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.I i 1. The recent development of the superstring thl;lory revealed a 
~ "'~ od 

AiJ v -o 'neoessity to reoonsider some basio ideas of the standard looalquan­'l{\ ~ 

I~ 'li JI,/ tum field theory. It gradually became clear that a relation betweenJ\ oi ~ I 

~i' e
.' /"1
 the quantum theory of the relativistic partiole and the correspond­
I, 

\"1 ing quantum field theory had been poorly understood. In fact, the 
I' 

transition from the quantum theory of one noninteraoting relativistio 
,~ ~.~:~I ,.... ,_f string {so-~alled "first" quàntized theory) to the interaoting string:.. 'I 

li'" t ). ~. field theory ("second" quantization) proved to be quite a nontrivial"l.~I,~j 
tI' 

problem. For example, in Refs. 11,21 such a transition is based onJ' ,~ I 'I. 

'b a new recipe for going from the relativistio one-particle theory to 
Jt.r, Lff ~\,"~ rll'"
 

l_'1 ~'
 the relativistic quantum fiel,d theory. The most importani ingredient 
of this prescription is a gauge-like formulation of the relativis ­

';- J '\,.-, 
ii'~ tio partiole theory suggested in Ref. / JI (for a somewhat more aocu­

I'" \ 
4\\ rate treatment of the gauge supergroup in the theory of spinning

~ .,. .(1 ~,~ 
"fi "1b'" .~.:} -rr"1. 

J~ '" J:I~· , particles see Ref. 14~ a detailed study of quantization is given in 
~ f. 

,.-1' 750•I' 
"~o 

, "Gauge-like" means tha t the oonstraints (such as p'1.+m1.:.. (), P!= o• .l I 
I~''>

t'l!'il
 
"il ~
 etcJ are viewed as generators of the reparamejrization symmetry and 

,J ( of the local supersymmetry. Acoordingly, in IJ and 151 the relati ­
vistio quantum theory of spinning particles was treated by a (super) 
generalized Dirao approaoh to systems with constraints. The modern 
approaoh to the quantization of such systems 111 consista in trading 
these gauge transformations for the oorresponding BRST symmetrT. The 
generator of thia symmetry, so-oalled BRST charge, jl ,plays a'í 
prime role in the transition fr~ the ane-partiole theory to the 
quantum field theory. Too complioated though it is at first glanoe 
this approaoh exposed new symmetries of the relativistio partiole 
theory Il,J,6/, and what is more important, it c~ direotly be 
applied to oonstructing field theories of string 1,2/. Alternatively, 
one can employ a oombination of the BRST and BPV 171 techn1ques for 
construoting perturbation theory diagrama fram propagatora (aee, 
e.g., reoent discuasion of suoh an approaoh to the relativistio 
particle theory/81 ). In the BRST illV'ariant BFV Lagrangian all varia: ­

l-o:.rl 

bles - original coordinates and momenta,ghost variables, and Lggrange 
multipliers - are formally treatej on equal footing. 

". This motivates an attempt 19 to oonstruot the relativistio, 
'" 

. I
i 

~ 

1I)' 
J' , .(9 Q6...e~~hIff ~im~~_ R~epHhlX HCC1IO,tlODIIHHA JXy6HI, 19~,7~;;,,, ",: 
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theory of part10les and strings starting from some rudimentary 
Lagrang1an with 1ts r1g1d symmetr1es. By gauging some of these 
symmetr1es one can generate new, gauge 1nvariant Lagrangians which 
can be 1nterpreted in terms of relativ1st10 part1cles and str1ng, 
reapeotively. 

We beg1n with construoting the theory of relat1Vist1c scaIar 
partiqles by gaug1ng linear canon1cal symmetr1es of the s1mplest 
rud1mentary Lagrangian 

-1. ·I"·v (1)Lo - 2 3)f1l 't (t) ~ (-t). )A, v :q1., .., J ])-.1 , 

where 'ir = dq,.../dt and 8,.., 1s a constant matr1x. By l1near 
transformat1ons ~~ L;Cf.... ~ 11 we can d1agonal1.ze 8)Av • Neglecting 
var1ables correspond1ng to zero e1genvalues we may re.,gard 8)"v 

1n Eq. (I) as a d1agonal matrix wi th ±.i e1genvalues. The resul t1ng 
Lagrang1an 1s obV1ously 1nvar1ant with respect to r1g1d Lorentz-11ke 
transf~rmat1ons preserving th1s matr1x. Th1s symmetry does not, con­
oern us here and 1s triv1ally sat1sf1ed in what follows. 

