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I. Introduction 

N=2 supergravity (SG) was discovered more than 10 yeaTs ago ~ 

Sinoe then ~t has been studied extensively. The majority of 
the results have been obtained in the component field approach. 
After the first off-shell version of N.2 Einstein SG was found /2/ , 
an elegant general method for oonstructing such theories has been 
de~oped/3,4/. It starts with the conformal version of the theory 
whiQh is then coupled to a Maxwell and various matter N~2 multiplet, 
in order to compensate the conformal gauge transformations. In this 
way three off-shell versions of N.2 Einstein SG have been obtained, 
using a non-linear,a linear and a central charged matter multiplets. 
Later on the possibilities to couple those theories to supersymmet­
ric Yang-Mills (SYM) and matter multiplets have been investigated/5/• 
Whereas coupling to SYM presented no particular problems, this was 
not the case with N~2 matter. The reason was the laok of a proper 
off-shell description for the principal N~2 matter representation, 
the Payet-Sohnius hypermultiplet/6 •7/• The oentrsl oharge formula­
tion of the hypermultiplet177 whioh was used in/31 is essentially 
constrained (in fact, it lies on-shell in 5 dimensions, since pi • 
• ~z ). Although this framework is good enough for coupling the 
free hypermultiplet to sa and SYM, it oreates severe diffioulties 
when trying to arrsnge matter self-interaotions. On the other hand, 
there do not exist off-shell versions of the Fayet-Sohnius hyper­
mUltiplet without central charge which involve finite sets of aux­
ili&r7 fields/a/• 

Some of the above component results have been translated in the 
language of ordinsry superspace differer.tial geometry/9/. As ususl, 
this lead to a number of torsion constrsints. The attempts to solve 
them have sucoeeded only in the linearized approximation/10/• 

Adequate 	formulations of all the N=2 supersymmetric theories 
/11/•became possible after the invention of harmonio superspaoe It 

allowed to give a genuine off-shell theory of the hypermultiplet (ss 
well as all the other matter multiplets), without use of oentral 
charges or any restrictions on the hypermultiplet self-oouplings 
111,12,13/. A feometric unoonstrained formulation of the SYM theory 
was given in I 1,14,1't Pinally, the full gauge group and the 
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off-shell unconstrained prepotentials for both conformal and Einstein 
SG were found/11 ,15/. It is remarkable that all those theories are 
based on the fundamental concept of Na2 Grassmann analyticity (much 
like N=1 supersymmetry, which is based upon chirality/19/). 

In this and in two other papers/17,18/, we complete the for­

mulation of N=2 SG i .. n harmonic superepace. In particular, we write 

down the invariant actions for the various off-shell versions of 

Einstein SG and discuss their general couplin~s with Nc2 matter. 

The present psper is devoted to the first off~shell version/2/ 

which is the simplest (in appearance). We begin by studying the 

torsion constraints of the theory first in ort)inary and then in 

harmonic supers pace. The latter allows an interpretation of the 

principle constraints as integrability conditions for the existence 

of Grassmann analytic superfields in a curved background. This 

geometric picture sl.\ggests a way of solving the constraints, by 

defining a new basis in superspace in which analyticity becomes 

manifest. In this basis the harmonic derivative ~++ acquires 

analytic vielbeins which turn out to be the unconstrained prepo­

tentials of the theory. Their gauge group is the group of general 

coordinate transformations preserving the analytic subspace. Ins­
tead of a systematic study of all the constraints and their conse­

quences we prefer a constructive approach. We build all the neCe­
ssary elements of the differential geometry formalism from the 
prepotentials in such a way that they tranaform properly. The 
correct Wess-Zumino gauge content of the prepotentials ensures 
that those geometric objects will automatically satisfy the const­
raints. This approach supplies a number of useful quantities ("buil ­
ding blocks") which help to find the invariant action of the theory/17/ 
and are heavily used in the further development of the formalism. 

In the third paper/18 / we generalize the framework to incor­
porate the superconformal gauge group. The new point is the rather 
unusual realization/16/ of the local S1J (f.,) transformations on the 
harmonic ~ariables. The prepotentials of N=2 conformal SG are also 
vielbeins in the derivative £jT+ /16/(including a new one related 
to local S U ('2.) ). Next, following the method Of/3/ we introdu-
Ce various compensators for the superconformal group in order to 
obtain different Einstein versions. We observe that the versions 
using a non-linear (i.e. the one described in the present paper)or a 
linear/ / compensatora put severe restrictions on possible matter 
couplings. The reason is that all the N=2 matter actions are given 
by integrals over the analytic subspace. The above Versions do not 
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provide a suitable density to covariantize the supervolume element, 
so the matter Lagrangiana must have non-zero weight. In contrast, 
the version with a ~+ _hypermultiplet/11 / compensator (with 
its infinite set of auxiliary fields) is free from this problem 
and allows the most general couplings of SG to matter. We consider 
it as the natu:ral generalization of N.. l minimal SG which also emp­
loys an N=1 analytic (chiral) compensator and does not restrict the 
matter couplings. 

