00bEAHHEHHBIK

HHCTHTYT
N AREPHbIX
. D HCCNEAOBANME

AY0Ha

/DZ)_Q E2-87-826

A.B.Pestov

ON DYNAMIC EQUATIONS
FOR INTERACTION

OF THE AFFINOR FIELD
WITH AFFINE CONNECTION

Submitted to XX!| iInternational Symposium on
Elementary Particle Theory, GDR, 1987.




INTRODUCTION

Of fundamental importance for the theory of strong, elect-
romagnetic, and gravitational interactions are such tensor
fields as a scalar field, covariant vector field, covariant
skew-symmetric tensor field of the second rank, covariant sym—
metric tensor field of the second rank; this list of the sim-
plest tensor fields of rank not higher than the second is in-
complete since it does not contain a mixed tensor field of
the second rank that is called the affinor field. If one re-
calls that general relativity is essentially the theory of a
symnetric tensor field of the second rank, it is quite natu-
ral to assume that the theory of the affinor field is not on-
ly of a pure mathematical interest.

In this report devoted to the theory of affinor field I
consider a model of two interacting fields, one of which is
an affinor field and the other is a non-tensor field called
the affine connection.

1. LAGRANGIAN OF THE AFFINOR FIELD

Out of two affinors Sa and'F% an affinor may be construc-
ted called their product .

a a ag
Pﬁ = So Tﬁ' , q))
a . . o—la a
If {88 | # 0, there exists an affinor Sé’ inverse to Sﬁ ,
S?SB“’:S“&“S%: 58. With the operation of multiplication
thus defined, the set of affinors with a nonzero determinant
forms a group, denoted by G;, which plays a fundamental role
in the theory of affinor field as the group of internal sym-
metry. If the fundamental affinor field ¥ (x) is transformed
under the actlon of the group G; by the law w3 —>Saa‘I’aS"3
then a scalar W is obviously an invariant of the group Gi'
It is known from the theory of linear spaces that there also
exist other invariants among which I will choese a quadratic
G; - invariant function ¥2 Wa of the affinor field.

A fundamental method of constructing new tensor fields
from the given fields_j e operation of covariant differen-
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tiation, a basic differential operation of the tensor analy-
sis. A covariant derivative makes a tensor field of type (p,q)
correspond to a tensor field of type (p,q+l). In particular,
for the affinor field we have

a . a a o a_o
Vu¥g=09 %% + Iyy¥g - ¥, T, (2)

A quite arbitrary system of functions I' ﬁ(X) in (2) specifi-
es an object called the affine connectlon/l 8/ .

For simplicity indices related to the transformations of
the group G; will be omitted, and the operator notation

YE > ¥, Y, - TrY, Yo @p = YO,

Tr (¥0) = Tr(0¥) = Yooy,

a
Lug=> Ty
will be used, in which formula (2) reads

Relation ‘(3) allows one to connect the covariant derivati-
ve with the group G;. Denote the covariant derivative in the
connection Typ by "V ; then, according to (3), we have

vy - v, ¥ .o, ,¥], (4)
where
8Tp = Ty - Ty ' (5)

is the aff1ne—deformat10n tensor/?/ . Substituting into (4)
the affinor ‘¥ =51 ¥S | instead of ¥ , we get

v, ¥=s8"(y,¥)8 + 8L, - 87y, 8, ¥ 1. )

From (6) it follows that under the condition

8T, =81y,8 (7
we have
‘v P =87y, V)8, (8)

From (5) and (7) we obtain the relation

e

o -1
r, =T, +57,s (9

to be accomplished by the formula

d '—1

Now I shall assume that under the action of the group the
affinor field is transformed by the law (10); and the I -
field, by the law (9) and construct a G;-invariant theory of
the interaction of those fields. To start with, an important
concept is to be introduced, that of the affinor derivative.
The affinor derivative D is characterized by that it does
not change the transformatlon law of an object transformating
as a true affinor under the action of the group G . However,
the tensor nature of the operator D, requires in each sepa~
rate case a special consideration. For the affinor it is ob-
vious since, according to (2),

Dy¥ = v, ¥ (11)

but DpDv¥ is no longer tensor field, because DpDy¥= V v¥ +

+I“#VV Y. Setting Sg=e 8‘3 in (9) we obtain the so—called A~
transformation of the affine connection:
a a
T =", + 3 A8 ,
upB ©B n"°B
considered in ref./4/ .

Consider the Lagrangian of the affinor field

£y _——Tr(g "D, ¥D, ¥ m YY), (12)

FrOm (8)-(11) it follows that under the transformation ¥ =>
=87 YS, T, = T, +8 'Dys, g*—>g*the Lagrangian (12) is not
changed, and consequently, the action ( =[+/]g| Lydix is Gy~
invariant. In what follows it is to be taken into considera-
tion that the operation of raising and lowering indices does
not commute with the derivative D, since

Dy8aB= Outap-

By variation from (12) we obtain the following equations
of second order for the affinor feild

DO’ (\/_l D ‘P) —-m ¥y = 0, (13)
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where m = const. Equations (13) are G, —covariant, which
means that substituting into them the affine connection Ty =
= QL+S"1EMLS instead of Iy we obtain equations equivalent to
the initial ones.

Consider an infinitesimal transformation of the group G;
setting SE =8§+Q% ; then

5 - [v,q1, BFu= D“Q.

