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1.INTRODUCTION 

l'i 

It. The field theory description of realistic models of elementary particle 
I I 

interactions is mainly based on singular Lagrangians. Usually, singularity. of 
.'
 lJ .,
 the Lagrangian is thought about by invariance of aetion with respect to trans­

"fi 
'l' formations of field funetions containing arbitrary coordinate and time func­

tions.. These transformations, defined in tangent bundle, are often called 
~I the gauge transforms and the corresponding theories are the, gauge theories. 
\~, A general method to obtain Hamiltonian dynamics for singular Lag­r a• .(J_, 

rangians was described by Dirac /1/ . 
'~1I 

The motion equation for an arbitrary dynamic variable g has the follow­
'l
f' ;\lI 

ing form in Dirac 's approach /11 : 
,f, l~, l 

~oI ~ 

rl g = Ig. HTI, HT = Hc + u ~ 4> ~, k = 1, ... , m. (1)~~f 

.,( 
~ 't'~ 

"'i!'" ,J I" 

I, Here Hc is the canonical Hamiltonian, u~ are the arbitrary multipliers, 
<P~ are the primary constraints of the Ist type. Here and on the repeating"1 ,~f " "',l' I,' 

.I. indices mean summation. 
The function H T is called the total Hamiltonian. Note that in this pa­

''''., I 
v~ per we are interested in gauge degrees of freedom and in problems related 

to gauge fixation; so, we shall assume that thereare only constraints.of the 
1st type in the theory. This assumption simplifies some formulae but the 
interpretation remains general. 

Primary constraints of the 1st type produce gauge transformations 
in the phase space. Secondary constraints of the 1st type cano also produce 
gauge transformations. Dirac assumed that all constraints of the 1 st type 
produced gauge transformations /11, and proposed to replace H T by the gene­
ralised Hamil tonian: 

~ lO,. 

H = H + U m k.L m k 
E T k --cp k ' mk = 2•..•• Mk • k = 1, ... , m • (2) 

'. where u~k are the arbitrary factors, 4>~kare the secondary constraints, Mk- 1 
~ is the maximum number of secondary relations obtained on the basis of 
" required time stationarity of the k - th primary constraint. 

C7 Generally speaking, Dirac's assumption was wrong. There are examp­
les where secondary constraints of the 1 st type do not produce gauge trans­
formations /2,3/ . 
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Dirac's iteration procedure provides no reasons for adding secondary . 
constraints to the total Hamiltonian. The global and geometric generalization 
of Dirac's approach throws no light on this problem. Being a result of the­
se algorithms, the total Hamiltonian describes dynamics of system but it 
does not contain all gauge degrees of freedom. Therefore, it is often more 
convenient to employ the generalized Hamíltonian /1/ in order to eliminate 
nonphysical degrees of freedom from the theory by using additional or gau­
ge conditions. 

A general method of applying gauge conditions within singular theo­
ries was proposed by Dirac /4/. Later on this method was reproduced many 
times (e.g., see ref. /5/). New limits are imposed on the coordinates q and 
momenta p 

rn 
X i (q, p) "'" O, i = 1, ... , ~ Mk == I (3) 

k=l 

and the function )(. (q, p) must obey the following conditions: 
1 

rnk (4)det 11 IX i' r/J k 111 # O, k = 1, •.• , m, mk = 1, ••. , M k ' 

{X i ' X 1" I = O, i, i ' = 1, •.•, I . (5) 

Note that for the functions Xi these conditions are necessary but insuf­
ficient for being gauge conditions. This is due to the fact that relations (3) 
together with motion equations can lead to new relations of dynamic vari­
ables and more degrees of freedom wUI be lost. Such exampíes are considered 
in ref/61 . 

It-fs easy to' establish a relation between the functions X. (q,p) and 
Lagrange factors. The required stationarity of gauge condítíons (3) yields 

• . rnk rnk
 
X i = {Xi' Hc I + U lt {X i ' cP k l , (6)
 

Owing to condition (4), eq. (6) allows determination of Lagrange factors. 
The gauge freedom occurring in Hamiltonian motion equations with 

the generalized Hamiltonian HE is known to be wider than the gauge freedom 
in Lagrange's formalismo 

Using generators of gauge transformations from ref. / 71 and the method 
of construction of finite transformations for quasigroups /81 for singular 
systems, we shall obtain Hamilton motion equations with a complete gauge 
freedom. 