The reader is assumed to be acquainted with the ideas of har­
monic superspa\:e, as well as with the notation and conventions of 
/11,14/. 

II. Analytic superapace and prepotentials 

In this eection We discuss the constraints for N=2 Einstein SG. 
We show that in s superspace with additional harmonic coordinates 
these constraints can be interpreted as integrability conditions 
for the existence of Grassmann analytic superfields. We introduce 
a new analytic basie in harmonic superspacc in which analyticity 
becomes manifest. In this basis the harmonic derivative SD++ 
acquires vielbeins which are shown to be the prepotentials of the 
theory. 

II.1. 	 N=2 SG constraints as integrability conditione for 
analyticity. 

Traditionally N=2 Einstein SG is formulated in a superspace 
{-eM:: ('1..Yfl 

) eJ4i.. art) ) '1.> ') where acts the following 
general coordinate transformation group: 

<;;Xi'>'I;: 'tWl(-r) '8"X·;: 'tS"C'l)

" )


S&~'='t~t(r) F # (r)~)' (II.1 ) 

The fifth space-time coordinate JC~ is needed for the descrip­
tion of N=2 matter with central charge/7/. The general coordinate 
transformations of :c$ correspond to gauging the central charge 
and serve as gauge transformations for the graviphoton field in 
the N=2 SG mUltiplet. We stress, however, that neither the SG fields 
nor their gauge parameters depend on this extra coordinate. 

In addition to (II.l) one defines a tangent space Lorentz 
group with parameters 
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tl -:t.n~~:: (5l.'~(') '\ Sl.oI ... .R~ =0.0" 
o JL(i~('i!)) (II.2) 

I. - i.. 
In this framework the spinor covariant derivatives~.l ~ i:l 
have a local Lorentz index ell ~ and a rigid SU t~) index i. 
The essential information about :~.2 Einstein SG can be giv'en in the 
torm ot tbe tollowing constraints/9/ 1 

{ ~~ I ~t~ .. Eot r~ ~d ~ <; + curvature (a) 


(II.) ) 


+ curvature (b),t9}~ I~r~) • ~~d ~.,(~ 

In fact. only the parts of (II.) symmetric in Ll~ are the actual 
constraints. The traces are just definitions for ~ot~ I <;at;' 
Actually, since the gauge parameters Land S2. do not depend 
on X'" • one imposes a further constraint: 

to
9) 5 = Cb'1:.<;. (II.4 ) 

The geometric meaning of the constraints (II.3~ is obscure in 
the above framework. It can be revealed if one introduces the ooncept 
of harmonic superapace and rewrites the constraints there. Harmonic 
superspace has additional bosonic coordinates U--+ 

t whicb descri ­
be the spbere SV(2.)/U(i) 111/ 

{"lM:. (')ClVI) eri.) I U'±t ) 'XC; \. 
(II.5) 

In what follows we shall call (11.5) the central basis of harmonic 
superspace. The new coordinates Ui~ do not transform locally: 

bU±, = O. 
~ (II.6 ) 

Now, tbe essential symmetric parts of the constraints (II.) 
can be rewritten in an equivalent form using the notation ~+l ­
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-+ a.... I­ ~ '" (ot .~)= U ~ :o~ 

• curvaturei ~i 1~;'1 
(II.7 ) 

One immediately recognizes the integrability conditions for the 
e,xistence of Grassmann analytic scalar euperfields 4> defined by
/11/ 

<l)+~ ~ :. 0 
(II.8) 

in a curved background. The concluaion is that the constraints (II.) 
sre designed to preserve the analytic representations (11.8) in the 
curved case. This is very similar to the situation in the N~2 SYM 
theory/11/. 

In the new harmonic framework the spinor covariant derivatives 
Sb~ (and the conventional ones ~~ • ~S ) are supplemented 
by harmonic ones. 

d..-- ,-Va ""-­7,.}"",1).-_:0Ct/'"+-= ut~ '" _: '(j++ <1J\.lTLt)u.- L 

0..0= u+~2 . _U-~'2._ ::;;r;l
J.J (() U.h (() U. ~ 

(II.9 ) 

Note that (II. 9) coincides with the flat-space expressions/", / 
because the gauge groups (11,1), (11.6) do not depend on u.! 
Their commutation relations repeat the flat onea as well. In parti ­
cuJ.ar, one haa 

l 'l)++) 9:/~1::: 0 (a) 

[ 9JO 
I <1)+.1.1 = <ll+l (b) (II.10) 

[~O I <:<J .... l = 2<:jJ++ (c) 

Actually, the set of constraints (11.7) and (11.10) are not just 
consequences of (11.3), they are equivaler,t. Indeed, assuming the 
flat-apace form (11.9) of the harmonic derivatives (which ia allo­
wed by the gauge group). one derives from (II.10b) that ~t~ 
is a h~rmonic function with U (1) charge + i /11/. Then (II.10a) 
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means that it depends linearly on U.+~ • <l)\, ... u.\CX) I.~ 
which allows to recover the non-conventional parts of (11.3) from 

(II.7). 

