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This paper is a contin~ation of 11/. There we introduced a 
geometric framework in harmonic superspace ~:onsisting of a gauge 
group with analytic parameters (A §ro~p ) and unconstrained analy­
tic prepotentials for N=2 SG. The latter tUrned DUt to be the viel­
bein.s H++ of the harmonic covariant derivative q)+..... Inspecti­
on of the WI, gauge showed that those prepot~ntials contain the set 
of components of off-shell version of N=2 ~instein SG given in/~/Then 
we developed the differential geom,·try formalism for that theory. The 
vielbeins and connections for the spinor and vector covariant deriva­
tives were expressed in terms of the vielbeins 11-- for the harmonic 
covariant derivative~--. The latter were related to the prepoten­
tials \-r~ by a l.inear differential equation, and we gave the 
perturbative solution to that equation. We built from H~- a number of 
useful quantities with Simple transformation laws. They allowed 
us to easily construct a density for the full supervolume of harmonic 
superspace in the analytic basis. 

The remaining problem which is solved in this paper is to write 
down the invariant action for the version of N=2 SG under considera­
tion.We do this in section 1.The action turns out to be covariantiza­
tion of the action for the Maxwell-like superfieldl1++S" (the latter 
is the vielbein ofSD++responsible for local central charge transfor­
mations).The rest of the paper is devoted to the proof of the invari­
ance of this action.which makes use of a new "hybrid" basiS in l!Iuper­
space.The appendix contains the proof of some important identities. 

In this paper a number o~ results from/1/ , we refer to, are numbe­
red by Roman and Arabic numerals (e.g. (111.5», and those in this paper 
only by Arabic numerals (e.g. (5». 

1. The action formula 

We shall show that the action is the following integral of the 
correct dimension ( [l-\t1: WI't ) 

S~:'l. .i) \4. J"G~ ~4 e- E-l HHS ~ --5 
.. 'a <1 ",. " A (1)
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We point out that this is nothing but the covariantization of the flat ­
space action for a Maxwell superfield/),4/. This is not a coincidence. 
According to /5/ the version of N=2 SG under consideration can be 
viewed as the coupling of N=2 conformal SG to an N=2 Maxwell multiplet 
and an N=2 "non-linear" multiplet. Actually, the Maxwell mUltiplet 

is represented by H++ 5 , wt th its transformation law (U. 24) 

whereas the non-linear one is gauged away in our scheme. More details 
on conformal SG and the various compensators for it will be given in 
/6/ 

The pr90f of the invariance of (1) consists of two parts. The 
easy one involves the transformatil)ns of CC '\'WI. er'! (II.17). Under 
them \-\ ","+5 and ~ --5 behave as scalars, and E- 1 Clompen­

sates the t;L'ansformations of the vl;llume element (IV.14). The difficult 
part conceL~S the ~S transfo~nation (11.17) (which is in fact 
an abelian gauge transformation for H+~5 ). In the process 
we will learn how to integrate by parts the covariant derivatives 
Gb++ and qj-- • A very useful new concept will be introduced. 

It is a "hyhrid" basis in superspace, in which the spinor derivative
11: '0:(II.))) becomes simply . We will also make use of 

several non-trivial identities, for quantities built from the prepo­

tentials. They can be (and have been) proved directly using an iden­

tity derived in the Appendix. Instead, we prefer an indirect proof. 

It is based on showing that the identity under investigation 

transforms as a tensor, and then checking that there are no fields 

of the same dimension and index structure in the WZ gauge. 


Before plunging in the details of that proof, we would like 
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to demonstrate that (1) contains the right component action/ /. 

2. Checking the component action 

To make sure tha t the invariant'1) coincides with the desired 
component action, it is sufficient to show that at lea~ one of the 
auxiliary fields enters (1) properly. The remaining fields will 
then have their correct action terms due to superaymmetry and 
gauge invariance. The easiest auxiliary componer.t to look for is 
the field S ij (x) • In the WZ gauge (II, 28) it appears in 
the prepotential H++5" only. Suppressing all the other fields 
one finds that E-1. in (1), which does not depend on H t+,­

or H--S- ,reduces to 1. Further, in this case H++S- is simply 

Ht+5" = i {f1+)2 - i (et)~ + ~ (e +J't ~/J' u: \Ai .J 
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H--,one can also check that becomes (see (m.J» 