Cons1der oanon1cal symmetries of Lo • Def 1n1ng the oanon1cal 
momentá p,... = àLo /d't-I'" ,we rewr1te Lo 1n the f1rst-order form 

(2)
Lo = ir _}p2.:; fCip - pt) -i pZ + ~ C't-f»-. 

Up to the boundary cond1tions, wh1ch will be d1scuased below, the 
last term here can be negleoted. The k1net1c part of Lo 1s 1nva­
r1a.nt w1th respeot to infinitesimal canonical transformations 

ó{Ç õ'- (J) 

bP=-d'f,.- J S~=")p G-=~fL G,(p,'t--), 
1: 

where t ~ are 1ndependent o f t . Allow1ng for the1r dependence­

on t we obta1n (L~) = 1= (~F - Pcp) 

(f() • J [ d d ] 
(4) 

~ Lo ::: ~ f l G- i +- dX t (p f' + 'l- cy) b= - G- . 
&. 

For homogeneous linear transformat1ons the dimens10n of G 1a z 
and therefore . 

84~lC' - L tt (;.i (5)
i 

2 

If the algebra of generators Gi 15 ~losed with respect to Po~sson 

brackets, the Lagrangian 

'rCir -r'lJ - I ltç~ 
ia 1nvar1ant under transformat1ons (J) sat1sfying (5~ provided that 
the functions l,(~) undergo eas1ly obta1nable gauge-l1ke tr-ansforma­
tions. 

However, due to the term - t p2. in our rudimentary Lagrangian 
(2), the choice of the transformat1ons is severely restr1cted. In 
th1s case, the only essent1ally 1ndependent constralnt 1a p2. =0 
(1n general, oonstra1nts are 6, =0 ), and this oan be obtained by 
cons1der1ng the linear oanonical transformat1ons 

1"_1 2. f ..1.1 2. (6) 
IJ - 2" -f1 P + 2. (p cv) +- 2] 3 'to . 

Anyhow, as far as we 1ns1st on the standard formulation of the gaug1ng 
procedure, conaãderí.ng .~==(p,q,) as a matter field and fi. (i) as 
a gauge ~otentials, the 11near1ty restr1ot1on seems to be unavo1dable. 

Now, the transformat1on (J) with G g1ven by Eq• (6) 1a, in the 
matrix form~ 

( - f2. - f3 ) (7)S'V== F~) F :::: fi f 2. ' . 

The matrâ ces F generate the 11near canon1cal group SL-{2, P-)",SU(11 O. 
'l'he full Lagrang1an Lo 1s 1nvar1ant w1 th respect to ita abe11an 
aubgroup 

(8)
~p =O) S~:: fi P F, = (~1 ~ ) 

To U8~ the standard Yang-Mills ~ro~edure of gauglng we rewr1te Lo
(HJ 

as 

o(K\ I (T. dv (slY)T ) (9)
Lo = 7j "fi" l6"z. dt - ett. l6"2, Y ~ 

where ~1 1s the usual Paul1 matr1x. 'l'he generator F~ 18 of the 
form F1:= ' 16'...;. ,where b_ = tC.,- iõz.) J and we naturally define 
the gauge potent1al A=t b- • Introducing 1t 1n Eq.(9) we arr1ve 

1 
at the gauge-1uvar1ant Lagrang1an 

Li ==~{ YiD2 Cft -A)Y-[(it-A)y]Tiõ2.1ft=ri - ~i p~ (Ia) 

Th1s 1s a quite oonvent1onal abel1an gauge theory. As for alI linear 
canon1cal tranaformat1ons, "0/"1= uy, the ant1symmetrl0 matr1x ~2 
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,.. 
is invariant, U 6 11 =~ , the Lagrangian (10) is invariant provided

2 

AI = UAV-i- +VV-.1.. (11) 

The matrices of the finite transformations oorresponding to Eq.(S) are 

Ui = 1. + f 1 "- ) 111-
1 = 1 - -fi G'_ . 