If D, Q@ = 0, then &', = 0. For those transformations 8Ly = 0
and hence the conservation law

lof 1 —

10y = —=5, (Vg% =0,

Vil

follows, where the vector j° is given by the expression

i = Te([D° ¥, ¥1Q).

.Direct calculations show that the current j° is conserved pro-
vided that ¥ obeys equations (13) and the affinor @ is a co-
variant constant in the connection I, ,D, @ = 0.

Varying the action @==f¢|5i9q1d4x over g"Y we obtain
the energy momentum symmetric tensor
guu=Tr(Du\pDv\P)+ gp,yg\lj. (]4)

if Buy = diag(-1,1,1,1) is the Minkowski metric tensor, then
3
1 2
0, =2—'I‘1'(V£.o D,¥D, ¥ + m"¥V¥).
Thus, in a free case the energy density will be positive pro-

vided that Tt (¥¥)> 0. The states that do not obey that condi-
tion will, generally, be unstable.

2. EQUATIONS OF THE AFFINE CONNECTION

Let us show that[D,,D,1¥, unlike Dy Dy ¥ is a tensor
field of the type (1,3). Since
Al

_D#Dv W=[6#FV,\P]+[I’#,[ L, ,\P]]+8#BV‘P+[ r#,avm +{ r,,,a“\m,
then
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[D,.D,1¥ = [R,,, ¥], ' (15)
where
RﬂV= au 'Fv— av'r‘l_ + [r‘# 7Fv] (16)

is the Riemann tensor of the affine connection I}Ss. Thus,
[DP,DV]W is really a tensor of the type (1,3). From (15) it
follows that under transformations of the group G, the tensor
field Ryy transforms as a true affinor:

R,, = 'R

-1

pu = SRy 8. (17)

The transformation law (17) may directly be derived from (9)

and (16). a
The corresponding invariant Lagrangian for the fieldquB(x)

is of the form

1 v 1 wy
ﬁl—\ =—rTl‘(8uag R}LVRGB)=_TTr(RP~VR ). (18)

Varying the action (= fVTETET‘d4X over 8*Y with the Lagran—
gian (18), we obtain the energy-momentum tensor of the affine
connection in the form

F o

®#V = Tl‘(Ruon ) + g#VEF . (19)
The total Lagrangian of the interaction of an affiner field
and affine connection

14
se=_;_ T (D, ¥DH ¥+ m® ¥¥) - L Tr (R, RYT) (20)

is invariant under the transformations

¥ s7'¥s, [>T, +87'D, s, gl = gl
and, consequently, the pairs (¥, I, ) and ("¥,)T;) correspond
to the same internal state of the system described by the
fields ¥ and ', . a

Varying the Lagrangian (20) over I we arrive at the
following manifestly Q, -invariant form of the equations for
the affine connection

1 TR PY v
F=Du (VIETR ) =7, (21)

where .



7oLy, D", (22)
The tensor current J” should obey the equation
D, (VIETd") = 0 (23)
following from the identitieg '

Uv
D, D, R*Y 0.

From (13) and (22) it follows that the tensor current does
obey equation (23); thus, the system of equations (13) and
(21) is consistent, v I“#V

Let us now find divergences ® " ;; and ®" ;u
{Hlobey the equations of motion, then

. If y and

. T :
or —Tr(R* 3 ), @MY, = TR ).

" M " m .
Hence it follows that the energy-momentum tensor Tﬁb’=CLV+(LV
of interacting fields obeys the equation

v
T, =0,
From the last equation we see that eqs. (13) and (21) are
general covariant.

As it is known, the affine connection has always played
a fundamental role in the development of general relativity
from the very start of its creation/2:3:%/and . The conclu-
sion drawn in this report that the affine connection has a
conserved energy-momentum tensor and therefore may be a sour-
ce of the gravitational field radically changes the views on
that object and the laws of its interaction with other fields.
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IlecTtoB A.B. E2-87-826
0 guMHaMHYECKUX YpPaBHEHHAX, OIIHCHIBANMHX
B3aumogeiicTBue abdbHHOPHOTO NOJIA H

abduHHON CBA3HOCTH

YcTaHOBIIeH JIarpaHKHaH, OIIMCHBAWMHUNA B3aHMOJEHCTBUA
abduHOpHOTO nonsa U abduHHON cBA3HOCTH. BrBeneHn YpaBHeHH
JBHXEHHs M 3aKOHH coxpaHeHusa. [lokazaHo, uYTO CymecTBYyeT
CHUMMETPHUYHEI, COXPAHFWOMHHCA TeH30p 3HeprHU~HMIIYJIbCa
abdbuHHONH CBA3HOCTH.

Pab6oTa BhimonHeHa B JlabopaTopuu TeopeTHUYeCcKOH dusvkn

IMpenpuHT O6benHHEeHHOro HHCTHTYTa ANEPHLIX HCceNoBaHmi. Jy6una 1987
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Pestov A.B.
On Dynamic Equations for Interaction
of the Affinor Field with Affine Connection

E2-87-826

The Lagrangian of interaction of an affinor field
with an affine connection is constructed and the equa-
tions of motion and conservation laws are derived. It is
shown that there exists a symmetric conserved tensor of
the affine~connection energy-momentum.

The investigation has been performed at the Laborato-
ry of Theoretical Physics, JINR.
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