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I. Introduction

N=2 supergravity (5G) was discovered more than 10 years ago/1/~
Since then it has been studied extensively., The majority of
the results have been obtained in the component field approach.
After the first off-shell version of N=2 Einstein SG was found
an elegant general method for constructing such theories bas been
devioped/3’4/. It starts with the conforusl version of the theory
which is then coupled to a Maxwell and various matter N=2 multiplets
in prder to compensate the conformal gauge tranaformations, In this
way three off-ahell versione of N=2 Einstein SCG have been obtalned,
using & non-linear,a linear and a central charged matter multiplets.
Later on the possibilities to couple those theorles to supersymmet-
ric Yang~-Mills (SYM) and matter multiplets have been investigated
Whereas coupling to SYM presented no particular problems, this was
not the case with N=2 wmatter, The reason was the lack of a proper
off-shell description for the principal N=2 matter representation,
the Payet-Sohnius hypermultiplet/®+7/, The central charge formula-
tion of the hypermultiplet which was uaed in 3 is essentially
conatrained {in fact, it lies on~shell in 5 dimensiona, since E)z
= E? ), Although this framework is good enough for coupling the
free hypermultiplet to SG and SYM, it creates severe difficulties
when trying to arrange wmatter self-interactions., On the other hand,
there do not exist off-shell versions of the Fayet-Sohniuws hyper-
multiplet without central charge which involve finite sets of sux~-
1liary fields’B/

Some of the above component results have been translated in the
language of ordinary superspace differertial geometryfg/. As usual,
this léad to & number of torsion constraints, The attempts to solve
them have succeeded only in the linearized approximation 10

Adequate formulations of all the K=2 supersymmetric theories
became possidble after the invention of harmonic superspace/11/. It
allowed to give a genuine off-shell theory of the hypermultiplet (as
well as all the other matter multiplets), without use of central
charges or any restrictions on the hypermultiplet self-couplings
/11,12,13/ ¥eometric unconstrained formulation of the SYM theory
was given in /11,14,13/ Finally, the full gauge group and the
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off-shell unconstrained prepotentials for both conformal and Einstein
SG were found/11’16/ It im remarkable that all those theories are
baged on the fundamental concept of N=2 Grassmann analyticity (much
like N=1 supersymmetry, which is based upon chirality/19/).

in this and in two other papers/17,18/, we complete the for-
mulation of N=2 SG in harmonic superspace. In particular, we write
down the invariant asctions for the various off-shell versions of
Einstein SG and discuss their general couplings with Ne2 matter,

The present paper is devoted to the firast off-shell verxation""2
which is the simplest (in appearance). We begin by studying the
torsion consiraints of the theory first in ordinary and then in
harmonic superspace. The latter allows an interpretation of the
principle constraints as integrability conditions for the existence
of Grasamann analytic superfields in a curved background., This
geometric picture suggests a way of solving the constraints, by
defining a new basis in superspace in which analyticity becomes
manifest. In thie basis the harwonic derivative Qb*+ acquires
analytic vielbeine which turn out to be the unconstrained prepo-
tentials of the theory. Their gauge group is the group of general
coordinate transformations preserving the analytic subspace, Ing-
tead of a systematic study of all the constraints and their conse~
quences we prefer a constructive approach, We build all the nece~
ssary elements of the differential geometry formalism from the
prepotentials in such a way that they transform properly. The
correct Wess-Jumino gauge content of the prepotentials ensures

that those geometric objects will automatically satisfy the const-
raints. This approach supplies a number of useful quantities {"buil-
ding blocks") which help to find the invariant action of the theory/17/
and are heavily used in the further development of the formalism.

