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1. The recent development of the superstring theory revealed a
necessity to reconsider some basic ideas of the standard local quan—
tum field theory. It gradually became clear that a relation between
the quantum theory of the relativistic partiocle and the correspond-
ing quantum field theory had been poorly understood. In fact, the
transition from the quantum theory of one noninteracting relativistic
string (so-called "first" quéntized theory) to the interacting string
field theory ("second™ quantization) proved tc be quite a nontrivial
problem. For example, in Refs. 1,2 such a transition is based on
a new reclipe for going from the relativistlc one-particle theory to
the relativistic quantum field theory. The most important ingredient :
of this prescription is a gauge-like formulatlion of the relativis -
tic particle theory suggested in Ref./J/ (for a somewhat more accu-
rate treatment of the gauge supergroup in the theory of spinning

?azticles see Ref. a detalled study of quantization is given in
5

»

, "Gauge-like® means that the constraints (such as p¢+m2=o,p§=o.
etc) are viewed as generators of the reparame}rization symmetry and
of the local supersymmetry. Accordingly, in /3 and 5 the relati-
vistic quantum theory of spinning particles was treated by a (super)
generalized Dirac approach to systems with constraints. The modern
approach to the quantization of such systems 1 consists in trading
these gauge transformations for the oorresponding BRST symmetry. The
generator of this symmetry, so-called BRST charge, S s Plays a
prime role in the transition from the ane-particle theory to the
quantum field theory. Too complicated though it is at first glanoe
this approach exposed new symmetries of the relativistic partiocle
theory /1’3’6/, and what 1s more important, it ca? direotly be
applied to oonstructing field theories of string 1’2/. Alternatively,
one can employ a combination of the BRST and EFV 7/ techniques for
constructing perturbation theory diagrams from propagators (see,
8.8+.3y reoent discussion of such an approach to the relativistioc
particle theory/a/ ). In the BRST invariant BFV Lagrangian all varia-
bles -~ original coordinates and momenta,ghost variables, and Lggrange
multipliers — are formally treate? on equal footing.

This motivates an attempt /9 to construot the relativistio
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theory of particles and strings starting from some rudimentary
Lagrangian with its rigid symmetries. By gauging some of these
symmetries one can generate new, gauge invariant Lagrangians which
can be interpreted in terms of relativistio particles and string,
respeotively.

We begin with construoting the theory of relativistic scalar
particles by gauging linear canonical symmetries of the simplest
rudimentary Lagrangian

=48, Y@ ), pv =L, 0L, (1)

where q, dq,/dt and 8/‘# is a constant matrix. By linear
transformations q/..)["' q(” we can diagonalize 3/‘“’ « Neglecting
varlables corresponding to zero elgenvalues we may reggard g
in Bq.(I) as a diagonal matrix with +{ eigenvalues. The resulting
Lagrangian is obyiously invariant with respect to rigld Lorentz-like
transformations preserving this matrix. This symmetry does not con-
cernx us here and is trivially satisfied in what follows. '
Consider canonical symmetries of La « Defining the canonical
momenta Pu= 2l /9?//" s we rewrite [/, 1in the first-order form

=§p —4p°= =5(4P-P4) —4pZ+Lgp” 2)

Up to the boundary conditions, which will be discussed below, the
last term here can be neglected. The kinetic part of L, is inva-
riant with respect to infinitesimal canonical transformations

(
sp=-3 qy ) 8¢ = %» ¢=2 4. 6(r2), K

where -f; are independent of t . Allowing for their dependence
on t we obtain (/¥ =_J—(c'“=—-|'>q,))

L= She +E[36% 936 6],

For homogeneous linear transformations the dimension of &G 1is 2
and therefore

N s/vm ZZ‘;LGi,

(4)

(5)

If the é.lgebra of generators G; is closed with respect to Poisson
brackets, the Lagrangian

1Gr-pg) —3 L&

is invariant under transformations (3) satisfying (5), provided that
the functions f-‘(-t) undergo easily obtainable gauge~like transforma-—
tions.,

However, due to the term —-1-P2 in our rudimentary Lagrangian
(2) the choice of the transformations is severely restricted. In
this case, the only essentially independent constraint is P =0
(in general, constraints are G; =0 ), and this can be obtained by
considering the linear canonlical transformations

G=14,p% + f.0pa) +54:9°. ©

Anyhow, as far as we insist on the standard formulation of the gauging
procedure, considering Jr= (P,3) as a matter field and f #) as
a gauge potentjals, the linearity restriction seems to be unavoidable.

