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1. INTRODUCTION

The field theory description of realistic models of elementary particle
interactions is mainly based on singular Lagrangians. Usually, singularity. of
the Lagrangian is thought about by invariance of action with respect to trans-
formations of field functions containing arbitrary coordinate and time func-
tions.. These transformations, defined in tangent bundle, are often called
the gauge transforms and the corresponding theories are the, gauge theories.

A general method to obtain Hamiltonian dynamics for singular Lag-
rangians was described by Dirac 71/,

The motion equation for an arbitrary dynamic variable g has the follow-
ing form in Dirac’s approach /1/:
g=1ig Hpl, Hp=Hco+ulgl, k=1,.,m. (1)

Here H. is the canonical Hamiltonian, ul are the arbitrary multipliers,
qﬁiare the primary constraints of the 18t type. Here and on the repeating
indices mean summation.

The function Hp is called the total Hamiltonian. Note that in this pa-
per we are interested in gauge degrees of freedom and in problems related
to gauge fixation; so, we shall assume that thereare only constraints,of the
Ist type in the theory. This assumption simplifies some formulae but the
interpretation remains general. .

Primary constraints of the 1st type produce gauge transformations
in the phase space. Secondary constraints of the 1st type can also produce
gauge transformations. Dirac assumed that all constraints of the 1 st type
produced gauge transformations !/, and proposed to replace Hqp by the gene-
ralised Hamiltonian:

Hp =Hp + u, Kb K, me=2 .M, k=l..m, (2)
where uﬁk are the arbitrary factors, qs!:kare the secondary constraints, M k-1
is the maximum number of secondary relations obtained on the basis of
required time stationarity of the k-th primary constraint.

Generally speaking, Dirac’s assumption was wrong. There are examp-
les where secondary constraints of the 1 st type do not produce gauge trans-
formations /2.3/ .
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Dirac’s iteration procedure provides no reasons for adding secondary -

constraints to the total Hamiltonian. The global and geometric generalization
of Dirac’s approach throws no light on this problem. Being a result of the-
se algorithms, the total Hamiltonian describes dynamics of system but it
does not contain all gauge degrees of freedom. Therefore, it is often more
convenient to employ the generalized Hamiltonian/1/ in order to eliminate
nonphysical degrees of freedom from the theory by using additional or gau-
ge conditions.

A general method of applying gauge conditions within singular theo-
ries was proposed by Dirac 4/, Later on this method was reproduced many

times (e.g., see ref. s ). New limits are imposed on the coordinates q and
momenta p
. m
x;i (6, p) =0, i=1,.., % M, =1 (3)
k=1

and the function y (q,p) must obey the following conditions:
1

det||{x , ¢ k v, mo=1,.,M 4)

{)(i,)(lf b=0, 1,i’=1,...,1. (5)

Note that for the functions y, these conditions are necessary but insuf-
ficient for being gauge conditions. This is due to the fact that relations (3)
together with motion equations can lead to new relations of dynamic vari-
ables and more degrees of freedom will be lost. Such examples are considered
inref./8/ ,

It*is easy to establish a relation between the functions y (q,p) and
Lagrange factors. The required stationarity of gauge conditiond (3) yields

Mg

§(1=ix1,licl+uzk{xi,¢k }. (6)

Owing to condition (4), eq. (6) allows determination of Lagrange factors.

The gauge freedom occurring in Hamiltonian motion equations with
the generalized Hamiltonian H, is known to be wider than the gauge freedom
in Lagrange’s formalism.

Using generators of gauge transformations from ref. /1 and the method
of construction of finite transformations for quasigroups/8/ for singular
systems, we shall obtain Hamilton motion equations with a complete gauge
freedom.

New constraints will be obtained for the functions y,the constraints
and relations (4) will be the necessary and sufficient conditions for elimina-
tion of gauge freedom.
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The paper is organized as follows: in the next section we obtain finite
gauge transformations for the given singular Lagrangian. Section 3 formula-
tes the sufficient conditions for elimination of gauge freedom. Examples are
considered in section 4.

2. CONSTRUCTION OF FINITE GAUGE TRANSFORMATIONS

A given singular Lagrangian altows construction/?/ of infinitesimal
transformations of coordinates q¢ and momenta p, which are not related

to a_change in the physical state, in the co-tangent  bundle . The opera-
tors ¢ for these transformations
¢’ () =L+ Dg@®, p’®) =1 + Dp®) (7)
are given by the expression

Fote, e, E Y 8)

We use the following notation { A, 1B = { A, B} . In expression (7) ¢>mk
k=1,.,m m, =1, M,.are the complete set of the 1 st type occurring
within generalized Hamlltonlan formalism for the physical system under
consideration. The coefficients e::‘k must obey’/7/ the following equation:

. mk- my » mysmy _ 9
fk (k, gk;k —0, mk> 17 ( )
s m
where a point over ¢ means the total time derivative,and the functions g , k
are defined by the relation
mk’ mkfmk mk _ lpmk/ 10
{Hy ¢k" }hgk,k ¢k = k/ . ( )

For each value of the index k we paxametrize the factors el:k through
an optional infinitesimal function &X (%) : ek = 87, (1) . Then, on the
basis of equation (9) all other ekk w1l1 be expressed through Bhk(t) q and
p. Note that the number of optional functions 3\ (1) is exactly the same
as the number of primary constraints of the first type. Thus, operators (8) |
will include both optional functions ‘S}‘k(t) and their time derivatives of
the My-th order.