11.2. Analytic basis and subspace. Bridges 

The new equivalent form of the sa contraints (11.7), (11.10) 
suggests a way of solving them. As explained above the constraint 
(rr.7) preserves the analytic representations (II.6). In tIle flat 
case the analyticity of superfield like (11.6) becomes obvio~ in 
a special analytic basis in superspace: 

I t!. M~ (y.'M e~:!) tA.:t" 't,<; 1,.l 1<. ,. ," ) ~) j (II.ll) 

where

1:.; = X"" - ~ (e~ 0"" e~ + e.i trYo\ EF) t.l~ IA-J 
'1.'[ = X S .t i (&ol~ e} - e~ 9~) u'+t lt~ (II.12)) 

,. II , 

et'~ =e/"" uA . 
" 1­

Remarkably. the superspace (11.11) has a subspace called "analytic" 

M _ :!'11'\ r+ t. S"'1 " )'l:,. \dA-( AleA) Lli. (II.13 ) 

which is invariant under rigid N=2 supersymmetry/11/. Then the solu­
tion of (11.6) is just a general function defined in the analytiC 

subspace: 

D~ ~ = 0 => ~ = ~(jAMlut )'J:!) (II.14 ) 

(the dependence on 'l:,.'" is optional). 
In tbe curved case the above approach is generalized by intro­

ducing a curved analytic basis witb coordinstes 

-:x:.tl,t; ~ 'X. .... ,5' +- 1flOt,,, (e ,u.) 
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1\ . '" 

et'-± = el"" " ll\ -r1Jr-!("t ll)


I,.. 

lft
, :: u.~ , (II. IS)At \. 

The functions 1[" (:c ,it) defining the change 0:1; coordinates 
generalize the ones in (II.12) and do not depend On :C.. • To 
preserve th~ invariance of the anslytic subspace under the combi­
ned conjugation IV (:= ~ from /11/), we demand 

~"....." /'''V
V)'JI,S=-'lJ m,> ) lrr±=1J;"± '1[;'1:= _lff4t, 

(II~16 ) 

We shall call 1f(Z,u.) "bridges" from the central (II.5) to 
the analytic basis in harmonic superspace. One may recall that 
the bridges from the central to the chiral basis in N=1 SG were 
the unconstrained prepotentials of that theory /19/. 

Here we shall see that the bridges are secondary objects. which 
can be expressed in terms of the true prepotentials. 

The purpose of the coordinate change (II.lS) was to make analy­
ticity manifest. In other words, functional dependence on the 
coordinates of the analytiC subspace as in (11.14) should be a co­
variant notion. To achieve this, we define the following general 
coordinate transformation group acting in the new analytic basia: 

b'X Wl5.".. 'A lO\,<:;" ('7; IA)
". t5 A I I 

I' "~e-"+ =- :\"+("1\. ll) ~u~ 0 (II.l7)A (J"'). 

,,1\ )

b er- .. A'" -(d AI e: )IJ. , 

lO\,' ~+ 1o)One sees that the analytic subspace ( :x::: A J e 1- 1 u.. -~ is 
invariant (actually. X ~ can also be put aside since the 
parameters '>. do not depend on it). The remaining coordina­
tes er- transform in a general way. 

Combining (11.1), (II.lS) and (11.17) one finds the transfor­
mation laws of the bridges: 
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~1r~.'5'E:.1.f~I,!>I(i!I, 1.(.') -1f""'S"(i!/U) = 

= 'A~I'(JAIU.) -'"CWlI~(t) 
A 1\ ,1\

b\rr+ ... Ar+ (JA Itt) 1: ,k~(~) Uti 

,., i\ A, 


f1rr- = Ar-(2",U) 1: f"L (~) U, i (11.18) 


It is clear now that the anal:yticity con~i tion {II.8) can be 
solved by cp = <t> (~A,U.,X~) because "l/--a9-r transforms 
homogepeQusly. This suggests the fpllowing "almost simple" form 

for 9J~ 

CfJ\ :: ~ P. tq " + A-t~ =- \7; + A\ .J.. ~ (lftr ­
'" 

'" (II.19) 
Here (;: 0. r ("2It, u. ) are the only remaining vielbeins. They 
transform under the coordinate group (II.17) and the tangent space 
Lorentz group (II.2): 