Now, the transformation (3) with G given by Eq.(6) is, in the
matrix form,

sw=ry, F=(T270) @

The matrices F  generate the linear canonical group SL{2,R)~SUQG,1).
The full Lagrangian Lo is invariant with respect to its abelian
subgroup

00
$p=0, 8=4p 3 F= -;40). (®

()
To use the standard Yang-Mills procedure of gauging we rewrite /_(

as

= (Ve d¥ _(d¥)ie, V). ©

where 6, is the usual Pauli matrix. The generator F is of the
form F -.‘ ~ sy Where 6_= .L(;' 152) , and we naturally define
the gauge potential A = { 6. '+ Introducing it in Eq.(9) we arrive
at the gauge-invariant Lagra.ngian

H Ve[ AT e ¥ =pi - 3t a0

This 1s a quite conventional abelian gauge theory. As for all linear
canonical transformations, 1{»"’-—— U%, the antisymmetric matrix &,



.
is 1nvaria.nt, ngU =6, , the Lagrangian (10) is invariant provided
- . -4 '
Al = UAU™* +UU™ (1I)
The matrices of the finlte transformations corresponding to Eq.(8) are

U=t+f6 , U'l=1-46

The physical interpretation of our gauge theory (I0) is obvious.
if we choose for g,, the Minkowski signature (L£,2-4) , t.e.
Gy =C4+4,...,+1) . In this case the Lagrangian (10) describes mass-
lessy, free relativistlc particle moving in (DP—4) —-dimensional space
() ~dimensional Minkowski spaoe-—time). 0f oourse, in the classical
case one might take any other signature (T, D-~'T ) with T > 1.
However, the quantum theory of the gauge invariant Lagrangian (I0)
is consistent only for the Minkowski signature, otherwise the Hilbert
space of the system has indefinite metric.

The most adequate approach to the quantization of this model is
based on the BRST_BFV technique. To see the reason for this we have
to remember the suppressed term %—(Pq,)’ . One can easily prove that
this term determines the boundary conditions for the gauge parameter:

1
59,=8§dt4(p) =L 4,p?| =0 = =40 =0, (12)

as far as the symmetry is independent of the equations of motion
(t.e. we are not allowed to use the comstraint p>=(Q in Eq.(12) ).
This boundary oondition determines a nontrivial structure of the
gauge group - the zero mode of the gauge potential,

1 °
£m = ga[t{ (t) = Sd.t [{,@ -1—_}'1&)], G3)

cannot be changed by any admissible gauge transformation. Thus, the
gauge transformations are subdivided in the gauge-inequivalent classes
enumerated by one real parameter f:"’ ( the "Teichmuller parameter® )
of this group) . 4n important consequence of this faot is that one
cannot ochoose as a gauge condition simply { =4 or £=0 o The
simplest po7sible gauge cholce is that proposed by Fradkin and
Vilkdvisky =0 .

A most algorithmio approach to quantiging our gauge theory uses
an extended phase space which we visualize on a "ghost oube" 3

- 4

P . q/ Q:((i,‘{,G,E }/ QBL(G'/f)':"‘i
‘P=(PJ<.F,}’); 6?‘;,(6',})="1
k (] Qgh(?t‘i«.kl{{) =0

Here the Greek letters are used for Fermi variables, and Latin, for

Bose ones. The canonically conjugate pairs are (Pq) (()G):(J;'G), (k R),
The standard BRST-generator is
‘ 2
Q ::‘lkf +G‘P (14)
The simplest BR8T-invariant Lagrangian with the gauge comdition
£=0 s
_.—_ . . s _ L 1-__£9_ @s5)
RP-H =qp+Lk +6p +5p -2 pP — 5P
Now the quantization is straightforward both in the operator and
path-integral approach; some details may be found in Refs. 6-8 .
However, there is one controversial point in applying the path-
integral presoription. To caloulate the quantum probability for the
particle transition from q,[o) to g (4) one integrates €'2 over all
dynamical variables. The only essential integration proves to be

the one over the Teiohmuller parameter {m ¢

¢ ~9te -z_ql
P(y Mﬂ”@))"‘f# [dt e P()-4/0) pe

Now, 1f ~o0 < f{°)< +02  we obtain the imaginary part of the propaga—
tor (p2-io)”! . One can oconstruct the full propagator by adding
to this the probability of the "time-reversed" transition (in ad?i—
tion, one has to multiply P° by ©(p°); for details see Ref. 8/y,
Alternatively, we may insist on having the term p2 unnodified and
use the transition to the Buolidean formulation,with the change

Pl——> P"——L'O « One can ses that the oorresponding {m integration is
well-defined only for () ¢ {‘°’< o0 . It would be nice to £ind

some more direct and rigorous theoretical argument giving this
restriotion for (o) « Note that some authors use even more

strong assumption »eﬁ');o without any discussion, see @.g. 6 .