The physioal interpretation of our gauge theory (Ia) i8 obvious. 
if we ohoose for 3J4v the Minkowski signature a.,»-.:1. ) , 1. e. 
8/"", =(-.i

l 
t .1" .'" +..i.). In this oase the Lagrangian (10) desoribes mass­

'less, free relativistio par-tí.cl e movã.ng in ('1)-.1.) -dimensional spaoe 
(.l> -dimensional Minkowski spaoa-time). 0-[ course , in the classioal 
oase one might take any other signature (T,.D -7' ) with 7' » 1­
However, the quantum theory of the gauge invariant Lagrangian (Ia) 
i8 oonsistent on1y for the Minkowski signature, otherwise the Hilbert 
spaoa of the system has indefinite metrio. 

The most adeqtlate approaoh to the quantization of this model is 
based on the BRST_BFV teohnique. To see the reason for this we have 
to remember the suppressed term t(P't.-)·. One oan easlly prove tbat 
this term determines the boundary conditions for the gaugeparameter: 

1 1 
bS1=:S)dtt(p~f=-t-tiP2.lo =0 ~f1[O)=t1(O =0) (12) 

o 

as f~r as the symmetry is independent of the equations of motion 
(1.e. we are not a110wed to use the constraint p2.;O in Eq.(12) ). 
Th1s boundary oondition determines a nontrivia1 structure of the 
gauge group - the zero mode of the gauge potentia1, 

t~'l :, ~ JU, (t) = ~ tLt [ t.(t) + f,Ct lJ , (13 ) 
o D 

oannot be ohanged by ~ admissible gauge transformation. Thus, the 
gauge transformations are subdivided in the gauge-inequiva1ent classes 
enumerated by one real parameter t:D

) (the "Teiobmu11er parameter" ) 
of th1s group) • Ãn important oonsequenoe of this faot i8 that one 
cannot ohoose as a gauge oondi tion B1mp1y t-1=.i or t.. =0 • The 
81mp1est P07s1b1e'" gauge oho1oe is that proposed by Fradkin and 
V11kb:v1sky 7/ I 1.. =O • 

~ moet a1gorithmio approaoh to quanti~ing our gauge theory uses 
an extended phase space which we visua1ize on a "ghost oube" & 

4 

... 

Q= (<t, t, 6, fi}; Q8~(Q',J) ::: + 1 

{; Cf>= (p,k , p'lr) i Q.~(6/:r).=-iy 
Q'«a~ (PI ~ I kI e) = o 

Here the Greek 1etters are used for Fermi variab1es, and Latin, for 
Bose ones. The oanon1oa11y ccnjugat e pairs are (p q,)J (ft; ),cp.6')J (k el 
The standarã BRST_generat()r 15 

Q = i~f + G' p~ (14) 

The aimp1est BRST-1nvariant Lagrangian with the gauge oondit1on 
.t =0 -is 

.. ~..'.'.f. 2- (15)
L z: Q.'f - ;]i -=- ~p + ~ k + fi j + 6f - f .rP - "2 P . 

Now the quant1zation is straightforward both in the operator and 
path-1nt~gra1 approaoh; some deta11s may be found in Refs./6-8/ 

However, there is one controversia1 point in app1y1ng the path­
integral presoript1on. To ca1ou1ate the quantum probabi1ity for the 
partio1e transi t on from q10) to q;{-t) one integrates ei5 over a11í 

dynamioa1 variab1es. The on1y essentia1 1ntegrat1on proves to be 
01 D CO) •

the one over the Teiohmu11er parameter L • 

. ~ ·e~ ~ 
'j)í ~ /'(.) (d (dlJ(cJ) -C,p(ttli>-q,fO}j e- ZT P 
.r l ~ (o) I lft 1) ,..., J P J 1.- e . 

Now, lf -00 < e(0)<. +00 , we obtaln the imaginary part of the propaga­
tor (pa_ lo)-' • One oan const ruc't the fu11 propagator by addlng 
to this the probabi1ity of the "t1me-reversed" translt10n (in addi­
t1on, one MS to mult1p1y p"L by e(pO); for deta11s see Ref./S/). 