II. ..." 0 1\


<i) E ,. fA:: (),. P E,. r -\- E,. .'d"''' '\ r-

d. JLJ. r c( '11\ 

(II.20)
•+ In 1'\ ,,- ...(here '0 ~ :: 'dv ~ A ). The Lorentz connection A~ 


is the Lie-algebra valued and transforms ss follows 


1\ 

() ~'A+" ~" +b A~ rl ;:: - \7; Q~l -+ ,",l.~ ,n'O 

j\ ~ /I 1­

+J2~8.A~§i + J2iL Ad tj. 
(II.2l) 

The quantities E and A in (II.19) are still subj ect to the 
constraints (II.7) and (II.10). In what follows we will be able 
to expreas then in terms of the unconstrained prepotentials of 
the theory. 
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II.:3. Prepotentials and Wess-?,:umino gauge 

Above we have seen that the spinor derivative ~+~ becomes 
simple in the analytic basis. Instead the harmonic derivative 1D.~ 
which wasaimply ~++ in the central basis, now becomes 

++ ++ ( :r.~ ) 0 .-:::~AP, =- q)ce. lAllA, .. 'O{21\11A,r~) 

• 


1"\++ UHlII,'i ~ co +H++rt. '2...... t (II.22 )= I + n .......X liI, l)Gt
<" ,. A 

~+...The vielbeins in (II.22) originate from the coordinate change 
(II.18) 

!-tHo"" .. '" CJJ...... 1f""S (a) 
II. A 

H+tr+ ++ ~+ 
:= Cl) 1)1 (b) (II.2J) 

,,_,. III" A " A. 

H++r-.. arLU~ -+<i)++trr-=ef"1"_1fr++'f)1""lJ r- (c). 
L A 

++ 

Their transformation laws follow from the fact tha~ ~ 

does not transform, (see (II.6), and from (II.17): 

,.

b ~·t+ M :: CfjH AM M=~,S",rt 


(II.24) 

Note that in (II.22) there is no connection since the tangent space 
group parameters J2 (~) do not depend on u.1: 

Unlike the harmonic derivative ~+~ above, the derivative 
9;)0 should keep its flat-space form in the analytic baais I 

.. 
.. II 
dO _ ~o + e r+ _A+ e"- 2. .. 

" 
7:J - U A lOSt' A. 109-fA· (II.25 ) 


A 


The reason is that all the objects under consideration are taken to 
be eigenfunctions of this operator, i.e. they carry definite ll(!) 
charges. This mesns that the constraints (II.10b,c), which were 
obvious in the central basis, are automaticslly sutisfied in the 
analyt;ic one as well. 
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Our next step is to plug the above expressions for )b+l 
(II .19) and <JjH (II. 22) into the constraints (II.7) an..d 
(II.10a) and see under what conditions on the vielbeins E';J..t" 
11++n and the connection A"'"~ they can be satisfied. We 
start with the constraint (II. 10a) which will lead us to the prepo­
tentiale of the theory: 

0'" H+-\om,s ",+ \ , ....+ 
1"\

r-+ n - + 
- V ~ t;:) - V' t1 . ' U· 

""Sol r 
(II.26 ) 

+ ('l>H E;. t- _V; \·r~r-}1; -\- CfJ++ A+~ :: 0 . 
The most important consequence of~(II.26) is the analyticity of the 

1\t-+l'II~ II+"''''~viel benis n' tlnd t1 : ,..
\7; HH WI,t; ) r+ =- 0 ==.;:. 


(II.27)~++WI''',r+ -::: HH~, ... d~+ (~ .. ,tt)-::» 
" A 

Choosing them to be arbitrary analytic functions and taking into 
account the transformation laws (II.24), (II.17) one can see that 
most of the components of these superfields can be gauged away. What 
remains in the Wess-Zumino gauge turns out I~" I to be exactly the 
set of fields of N=2 Einstein SG in its first off-shell version/2 I: 

~++nI(~ 11.) = -2a+6""Q+ t:'("i) +1c(8t)19"'f"C:(~A) u.-t + 
4A, " 

t~(et)tett'"t(1.~)U-;. +- k(911{9+)2V"'(~¥(1:,,) If(lL~ ) 

HHY~A'U):::: i[(f;rt)t._(9+)t]J.,.te + It e+rae+&A + (II.2S) 

tt(9t-)l flf 'Ui +tte+)f, e"Ji t!1 + ~ (e,l.~+)l.S\i) u,:., ~~ ) ) . 
HHI"+(11'.1l) -::: k(e+)2 e~ (Al"r+ Nrr) l- t(fi+f EP·~'[()/(f-\+i N) +1(,/ ] + 

1-~(et)tl~+)t~rtl.(} HHr+ '" '~",t',..+. ,.. 
11++l"t,'ii. r+

So, we conclude that the analytic Buperfields " 
are the unconstrained prepotentialB of the theory. The remainder of 
this paper will be devoted to the construction of all the other ob­
jects (e.g•• the vielbeins E;. r , the connections A+1 ,etc.) 
in terms of these. 

The careful reader may ask the question, what about eqs. (II.2) 
wbich seem to express H++ in terms of the bridges lJ' ? 