This comrdition is not 82¥ge invariant. A more detailed motivation

{0)
for using the gauge invariant restriction { 20 1is presented in



Refs. /10/ where, to my knowledge, the first dlscussion of the

gauge-inequivalent classes 1n the theory of relativistic particles
has been given.

Returning to the Lagranglan (10) one can see that it has an
additional rigid symmetry

op =-f,p, 59 = 1,9, st, = 25,8 (16)

which is simply the dilatation 1nvariance. Gauging this symmetry
glves a new theory with the gauge potential

—Ez 0 amn
A =0, :( y e)

transforming according to Eq. (11), where
"*:.6'3 -a ~t2 (3} (18)
U=e (1 +a,e *6.) <§ eh)-

Now the same construoction as used to obtaln Eq. (10) gives the
Lagrangian

. . 2 (19 )
L, =404 -9p) " ~t(Pe)

This theory is non-abelian since

8?4 = '}1 +2f2 21 —2'}:1 Bz, SEL = 'j'z

(one can easily obtain also the finite transformations) At first
sight, this Lagrangian looks translation-noninvariant but in fact
there 1s no restrictlion on fz , and one may choose the gauge ﬁ 0
in which the translation imvariance is manifest.

The BRST-BFV approach to quantizing the Lagrangian (19) is
straightforward. Using general rules the operator _SZ can be
constructed and proved to be nilpotent. To further understand the
physiocal meaning of this apparently new theory of massless scalar
particles (dilaton?), the interactions have to be carefully treated.
This problem deserves a separate consideration which will be publi-
shed elsewhere.

Now, we construct the gauge theory of spinning particles. A

(20)

simplest choilce for the rudimentary Lagrangia.n is

L, =$0i ~1p) ~$P* ~F B B

p 6

where f,’:‘ are anticommuting (Grassmann) variables, k=i, .., K.
The group of linear canonical transformations in this case 1s

05p (1,1 / K) . For gauging the subgroup of this (super)group
leaving the Lagrangian (21) invariant we introduce the notation
'& (p, 9, 3, §,) and replace 16, 1in Eq. (9) by the matrix

c=05-3).

The matrix of the (super)gauge transformations §YW= F% and the
corresponding matrix of the gauge potential are

_f 0 0..0

h o LDy A (22)
A, O
d eak
Ag O

>
1

where ‘)Clk {m s Blk etu ( the finite transformation U 1s easy
to obtain). In addition to the bosonic transformations (f,f,) and
the local supergauge transformations (¢ ..¥x) we obtain the o)~
rotations (fik) . Substituting the gauge potential A into Eq.(I0)
(with {Gz=) C), one can easily calculate the gauge invariant
Lagrangian

- Py~ 85 40P by -INGR) R Ly

which, for { =0 ’ coi?cides with that derived in Ref./5/ follow-
ing the approach to ief, . The standard Dirac quantization has
been applied to the constrained system (23) 1in these references.
Having formulated the theory as a real gauge theory it 1s more
natural to apply the BRST-BFV. approach. This can be done exactly
as in the spinless case. Note that the new supergauge-invariant
parameters, ‘

A, = g \mdt = g [N+ peldt

are generated in this case owing to the boundary conditions
Pill =9 (1) =0.
To give a gauge formulation for string theories, we consider
the simplest rudimentary lagrangian depending on the variables

x(3,t) (X7 = x*r28)



= L (R-xP) = pR k(PP xP) ,
{, = LK -x") =px -3 +x") GO

For simplicity we assume &w-:(-:t_,f—i,,..,f—j_) but the signature of
Jpv could be fixed exactly as in the particle case. The (-1,+1)
metric for the variables t,é is necessa_zlzy for obtaining a well-
defined classical Cauchy problem. Define W =(V, W) = (P, x>
and 2= /%3 . We are to regard the variable 4 as a conti-
nuous index, and accordingly, the transformation matrix U 1is
a 2x2 matrix with elements depending on powers of D =operator.

