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, lNTRODUCTlON 

~< li}. Of fundamental importance for the theory of strong, elect­
romagnetic, and gravitational interactions are such tensor 
fields as a scalar field, covariant vector field J covariant 
skew-symmetric tensor field of the second rank, covariant syn~ 

metric tensor field of the second rank; this list of the sim­
plest tensor fields of rank not higher than the second is in­
complete since it does not contain a mixed tensor field of 
the second rank that is called the affinor field. lf one re­
calls that general relativity is essentially the theory of a 
sywaetric tensor field of the second rank, it is quite natu­
ral to assume that the theory of the affinor field is not on­
ly of apure mathematical interest. 

In this report devoted to the theory of affinor field I 
consider a model of two interacting ftelds, one of which is 
an affinor field and the other is a non-tensor field called 
the affine connection. 

1. LAGRANGlAN OF THE AFFlNOR FlELD 

Out of two affinors S.~ and T~ an affinor may be construc­
ted called their prqduct 

a a a 
P{3 = Su TfJ' (1) 

lf IS~ I f. 0, there exists an affinot sja inverse to Sfi, 
sgS"f;la= s-Jas~ = 8~. Hith the operation of mul-tiplication 
thus defined, the set'of affinors with a nonzero determinant 
forms a group, denoted by ai , which plays a fundamental role 
in the theory of affinor field as the group of internaI sym­
met ry , lf the fundamental affinor field '11,8 (x) is transfornled 
under the action of the group 0 1 by the faw 'P~ => ~a'Prs~ .l' 

then a scalar W: is obviously an invariant of the group Gl~
i It is known from the theory of linear spaces that there also 

l.11:	 exist other invariants among which I will choose a quadratic 
ai - invariant function 'J!;'P: of the affinor field.j A fundamental method of constructing new tensor fields 
from the g i ven field~e ope.J;.a.t.iQR··of covar-í ant differen­