The answer is: the bridges are secondary objects in our scheme. 
This means that given tbe arbitrary superfields H++ one can 

solve (11.2) for 1) These are highly non-linear differential 
equations which can be solved perturbatively. The general procedure 
is described in the context of N~2 SYM theory in 114/. However. we 
emphasize that the analytic basis is self-contained, i.e. eVerything 
can be formulated in it. In particular, all the geometric objects of 
N=2 SG including the action, aa well as N:2 matter and SYM are most 
naturally formulated in that basis. So in practice we shall not use 
the explicit form of the bridges tr for going back to the central~ basis, it is sufficient to know that they exist • 

.II.4. We c:mtinue the examination of the consequences of (II.26). 
II 

H++ IA ­
II The vielbein I can be gauged away si~ce the parameter 

Aj(- is general. The sui table gauge for H+\- r- coinci­
des with its flat limit/11/: 

,. A

HHr- ::= efA4­
A • (II.29 ) 

Then 1\
I-

f"- is fixed by the relation 

" " C£jH).. r-- = )..~t . 
(II.)O ) 

Note that is gauge choice is not obligatory and is made for conveni­
ence. 

In the above @Buge the coefficient of '0":­r in (II.26) 
yields the equation 

• 
9J++ E~tA = 0 

" (11.)1) 
which means that E:t. r is covariantly independent of lA~ 
(back in the central basis it would be simply independent of ~± ). 
This allows us to make a further gauge choice. The (covariantly) 

U1 -independent Lorentz parameter Sl. ~f. can be used to 
gauge away parts of E ~ P. (see (II. 20» 

E/ '" (~:/ ~ F~~ ) . 
(II.32)F,F.l F 3'/} 
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Then the Lorentz transformations are induced by the superspace ones: III. Covariant derivatives ~-- and <;b-~ 

,Jl «f-> ~ 11(: A~) In the preceding section we considered part of the covariant 
derivatives in harmonic superspace ~+~ ,'to"",) <;eo •

A't .. 1. t _ :t F r -+ 
To complete the set of derivEltives we need also q,-- q;-" ~-'!'U""'-F\7ol-0",,+ J.. i)r-	 __ ......I .,..

• 	 (II.33) and <;l) 'S • A.s we shall sE/e, ~ is the main one, the 
The quantHies F IFaCt'- will then transform as follows: • 

(lthers are simply defined by conventional constraints. 
In the central basis CJj-- is flat (II.9) and obvioll.61y~~F::: l/:/.'A- "" i1"'rAcI.-+iFi~~A""- satisfies the relation2.'" a" a I" ) 


• -+ - • - ~ \ ~- r it [ 9:,"''; Icb--] :. CfJO
b F""I":;:: tid-At" - fl-./\ . rf> ~ 	 • 
(III.1 )::;ro:~r-+F)"al~r~ -~,/~l'~ F/ -f}/); V·~ F; . Switching from central to analytic basis one creates new vielbeins 

(see (II.22 »: 

(II.34 ) 
q)~e:. :. ')-- + ~ --"',S" IdYo'lt' -\- \.-t --"r± ~: 


Finally, (II.26) yields r 

/I 	 /I. 

9:JH A+:J. = o. 	 <; W-'III·~} r* '" ctJ-- A""'" I r! 
(II.)5 ) 

Now we turn our attention to the constraint (II.7). The vanis­
(III.2 )hing of the torsion in that anticommutator allows to express the 

They can be obtained from the bridges 1) (cf. (II.2»). However,
connection A+~ 

the constraint (III.l) relates the vielbeins 1-\-- directly to the 
prepot.entials H++ (see (III.25»A	+/i. ~r : 2 t cI.(~ gr) F (II.)6) 


+ + 1\ -1 + ,...fI) -1. CfJ++ H--m.S' - CfJ--lr~"\'II,c;- =0

AJ. e.{ ::: -2(V",-E/) t rl)- 2. ~'1;. EJ.. E ri) . 	 /I ,. /IIf"" (II.37) ~H ~--f'! _~__ l-\H l' "! = !' 	er±

Note that [9:t\ 'V~] -= 0 and 9J++ Ed ~ = 0 
(III.3 )imply (II.)5). Another consequence of (II.7) is a futher restriction " 

on FelF- These are ~ differential equations for the unknown H-- . 
Moreover, their solutioT. is unique since the homogeneous equations 
q)H 1-\ -- :: 0 implies"-- .. 0 111/. Recalling the ana­~ 	 A."'r h+ \ = 0~llc~ F,l =0 t J.) ~ 	 logous equations (I1.2» for the bridges tr one sees that the 

(II.38) 	 latter are non-linear (the arguments of H++ are 2... 2-t1[(ia1i.t 

and their solutiona contain an ambiguity corresponding to the
Concluding this section we formulate the remaining problem. It 

gauge freedom (II.18). All this 	makes the equations (II.23) very
is to find suitable expressions, in terms of the prepotantials for 