By simple calculations .one can easily find that the Lagrangian
(24) is imvariant under transformations

_ _/do /40 :<£fz> (25)
é'\lf——')_*F'}_, ’}*‘: 01);9‘= O'b)lF £/

For rigld transformations the order of the operators '3,,., 9_  1s
immaterial. However, for 'J[i depending on d,‘t the algebra of
the transformations (25) is olosed if and only if the operators CA
and O_ are ordered as specified in Eq. (25). Then, the commuta-
tor of any two transformations $ and g depending on para-
meters .ﬂ and -R is of the form

p (26)

[68] =2 Fts,sza- ) Fts,z;] =FF —FRfg

wheye the matrix F[S gl is of the same form as in Egq.(25)
1

W [ 'E,'f{] T W [;‘1,{:]

F' _ W['Fh'h‘] + W E‘:-‘t,f(]
[s31 ~ W H«,‘h] + W[J?,,-h]

_ _ (27)
w [fi,‘ﬂ] +WLE, '}“]

Wifgl =18 -44"

It is natural to define the gauge potential

A (28)
A ] 4 ‘
Then, the gauge invariant lagrangian corresponding to the rudimentary
Lagrangian (24) 1s

T
L, =1 V¥is, (. +A)Y (29)
while the gauge transformations have the usual form
sY=FY, SA=F+[AF], F=0,F2 . 2
In the standard notation
I| :P;‘ +£4(PX') *%EZCPZ*”UZ) &3D)

Denoting Pur@fp‘) , where PO:P ) F* =L, /X",
the lagrangian Jl can be written as

¢ = (32)
£, =P %x —4Geppt, %72

7

with .l :i(uf—tj) -8,

L\ -, 1 /

det G =-1.

Defining the inverse matrix

e 1 {4 Vae - Q
Gaz'i(a (tf-tf)j ;6 Gy T b

and introducing the 2-dimensional "metric" tensor gag
2 )
/g = G, g CT g = et g

one can rewrlte the theory in the standard geometric form

a . Q ag (33)
A AR Y MRS T I

In addition to the gauge symmetry this action is invariant under
the Woyl transformations -

f ao _.)C 4
3;:6"6306 ;8 - € ga , X=X p>p-



One can make a step further expressing gag in terms of the
"zweibein" 1 G.¢ =€ g €f . Written in terms of €7  the

Lagrangian has the additional invariance under the two-dimensional
Lorentz rotation e:"La e"é , where Lg LT:-g . Thus, the full two-

dimensional symmetry group of the string is
Weyl ® 2— Lorentz ®  Gauge -

An intriguing relation of the gauge string theory to the gauge
theory of the scalar relativistic particle (19) can be observed at
this point. Written in terms of e';‘ sy the Lagrangian (31) corres-—
ponds to the following special cholce of the zwelbein

™) =.L(22 ‘ﬁ«) - (ea‘ )
a Ji,\o 1 0 e

which is isomorphic to Eq. (I8) . Thus, the gauge potentials para-
metrize the group manifold of the gauge symmetry group (I8). Note
also that the generators of this group, Gy and G’+=—7£(e',+f6’,_),
form the minimal non-abelian subalgebra of the Virasoro algebra as
[B’slc‘+] = &, . At this moment, 1t is hardly possible to judge a
real significance of this coincidence. However, the role played
by the canonical group SL(Z, R) in the gauge string theory seems to
be quite remarkable.

Finally, we construct the gauge theory of the spinning string.
Introduce the right-moving and left-moving Grassman variables §"'
E’“ and consider the rudimentary Lagrangian ( ga(t, £ z

4
o 2 T . T (34)
I, = pPx "‘2L(Pz+x' ) +%; 3 “fgqg’s‘"

It is not diffioult to find its symmetry

A A AA T
bV=Fy =3, Fow V¥ =(px, & %) (35)

A A

R (%—_!_—* -, F =(%§) 36)
R | / v R/

3+ and F are given in Eq. (25), and

T - 3+d4, 0
o ‘Pd %_ ~ tﬁ LP1 ~_ ‘f+ +
‘f -t ( ‘Pd (\07’ ) ! = qu_ -, >: F 0 ;_') +95".*

where

10

—

with ft=3,—’-({1if2) . Bere ®P  are easily obtained by direct
calculations while for finding 3 one has to use theﬁclgsu}'e,\
requirement [§,§]~&8 . Defining the gauge potential A=A 3_’
where ,4\ is obtained from A by the change f‘.-z»{i , Fe —,At-)
and using the standard procedure we arrive at the gauge-invariant
Lagrangian for the spinning string

L= p% + L (x +EEs )+ FL(Fex s ifa 20 o)
- iATy.p — idTg fox’

This string is equivalent to the Neveu-Schwarz-Ramond string /11/.