In the third paper/18/ we generalize the framework to incor-
porate the superconformal gauge group. The new point is the rather
unususgl realization/1 / of the localﬁ"r(ﬁ;) transformations on the
harmonic variables, The prepotentials of N«2 conformal SG are also
vielbeins in the derivative 93**'/16/(1nc1ud1ng a new one related
to local SU(2) ). Next, following the method 0£/3/ we introdu-
ce various couwpensators for the superconformal group in order to
obtain different Einstein versions. We observe that the versions
using a non-linear (i.e. the one described in the present paper)or a
linear/12/ ¢compensators put severe reatrictions on possible matter
couplings, The reason is that all the N=2 matter actions are given
by integrals over the analytic subspace, The above versions do net

provide a suitable density to d¢ovariantize the supervolume element,
gp the matter Lagrangians must have non-zero weight. In contrast,
the version with a A ~hypermultiplet compensator (with
its infinite set of auxiliary filelds) is free from this problem
and allows the most general couplings of SG to watter. We consider
it aé the ratural generaligzation of Nel minimal SG which also emp-
loys an N=1 analytic (chiral) compensator and does not restrict the
matter couplings.

The reader is assumed to be acquainted with the ideas of har-

monic superspace, as well as with the notation and conventions of
/11,147

II. Analytic superspace and prepotentials

In this section we discuss the constraints for N=2 Einstein SG.
We show that in s superspace with additional harmonic coordinates
these constraints can be interpreted as integrability conditions
for the existence of Grasgmann analytic superfields, We introduce
& new analytic¢ basils in harmonic superspace in which analyticity
becomes manifest. In this basis the harmonic derivative QB
acquires vielbeins which are shown to be the prepotentials of the
theory.

I7.1. XN=2 SG constraints as integrability conditions for
analyticity.

Traditionally N=2 Einatein SG is formulated in a superspace
{ LBRYY ot he followi
{2"4 = (x”") pri ) 9]“) . X "} where acts the following
general coordinate trensformation group:

Sx™M=r™(2) TX = TS(2)
Sok_rhi(z)

The fifth space~time coordinate 3:5 is needed for the descrip-
tion of N=2 matter with central charge/7/. The general cocordinate
transformations of UCS correspond to gaugzing the central charge
and serve as gauge transformations for the graviphoton field in
the B=2 SG multiplet. We stress, however, that neither the SG fields
nor their gauge parameters depend on this extra coordinate.

In addition to (II.1) one defines a tangent space Lorentsz
group with parameters .

F, (f‘zf“)' (I1.1)
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In thia framework the spinor covariasnt derivatives §5¢ s QBQ
have a logcal Lorentz index of, o and a rigid SU(2) index i.
The essential information about N=2 Einetein SG can be given in the
form of the following constrainta/g/x

{%’; I%;E = EdFELa%g + curvature (a)
(11.3)

+ curvature (b)-

{252) - 9524

In fact, only the parts of (II.3) symmetric in L,é are the actual
constraints. The traces are just definitioms for %dp ; %g .
Actually, since the gauge parameters ’C and 52 do not depend
on jgg , one imposes a further constraint:

_ 2 .
€2)5 T xSt

The geometric meaning of the constraints (II.3) is obscure in
the above framework. It can be revealed if one introduces the concept
of harmonic superspace and rewrites the constraints there. Harmonic
superspace has additional bosonic coordinates (lti which descri-

be the sphare 531)(2)/L)(l) 11/
f2m (am 0f), ut s @

(11.4)

(11.5)

In what follows we shall call (II,5) the centrsl basis of harmonic
superapace, The new coordinates iAii do not transform locally:

du* = 0.
(11.6)

Now, the essential symmetric parts of the constraints (II.3)
can be rewritten in an equivalent form using the notation ‘25+d -

]
e
+
®
- %
n
~~
.
o

= curvature

(11.7)

One immediately recognizes the integrability conditions for the
existence of Grassmann analytic scalar guperfields defined by

/117 )
B¢ =0

in a curved background. The conclusion is that the cpnstraints (II1.3)
are designed to preserve the analytic representations (II.8) in the
curved case. This ig very similar to the situation in the N=2 SYM

theary/11/.