New constraints will be obtained for the functions X i,the constraints 
and relations (4) will be the necessary and sufficient conditions for elimina­
tion of gauge freedom. 

2 

The paper is organized as follows: in the next section we obtain finfte 
gauge transformations for the given singular Lagrangian. Section 3 formula­
tes the sufficient conditions for eliminatíon of gauge freedom. Examples are 
considered in section 4. 

2. CON8'l'RUCTION OF FINITE GAUGE TRANSFORMATIONS 

A given singular Lagrangian allows construction /7/ of infinitesimal 
transformations of coordinates q and momenta p, which are not .related 
to a change in the physical state, in the co-tangent bundle . The opera­
tors <Jj for these transformations 

~ ~ 

q' (t) = (l + 't1J) q (t), p" (t) = (l + c1l) P(t) (7) 

are given by the expression 

~ fllk rnk 
(8)'<I> = I e k cP k }. 

ID 

We use the following notation I A, I B = I A, B} . In expression (7) cP)tk, 

k = 1, ... , m, mk = 1, ... , M k ,are the complete set of the 1 st type occurnng 
within generalized Hamiltonian formalism for the physical system under 
consideration. The coefficients (rn R must obey /7/ the following equation:

k 

• IDk IDk " ID k" rnk • m > 1, (9)
(k - (k' g k" k = O , k 

where a point over € means the total time derivative,and the functions g :~~ IDk 

are defined by the relation 

m k" IDk"rnk rnk ID k " (10)IH, cP k ' l=gk"k CPk == 'li k' . 

For each value of the index k we parametrize the factors (~k through 
an optional infinitesimal function ôÃ (t) : (~k = ôÀk (t). ';fhen, on the

k 
basis of equation (9) all other (:k will be expressed through ôÃk (t) ,q and 
p . Note that the number of optional functions ôÃk (t) is exactly the same 
as the number of primary constraints of the first type. Thus, operators (8) 
will include both optional functions ôÃk (t) and their time derivatives of 
the Mk -th order. 

Now we rewrite formula (8) in a form more suitable for our purpose. 
To do this, we use the identity 

ÔÀ(k) (t) = (-1) k r 8À(t") a(~) 8(t" -t) dt", ÔÃ(k) (t) - dt 
d
k. ôÃ(t) . (11)

t 

( 3 



Then, we find the following expression for the operator '<1l from formulas 
(8) and (11) with allowance for notation (10): 

~ Mk -m k m k'" , <Mk - mk )
 
'<lJ = (-1) r SA , (t')( 'P , , I a , S(t'" -t) dt dt ". (12)


k k t	 . 

We substitute this operator into formulae (7) and find increments of coordi­
nates and momenta: 

N 
S 

Sq/t) = r 8À k ( t ' ) Qki (t',t ) ~i (t ...... ) dt dt q/t) = f Q kj 8Àkdt'" (13) 

ôP j (t) ', f 8Àk (t') P ki (t', r") -~-- dt dt p j (t) = f P kj BÀ dt ' •
 
8Pi (t ...... ) k
 

The following notation is introduced hel'e 

. rnk
 
M -m +1 à'l' . (M - rn )
 

Qki (t ', t") == (-1) k k -.,.-La t'"k k 8(t'" _ tO) ,
 

rn~i	 (14) 
M - m à'l'k (M - In )

Pki(t', tO) == (-1) k k à , k k 8(t' -t ...... ),
 
àq. t
 

1 

Actually, the operators ~ ki and P ki are the generators oí gauge trens­
formations. Using these generators on the basis of the results obtained in 
ref/ 9

/ for quasigroups, one can (in many ways) reconstruct finite gauge 
transformations. These transformations may be formally written as 

q j (t) == Oq j (t) , P ~ (t) == Cp. (t)
J J 

(15) 

G = exp ] r Àk(t')[Qki (t',t") -~+Pk' (t',t")-~--ldt'dt'l 
8<:li(tO) 1 8Pi(tO) 

Actually, this solves the problem of constructing finite gauge transfor­
mations at the gíven singular Lagrangian. 