H--~- ~ i [{(r)2_ (e-r-j + ~ (e-)'tsl'i u+ U. +.­
L j 

2~ le+e-(e-t+(o-)2. ()te-] sl'j ui; u~: + 
3 I d 

+ ~ [<e-JZ( et)Z t ( e+)~(e-)'2+ If e+8- 9t e-j 5 i j \.ii \,£.} 

Plugging all this into ':l) one finds 

s--; :2. SJ1,lr kt Ht+sr H--5 "" 

Si'iS ., 
rv Sl'x: dg e J,1.l (e+t (fr)'t 5 ,'j SH IL~ UJ uj>.(t." "" 5ol'f~ 

'0 

which is indeed the right action term for this auxiliary field. 

n.++J. Integration by parts for ~ and '2)-­

As explained in sect. lr the hardest part of the proof of the 
invariance of the action (1) concerns the transformations 
~wt, '= ':0++ :r'('A ,L.t) and d H--!>"=r:()--;)5 (see 
(11.24), (111.2». Varying (1) one obtains 

~s = ~l SJtAcLu. E-1[2)t+(A'H--~-)+;o--(IlS"H++~)-

_ ::l5 (;/ -t H - - 5+ 'Z)- - H+t 5) ] • 
(2) 

Each of the three terms in (2) will be separately shown to vanish. 
In this subsection we deal with the first two terms. For this we 
need tJ prove the following two rules for integration by parts for 

7J+-r and :6-­

SJ~A~ E-1 
;D++ <P-- =Sott~tk. (7)++ +7/"~~E)(E-lqF)=O 

(~ ) 

Sci. lA J..v.. E-1'])- - cp++ =Sd i-4JI.l (';{)-- +0--~ E)(E-~ 4>++) = O. (b) 
0) 
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In order to calculate SQ++ ~ E we first consider 

~ ~ + ~ 
2;)++~M€~r= e-!tI. l)~ 2)++ H--r+::. 

r 
~ A ~ 

:; e-; p(. d~ (';()-- HHr+ + er+-) = 

~ ~ A ,,- H++r+ " H++I'+ -10£''")+ H-- wt 

':: (If ~ 011'\ € r u~ • 

r"").+ ~+~ 
Here we 'lsed the fact tklat 0 c1. and rIJ commute (in the 
gauge (Il.29». (IV.6). (III.) and the analyticHy of H++P+ • 
In a similar way one finds 

~+T e -: = e -~ H++ ~ 
~F' ~,. n ) 

'" AHH~=~ H+t~ _() H++t'+ e-1v d+ H--~ 
-" VI " P y . (4 ) 

As a consequence of (4) one gets 

1)++ foL~ = ':0++ (e'V'1 e::,Oi:) = 

_ "l1 H++ 'WI e "-~ - e 'WI'I e p~ e ~ H++.t e oLJ - 0 - e "" 1rI,.,. t - )'M k 

(5 ) 

therefore (see (IV.12), (IV.l)) 

•
cn+t- F ::: 2)++ Po( t' = 0 (6 ) 

in agreement with (II.)l). (II.32). 


The net rasul t for <;o+t €M E is 


2)++ ~ E =d~ H+-+ Wl 
- dj. H++ r+ == 

l7 ) 
_ ( ,M "It H++M " 
=:: -1.) Up! ) M =(M J /"'±). 

" 

Jo'inally, 

':0++ + ';O+t -t~1 E == '{j++ + HH"" d -t (-1)"" (d HH M)::
M M 

._ r-.++ (_l\M? (HHM
-0 + ),." '" 

'8) 

which proves Oa ). 

Por the proof of (3b) we shall use the exiatEmce Df central 
basis. We start by calculating 

M 
2)++ ~ B~n, ,J'-l A =2++~ &n (~: +rJN V- M), 


'D2 N 

(9 ) 

where 7F M 
{"%-JIL} are the bridges from central to analytic 

basis (II.15). In the central basis 2l~~ = '"0++ . 80 it 

commutes with d
N 
=ol~rlV . Using (II.2) we find 

;;0+ t.e,., ~Vl. ~ ~ -= (1 +?J-zrr~ N d", H++ M. (-1) M -= 

::;: ~;~ H+TM. (-1)"" = j)++ ~ E • 

(10) 

This means that 

<:0++ ~ [E -1 &rl- ('lJr,4 /'()Z)] ::: 0 

which implies 

7)--~ [E -1 ~ ('triA I~r)]:: 0 . 
(11 ) 

Repes ting the steps (9). '10) wi th '2)-- we obtain 

2--: t"Vl E = (-1)(1.1 ?MA H-- M
• (12 ) 
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4. Hybrid basis in superspace ~ If'r- :. A ;. - - f f. - > It:fr-=o. (18) 


The last term in "(2 )is the trickiest one. Using (III.3) one 

The A -term in(l8) corresponds to the inhomogeneous term in 0' F", f. 

can rewrite it as -2~5' E-1 2)-- Ht +6"' • Thus, one has to 
(11.34), and the j> term is a "pregaug.e ll transformation. Further,

show that the integral (17) is an algebraic equation for F: ~ which can be solved: 
eM.I =rd'tx,.el'te: el' e; ~ /}5" E -1. 2)-- H+T5 I . = '1+ If fo- (1-?, + '1'-)-1. r

(13 ) F0{ "I « f - (19)
vanishes. The idea of the proof Clln be traced back to the flat case. 