I difficult to solve.F I F"~f satisfying (11.)1), (11.38). For this purpose ~: 
In contrast, the equations (III.3) for ~·r- can be easByshall make use of the vielbeins of the harmonic derivative ~ 

solved,.as shown by B.M.Zupnik/201• Por this purpose one defines a
which we are going to introduce 	in the next section. 

new "quasi-flat" basis: 
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1M • (1'\+ WI-e-	 -,.. -"') ..J2rZ)'1'\ 	 -'2 
):0 -::. '.X,. + l 17" (\ .. +S'" (i 9" 	 "O-++- 1.(+(.1.+ == ?J-- b (u. IA.')( i. )	 ;)t., 

<; .,. '( + - -tn~-):x: .:. X - L at" e. ... - 9•. 	 C)++ ~tlAiyi =: ~iii(IA,IA,) (~"'"u.\) '" -l"-\I.<.+)\;7 .. 
o A A "'I lOr,.. 	 }(III.4) 
f\ , , ~ A


9 fA ~ ":. Uti. er- - IJ.,-1. (} r
,. ,. t o 	 whicb help to cbeck that (111.8) is tbe solution of (111.7). Finslly, 
++ one puts (111.8) into (111.6) a~d goes back to the coordinstesCf)-­The covliU'ia.nt derivatives '1) and become ( '2 A ) U ), thus obtainine tpe solution ot (III. :n. 


9JH =. ?/~ + l++t.1 'd (/ Having constructed the baT\llonic covaria.nt derivative 't)- ­

M we can proceed to the definition of ~-~ 


(III.5 ) 
'Jj-- ::. '0--... k--t-A O~ 

~-~~ ['1)--,9)t~1· 
(III.9)Here 


.+ WI 
 Ili!.m . I\~ (\1'.CS"~g1
0k-- ('loY') c.,.., -t..c..v o 	 Tbis relation is obvious in the central basis. To 'evaluate the commuta­

(III.6 ) tor (111.9) inthe analytic basis one haa to use (11.19) and (111.2).
\11:-1<; (t\1'.g.t: -91'. n~\k. :!±S'(2, U) "" n - t 0., 0 ,- \) ~Q) Further, since .:;It+E."r :. 0 (II.Jl) in the gauge (II.29), one 

, I' . can conclude that in the central basis E!r. r does not depend ,.. 
I 

"" 	
~ 

IHM~ '11l'+r-	 -'II .... M~ + 0-- E. ~v..:!\, e t'! 	 on U- > SO -z.J ~r =- 0 as well (which is of course"'--'l'lo,U) ,... U+'~-- -v..~I1--" + '0 

true in any basis). Thus one finds 
,.1\+.... 

are the deviations of the vielbeins H from their flat-space 	 d).- n+ U--r~:r t -til ~ ,. ­
1J~ -: - V,.: M -"01'1 - 'V .• ~ • rd + 14".valu~s. In this notation tho equations (111.3) take the following 	 r J~ 	 ~ w~ ~ 

form: 

A-~ =9)-- A; , 

roH k-- -'0-- l++ ... f\,,,+ + I h:"-1 = 0 I (III.10) 


Finally, the vector covariant derivative is defined as ususl 
(III. 7 ) (see (n.)b»: 

'H \t.:tM 0 

where k -- -= h" OM • Equation (III.7) is very similar 
to the analogous equatiorl in N .. 2 STh! theory and has the following CfJoI.~:= 19)~,'1)~} + t~~ ,'h:\ . 
unique solution/20/ 

(III.1l) 

__ 00 ) J\. 1>+l (1!.,U) ~ L .CJ.u.~ (-0 ~(~.}'1)'" l"'+(i!"f.l~) . For the derivative ~~ we keep the expre~sion (11.4), which 

hA (utUtHu+1ul) ". (Il"l.lt) generates further restrictions ot F and F.,lr (II.32) via
(III.B) 

the constraint (II.)a). In the next section we will present explicit
" expressions for F I Ffit ~ in terms of tbe derivatives of \-{-­

G +)-1 (, + t)-1The harmonic distributions 	 U+lAl I \.IA "t. ~ construction they will transform properly (11.34), which will guaran­were defined 
in /14/. They have th~ following properties: 	 tee that they satisfy all the restrictions. This will complete the 

differential geometry formalism. 
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IV. Building blocks. Superapace density . 
There are two ways to find the quanti ties F) Fd."" which are 

+
needed to oomplete the definition of the oovariant derivatives ~~ 
One is to study the various consequenoes of the oonstrainta (such as 
(II.}l), (II.}8) ard others follo~ing from (11.4) whioh we have not 
written out explicitly) and try to solve them. Experienoe with N.' SG 
/21/ hal!! shown that it is much easier and more constructive to first 
find some "building blooks" with simple transformation laws built 
out of the prepotentials. Then it beoomes an easy task to form the 
unknown quantities out of them. The guarantee that these will be 
the right objects will be· their transformation laws. Indeed. if there 
were two different quantities with the same transformation laws and of 
dimension :z,ero (as ia the CBse of F) F/I( r ) one could form a dimen­
sionless t!lnsor out of them. but we know from the W X: -gauge that 
there are no such tensors. 