Now we rewrite formula (8) in a form more suitable for our purpose.
To do this, we use the identity
a® 1y =157 a9 (tk) S(t" - (11)

d
t)dt’, E () = —S—B(1).
) ( ToE
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Then, we find the following expression for the operator ¢ from formulae
(8) and (11) with allowance for notation (10):

K "Dk m,, (M -my )

~ M
', ’ k ’ ’
o =(-1) far.ete -, 1a . 5(t7—t) dtde”. (12)

We substitute this operator into formulae (7) and find increments of coordi-
nates and momenta: '

§ & ”
8, (1) = [ 8, (100, (1',t")—————dt’dt” g () = { Qy; B\, dt’

8(11 (t") (13)
By (1) = [ B\ ()P (t’,t”>-—-§—;-~dt'dt"p,-(t) = [Py Bhat”.
. op; t7)
The following notation is introduced here
M,-m, +1 élpmk M )
- , e
G, t) =) F T kg K T sy
ap, L
I (14)
M, ~m M, ~
Pki(t,’ t”) =(_1) k k -—a-...li__ a(t, k mk) 5(t'—t"),
q .

1

Actually, the operators ¢, and P,, are the generators of gauge trans-
formations. Using these generators on the basis of the results obtained in
ref.”®  for quasigroups, one can (in many ways) reconstruct finite gauge
transformations. These transformations may be formally written as

0 (® - Gq;(, pj® =GCp,®)
(15)
, .o 2 8
G = exp{ rA (t )[Q (t ,t ) ———— P . (t’,t,’)—'—“"“”—ld “dt’ .
k ki Bq (t//) * ki 8p1(t//) t i

Actually, this solves the problem of constructing finite gauge transfor-
mations at the given singular Lagrangian.

3. ELIMINATION OF GAUGE FREEDOM

To simplify further writing, we shall stick to the following notation
(as in formulae (1, 2)):

A ]

1 m
$e=b s ¢ =0, k=l,,m m =2,..,M

o
= - .-

-~

Let us consider time evolution of the system using generalized Hamiltonian
(2). We shall take an optional dynamic variable g and see how it is expres-
sed at the moment t+ 8t assuming that g(t) has a definite value.

According to Dirac 1/ we have

gt + 8t = g(t) + g(t) 8 = g(t) +{g, H 18t =
(16)
=g + (g, Hc§+ak{8, d>k}+ Bj_ig, ‘<IJJ. b ot.

Let us take some other values for the coefficients a, and Bj , e.g.,a’
and B’j . This results in another value of g(t + 6t) . Noteworthy is the follow-
ing fact. We want to keep all the gauge freedom which is present in the
theory. If we fix the initial conditions at the moment t before imposing
gauge constraints, we shall limit gauge freedom, because gauge constraints
must not contradict the initial conditions. Besides, we think it is incorrect
to set initial conditions for nonphysical (or a combination of physical and
nonphysical) degrees of freedom. Therefore, we assume that the difference
between the same dynamic variables in two different gauge obeys the gene-
ral law (15) at the moment t as well.

These remarks taken into account, we find the gauge variation of the
dynamic variable at the moment

Ag(t+ 8t —Ag(t) + 8l (ay ~ay)ls ¢, 1+ (B, -8 ) (g & 1. 17)

On the other hand, we may choose a certain trajectory for the dynamic
variable B(t+6t)  and act on it by the operator G from (15). This will
mean that the dynamic variable goes from one gauge to another (optional).
Subtracting the variable g from Gg, we obtain the gauge variation of the
dynamic variable

Ag(t +5t) = Gg(t-58t) —g(t+8t). (18)
On the basis of (17) and (18) we obtain the equation
(G=1 gt+8t) - (G-1)g(t) =8tl(a, -al)le ¢kl+(/8j -B] e, o, 1. (19)

Now let us discuss how one can use eq. (19) in a general case. Then,
we shall give examples to illustrate the general discussion. Naturally, we can
always take the generaljzed coordinate q as g. Since the constraints of ¢, and
de are linearly and functionally independent, we can always find a situation
when ¢, will contain at least one momentum variable, e.g. py, which does
not enter into @ . Then, the term {qz, ‘d .} in (19) reduces to zero for
the variable g ¢- So we find the functional interdependence*between gauge
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transformation parameters entering into formulae (15) and functions a, - a} . and finite gauge transformations