etfbi;~bu:: ul1bi-a RKCnrryi \ 

~~~~~b.!;g .m:c .'leJloBtum6 :1 
r"'i"',!"" rt, ,f'~~f"'w.U A. 



tiation, a basic differential operation of the tensor analy­
siso A covariant derivative makes a tensor field of type (p,q) 
correspond to a tensor field of type (p,q+l). In particular, 
for the affinor field we have 

a a .c a a a 
V'" 'P{j = a/l '1'{j + r /la 'P(j' - 'l'a r /lf3' (2) 

aA quite arbitrary system of functions r/l f3 (x ) in (2) specifi­
es an objec t called the affine connection /1-8/ . 

For simplicity indices related to the transformations of 
the groupOt will be omitted, and the operator notation 

a a a a
'P{j => '1', 'I' a = Tr'P, '11 a cp f3 => 'P'«lJ , 

a a a 
Tr ( 'PcI» = Tr ('«11 '11) = 'P acI> a , rll J3 => r /l­

will be used, in which f~rmula (2) reads 

VJL'!' = a/l'l! + (rJL,\p]. (3) 

Relation'(3) allows one to connect the covariant derivati­
ve with the group 0t. Denote the covariant derivative in the 
connection 'rlJ.13 by , V /l ; then, according to (3), we have 

'V
IJ.
'I! V /l 'I! + (SrlJ. ' 'P ] , (4) 

where 

SflJ. = ' r IJ. - f JL (5) 

is the affine-defórmation tensor/7/ . Substituting into (4) 
the affinor ''1' = 8-1 'P8 ,. instead of 'I' , we get 

'V /l''I! = 8-1 (~'1')8 + [ar#! - S-IVJl 8, '1' 1. (6) 

From (6) it follows that under the condition 

Br", = 8-1 VIJ. 8 (7) 

we have 

, V ''V = 8 -1 ( V '" 'P )S . (8) 

From (5) and, (7) we obtain the relation 

... 

'r = r + S -IV S (9)
IJ. IJ. tI. 

to be accomplished by the formula 

''1' = S -1 'I' S . (10) 

Now I shall assume that under the action of the group the:;~, . 
affinor field is transformed by the law (10); and the r ­

-I field, by the law (9) and construct a Gi-invariant theory of 
the interaction of those fields. To start with, an important 
concept is to be introduced, that of the affinor derivative. 
The affinor derivative D/l is characterized by that it does 
not change the transformation law of an object transformating 
as a true affinor under the action of the group ai. However, 
the tensor nature of the operator 0/l requires in each sepa­
rate case a special consideration. For the affinor it is ob­
vious since, according to (2), 

DIJ.'P= Vil'!' ( 11) 

but D/lDv'P is no lon~er tensor field, because 'OJlDv'P=V/lVv'P + 
+r~vV'a'P. Setting Sf3=eÀS$ in (9) we obtain the so-called À­

transformation of the affine connection: 

'r~~ = rJL~ + atJ. ÀS;, 

considered in ref./ 4 / • 

Consider the Lagrangian of the affinor field 
1 IJ.V 2

f'P = - "f Tr (g D,", 'Pn, 'P + m '!' 'P ) . (12) 

From (8)-(11) it follows that under the transformation 'P => 
=> S-l 'PS , r/l =>r ll +S-l0IJ.S, g/lV => g ,",Vthe Lag r ang í an (12) is not 
changed, and consequently, the action (1 =fv1iT~,\JId4x, is 0t­
invariant. In what follows it is to be taken into considera­
tion that the operation of raising and lowering indices does 
not commute with the der1vative DIJ. since 

D/lg a J3 = alJ.~f3'
I~ 

By variation from (12) we obtain the following equations 
of second order for the affinor feild 

vi I1g1 Oo (vlirO(] '!') - m 
2 

'!' ~ O, (13) 

3 2 



where m = cons r , Equa tions (13) are ai -covariant, which . 
means that substituting into them the affine connection 'r~ 

= rll + S-1D Il S instead of r ll we obtain equations equivalent to 
the initial ones. 

Consider an infinitesimal transformation of the group ai 
set'tingS~ =ô~+n~ ; then 

8'1'	 = ['11, ci. ôr = O~ n,
ll 

Lf D Il n = 0, then ôr /J. = O. For those transformations ô ~ 'P = ° 
and hence the conservation law 

o 1, - ­
j .	 = -- a (vi Ig I j") = o, 

, (1 v1iT" . 
follows, where the vector j" is given by the expression 

j" = Tr([O" '1','1'] n i. 

.Direct calculations show that the current j" is conserved pro­
vided that'l' obeys equations (13) and the affinor n is a co­

. variant constant in the connection r ll , 0ll n = o. 
Varying the ac tion (j = rvi li I ~ '11 d 4 x over gll v we obtain 

the energy momentum symmetric tensor 

8 1lv, = Tr (Oll '11 n, '11) + glLv ~'II'	 (14) 

lf g = diag(-I,l,I,I) is the Minkowski metric tensor, thenIL v 
3 

°00	 = '21 
Tr ( v : o n, '11 0 11 'P + m

2 
'I' '11) • 

Thus, in a free case the energy density will be positive pro­