(11.8)

In the new harmonic framework the spinor covariant derivatives
D4 (and the conventional ones Da , Ds
by harmonic ones,

%4-#: u+i._‘?_ = F+ %" u"t,_a. .a(b

q&—i } Ut

N (7 I
” -t =9
D= U g ~ U pu

} are supplemented

(11.9)

¥ote that (¥I.9) coincides with the flat-space expresaions/‘\f
because the gauge groups (II.1), {II.6) do not depend on Y .
Their commutation relations repeat the flat ones as well, In parti-
cular, one has

[2",9%]=0 (a)
[&° , DY) = Aty (b) (11.10)
[%o,%w'] = 2%1-4- (c) .

Actually, the set of constrainte (II.7) and {II.10) are not just
consequences of (II.3), they are equivalent. Indeed, masuming the
flat-gpace form (II,9) of the harwonic derivatives (which is allo~
wed by the gauge group), one derives from (II1.10b) that ﬁb*g

is a harmonic function with U (4) charge +1 /11/. Then (II,10a)
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means that it depends linearly on WU ’%2 =W -\’% o ,
which allows to recover the non-conventional parts of (II.3) from

(11.7).

11,2, Analytic basis and subsgace.gridgea

The new equivalent form of the S5G contraints (11.7), (I1.10)
suggents a way of solving them, As explained above the constraint
(II.7) preserves the analytic representations (II.8), In the flat
cage the analyticity of superfield like (1I.8) becomes obvious in
a special analytic basis in superspace:

A
' 3 s
i z (X?.Bf ), w5 .\] (11.11)

where

= x"-i (0% mgd + 9 g™ ‘)u*a‘g;

6
. =i 7Y gt
1y = x® *i(@““@f - 9"«9&3)\'{1“& » (11.12)
~ A
eb* - oM us .

Remarkably, the superspace (I1.11) has a subspace called Manalytic"
M m A+ + &
1 3,1 = (ﬁcﬁ ,f)g ) ;(L v ﬁcﬁ

which is invariant under rigid N=2 superaymmetry/z1/. Then the solu~
tion of (II.8) is just a general function defined in the analytic
subspace:

Daé O = ‘b JP(‘éAlt :-) (11,14)

<
(the dependence on W, is optional).
In the curved case the above approach is generalized by intro-
ducing a curved analytic basis with coordinstes

'-Iam'g = xS 4 gm© (z,4)

1]

3

(11.13)

s s i V=T ) Tkt gt

1)
o g

gk - of ur + UM (20
u

+
= us.' (11.15)

) " P

The functions 1f'(2,&&) defining the change of coordinates
generalize the ones in (I1,12) and do not depend on x® .
preserve the invariance of the analytic subspace under the combi-
ned conjugation ~v ( = x from /11/), we demand

(11.156)

We shall call U‘(z,u) "pridges" from the central (II.5) to
the analytic basis in harmonic superspace, One may recall that
the bridges from the central to the chirel basis in N=1 S5G were
the unconstrained prepotentials of that theory /197,
Here we shall seethat the bridges are secondary objects, which
can be expressed in terms of the true prepotentials.

The purpose of the coordinate change (II,15) was to make analy-
ticity manifest, In other words, functional dependence on the
coordinates of the analytic subspace as in (II.14) ghould be a co~-
variant notion. To achieve this, we define the following general
coordinate transformation group acting in the new analytic basis:

g.x’f:;g - fkm,‘;(‘}A'u‘) ,
BOR - AR 3,00, Sut-0,  aum

} v J

0 85;' = W"(ém@},&) :

A
s
One gees that the analytic subspace (\’.I:MA‘ , gh* , {Lt;_) is

invariant (actually, 323 can also be put aside since the
parametgrs A do not depend on it), The remaining coordina-
tes QF- transforu in a general way.