A1ternat1ve1y, we may 1nslst on havlng the tem p2 unmod1fied and 
use the trans1tion to the Eu011dean formu1at1on,w1th' the ohange 
p2.~ p7-- i O • One oan soe that the oorrespond1ng .[.iO

) lntegJ;'at1on ia 
we11-def1ned on1y for O~ eO)< 00 • It wou1d be n1ce to find 
some more d1reot and r1gorous theoret1oa1 argument g1v1ng th~a 

restr1ot1on for ,(O) • Bote that scae authors us e even more 
strong a8sumptlon '·tlt)~ O without any d1soussion, aee e.g. /6/ 

Th1s oonditlon 1s not g~ge 1nvariant. A more detai1ed mot1~tion 
D(O)

for using the gauge 1nvariant restr1ot1on L ~O 16 presented in 

5 



Refs. 1101 where, to my knowledge, the f1rst d1scuss1on of the 

gauge-1nequ1valent classes 1n the theory of relat1v1st1c part1cles 

has been g1ven; 
Return1ng to the Lagrang1an (Ia) one can see that 1t has an 

addit10nal rigid s'ymmetry 

(16)'Dp=-fzp} $q,,== fztJ sE1 = 2 f 2E.i. 
wh~ch is simply the d11atation invariance. Gaug1ng this symmetry 
g1ves a new theory w1th the gauge potential 

-e'2. O) (17) 

A == ec, - r2- b31 (- t ~2.1 

transform1ng accord1ng to Eq. (ll),where 

1 (Ia)-t~6"3 _Q ( e- O )

U = e (i + a1 e 2. G"-) = t,\ 

Z. 

e-f2.
 

Now the same construotion as used to obta1n Eq. (10) gives the 

Lagrang1an 
(19 ) 

L2 = 1(p~ -4 p) - t e~ p2 - t'2. (pq,.) 

This theory is non-abelian since 

• (20 )

6~i = f1 -t-2fz f1 -2f1 ez.) se:z. == f2. 
(one oan easily obta1n also the f1nite transformat1ons). At first 
sight, this Lagrang1an looks translation-noninvariant but in fact 
there 1s no restriction on lz ,and one may choose the gauge t&=O 
in which the translat10n invariance 1s manifest. 

The BRST_BFV ap pr oaoh to quant1zing the Lagrangian (19) is 

straightforward. Us1ng g~neral rules the operator ~ can be 
oonstructed and proved to be nilpotent. To further understand the 
physioal meaning of this apparently new theory of massless scalar 
particles (dilaton?), the interaot1ons have to be carefully treated. 
This problem de serves a separata considerat1on wh10h will be publi ­

shed elsewhera. 
Naw, we construct the gauge theory of spinning partioles. A 

simpl~st choice for the rudimentary Lagrang1an 1s 
2. • •.iLo :: f(pci, -~ p) - 2 P - t ~k!" ' (21 ) 

6 

... 

where are anticommuting (Grassmann) variables, k=.i.
J 

.. '/ K,5: 
The group of linear canonical transformations in thi's case 15 
05p {fi ( / K) • For gauging the subgr-oup of this (super)group 
leaving the Lagrangian (21) 1nvar1ant we 1ntroduce the notat1on 

t~(PJ q,J ~1' ... tl() and rePla~e i6'~ 1n Eq • (9) by th~ matr1x 

C = (1G"2- ),0 
O -dl ' 

The matr1x of the (super)gauge t ransto rnat í ons ~V= F1.f and the 
correspond1ng matr1x of the gauge potential are 

o o-e o'- fz o O o ) (22)~ .l\ i).,1<F = ;":. ['fi i'fK A = e} L 
~1 ~ , It,lc.( .. C 'k (.. T to 

7\K Ó'i>K Ô 

where fik =-'fl<i I eik. =- - ek i (the f1n1 te transformat1on U 15 easy 
to obta1n). In ad dí.t Lon to the boson1c transformat1ons (711 1:0 ) and 

the local supergauge transformat1ons (tP., .... <ft<.) we obta1n the 000­
rotat1ons Cf Lk.) • Substitut1ng the gauge potent1al A 1nto Eq• (Ia) 
(with i(j2. => c), one can easlly calculate the gauge 1nvar1ant 
Lagrang1an 

. . ' ~2J)
Li = Fi- - ~ ~Ic.~k -te~p2 - e2 (p'!t ) -iÀ/C{p~I<)+it~fij~J' 

wh1ch, for ~2.:= O , co ncãd es w1th that der1ved 1n Ref/51 follow-í 

. /JI tT'... •1ng the approach to hef. • "'ne standard D1rac quant1zat1on has 
been app11ed to the const~a1ned system (2J) 1n .these references. 
Hâv1ng formulated the theory as a real gauge theory 1t 18 more 
natural to apply the BRST-BFV. appr oach , Th1s can be ,done exac t Ly 

as 1n the sp+nless case. Note that the new supergauge-1nv~r1ant 

parameters, 1 1 

~~ol == ) À/t)dt =- S [~j (t) + ~(T)]J.t , 
o o
 

are generated 1n this case ow1ng to the boundary cond1t1ons
 
lf'j (01 = 'fj (1) = O,
 

To g1ve a gauge formulat1on for string theor1es, we cons1der
 
the s1mplest rudimentary Lagrang1an depend1ng on the var1ables
 

X/"f(~/t ) CX/r == ~x"u /d~) : 