vided that Tr('I''I') > O. The states that do not obey that condi­
tion will, generally, be unstable. 

2. EQUATIONS OF THE AFFlNE CONNECTlON 

Let us show that [ O~ , Ov] '1', unlike 0ll o, '11, is a tensor
 
field of the type (1,3). Since
 

.. 
.	 ... 

.Oll ~ '11 =[all r v ' '11]+[ rlL ' [ f v ' '11]] +alLav '11 + [ rlL , av '1'] + [ r; ,a ll '11], 

then 

_4 

... ;..
I 

[°Il	 ' °v]'11 = [ R ~ v ' '11 l , (15) 

where 

R IlV = alJ. r; - av,·rlL + [ f'1L .r, ]	 (16) 

H	
a

is the Riemann tensor of the affine connection rll~ • Thus, 
[OIL'Ov]'11 is really a tensor of the type (1~3). From (15) it 
follows that under transformations of the group ai the tensor 
field RlL v transforms as a true affinor: 

R Il v => ' R Il v = 8-1 R,w S.	 ( 17) 

The transformation law (17) may directly be derived from (9) 
and (16). 

The corresponding invariant Lagrangian for the field r ~ (x) 
is of the form Il 

1 Ila vf3 1 IlV
f r	 = - "4 Tr ( i g RIlv Ra ,g) = - "4 Tr ( RIl 11 R ) . (18 ) 

Varying the ac tion (1'= f vliTff d 4 x over g p.v wi th the Lagran­
gian (18), we obtain the energy-momentum tensor of the affine 
connection in the forro 
r	 (1 

= Tr(RIl-aRV ) + g~v~r'	 (19)8 1lv 

The total Lagrangian of the interaction of an affinor field 
and affine connection 

(;) 1 r..Ll. 2 1 Il v 
.1.. = -"2 Tr (°I.L '11 U' '11 + m 'I' '11 ) - 4 Tr ( RIlvR i.	 (20) 

is invariant under the transformations 

'11 => S -1'11 S , rI' d:.> r + S -1 DI.L S. g IL v => g IL v 
ll 

and, consequently, the pairs ('II,r~) and(''II:TI-t) correspond 
to the same internaI state of the system described by the 
fields '11 and r •

ll 

fl 
Varying the Lagrangian (20) over r~a,g we arrive at the 

following manifestly Oi -invariant forro of the equations for 
the	 affine connection 

,~ 1 -- IlV v 
.'	 --Oll (V 191 R ) = J , (21)

v1ir 
where 

15 
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fi 

JlI	 = ['I', DV '1' ]' (22) 
I 

The tensor current JV should obey the equation 

D li' (Viii ,J v)	 (23) I
I=: O 

following from the identities	 .1 

ir'1'D	 Ov R"'v =IJ. o. 

From (13) and (22) it follows that the tensor current does Iobey equation (23); thus, the system of equations (13) and 
(21)	 is consistente 

Let us now find divergences 0 IJ.~ Il and 0 
r~v 

;Il • If ~ and 
,r II obey the equations of motion, then 

r ' 
® #L ~'" = Tr ( R '" v Ju ) , e IL ~ IL = Tr ( RVIL rIJ. ). 

r 
Hence it follows that the energy-momentum tensor = ~v+ ®IlvT ll V 
of	 interacting fields obeys the equation 

#LV
T ;p. = O. 

From the last equation we see that eqs. (13) and (21) are 
general covariant. 

As it is known, the affine connection has always played 
a fundamental role in the development of general relativity 
from the very start of its creation / 2 ,3 ,5 1and 16 1 ~ The conclu­

ísion drawn in this report that the affine connection has a 
conserved energy-momentum tensor and therefore, may be a sour­ I 
ce of the gravitational field radically changes the views on j
that object and the laws of its interaction with other fields. . 
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TiecToB A.B. 
0 ,IJ;HHaMHtleCKHX ypaaHeHHHX, OllHCbiBalO~ 

B3aHMO,IJ;eHCTBHe a~HHOpHOrO nonH H 
a~HHHOH CBH3HOCTH 

E2-87-826 

YcTaHoaneH narpaHOCHaH, onHChlBaiD~H B3aHMO,IJ;eHCTBHH 
a~HHOpHoro nonH H a~HHHOH CBH3HOCTH. BhlBep;eHhl ypaaHeHH~· 
,IJ;BH*eHHH H 3aKOHhl COXpaHeHHH. TioKa3aHO~ 'ITO C~eCTByeT 
CHMMeTPH'IHhlH, coxpaHHID~HCH TeH30p 3HeprHH-HMnynbCa 
a~HHHOH CBH3H0CTH. 

Pa6oTa BbmonHeHa B lla6opaTOPHH TeopeTHt~ecKoH cPH3HKH 
Ol.f.HM. 

fipenpHHT 06'heJJ.HHeHHOrO HHCTHTyTa Jl,JJ.epHhlX HCCJle,!J.OBaHHH. ,l.\y6Ha 1987 

Pestov A.B. E2-87-826 
On Dynamic Equations for Interaction 
of the Affinor Field with Affine Connection 

The Lagrangian of interaction of an affinor field 
with an affine connection is constructed and the equa­
tions of motion and conservation laws are derived. It is 
shown that there exists a symmetric conserved tensor of 
the affine-connection energy-momentum. 

The investigation has been performed at the Laborato­
ry of Theoretical Physics, JINR. 
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