Combining (II.1), (I1.15) and (II.17) one finds the transfor-

mation laws of the bridges:



U™ = v (2 W) - ™S (zu) =
%M.Y(jh‘u’) _ ,.Cm,g(?) :

SUF - w’*(ﬁ“u) - thi@uy )
SUF =AM (2, u) -

#

’Cf“(z)u} . (11.18)

It is clear now that the analyticity condition (II.8) can be
solved by q)( T, U 'xg) because 0}’39" transforma
homogeneously. This suggests the fpllowing ™almost aimple” form

for %& :

V=N +
By =By e YA

A

= V'; * A*q

A (11.19)
Here E 2 ¢ (Zﬁ,u_) are the only remaining vielbeins., They
transform under the coordinate group {(II1.17) asnd the tangent space
Lorentz group (II.2):

BB NP e A

I

o -
(bere ’D+Q = Q/QQA ). The Lorentz connection A*ﬁ
is the Lie~algebra valued and transforms as follows

tan - _ Ot . ’§ LA
A

(11.20)

§

(11.21)

The quantities £ and A in (I1.19) are still subject to the
constrainte (II,7) and (II.10). In what follows we will be able
to express then in terms of the unconstrained prepotentials of
the theory.

I1.3. Prepotentisls and Wess- umino gauge

*
Above we have seen that the spinor derivative % @ becomes
simple in the analytic basis. Instead the harmonic derivative Q)
which was gimply ‘B+ in the central basis, now becomes

+
%AB (2"'um) 2\11’)
:’TUHHMS—?«— T8 22)
a,x:nﬁ H ng‘k (11.2

(4
The vielbeins H in {I1.22) originate from the coordinate change

(11.18)
++ms +
H ) .U.mﬁ {a)
A A
Emt ¥ 3
HTF = 3] ¥ Ur* (b) (11.23)

A A Iy A A . A
4R [T + ¥ - + -+ -
ot vt :of:*_'u"'“+® [ LTS
e
Their tranaformation laws follow from the fact that %*
does not transform, {see (I1I.6), and frow {II.17):

¥+ M rr\ M _ * o
o H = B y MEmMSET L )

Note that in (II.22) there is no comnection since the tangent space
group parameters 2 (&) do not depend on W1 .
Unlike the harmonic derivative &))" above, the derivative
%° should keep ite flat-space fors in the analytic basis:

»- .
% 2 + eA 09" 9* (be»’“ (11.25)

The reason is that all the objects under consideration are taken to
be eigenfunctions of this operator, i.e. they carry definite U(4)
charges. This means that the constraints (II.10b,c), which were
obvious in the central basis, are sutomatically sutisfied in the
analytic one as well.
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OQur next step is to plug the above expressions for GD L

(11.19) and D' (11.22) into the constraints (IL.7) and
{II.10a} and see under what coﬁditions on the vielbeins EERV s
H“' and the connection A a they can be satisfied, We

start with the constraint (II.10a) which will lead us to the prepo=-
tentials of the theory:

o
SVIYHTE SVIWTE oL+
VQ-H Qm,s V“H (af‘

+(%HEQF-VZHH?")Q; N CBH A*'.« _ O

The most important consequence of (II.26) is the analyticity of the
vielbenis HH'm‘c i and H*"f‘* H

v; Hﬂ'm‘s"{:ﬁn - O @
:> H++m.s’,F\+ - H*’*”rg;ﬁ* (’3‘ u') , (11.27)

Choosing them to be arbitrary analytic functions and taking into
account the transformation laws (II.24), (II.17) one cen see that
most of the components of these superfields can be gauged away. What
remains in the Wess-Zumino gauge turns out to be exactly the
set of fields of N=2 Einstein SG in its first off-shell version’2 /;

H ™G5, ) =-2i6' 648" e +REV' O'Y™ RO UG +
OBy ¢ kEVEPV ) wg
H Y3000 = ilo)-@Y]dite +iko'etd* B, + (11.28)
KEPep +hEV T kO i .
H™ F*Gau) = k (0Y’ 0 (A*szvr?)m(ﬁ‘ 9'*[%wa~) TP
+k(9*)2(9*)25r‘1&’; ) TR - W

N
ram§, pr

(11.26)

N So, we conclude that the analytic superfields H
are the unconstrained prepotentiamls of the theory. The remainder of
thie paper will be devoted to the conetruction of all the other ob-

Jects (e.g., the vielbeins Eﬁ" , the connections A*a , ete,)

in terma of these.
The careful reader may aak the guestion: what about egs. (II.23)

which seem to exprese }{** in terms of the bridges Y ?