It would be interesting to find a gauge formulation for the heterotic
string theory. We also tried to gauge the 1-3 symmetric theory.
There exists the following new symmetry:

qg 2a o1

‘ﬂ — ag é — ga —_ —
Spi=eT0p(4.p°) , Sx =8 fpp , € =& %=1,
which, however, is closed only on the equations of motlon and thus
requires adding some auxiliary fields and symmetries. Apparently,

t-4 asymmetric approach developed here has a virtue of being
extremely simple and transparent.

2. The observations presented above reveal a rather general principle
of gauging linear (super)canonical symmetries of bilinear rudimentary
Lagrangians. Employing this principle allows one to comstruct in a
transparent and unified manner all known models of relativistic
particles as well as. gauge formulations of bosonic and fermionic
string theory. In addition, gquite new }heories can be derived. 4 non-
trivial example has beeh given in Ref. 13/ - a relativistic gauge
theory of 2 and 3 scalar particles bound by linear (harmonic)
forces. 4s pointed out in the approach can be used to obtaln the
Noparticle theory, however, the identification of the relevant
N-particle gauge group, given in ., 1s incorrect. Here, a general
relativistic theory of N particles bound by harmonic forces 1is given.
It can be applied to hadrons, strings, membranes, etc.

First we present a rather general formulation of our approach
to §aug1ng canonical symmetries. Extending the ideas of Refs./15’16’
3,9 consider the following rudimentary Lagrangian

Lozg/“l/Fiﬁq./iV —%/‘dﬁgdgp _%D(Pl$:g)’ (26

11

a




where the index {=4 " /\/ enumerates the particles. The

cons tant matrices g Y and /7,( can be diagonalized by suitable
linear transformations of canonical variables. 4s stated above

(see /9,12-14/ ), the quantum interpretation of the gauge invariant
theories of free relativistic particles and strings is consistent
only for Minkowsky metric vy=C4,+4,.. ;1) , otherwise the
Hilbert space of the system 'has indefinite metric. In what follows
we use the Minkowski metric 8/,,,, and suppress all contracted
space-time 1ndices /M,)/. Lorentz invariance is trivially satisfied
everywhere. The anticommuting variables § may be chosen, to some
extent, arbltrarily, and this allows one to describe spin and inter-
nal degrees of freedom (e.g., adding to (I) the temrm —25 gf‘ §/‘
gives the 'spin 1/2 massless particle Lagrangian, adding to that
—-gD gives the theory of the Dirac particle). The Lagrangian
(38) can easily to written in the standard form

<L1YC() H) Y + 8 . (9

where the boundary term 1is a total derivative 1ind t,
only boundary conditions for the gauge transformation functions

$(t) » ?Ct) usually we leave it aside. The rigid supercanonical
symmetries of this Lagrangian, &§ W= F({,W) HI s satisfy the condi-
tions

and it influences

-
FC+CF=0, [FHI=FH,~H,F=0 © (40

(remember that the transposed supematrix F is defined so as to
preserve the relation (F\F)T._‘WF » with due respect to anti-

commutativity ). Now the gauged Lagrangian [,, , that is invariant
under the local transformations, 5’1()”: F(’(&)l\?[\(_,))"{f, can be presen-~

ted in the form -
Ly =3 VC(-AVY, (1)

where the supermatrix A(‘L,)\) is obtained from F[‘f‘. lf’) simply by
substituting f—>{ s Y—>A . The gauge transformations of 4 are
defined by the standard formula ’

SA = F o+ [FATl=
, §Y F (4@, &) ¥ (42)

F +(FA—AF),

To derive the boundary conditions, for the gauge parameters f‘(ﬂ, o)
one has to calculate the variation of the boundary term AB « This
completes formulating our gauge construction.

