 using tensor arguments.

References

1. A.Galperin, N\&uyen Anh Ky, E.Sokatchev. JINR preprint E2-87-84 Dubna, 1987.
2. E.S.Fradkin, M. A.Vasiliev. Phys.Lett. 85B (1979) 47.
B.de Wit, J. W.van Holten, A.Van Proeyen. Nucl. Phys. 8167 (1980) 186.
3. A.Galperin, E. Ivanov, V.Ogievetaky, E. Sokatchev. Clase Quantum Grav. 2 (1985) 601, 617.
4. B.M. /upnik. Yadernaya Phys. 44 (1986) 794.
5. B.de Wit, J.W.van Holten, A.Van Proeyen. Nucl. Phye, Bl84 (1981) 77.
6. A. Galperin, E.Ivanov, V. Ogievetsky, E.Sokatchev. JINR preprin E2-87-86, Dubna, 1987*
7. E. Sokatcher. Phys. Lett. 100 B (1981) 466.

В данной работе продолхено построение супергравитации в гармоническом суперпространстве. Дается инвариантное действие дпи первой внемассовой версии теории. Доказательство инвариантности основывается на существовании нового "гибрнцного" базиса в гармокическом суперпространстве, в котором наряду с аналитичностьо наполовину явной становится киральность.

Работа выолнена в Лаборатории теоретической физики Оияи.

Сообщение Объединенного института пдерных исследований. Дубна 1987

Galperin A.S., Sokatchev E.

$\mathrm{N}=2$ Supergravity in Superspace:

the Invariant Action
This paper continues the formulation of harmonic superspace supergravity. We write down the invariant action for the first off-shell version of the theory. The proof of the invariance relies on the existence of a new "hybrid" basis in harmonic superspace in which semi-chirality combined with analyticity are manifest.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

[^0]: *NPI, AS UzSSR, Tashkent