The anewer is: the bridges are secondary objects in our scheme.

This means that given the srbitrary superfields f4*‘ one can
10

solve (II1.23) for W ., Thése are highly non-linear differential

equations which can be solved perturbatively. The general procedure
is described in the context of N=2 5YM theory in 1 . However, we
emphasize that the analytic basis is self-contained, i,e. everything
can be formulated in if., In particular, all the geometric objects of
R=2 SG including the action, as well as N=2 matter and SYM are most
naturally formulated in that basis. So in practice we shall not use
the explicit form of the bridges 1J  for going back $o the central
basis, it is pufficient to know that they exist.

I1.4., We continue the examination of the consequences of (11.26).

A
e
» The vielbein H r can be gauged away since the parameter
)”' is general, The suitable gauge for H**F' coinci-
des with its flat limit/117;

e g,
H =0 A (11.29)

A
Then A"— is fixed by the relation

YAl L
) (I11.30)

Note that is gauge choice is not obligatory and is wade for conveni-
ence, +
In the above gauge the coefficient of (3F in (I11.26)

yields the equation
»

%'H- E&f* - O
{11.31)

A
which means that E&r is covariantly independent of W
(back in the central basis it would be simply independent of wi Je
This allows us to make a further gauge choice . The (covariantly)

uf ~independent Lorentz parameter 51 &$ can be used to
gauge away parts of Eﬁ (see (I11.20))
d =B S R S
»~ = M
o -2~ = v (11.32)
F Rl F ot

1n
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Then the Lorentz transformations are induced by the superspace ones:
* on" -
ﬂd‘% - A(A }P)
S ST hoSt
A&E F vd - Pa‘t ""F‘Kr’D"&
The quantities F ,F,"‘

SLuF = & AT = 4T ARETNT
e N U e
=’31§\';~+ Faf m’igwr“ ’j“dmp' th ary

€I1.33)
will then transform as follows:

g

—— F'FF‘
(I1.34)

Finally, (11.26) yields

ok
DA (I1.35)

Now we turn our attention to the constraint (II1.7). The vanis-
hing of the torsion in that anticommutator allows to express the

connection A ﬁ;

A*‘PT = 2£°‘(FAX)F (11.36)
AZ‘P' ’2(V B, Mg b Z(wE'A)

+ A (EI 373
Note that <2)+ V ] O and %‘H P‘

imply (I1.35). Another consequence of (II.?) is a futher restriction
on Fdr :

A(‘:{FP),R‘O = {A*&,h*e,}]=0-

n

(11.38)

Concluding this section we formulate the remaining problem, It
is to fir{‘d suitable expressions, in terms of the prepotantials for
F , Fd‘f‘ satisfying (I11.31), (II.38). For this purpose we
shall make use of the vielbeins of the harmonic derivative ci-)

which we are going to introduce in the next section.

12

III. Covariant derivatives B and CB"&

In the preceding section we consldered part of the covariant
derivatives in harmonic superspace %, %’H %O .
To complete the set of derivgtives we need also L33 g" .%Aa{
and @D . As we ghall see, D is the wain one, the
others are simply defined by conventional constraints,

In the central basis @~ is flat (II1.9) and obviously
satisfies the relation

* -1 _ap®
[%+a% ] “%

(I11.1)
Switching from ¢entral to analytic basis one creates new vielbeins
(Bee (I1,22)):

D = W g uf‘gn

e

) H“""’?‘* =y )\“"c'?‘ .