A more practical approach to determining the rigid symmetry
group of the rudimentary Lagrangians as well as to constructing the
corresponding gauge theory is based on using, instead of the super-
matrices F, the generating function of the supercanonical transfor-
mations

é’-XZJ:-GI)”F'.B. ,G(P,%,g):ag'}ng +g%x°t- 43
Py G _.i_‘a_l—_g
p=-5. ) 97 'T/ %=t 5y

Under local symmetry transformations, L_G-, HD]P.B =0 and H,
is unchanged, while the variation of Lagrangian (38) is

= dJ,2¢ . o 9%
= fe [Pl «438E e[+ 26, ?g—g‘

The first texrm defines the boundary conditions for -f(-i,—), Yr)
and other terms are cancelled by adding to (38) the obvious compen-
sating terms

—pVeAY =-3 LB9.(.9,8) =3 Al Ku(Pig, B

.

where 1'l"r=('l’;‘ 4;, 5« ) . The transformation law for the gauge

potentials -?,, A can be derived elther from eq. (42) or directly

by applying to the new Lagranglan the requirement of gauge inva-

riance (remember that the superalgebra of the generators §,¥ 1is

olosed with respect to the Poisson brackets, due to the conditiom
[6,Holp s =0.

Now we apply the general approach to constructing relativistic
gauge models for N particles bound by harmonic forces. To simplify
the presentation we only treat here the spinless partioles. Then,
the rudimentary Lagrangian is

. ' y .
L, =R&, ~+PP —+ %5 @9, 6= e



The most general linear canonical transformation is defined by the
generating function

-
6 = 40Pk + by Ry +EC9.9, = %y(g,cg>my, (45)

where aij=q;'£ ',CL'J"—' Cji ( remind that we are not considering the
Lorentz transformations and all indices /4,1/ are contracted).

The Lagrangian (44) is invariant under the transformations (43), or

§¥W=c1y¢ /oY, it and only 1f

[Va]=[Vb]=0, $7=-3 c=-Va, (46)
where 1/ 1s the following NxN matrix
N .

\/}.:-Zv}a)vl = U, LES.

. .) oo
1=t

%))

Equations (46) leave in (3 not less than N independent commuting
generators which are some linear combilnations of the bilinear Lorentz
invariants PJPJ, P;%J-'Ct‘.qﬁ. . Therefore, the time components of the
coordinates and momenta can always be excluded by solving Z N
‘constraints together with the scme number of gauge fixing conditions.

The physics content of the gauge Lagrangian corresponding to the
rudimentary Lagrangian (44) crucially depends on the coupling para-
meters U . If V;. =V, for all (j , the Lagranglan describes the
system of N identical particles with pair harmonic coupling. The
gauge group in that case is T,®@ T ESU”_,. This can be shown with
the ald of the general formulae (15)—(17).. To see this more directly
we introduce new canonical coordinates. Define center-of-mass coor-
dinates and momenta

Q=J1WHEQ/£)Q:VJ:IV§-PD

and choose other cosrdinates y; and momenta i;_ (i=i} ey /V—i)
so as to diagonalize the Lagrangian :

L,= P4 "71:@2‘*"2(?.;. ~5 %% -£ 4.4

(the parameter 1):, is absorbed in coordinates, with due rescaling oi
t ). Applying our general construction we arrive at the gauge
Lagraﬂgian

(48)

I <

Ly =86 va ~f LOTM) —F LRy 4 FA)
\ @ (49
"z B — 1 G gy ) -Gy 2y,

where

A a
b=ty Zhe=o, 4=t .00
4 e s
Here the constraint coupled to 'Zo generates the translations ‘T’_‘ ’
the one coupled ta ﬂo generates U; , and théaothers give the
algebra of SU”_i (the constraints coupled to ‘f,‘-;. generate 1its
Cartan subalgebra). In writing eq. (49) we have used the abelian
nature of the *T' and 'U1 generators which allows one to add
the mass parameters AJZ, m2 without destroying the gauge symmetry
(likewise, the term —®? in the U; generator commuting with all
generators can be removed or multiplied by an arbitrary number). If
the pair couplings are not identical, i.e. U;; depend on i/j s
the SU’;,_ group will be broken. Note that the gauge group for N=2
is r['I@ U, To obtain the corresponding Lagranglan from eq. (49)
one simply bas to set Zf’?; =D) (=9 s and to keep the first two
constralnts,

A most natural approach to quantizing this theory is that R
described in the first part of this report. Hopefully, the appli-
cation of BRST-BFV modern methods /1/476=1/ will allow one to develop
both a relativistio quantum theory of free composite particles and
an effeotive quantum field theory desoribing their interaotions.