7 



t = .i-(X'Z_X t 2 ) = pi< _J..(pZ t- X,2) . 
o 2 ~ (24) 

For simplioity we assume 8 v == C- :i., +.i, ,, .,t-L) but tlie signature of 
á'r~ could be fixed exactly 

r 
as in the partieIe case. The (-L,+i) 

metric for the variables t,~ i5 necessary for obtaining a well ­
defined classical Cauchy problem. Define -0/-"=( ~, "'f!'2.) = CPI X ) 
and ô == 'O/~? • We are to regard the variable ~ as a conti ­
nuous index, and accordingly, the transformation matrix LT is 
a 2x2 matrix with elements depending on powers of b -operator. 

By simple calculations .one can easily find that the Lagrangian 

(24) i8 invariant under transformations 

~Y=d F) d =(d 0) d =(1 0 \ F=(f1 foz.) (25)
+ - I + - O 1 ) - - Oê) ) I fz. fi 

For rigid transformations the order of the operators d+, d_ is
 
immaterial. However, for fi. depending on -j/'i the algebra of
 
the transformations (25) is olosed :l.f and only if the operators d+
 
and ô_ are ordered aS specified in Eq. (25). Then, the commuta­

tor of any two tre.nsformations b and -g depending on para­


meters fi and fi. is of the form
 
(26) 

[ó/~] = ~+ F[cSf~J ê)_ F [ó, ;5 ] = FI F~ 
I 

- Fb F$
, 

, 

whe~e the matrix F[&,S] is of the sama form as in Eq. (25) 

v Lf1,+.J 1- W[f~,f(] 
(27)

Fr8,~] 

It ia natural to define the gauge potent1al 

=. (-t~ ft.) (28) 

tA = d-t Ad_ AI 
~ f'1 . 

\
Then, the gauge 1nvariant Lagrangian oorresponding to the rudimentary 

Lagrangian (24) ia 

8 

;.. 

T 

d..1 = t V iõ;z. (di; +vA-) Y (29) 

while the gauge transformations have the usual form 

&1(== g:-V, S.A = cj:+[A,lf]. '3-"" =- d+ F d_ 
(30) 

In the standard notation 

(31)t., = p';' + ~.f (p;<.') + t f.z Cp2 -t- X(2). 

Denoting pQ={p~p1), where p0:= P I F1 
= ô;f, /âx" 7 

the Lagrangian ~, can be written as 

J = pQ d /<. _.i. C; € pq F~ da = Cdt; ~~) 
(J2) 

1, ~ Q 2- a I ' 

with (-t2 O 2.

C;a~ = J.- I -t.z ) dei '"ag =-1 .-fi)
e, ( -t1 

.i I 

Defining the inverse matrix 

ae (1 (, '\ Gaª G = C>r ,
a'B aC; = - t .(,1 (J~ - t;) ) 

q 

and introducing the 2-d1mensional "me t r í.c " tensor BaR 

gae;Cf ~ çaR B := dei ~ogSai 1{1 ~ Gag 

one can rewrite the theory in the standard geometrie form 

~ = (d, X - t h 3.t f' ' r e = t l6~ d.)( de)< . 
(JJ) 

In addition to the gauge symmetry th1s action ia invariant under 

the Weyl transformations 

f aR -f o~ 
3aB -7' e ~Q€ ) 3 .-,. e g I X 4' X I P-;>P' 

9 



One can make a step further expressing 8ag in terms of the 
"zweibein" : ~ag =e~ g~Jl1eg • Wr1tten in terms of e~ the 
Lagrangian has the additional invar1ance under the two-dimensional 
Lorentz rotation e;~L ~ e ~ ,where LQLr =~ • Thus, the full two­
dimensional symmetry group of the string is 