(II1L.2)
They can be obtained from the bridges U (cf. (II.23)). However,
the constraint (III.1) relates the vielbeins H' directly to the
prepotentials HH' (see (II11.25))
PHEHT"T ~ T = 0
e +4?\+ ?4‘-
AT e " T o= -
DU~ U AN
(111.3)

These are linear differential equations for the unknown H
Moreover, their solutior is urique since the homogeneous equations

U =0 implies H "= O N/ Recalling the ana-
logous equations (II1.23) for the bridges U~ one sees that the
latter are non~linear (the arguments of H“ are 2“’ 2+’U‘(z,u )

and thelir solutions contain an ambiguity corresponding to the
gauge freedom (II1.18). All this makes the equations (I1.23) very
difficult to solve.

In contrast, the equations (III,3) for H“ can be easily
solved, as shown by B.M.Zupnik 20 + For ihis purpose one defines a
new "quési-flat“ basis:

13
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o 4 (05678 +6, 67 E)) ,

m‘;

W

xi -1 (9"“9;"" 8:5«9:-‘) )

(111,
e L yigh - grahe ’
N -
ort - uright —weok
The covariant derivatives c?b+* and €b" become
%if* - ,3++ + Lf+h4 CDO
" (111.5)
=2+ WM 25
llere
-
ka0 < U7 42000670
ey 3§ . [ xok =i RE (111.6)
k (3(!“) = H —L(Eﬁo - 90 eo ;
r r
£ M CIHET M= pght M o BE
l'» (2«:;“) =u+ H r "u'&“ A w 80

) TN
are the deviations of the vielbeins H from their flat-space

values, In this notation the equations (III1,3) take the following
form:

e e -0,

[ L:.*.M >
where = ™ » Equation (III1.7) is very similar
to the analogous equation in N=2 SYM theory and has the following
unique solution/QO/

(IIL.7)

0= (o da GO Bl K
'R i

n
@e)lsed) - WU,

The harmonic distributions (u*ut)'i ’ (“*u:.)—z

were defined
in » They have the following properties:

i

.can conclude that in the central vasis E 4T

{2-2)

) =T D (e ul),

)t =S w,u,) ) - (wiw),

which help to check that (I1I1.8) is the solution of (III,7), Finally,

one puts {II11.8) into (III.6) and goes back to the coordinates

(Za,U ), thus obtaining the solution of (III.3). .
Having constructed the harmonic covariant derivative %

we can proceed to the definition of %‘_Q :

27 - [@7, 241

(111.9)

This relation is obvious in the central basis. To evaluate the commuta~
tor (II1.9) inthe analytic basis one has to use (II.19) and (III.2).
Further, since %‘*E&f‘ = O (II.31) in the gauge (II.29), one
t does not depend
on uf  so @ ExlF =0 as well (whiech is of course
true in any basis). Thus one finds
A
Y i ok A LY RN -
%£=‘“V;H/‘fap—-\7du ’On5+l\g)

-~ ~— 2%
Ay =D A% -
(111.10)

¥inally, the vector covariant derivative is defined as usual
(see (II.3b)):

%da = {%tt ,q:l} + {%1 ;%*“]] ’

(II1.11)

Por the derivative %g we keep the expression (II.4), which
generates further restrictions of F and F_t (I1,32) via

the constraint (II.3a). In the next section we will present explicit
expressions for F , F # in terms of the derivatives of H ™~ .
By constructionthey will transform properly (I1,34), which will guaran-
tee that they satisafy sll the restrictions, This will complete the
differential geometiry formalism. ‘

15
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IV. Building blocks, Superspace density