To obtain a theory of discrete strings, i.e. of linear chains
of particles bound by harmonic foroces, we choose V}J = 6“-_“1 4
for open strings and U:‘J. =3|i_“,1 +'Si/V 5J1 +g“ SJ-A/ ~ for closed
ones, and employ the general formulae (46),(47). The detailed
derivation will be presented elsewhere and here we only calculate
the number of the gauge parameters. The equations for 6,-‘1- are
easy to solve. For the open string 18“.5—0 and for the closed one
the condition r\/’e]zo is equivalent to the relations

p.=b . i<i; RU==£N (>3 .

t J-t ] _'l"j‘ )



Together with 8,--——6-- this leaves [O/-O/l] independent
parameters 81> 8 [ev-13/23 where the square brackets denote

the integer part of the enolosed number., The most difficult to solve
are the equations [V, a:l =0 . For the open string there are N

independent parameters a;, as
J;'H—f g
-j+i-41 . .
:E a (— L=y <sMHN-i+1 )
"J—L‘l'f

a‘_j = a,/_j_‘_ir/v_i.l.i.l L+y >N+4 .
For the closed string the equations [V,a]=0 are rather complicated
due to periodicity conditions. However, the number of independent
parameters @ 1s easy to calculate, it is [ (34 -1) /2]
The total number of independent gauge parameters for the closed
string is

(2}/—2) 1 N is even; (2//—1) 1 N 1s oad.

The generators correspond. to the Virasoro generators for the closed
string. The detailed derivation of the diacrete string Virasoro
algebra "will be presented elsewhere. Note that the closed "string"
with N=3 1z described by eq.(49).

In conclusion we mention some possible extenslion and applioca-
tions of our results, By adding sultable Grassmann variables one
can describe the bound states of N spinning partioles having in-
ternal degrees of freedom. Similarly one oan construct disorete
strings of different sorts, e.g. compactified on tori or orbifolds.
The «theory of N- particle bound states can be applied to the quark
model of hadronsj; while the theory of discrete strings,
to an approximate description of massless string states in realistic
models. A quantum field theory of discrete strings is possibly
simpler than that of continual ones. The scheme disoussed here oan in
prinoiple be applied to constructing other relativistio disorete
theories, e.g., membranes (i.e. two-dimensional lattices of particles
with nearest-neighbour harmonioc couplings). To f£ind the gauge group
in that case is a more complicated technical problem.

3. Finally, we will make several general remarks and list some
problems for future investigatioms. The observed interrelation between
linear canoniocal transformations and special relativity looks, at
first sight, somewhat mysterious, and it certainly requires further
oconsiderations. The practioal advantages of our gauge approach over
the ueual one, based on reparametrisation invarianoce; are indisputable.

- -

o

- that are defined using gauge fields ( €.9.

For free particles and strings the gauge symmetry 1s more or less
equivalent to reparametrization symmetry, but, even in this case,
our method gives the finel answer in a much more direct and clear
manner. Using the standard approach one has either to guess a
reparametrization invariant lagrangian (nonlinear and unrelated to
the nonrelativistic one) or choose some a priori constraints (also
having nothing to do with the nonrelativistic Lagrangian). Our prin-
ciple of gauging linear canonical symmetries gives,in a straight-
forward way, the one and only relativistic theory corresponding to
a given nonrelativistic Lagrangian(up to now we have used only
bilinear Lagrangians). One may view this principle as a device for
transforming simple nonrelativistic theories into the corresponding
relativistic ones. Applying this device to N particles bound by
harmonic forces immediately produces the well-defined classical
relativistic Lagrangian (49), which can easily be quantized. It is
terridbly difficult to find an equivalent reparametrization invariant
theory of this Lagrangian, and moreover such an equivalent theory
would be practically impossible to quantize. '

Anoth;r important remark is related to the Ao —interaetion
theorem ’1 For some time, 1t has been known that a gauge-like
approach to interacting relativistioc particles allows one to bypass
the restrictions of this theorem (see.e.g. /18/,/19/ and a detailed
recent discussion in Ref./zo/ ). The price to be palid for avoiding this
theorem is that the phase-space coordinates P{ﬂqé‘ are; in general,
not observable, as they are not gauge-~invariant. This i1s not &
defect of the theory but a direct consequence of the need of having
some auxiliary variables in the relativistic description. The
constraints (i.e. the generators of the gauge transformations),
together with the corresponding gauge conditions, completely fix
the independent physical observables. One may find in the current
literature the incorrect statement that different gauge choices
might correspond to different physical systems (see, e.g. /20 ).