There the corresponding integral :ls ( D- - is the flat value 

of :;(j--) Then one sees that after the following change of coordinates: 


To ~ SJ ~A J.M. /l' D-- J..I++f.; = -e 0<- = e;"--lf'~-H A ) 

( WI,S' e~+ ell--) -= (X"l'lll/S" e~+ eGl-)=SJ.'f XA J'fe: J.1.ii~ (D+Y (itS" D-- H++5") =0 X HJ tlJH AJ It) A (20) 

(14) + r'\t • - +
the operator A J:: (}A -t F r ~ . becomes simply

since D~ ~i"= 0) (D+)'lD--H++S"=-2D+o£D:' H++5 := 0 Ar'" ITo( '" 

( H+~!) is analytic). The covariantization of this procedure 'd
is not so easy_ Firat of all, the Berezin integration rule 

(A-: ) H :: '() e~-5d.2 e; ~ ~~'" 'd;", (21) 
(15) I) The meaning of the change (20) is that a new basis is defined 

produces a non-covariant operator in our case. Indeed, '/)t.c :., (J;(I( where the constraint 
transforms as follows () lit. " .

1").+ ~ 0 ~ rh rh(x,",,5' eo(+ e"'-)
0H CII. 't' 't' I H J H) H+ - - it p.- '\ + - + - P- " +~)Ag( - ,\0£ ~ (lAP. dllo( 11 'It;" + (22) _ + 

(16 ) is covariant. Indeed, in the basis (20) ~ OHtJ( = - 'd'!;1ll i\P • dH f!' 
In order to perform the trick (14) covariantly, one should be Tbe new kind of analyticity (22) is a hybrid of the analyticity 
able to go 11> a special basis in which '0/16:; transforms homogene­ 1)~ cp = 'a ~ 4>: 0 and of chirality '0: <P ::: ~:. 4> =0 
ously. Fortunately, such a basis exists. To see this let us consider therefore we call the basis (20) the "hybrid basis ". We point out 
(11.38)·). Its solution is that tbe bridge " f. - is not an independent object. One can 

show that the following expr~ssion (see the Appendix)
F r =/J+ wr­

0( 0( T , UI f- - -e r- - if--f.+ - H--t'+ (A B-:1) ;..(11) T - A ,.. , 
where rpr­ is a new bridge with the following transformation (23) 
law: A r =e,-J. f. _ e_1 V F r 

r ,. r)l, 
.) The easiest way to prove (II.38) is to show that L1;.,( F,.t trans­ B. v = e-: v _ e-: v 1= v 
forms homogeneously (using (11.33) and (11.34». However, there is r r r y 

not any suitable component of this type in the ;J? gapge (11.28) aa tisfies(l7) identically.
of the prepotentials, so lJ.+(tt. Fp)r must vanish. 
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Armed with the new tool, the hybrid baaisJwe can start the 
covariadization of the procedure (14). The change of variables 

(20) in the int~gral (13) produces the following Jacobian: 

(
0 'dZ.H)-.1 LJ. 06H IA (V + -V-)_
o€-z. r,..:> = ~ - :::- tiU/.A. ~. -?. r - J 

uCA ue
A 

r"r -. 
(24 ) 


Thel. (13) becomes (I\S' is ana1ytic~ i.e. d~o( AS"' ==-0 ): 


1-::: SdY-'Xii J If e: d It e;; c1.<.t A~ T E -.1 2)-- H 1-+5::::: 

=JjlfXH Jlte: ['e;; ~ AS"'(()~o(d:,J(JE-l:2;--H++!»:::: 
=SdItXHitf)~J2e~Jv. A!'-{(O~)2(J£-.1).2)--~~+H- (25) 

+:rE-1[(d~)22)_-Ht+~+..z():.,(~ (JE-i 
). OH:2)--H++5"]J4 

The two tenns in the last integral in 125) vanish separately. 