There are two ways to find the quantities ’:) F:* r which are
needed to complete the definition of the covariant derivatives 2}2% B
One is to study the various consequences of the constraints (such as
(I1.31), (II1.38) ard others following from {II.4) which we have not
writtern out explicitly) and try to solve them, Experience with N=1 SG

bay shown that it is much easier and more constructive to first
find some "building blocks™ with simple transformation laws built
out of the prepotentials. Then it becomes an easy task to form the
unknown quantities out of them. The guarantee that these will be
the right pbjects will be their transformation laws., Indeed, if there
were two different quantities with the same trangformation laws and of
dimension gzerc (as is the case of f:) F:x ) one could form a dimen-
sionlesa tensor cut of them, but we know from the W 2‘-@puge that
there are no such tensors,

IV.1., Atrip to 6 dimensions

A ueful irick to find the building blocks we need will be a
temporary extension of the dimension of space-time to 6., Then we can
define "almost covariant® derivatives by teking (II.19) and (III.10)
and replac:mg F-» 1 F Fo> 0 :

D5 =E:"% + s ; a1
A
+m +__ i
By 0ef, EMF =0, EZTF 0 T
Here~wn = (w5, 6) . They transform as follows
+ Y S
BD :_?ARP ﬂ)/\
2 ” P (1v.2)
and the connections [p\ transform correspondingly (we shall not

need [?\ explicitly)., Next we define and alumost covariant
6-vector derivative:

otp] ‘{ [,(, k [E[:tﬁ] 9 ﬁ\[’d ’

(IVB)
where
ﬂ:“)ﬁ‘i'___ + ‘!/'\ “";‘\4),:‘4' + i‘* + —-va)f-\‘-f
Efé‘cﬁj =03 9 H "l'z\r:cﬁ:{ DrH
(Iv.4)

16

{the expression for Ef" Py F- will not be needed).
The trick now is to consider tbe 6x6 matrix which is used to calcula-
te the Bereginian Ber ( A ’4)

Ea)

wm m -1
Craps ;‘E[;?3+ g,‘PJ ([E) [E

- 4/4 -1y
..? 'B M 929[3 er .

-+ -
2g H
(IV.5)
where

A + -
eaf‘;: D T . (Iv.6)

Thia matrix is built out of known quantities (the derivatives of
H ) and is expected to transform homogenecusly, Indeed ualnb
(11.17), (II1.2) and the analyticity of the parameters ﬂw“if‘*

one can check that ~ - " A
m m e + m + - M
‘SQEQ@ = €rap) Ap — 02 ar €[~;§J +9{3 A e;gﬁj;
=24 A7 =04 At et P oty

rr © o (Iv.T)
We would like to note that the 6-dimensional construction above
was purely auxiliary, Nevertheless, it may prove relevant in a future
attempt to formulate 6-dimensional $G in superspace.

Iv.2. Expressions for F: and FTu'ﬂ

Returning to our 4 (+1) dlmenslonal world

we can split the matrix Qfa 93 in the following way:
e 5
" Cop € O
A w 5
Aaq = e ¢ € ¢ o
o o @
< Pl P F (1v.8)
7 m o5
e 2y ip € Séé O
A
(the zeros atand for the sixth componenis of ‘W ). From (IV.7)

we find the transformation laws of the entries in (IV.8):
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™, 5 " ™, 5 + - 3 + - m, 5
sedxﬁ. - e"{f; 2,‘4 (Dd 2 QJ,- - /5 23’ eo(di -
BN AWAZENT (@
< M, WS 4 i S ol —a M5 (1v.9)
Se™M = €A AT+ TR T L

There are two sorts of terme in (IV.9): vector and spinor rotations.
Since the guantities F' F' f‘ that we are looking for have only
terms of the second k;nd in their laws (II1.34), we shall get rid of
the A, s terms in (IV,9). Define the following objects:

ga&:emex& Q;’;‘ eﬁ? :5«(55}* .

A 3 4 9 (a)
(Iv.10)
of 5
7= e -eMelte,; . (b)
Their transformation laws are
oL o +o 7ol - ,3& tol , — oLp T ol -
S A R LA R S A R
- Pé t g Tad pvpf; _t+‘ - ‘*é . (a)
(1v,11)

S 05/ AT cdd St 4 5 pdd 0t 5

5 £ MN T T F A
Pinally, combiring thc above results, after some work, we arrive at
the following expre531ons for F;r F :

={¢ +f% FoA

S (P AR
m:ref - F V- -2 F 2]
frefaa g H"f«uf : (1v.13)

(1v.12)
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One can check that they have the desired transformation properties
(I1.34).