Weyl ® 2.- Lorentz @ Gauge· 

An intriguing relation of the gauge string theory to the gauge 
theory of the scalar relativistic particle (19) can be observed at 
this poí.nt , Written in terms of e': ,the Lagrangian (31) corres­
ponds to the following special choice of the zweibein 

m ) =...L ( e'2. - t1 ) == ( e Q2. Q -1 )
( e I:{ Jf;. O 1 o e-az
 

which is 1somorphic to Eq• (Ia) • Thus, the gauge potentials para­
metrize the group manifold uf the gauge symmetry group (18). Note 
also that the generators of this group , ti'3 and b+ =- -:4:((;;, + (6"2,..)' 

form the minimal non-abelian subalgebra of the Virasoro algebra as 
[~3/b....J -:::- \;'+ • At this moment, it is hardly possible to judge a 
real significanoe of this ooincidence. However, the role played 
by the canonical group SL(z, R) in the gauge string theory seems to 
be quite remarkable. 

Finally, we oonstruct the gauge theory of the spinning string. 
Introduoe the right-moving and 1eft-moving Grassman variables ~~ 

.JA T 2..)'5 -f and oonsider the rud1mentary Lagrangian C ~ == (~, la.)) 

• • 2. 2 • T. • T (34)
d.." = pX -tcP -t- X' ) + ±~ ~ - t ~ ~3 ~/. 

It is not diffioult to find its symmetry 

1\ .... I 

, (35) " "'" Y =(P I X J ~1 J ~ 2- ')?)V=~'o/ = "\ F ~L '\fI"' 

"here 

F= - (36)1r=(~r I;) (ff)AJ f F , 

and F are given in Eq• (25), andó±. 
'\ . ( tfi -lf2..) zp x: (lf1 lf1) F=(f+d

+ót+ O \ 
'1'-=-1. f-1 lf'2- / lf'2- -lf'z. / O ·Ld + 'df-J 

wi th f:t':= f(f1 ± f.2) • Here ~,f~ are easi1y obtained by direct 

calculations while for finding Fone has to use the closure 
~ ". "" 

requirement [$/~]"" 8 • Defining the gauge potential J1=ê>-+A à_ J 

where A" ã s obtained from A by the change f· 7> !. I (,p.I L 
->- Â: 

J, l. ~ 

and using the standard procedure we arrive at the gauge-invar1ant 
Lagrangian for the spinning string 

t = pX + -e1(pX/t-tF~/)+ff2.(pZ-t-XI2.+ifG'3í/)_(J7) 

) 
1 

. '\ T • I\T I
 
-LI\ ~·f - lo 1\ ~ ~·X
 

This string is equivalent to the Neveu-Schwarz-Ramond string /11/.
 

It wou1d be interesting to find a gauge formu1ation for the heterotio
 
string theory. We a1so tried to gauge the i-~ symmetric theory.
 
There exists the fo1lowing DeW symmetry:
 

ga qg ai '\ ( C) L .J'G\ E =- E. ia I E, 01== iSP = ê o~ fe P I Sx =E Tafg 

which, however, ia closed on1y on the equations of motion and thu8 ~
 

requires add!ng some auxi1iary fields and symmetries. Apparently,
 
t-~ asymmetric approach developed here has a virtue of being
 
extreme1y simple and transparente
 

] 

2. The observations presented above reveal a rather general principIe 
of gauging iinear (super)canonical symmetries of bilinear rudimentary 
Lagrangians. Emp10ying this principIe al10ws one to construct in a 
transparent and unified manner al1 known modela of re1ativistic 
particles as well as. gauge formulations of bosonic and fermionic 
string theory. In addition, quite new jheOries can be derived. A non­
trivial example has been given in Ref. 13/ - a re1ativistio gauge 
theory of 2 and 3 soalar particles bound by linear (harmonic) 
forces. As pointed out in /13/ the approach can be used to obtain the 
N_partiole theory, however, the identification of the re1evant 
N-particle gauge group, given in /13~ is incorrect. Here, a general 
relativistic theory of N partic1es bound by harmonio forces is given. 
It can be applied to hadrons, strings, membranes, eto. 