First consider the term 


E- J(-o:reJE-1):::::- [(():}2~ (TE-J.)+ 

+):ol~ (J"E-!). d:
ot 
~ (Tf-J.) ] . 

+ t- 0 ( -.1 \ _ -t II ( -J. (26 )
The quantity 'f c( - ?Ho( V\1 J"E- J - ~I!A. ~ J"E ) has a simple 

transformation law (see (IV.l4), (18), (19), (24»: 


o\f~ =-- - t1! :AP.-lf; + ll! [ - 'd AM (-1J M +
M 

+ (1-~A+ If -r; v (?A~ f r -_ ()A~ ~ f- +'~A: Ili-~; rf-)]~ 

-=-ll+ 'l(!>-l.f++b.+ [-'l) ?-+'()~ J,r+-+fJ+- ./lr-+
.,(11 f> <I. n.,'I,. ,.

+'0; :Ar- F
f 

f + OH~ yf-] 

::. - f/ A(!>- 1f1- + J.- /.1+". l1 + ~-
tI. ", 2. f!' e( (27)

1\+ +Here we used the relations L.l t:I.. :::::- '0 H cI.. + -' 
and dHci. f""'-= 0 

(18) and ll"!; ~'WI} p.+ =0 . Note that (27) is similar to the 

8 

transformation law for the quantity /)/cL F in the expression 
(II. 36) f~r the Lo+entz connect~on A+ce. f>,.. . In fact one can show 
that 'f fA -::: 2. tJ. rI- -tm F . 

From (27) it follows that the expression in the brackets 
in (26). 6,+1J. 'f~ + I.f'+"'-e!t: , is a tensor. So, it must corres­
pond to a Lorentz scalar isotriplet (charge +2) field of dimension 
1. The only sucp field in the WZ gauge (11.28) is in the prepotentia1 

H++ S but the ingredients of 'f':' do not :\.nvo1ve H++S"' • 
The conclusion ;1s that the above term vanishes. This J;'esu1t means 
that the full ~variant vol~e of superapace vanishes as well: 

Sd 'iA cLt E-1 = 5cl i!H ~ ::r E -J ::::: 

=Jot ltX d1f9~ J2 e.:; ("d;Y(::r'E-J.) D.
H 

This fact was first established in a different approach in' 1'. 
Finsl1y, we turn to the second term in (25). Using (111.2) 

and the analyticity of H"" + S we find 

0+ <;;a--H++S' =11+ H--Wl
) r+ ')'" "I HT +5" 

HcI. «. 'YIII,r+, 

BO it is sufficient to show that 
~ "I. h 

(ll+)l ,.r-Yl'tJr+ +2 f+d. Ll: H-- r>'1}r+ == w'k4)f' + = O. 

(28) 

The quantity Wtransforms as follows (see (111.2). (27) and use 

the analyticity of 'A~) f + h 


i)w'M)r+ =(l\+ 01. A- )v,i't'lll)r++v./"')v+ 2 A... ilM'f+ 
0{ "'ft;v+. 

Once again, we deal with a oovariant object of dimension 0 (for ~) 
or 1./2 (for p. + ). Inspection of the WZ gauge (II.28) A 

1- ,+.... l'I1 ~+
shows that no such fields are contained in the prepotentia1s n ) 

involved in (28). 


This concludes the rather lengthy proof of the invariance of the 
aotion 51). All these results will be used in the accompanying 
paper '6 for the development of the conformal SG formalism and its 
applications. 
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'Appendix 

Here we shall prov" that the expression (V.23) for if';- satis­+ _. . 
flea (V,17). Since flu( 8::-:;:- ~,.. . one bas to show that 

11: [H--f++ H--r+(AB-J.),/1 O. 
(A.I) 

The left-hand side of (A.l) cac' be rewritten as - H--f"+ t:1: (A £r.11 It 
so the p:t'ob1 c,;n is to prove the identity 7'1., 

ll: (A S-.1)r r :x O. 

(i\.2 ) 


lYe Int:roducc the notation 

. 'A .() " 

C lit:. _ r _ -.1 IJ( _1 0( F '" 
,,- ;t. -e ... -e"r ( Bf r ,... IJ( (A.)) 

and calculate 
'\ /I. 