IV,3., Superspace density

At this point we already have all the ingredients of the
differential geometry formalism expressed in terws of the prepoten~
tials, This allows us to calculate anothur very important object,
the Berezinian of the vielbein E;A M entering the spinor
and vector covariant derivatives (II.19), (II1I.10), (III.11).
is needed as a density which compensates the transformations of the

volume element o{‘*:g difﬂz al"‘ﬁ;d,x&
E= Ren EN

SE = (”Dm)w-?ﬁ‘t gf""’-‘) E . (Iv.14)

Once again, instead of calculating E: directly it is easier to
compile it from the building blocks considered above. Indeed, one
can check that the following expression

R N e e

(Iv.15)
transforms se required by (IV,14)., As irntermediary steps one should

show that
A

~ + A - - -
53&1’“:,’3&: ;\v Q;}rﬂ +€Qv9.3 2F++

G HTTT g gl
}
(Iv.16)

s U O-FFV- 272 = £ 5.2 - F°9% 33

An interesting property of the density (IV.15) is that it depends
only on kuw and H'""I““" , but does not involve H ~F .
The reason (which will become clear ln/1& )is that £ is
essentially a conformally covariant object. On the other hand M 5
will serve as a coumpensator for some conformal transformations in
the action for N=2 Einstein SG, which will be given in’”

.
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Famenepun A.C., Hryen An Ku, Cokxaues E.
N=2 cyneprpaBHTAuHMA B CYHNEPIPOCTPAHCTHE:
pemeHne cpaselt

E2-87-84

310 nepBasm us cepuy paboT, B KOTOPHX DPA3IBHBAETCH BHe-
MaccoBas dopMymposka Ges cBaseit N=2 cyneprpaBuTaluH B rap
MOHHYECKOM CYRepnpocTpaHCTBe. 37eck Mu NOCTPOMM H3I Npeno—
TeHnManos /aHamiTHYECKHX penepoB I'apMOHMYECKOH KOBapHaHT—
Ho#t npoussopHo#t DY/ snementn puddepennmanbHON reoMeTpHH.
TeMm camuM HaleHO pemeHHe cBAsell nmepBoil BHeMAacCcOBOH BepCHH
sitmmreldHoBCKOR N=2 cyneprpaBnTanuu. H3s mpenoTeHuHanoB no—
CTpOeH TaKxe DAA NONESHWX ''KyGHKOB'" ¢ mpocTeMM TpaHChopMa-
UHOHHNMH cBONCTBaMu. H3 HHMX cocTaBleHa WNOTHOCTBH IYIA TION~
HOT'O cynepofbeMa rapMOHMYECKOro CYNpenpocTpaHCTBAa.

PaGora munonueHa B JlaGopaTopHH TeopeTHuecKol GHIMKH

Coobiese O6beaHHEHHOIO HNCTHTYTA AnepHBIX uccnenopanwmit, Jly6ua 1987

Galperin A.S., Nguyen Anh Ky, Sokatchev E.
N=2 Supergravity in Superspace: Solution
to the Constraints

E2-87-84

This is the first of a series of papers in which we de-
velop the off-shell unconstrained formulation of N=2 super
gravity in harmonic superspace. Here we construct the ele-
ments of differential geometry in terms of the prepotenti-
als (the analytic vielbeins of the harmonic covariant de-—
rivative D**). Thus, we find the solution to the const-
raints of the first off-shell version of Einstein N=2 su-
pergravity. A number of useful "building blocks'" with sim—
ple transformation laws are constructed from the prepoten—
tials. They are used to write down a density for the full
supervolume of harmonic superspace.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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