3. ELIMINATION OF GAUGE FREEDOM 

To simplify further writing, we shall stick to the following notation 
(as in formulae (1,2»: 

.. 
1 rnk

4J k	 =-=cP ' «, =-= <lJ j , k=l, ... ,m, m = 2 , ... ,M ,k k k
 
. rn 1 ffik

J = 1, ... , n = ~ (M k - k) , U = a k ' U k = f3 . . 

k= 1 k	 J 

Let us consider time evolution of the system using generalized Hamiltonian 
(2). We shall take an optional dynamic variable g and see how it is expres­
sed at the moment t + 8t assuming that g(t) has a definite value. 

According to Dirac /1/ we have 

g(t + ôt) = g(t) + g(t) 8t = g(t) + Is. H E 1St 
(16):.) = g(t) + (Ig , H } + a k tg, cP k } + l3j .ts, '<lJ j n8t. c 

Let us take some other values for the coefficients a k and {3 j , e.g., a~ 

and (3j . 'Fhis results in another value of g(t + õt) . Noteworthy is the follow­
ing facto We want to keep all the gauge freedom which is present in the 
theory. If we fix the initial conditions at the moment t before imposing 
gauge constraints, we shall limit gauge freedom, because gauge constraints 
must not contradict the initial conditions. Besides, we think it is incorreet 
to set initial conditions for nonphysical (or a combination of physical and 
nonphysical) degrees of freedom. Therefore, we assume that the difference 
between the same dynamic variables in two different gauge obeys the gene­
rallaw (15) at the moment t as well. 

These remarks taken into account, we find the gauge variation of the 
dynamic variable at the moment 

L\g(t+8t) =L\g(t) +St[(a -a~) {g, cP I +({3j -f3'j) [g, <lJ n. (17)
k k	 j 

On the other hand, we may choose a certain trajectory for the dynamic 
variable g(t + st) and act on it by the operator C from (15). This will 
mean that the dynamic variable goes from one gauge to another (optional). 
Subtracting the variable g from Gg, we obtain the gauge variation of the 
dynamic variable 

L\g(t + 8t) = G g (t - ôt) - g (t + ôt) .	 (18) 

On the basis of (17) and (18) we· obtain the equation 

(G.-	 1) g (t + 8t) - (G - U g (t) == õt [ (a k - a ~ ) Ig, cP k I + ({3 j - (3 j )(s. <IJ j Il. (19) 

Now let us discuss how one can use eq. (19) in a general case. Then, 
we shall giveexamples to illustrate the general discussion. Naturally, we can

fJ; always take the generalized coordinate q as g. Since the constraints of 4>k and\...
<lJ j are linearly and functionally independent, we can always find a situation 

I"	 
when cP k will contain at least one momentum variable, e.g. p r' which does 
not enter into <lJ • Then, the term {q r, '<1J ' I in (19) reduces to zero for 
the variable q f' ~o we find the functionJI interdependence ' between gauge 

( 5 4 
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transformation parameters entering into formulas (15) and functions a k - a k
 
Eq. (19) for the coordinate whose conjugated momentum is in .<IJ j will bind
 
the parameters À k from (15) with functions f3 j - ,B j, a k - a ~k can also
 
be included. Finally, we obtain that in a general case arbitrary fixation of
 
the factors a k and ,B j in the generalised Hamiltonian may fail to correspond
 
to any gauge. In other words, when choosing gauge constraints and using
 
eq. (6) for fixation of the factor u ~k, we must not break the relations bet­

ween these factors as estabIished in eq. (19). This is the only case when con­

ditions for X i will be the gauge constraints which, on the one hand, fix
 
the whole gauge freedom and, on the other hand, do not lead - together
 
with the motion equation - to new constraints (relations). Thus, we have
 
found the sufficient condition which allows functions Xi obeying conditions
 
(4) and (5) to be regarded as gauge functions. 

4.EXAMPLES 

To make it all clear , let us consider some simple examples. The first
 
example is chargeless electrodynamics.
 

The electrodynamics Lagrangian has the form:
 

f = - 1- F JLV F F = a A -a A • 
4 IlV ' IlV Il v v Il 

This theory has one primary constraint cP == 17o ~ o and one seconda­

ry constraint <IJ == ai 17i "" o of the 1 st type. The generalised Hamiltonian
 
is defined by 'the foIlowing expression:
 

H = H c + .r d 
3-+ 
x (a 17 o + ,B ai 17 i) ,

E 

where Hc is the canonical Hamiltonian.
 