IV.1. A trip to 6 dimensions 

A useful triok to find the building blocks we need will be a 
temporary extension of the dimension of space-time to 6. Then we oan 
define "almost covariant" derivatives by taking (II.19) and (III.10) 
and replacing F ~ 1 F", ;. - 0 

± ± "" ) ± (IV. 1 ) ID ~ :: ['.t dM + 1A;2, ; 
"'" .1\ "" /\ 

1£ + p.-- b f [f+~}r""-o ([ ~ 1I1 ,r±. =_?; H-- M 
) r ± 

~ - ~).1 -) Il(, • 
J\ 

Here "n'I = ('\N1) f>} b ) • They transform as follows 

~ ID± = - d~ ,J~- ID ~ 
~ f' ' (IV.2) 

and the conneotions Lt\ transform correspondingly (we shall not 
need /J\ explicitly). Next we define and almost covariant 
6-veotor derivative: 

ID[~~] ={lD;~ ) ID~J 1= [[~J I) + IA [.1 ~ J ' 
OM (IV.}) 

where 

~) r+ :::: _(j: ~: H--~)f+ /A+ rd~ H--~) f+
[E[~:(i) '" f' - [.2~] r 

(IV.4) 
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(the expression for IE c~f/.'J p­ will not be needed). 
The trick now is to consider the 6x6 matrix which is used to calcula­
t e the Berezinian Ber (If: M ) 

" A I\, 

'\'Y1 .m M 
• 

) A IE WIet~r] ;::-[[;~J +IEc~~J (E-1

M A 
,., .....'" .....+ . + H--'M + r -J y -r H--"WI

::dd.d~ -()f1 ep .e p • d~ , 

(IV.5) 

where 

€" r J\ __ 0+ H--t:+ (IV.6)'" -:_ VA. I 
d. • 

This matrix 1S built out of known quantities (the derivatives of 
H- - ) and is expected to transform homogeneously. Indeed. using 
(II.17). (III.2) and the analytioity of the parameters ~~Jp.+ 
one oan check that ~ ~ 

A '" A '" ... WI"\'>\ ''V\ '\Nt + It- 'VYI + f­
'8 e [.; ~] :: e[.1 ~1 A"'h -7J1'(II.. A" €C"',,. A

] +,)"f A et~r"J; 

~ f'\, J\ "'\ J'\ 

'1M 
 '0 '" i'M _ g ... /1"+ e-; V ~ ...+ H--"'"A~ 'YI 1'1 r Y • (IV.7) 
We would like to note that the 6-dimensional construction above 

was purely auxiliary. Nevertheless. it may prove relevant in a future 
attempt to formulate 6-dimensional SG in superspace. 

IV.2. Expressions for F and Fe<. f' 

Returning to our 4 (+1) dimen~ional world 

we oan split the matrix .eC~j.J'M in the following way: 


I 
"WI 

:) 
S­

A 
ecJ.p, € d-~ 

'VII' 

er~pJ e "'" <[,,~ e 
!> 

l",f!' 
(IV.8 )

1'\,.5"e ~ .. 
"'I' 

~ 

(the zeros stand for the sixth oomponents of ~ ). From (IV.7) 
we find the transformation laws of the entries in (IV.8): 

17 



-)11'1, ~ 'Y\ '¥'I, s: + r- "",S + -;. _ ~,.s-
etJ.p. A1'I - do( A - dfo /I €al.ja­;s e f1..~ erf 
_ + "Y"l., '1+ - f'-­

-'£). A- € ' + (J A-: e"Y"l,::. • (Cl ) 
t" (/. d. f> > 

<;: "MJI,;" _ I''VI '\ WI,"_,.....,+ .,01-- 'WI,S" 'l+ol -::;;, - e"""'S' (IV.9)
Oe -'\:. 1\'lI1 lIrf..1I e -1-0 /1 al.p,'(b) 

There are two sorts of terms in (IV,9): vector and spinor rotations. 
Since the quanti ties r} FaI. r. that we are looking for have only 
terms of the second kind in their lawEl (II.J4). we shall get rid of 
the Ay\'M,5" terms in (IV.9). Define the following objects: 

£. "'~ = e"'" e cl,i """ e. (':>~ - <:' P' ~. re(/..;: yv! - 00( 0",J '\Nt ) :J (a) 

(IV.10) 

l)-,..,I) "\Me"':;' 5' (b)- ~- --e e .WI ~J.t 
Their transformation laws are 

b y;.J= O+.c JOt. - + f P.;Llol 11; + f'-i ~/ Xoi - _ 

-f"~()t- f- t"-rl-(t. +-f"'-pp lj.+ ~- f"';'· (a)f'fo ,.~) 

(lV.1l) 

z; (>:: f 5(_').~ A~-+fd.l it A:) - J5'rJ.d g",,+ 11; .(b) 

Finally, combining the above results, after some work, we arrive at 
the following expressions- for EJ- , F 

F r:::f r+f'" r Ac(. 0( ()I..) 