, ;II 0 0( 8+-( 0( _J +e .>C' -1, + i:t.
~ol ,,= - " llrJ.:j' f" - e" /). Fr e r '" r 0< ' po 

(A.4 ) 

With the help of the Identity (which will he proved later on) 


... • ~ • /I • . (+r f - ""I + ./ )c· «.+-.11I~ ~ c(. = - ; Z"'r d e +Ad f ej - 2 F11 i ), e; j (A.5 )r 
and FrI.:i F ol ::.: :::- 2A (aee (IV.12,13» we find 

• • A. 
itL+(K C'" r fCfj., " ::::- "ll e· /I 

or. r r -<,. f' (A.6 ) 

Using this result it is very easy to check (A.2). 

Finally. we have to prove (A.5). FrDm (IV. 12 ) and It ::: i1 Fvl~ F"..,i 
one derives the identity 

6+o(Ff~=(~:f1; +-A t1~fi'i'lJSr"1r +-Ffi fr;(1-ff-~rtrl). 
(A.7 ) 

This re~ce~ the problem to calculating ~~ frr and 
tJ.~ f I,. (aee (IV.10a»: 

10 

/).+ .c..,r -= A+ e~ eli -:f YS ( ...+ e~) e J'ifAJ Uot· I'll ' Llo( Jf ."",,) 

6: t'i = ll:e~. e!! - rff (L1~ eri )e!.r . (A.B) 

A straightforward calculation produces the f 11 i(~ee (IV.5.6,8»: 0 ow ng results 

/it e"'" eIt -= 1 F j € 1'1 Ie ~++ 1. ~j't erMil 
01. ....... .2 c(. .... f.1. f' rot.) 


1\+ :e~ e1; -::- 1 err L' '\\1\+ + i -oite.r M~r 
LI.c. • .z....... 0(. .l j' • \ 'rot )
'W\ 

f ~~ (6+ e'V'\.)e rr = !. f j err k~+ 1 ftYF'. nar L'i"\+ 
0( H''''' .:t";: ~ ! +.t ~ j' ~~ f + 

++s~ 'd+ ef Mrr i lJJ J S' ) • 

'" ' . _ i f""' ~ () j<j.'K~+ 1 f'" si L • e'll {fOo.\
f n (A,+ eV; ) ell .l o(.~"" g + 2 '-~f 'WI .f 


" H' "" 

+f"- fi ']+ er. M~i


Qf.t rrJ. 
where 

k~+ -+(+)2H--'M 'f=),+'ll+ r -1V 'l+H--"'" _ '0. ~ - CJ· (J e ... e " (/ " f -j j, r v ) 

<) + (-+\2 H--'"_'0+ d;'+ ef. e-: v,,! H--'\O?[""+-=:;: rJ.. ra) (to r r v .J 
J. 

1'1 _ -1 r "r_e- 1. V F: . ?t; _1 fri _ _1 r r-;Mr.,.-€p r .,tvJ -teptl-. er 'd.()QI. 

Putting all this in (A.S) and then in (A.7) one observes that the 

terms containing K and L cancel and one easily derives (A.5). 


The identity (A.5) can be rewritten in the equivalent form 


+.t 1- H--r+ C~r 0
6 6d. r' 

(A.9) 
With the help of (A.9) one can prove a number of relations which were 
establi'sbed in sections 4,5 using tensor arguments. 
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ranbnepHH A.C., COKaqeB E. E2...87-85 
N-2 cyneprpaBUT~H B cynepnpoCTpaHCTBe: 
UHBapUaHTHOe AeAcTBUe 

B AaHHOfi pafioTe npoAonaeHo nOCTpOeHHe cyneprpaBUTaQRH 
B rapMOHHqeCKOM cynepnpOCTpaHCTBe. ~aeTCH UHBapUaHTHOe 
AeAcTBue AnB nepBoA BHeMaCCOBOH Sepcuu TeOpHH. ~OKa3a­
TeJIbCTBO HHBapHaHTHOCTH OCHOBblBaeTCH Ha cyDteCTBOBaHHH H.O­
BOrO "rUfipHAHOrO" fia3UCa B rapMOHHqeCKOM cynepnpOCTpaHCT­
Be, B KOTOpOM HapHAY C aHanHTHqHoCTbID HanonOBHHY HBHOfi 
cTaUOBHTCH KHpanbHOCTb. 

PafiOTa BblDonHeHa B nafiopaTopUH TeOpeTHqeCKOfi ~H3HKH 
ORRH. 
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Galperin A.S., Sokatchev E. E2-87-85 
N=2 Supergravity in Superspace: 
the Invariant Action 

This paper continue~ the formulation of harmonic su~ 
perspace supergravity. We write down the invariant action 
for the first off-shell version of t!le theory. The proof 
of the invariance relies on the existence of a new "hyb­
rid" basis in harmonic superspace in which semi-chirality 
combined with analyticity are manifest. 
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