Eq. (19) for the coordinate whose conjugated momentum is in !I)j will bind
the parameters Ay from (15) with functions B;-85, a,-a} can also
be included. Finally, we obtain that in a general case arbitrary fixation of
the factors ay and B j in the generalised Hamiltonian may fail to correspond
to any gauge. In other words, when choosing gauge constraints and using y
eq. (6) for fixation of the factor u™k, we must not break the relations bet- :
ween these factors as established in eq. (19). This is the only case when con- - i
ditions for x; will be the gauge constraints which, on the one hand, fix u d; 9 (@ 8 =9, [B" () - Bt .
the whole gauge freedom and, on the other hand, do not lead — together

Aﬁ(x) = GAu(x) = A#(x) + a“)\(x).
Replacing g in (19) by Agjand then by A;, we find the following relations:

égz\(x)st =[a’(x) —-a(x)]5t,

with the motion equation — to new constraints (relations). Thus, we have Finally
found the sufficient condition which allows functions x; obeying conditions 6 i )
(4) and (5) to be regarded as gauge functions. 0(B'(®x) -B®) =a’® - alx).
Now let us consider the model Lagrangian proposed in ref. 79,10/
4. EXAMPLES
_ 2 - Llg -yDR® -v@®),
To make it all clear, let us consider some simple examples. The first
example is chargeless electrodynamics. 01 - b 3
The electrodynamics Lagrangian has the form: T = (_1 0 b 2= Xp
- _lpwe , F =9 AV—éVA . . 5
4 w pwv IS S A two-dimensional vector x and y are the generalized coordinates here.

This model has one primary p_ =~ 0 and one secondary constraint pTZ. It

This the h e primar nstraint = ~ 0 and one seconda- .
ory nas one pnmaty co ¢ =m is easy to find the operator of ﬁnige gauge transformations

ry constraint ® = J; 71 =0 of the 1 st type. The generalised Hamiltonian
is defined by the following expression: G=exp{[dtrdat” A(t)[6(t"-t"")x {7 8

8x2(t”)

- 32 o
HE-Hc + [d7x(an +Baini),

L _S(t/_t)l)x2(t/1)_8 R _81’(t1-t’l‘ ________}
Bxl(t/a) t

where H_ is the canonical Hamiltonian. . . -
clS ¢ Using this operator, we find gauge transformations

On the basis of the general method for obtaining infinitesimal gauge
transformations for the given singular Lagrangian /7’ we find

. X'l(t) = x,(t) cosA() - X, (1) sin x(®) ,
’SAu(x) =d,e(),
x;a(t) =X, (t) sin A(t) + xz(t) cos A(t) ,
where ¢(x) is the infinitesimal arbitrary function. Now we construct an ope- ;
rator Q defined by the relation ' y (M =y + A1),

Q,(y,2) =07 5(y -2). . Formula (19), binding the coefficients in the generalized Hamiltonian, has
® v i the following form in this model:

Then, we find the operator _dgt_[xlcos)\ ~xgsinA]l —% =~ (8’ - B)x,,
G:eXp[—'fd4yd4z)\(y)848(y - 2) e—— !

", s 8A , (z) !
6 5 7



a : Y ’
'at—hz""s‘\“”%sm” - %, =(B"-B)%X;, A =a’-a.

These formulae allow determination of relations between the coeffici-
ents a and B.

In conclusion the authors express their gratitude to AN, Tavkhelidze
for the support and useful discussions. We are also thankful to V.V .Nesterenko,
N.B.Skachkov and O.Yu.Shevchenko for discussions.
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T'orunmupse C.A. u op. E2-87-847
YerpaHenne KanuGpOBOYHOTO HPOU3BOIIA
B CHHI'YJIADHBIX TEOPHAX

Haitnensl pmocraTouHnle yClOBHA Ha KanuGpoBouHbie GyHKLHH.
Tony4eHn! raMUILTOHOBBI YpaBHEHHA IBI)KEHHA, KOTOpHIE cojep-
JKaT NMpABWIBHBLIA KaymOpoBOuHbIA npouspol. [TokxasaHo, 4ro Dosy-
YEeHHHIE pPe3yNsTaThl B pPAMKAX KOHEYHOMEPHOH MEeXaHWKH JIerKo
o6o6uialoTea Ha cIIyuail TeopuH noia. PaccMOTpeHbl MpHMepSL.

Pabora sBbinosnxHena B JlaGopaTopuu TeopeTHueckoil GH3INKK
OUAN.

Coobutesine O61elMHEHHOTO HECTHTYTA AepHKIX Hecnenonauuit. Jybura 1987

Gogilidze S.A. et al. E2-87-847
Elimination of Gauge Freedom in Singular Theories

The sufficient conditions for gauge functions are found. The
Hamilton equations containing the real gauge freedom are obtained.
It is shown that the obtained point mechanical resulis can be easily
generalized to feld theory. Examples are analysed. '

The investigation has been performed at the Laboratory of Theo-
retical Physics, JINR.
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