(IV.12)
rv 1

F ::: {fE' +f 5, A)-:i, 
where 

A ::: f 2. [ 1 - f f + V(1 - ff)l. - f 2. f 4' J -\ 

f 2. '= f .!. ((d. ff =- f~.l ro(.;. .- tl:J. J ) (IV.l) 
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One can check that they have the desired transformation properties 
(II.)4). 

IV.). Superspace density 

At this point we already have all the ingredients of the 
differential geometry formalism expressec\ in terms of the prepoten,' 
tials. This allows us to calculate anothtlr very importaljt object, 
the Berezinian of the vielbein t:A ~ entering the spinor 
and vector covariant derivatives (11.19), (111,10), (111.11). It 
is needed as a densl ty wh:!.ch compensates the transformations of thn 
volume element JY:CA c11f9~ dIff;-; elM. : 

E = B-vz.. EAM) 

$ E ~ (dW\A VVI - d:- Ar +) E (Iv.14 ) 

Once again, instead of calculating E directly it is easier to 
compile it from the building blocks considered above. Indeed, one 
can check that the following expression 

E ckt(e: )ki-l(e~P.)'{(1""'ffj2 _fZ[21 
(IV.15) 

transforms as required by (IV .14). As ir.termediary steps one should 
show that 

" + .0- J\ .c - " +
S e ~ t' -== - ();. 1\ e:J r + e;. d-C ~ r + 

+d~ H--"\M ~Y'oI At' 
"-

+ 

(IV.16) 

otv. V(1-((/-f2.r Z 
I = fV:.t g/ -1: -Jal"O: A~ 

An interesting property of the density (IV,15) is that it depends 
only on H--,.."., and H-- f>o + • but does not involve H­ S' 

The reason (which will become clear ir/1&I) is that E is 
essentially a conformally covariant object. On tbe other hand )1 ~ 
will serve as a compensator for some conformal tranaformations in 
the ac~ion for N=2 Einstein SG, whicb will be given in 1171, 
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ranbnepHH A.C., HryeH AM Ka, COKa~eB E. E2-87-84 
N=2 cyneprpaBHTaqHR B cynepnpocTpaHcTBe: 
pemeHHe cBRseA 

lTO nepBaR HS cep~ pa~oT, B KOTOPMK pasBHBaeTcR BHe­
MaCCOBaR ~OPMYnHpOBKa ~es cBRseA N=2 cyneprpaBHT~H B rap 
Mo~eCKOM cynepnpocTpaHCTBe. 3~eCb M!>I nocTpoHM HS npeno­
Te~anOB /auanHTH~eCK~ penepoB rapMoHH~eCKoA KOBapHaHT­
HoA npoH3BoAHoA D++/ ~neMeHT~ AH~epeH~anbHoA reoMeTpHH. 
TeM C~ H~eHo pemeHHe cBRseA nepBoA BHeMaccoBoA BepCHH 
sAHmTeAHoBcKoA N-2 cyneprpaBHTaqHH. Ks npenoTe~anoB no­
cTpoeH TaJa[e PR~ none,~ "Ky6HKoB" C npOCThIMH TpaHc~pMa­
QHOHHNMH cBoAcTBaMH. 8s HHX cocTasneHa nnOTHOCTb AnR non­
Horo cynepo~~eMa rapMOHH~ecKoro cynpenpocTpaucTBa. 

Pa~oTa B~onHeHa B na~opaTopHH TeopeTH~eCKoA ~3HKH 
OHmf. 

Coo6ruetnle 061.eJUlHetlHoro HHCTHTyTa ~epHJtIX HCCJJeAOBamdl • .lly6Ha 1987 

Galperin A.S., Nguyen Anh Ky, Sokatchev E. E2-87-84 
N=2 Supergravity in Superspace: Solution 
to the Constraints 

This is the first of a series of papers in which we de­
velop the off-shell unconstrained formulation of N=2 super 
gravity in harmonic superspace. Here we construct the ele­
ments of differential geometry in terms of the prepotenti ­
als (the analytic vielbeins of the harmonic covariant de­
rivative D++). Thus, we find the solution to the const­
raints of the first off-shell version of Einstein N=2 su­
pergravity~ A number of useful "building blocks" with sim­
ple transformation laws are constructed from the prepoten­
tials. They .are used to write down a density for the full 
supervolume of harmonic superspace. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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