On the basis of the general method for obtaining infinitesimal gauge
 

transformations for the given singular Lagrangian /71 we find
 

-oAfl. (x) == aIl (x) , 

where f (x) is the infinitesimal arbitrary function. Now we construct an ope­

rator Q defined by the relation
 

'y ,
Q Il (y, z,) = a Il ô(y - z) . 

Then, we find the operator 

4ô(y -z)G =	 exp l-, fd 4yd 4z À(Y) a 
8 

-}
 
..' Il ôAv (z)
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a

and finite gauge transformations
 

A ~ (x) = OAJL (x) = A JL (x) + ap.À(X) •
 

Replacing g in (19) by : Ao and then by Ai' we find the foIlowing relations:
 

0
2À(X) l)t = [a~(x) - a(x)] ôt,
 

ai ao À(X) 8t = di [,B'(x) - ~(x)] ôt. 

Finally 

ao ((3~(x) - (:3(x» = a'(X) - a(x). 

Now let us consider the model Lagrangian proposed in ref. 19,101 

o 1 [d -+ 2 -+2 
01.. = - (- - yT) x] - V (x )

2 dt 

o 1 -+ xl 
T = ( ), x = ( ) . 

-1	 O x2 

A two-dimensional vector x and y are the generalized coordinates here. 
This model has one primary p y~ O and one secondary constraint pTx. It 
is easy to find the operator of finite gauge transformations 

G = exp { [ dt ' dt " À(t"') [o(t'" _ t ...... ) x (t ..... ) _._0__ 
1 ôX (t ") 

. 2 

- o(t~ - t ") X2(t ....) -~- - õ ', (t ' - t ") _--Ê._ }. 
ôxl(t") t ôy(t") 

Using this operator, we find gauge transformations 

X~(t) = x l(t) COSÀ(t) - x
2

(t) sinÀ(t) , 

x ~(t) = Xl (t) sín À(t) + X2(t) coa À(t) ,
 

s: (t) = y(t) + À(t) .
 

Formula (19), binding the coefficients in the generalized Hamiltonian, has
 
the foIlowing form in this model: 

d~ [x1 eos À - x2 sin À] - X1= :- ({3'" - ,B) x 2 ' 

( 
7 



~[lt2C08A+ltlSinA] -X2 =(13'-f3)lt 1 , A ",a'-a. 

dt 


These formulae allow determination of relations between the coeffici­

ents a and 13. 
In conclusion the authors express their gratitude to A.N.Tavkhelidze 

for the support and useful d~scussions. We are also thankful to V.V.Nesterenko, 
N.i:i.Skachkov and O.Yu.Shevchenko for discussions. 
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I'0J'HJIH)l3e C.A. HAp. E2-87-847 
YCTpaHeHHe KaJIH6poBOlJHOJ'0 npOH3BOJIa 

.. B CHHI'yIDIpHhIx TeopH.flX 
., 

HaA;D;eHhI AOCTaTOlJHbIe YCJlOBHH Ha KaJIH6pOBOlJHbie Q>YHKUHH. 
nOJlY'leHbI J'aMHJlbTOHOBbI ypasHeHWI ABIDKeHWI, KOTOPble cOAep­., 
JKaT npaBHJlLHblH KaJIH6poBOlJHbIHnp0H3BOJl. nOK83aHO, 'ITO DOJly­
qeHHQIe pe3YJlLTaTbI B paMKaX KOHelJHOMepHOH MeXaHHKH Jlenro 
0606u.uuoTCH Ha c.nyqait TeopHH DOJIH. PaCCMOTpeHbI npHMepbl. 

Pa60Ta BbIDOJlHeHa B JIa60paTopHH TeopeTHqecKOH Q>H3HKH 
OHRH. 

C006w:eHHe 06J.e.tuateHHoro HHcnnyra JI,lleptlWx HCCJ1eJlo....... .lly6Ha 1987 
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.. 

Gogilidze S.A. et al. E2-87-847 
Elimination of Gauge Freedom in Singular Theories 

., I The sufficient conditions for gauge functions are found. The 
Hamilton equations containing the real gauge freedom are obtained. 
It is shown that the obtained point mechanical results can be easily 
generalized to field theory. Examples are analysed. 

I The investigation has been performed at the Laboratory of Theo­
retical Physics, JINR. 
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