This opinion is probably based on neglecting the boundary oonditions
for the gauge transformation functions and Teichmuller parameters
19 = Sl L), et ).
As it has been stressed above, different values of these parameters
correspond to different gauge orbits of the same physiocal system,
This simple faot has been obsocured by the use of rather complicated
and usually not Loronts-invariant gauge fixing conditions. A more,
detailed disocussion of the gauge fixing conditions will be given

el sewhere.



We finish this report with an incomplete list of problems?
1) The problem of giving a complete quantum theory of particles
with spin and internal quantum numbers. Of special interest is the
massless particle theory with the dilatation invariance. 2) The
problem, of constructing the corresponding quantum field theories,
following the BRSP-EFV-Parisi-Sourlas approach. 3) The problem of
f£inding all possible continual strings. Of special interest is the
Green-Schwarz superstring {in the standard approach it contains
second-class constraints while the gauge approach can only
generate first-olass ones). 4) The problem of formulating a first-
-quantized theory of A bound particles and trying to find a corres-
ponding effeotive field theory (second quantization). An interes-
ting application would be a constructlion of some new basis for the
Bethe-Salpeter description of confined quarks. 5) The problem of
generalizing the N-particle model to treat realistic bound states
of quarks and gluons (1.e. including the spin and internal degrees
of freedom). 6) A very interesting problem is to study gauge
theorles of discrete strings.

The first part of this report represents the invited talk of
the author given at the Moscow seminar ®*Quantum Gravity", May 1987.
A bulk of it has been published in Re?.’ 2/ (in Russian). The
second part is based on Regs. /131147 | The third part is an attempt
to answer numerous questions raised in discussions of the ideas
presented in these papers.

The author is grateful to all partiocipants of these discussions.
-
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OumnnmoB A.T. E2-87-806
Kann6poBouHble TEOPHUH YaCTHIL], CTPYH :
¥ CBA3AHHBIX C HUMHU IT0Nei

B moknane npuBeneH o630p paboT No KaIuGPOBOUYHOMY [TOAXO-
Ay K TeOpUAM PEeNATUBHCTCKHMX YaCTHLI H CTpyH. PenatuBucrckue
TEOpMM CHCTEMATHYECKH CTDOATCA IO HEPENATHBHCTCKHUM C IIO-
MOILBIO TIPOLENYPE] JTOKAIM3AHH JIHHEeHHsIX /cynep/ KaHOHMYEeCKUX
cuMMeTpuil  MpocTeHmHUX OWIHMHEHHBIX JarpaH)kmaHoB. Bechma
OpoCTHIM H IIOCNIEAOBATENLHLIM METOAOM MONYYeHBl H3BECTHEIe
TEOPHH CIIHHOBBIX YacTHl, DO30HHBIX H (epMHOHHBIX CTpyH. IlocT-
pO€eHbl HOBbIe KaNTMOPOBOUHBLIE MOZENH  YacTHL, CBA3AHHLIX rap-
MOHHMYECKHMH CHJIaMH, B TOM YHCJIe KATMOPOBOUYHbIE MOMENH THCK-
PeTHBIX CTpyH. Bce 3TH KanuOpPOBOYHBIE TEOPMHM GAaCTHUL MOKHO
xBaHTOBaTh MeTonamu BPCT-B®B.

Pabora BrinmonHeHa B JlaGopaTopuu TeoperHueckoil (HIUKH
Oousdmn. _

CoobGuenne OGbeqHHEeHHOrO MHCTHTYTA ALEPHBIX HcenegoBanmit. JlyGna 1987

Filippov A.T. E2-87-806
Gauge Theories of Particles, String
and Corresponding Fields

A review of the gauge approach to relativistic particles and
strings is given. Relativistic theories are systematically produced
from nonrelativistic ones by gauging the linear (super) canonical
symmetries of simplest bilinear Lagrangians. The known theories
of spinning particles, bosonic and fermionic strings are derived in
a simple and transparent manner. New gauge models for N relati-
vistic particles bound by harmonic forces, including gauge models
for discrete strings, are proposed. All these gauge theories of par-
ticles can be quantized by BRST-BFV methods.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.
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