First we present a rather general formulation of our approaoh 
to ,aUging canonica1 symmetries. Extending the ideas of Refs./15, 16, 
3,9 ,conside~ the fol1owing rudimentary Lagrangian 

/1. v . J o( • ~ ) (3a)Lo = 9/,,11 Fi ~i -tllol~~ ~ -:J{D(P(~/g , 

10 II 



where the index i =.1) ", I li enumerates the par-t í.cl es , 'l'he' 
cons tant matrices 81'v and holp can be diagonalized by sui table 
linear transformations of canonical variables. As stated above 
(see /9,12-14/ ), the quantum interpretation of the gauge invariant 
theories of free relativistic particles and strings is consistent 
only for Minkowsky metric 8)'111 =C-.i. +-oi) ... J +.i), otherwise the 

1 
Hilbert space of the system has indefinite metric. In what follows.
 
we use the Minkowski metric 8j1v and suppress a.LL contracted
 
space-time indices ;UIVO Lorentz invariance is trivially satisfied ~
 

everywhere. The anticommuting variables 5 may be chosen, to some 1
 
extent, arbitrarily, and this allows one to describe spin and inter­
 ! 
naL degrees of freedom (e. g., adding to (I) the terrn -.j $.1' i)'f ;) 
gives the 'spin 1/2 massless particle Lagrangian, adding to that 
-t~]) I 1) gives the theory of the Dirac particle). The Lagrangian 

(3a) can ea.sí.Ly to written in the standard form 

_ 1 T 
Lo - 2 1(C(di: - Ho ) Y + LiB' (J9) 

where the boundary term i3 a total derivative in t, andit influences 
only boundary conditions for the gauge transformation functions 
1(t) ,~(~); usually we leave it aside. The rigid supercanonical
 

symmetries of this Lagrangian, 6 Y = F( f1lf) 0/ , satisfy the condi­

tions
 

í 
F C i-CF =: O, [ F, Ho] =- F Ho - HoF = O (4 O)6 

r 
(remêmber that the transposed supermatrix F is defined so as to 

T T'T" 
preserve the relation (Fo/) :::: '41 F , with due respect to anti-
commutativity ). Now the gauged Lagrangian L., , that is invariant 

under th~ local transformations, ~V=F(f(i:),'f(~»)-r, can be preseIi ­ ~" 
ted in the form i' 

T 
(41)L1 == 1'rC (d-t; - A ") Y, 

"
. 

where the supermatrix A ({J),) 15 obta1ned ~rom F{f,lf) s1mply by n 
subst ã tut1ng f ~ t, lf ~ Â • The gauge transformations of A are 
defined by the standard formula 

&A = F + [ FIA] E. F+ (FA -A F) , 

sY =- F C-f{t) I f{-é)) y-. (42) 

... 

To derive the boundary condit1ons, for the gauge parameters f{~),~(~) 

one has to caloulate the variat10n of the boundary term Â a . Th1s 
completes formulating our gauge construction. 

A more practical approaoh to determin1ng the r1g1d swmmetry 
group of the rudimentary Lagrang1ans as well as to constructing the 
corresponding gauge theory 1s based on using, instead of the super­
matrices F, the generating function of the supercanonical transfor­
mations 

bX : [GI;X 1P. B . ,G(fi q, I ~) -= ?fa ~ C\ +! lf'~ /(0( . (4J) 

óe; 'OG 
~ p = - ~'\, ) &~ = 'ar J 

S;~= i f: 
Under local symmetry transformations, [6-. HoJ p,a =0 and Ho 
i6 unchanged, while the variat10n of Lagrangian (J8) i8 

_ d [Ob- ..L ãLc;. ] • ';1(;. 'dLr;
6Lo - Jt P'à r +).. ~ ~ - r; + f 'àt 1- f

6 

Ô lf .. 

The first term defines the boundary conditions for f{-t:), 'f (i. ) 
and other terms are oancelled by adding to (Ja) the obvioUB compen­
sat1ng terms 

-11(CA
r 

1.(== - L fcJi)3a (P, '!t, ~) - I \li) tçL (PI q", ~). 
G\ oL 

T 
where 'V== (Pi 'i-." J01) • Tb.e transformation law for the gauge

, .. J 

potent1als ~,À oan be derived e1tber from eq. (42) or d1reotly 
by apply1ng to the new Lagrang1an the requirement of gauge inva­
riance (remember that the superalgebra of the generators 8/~ is 
olosed with respeot to the Poiason brackets, due to the oond1t1on 

[G I Ho] P. B = O. 
Now we apply the general approaoh to oonatruot1ng relat1vistio 

gauge modela for N particles bound by harmonio foroes. To s1mp11fy 
the presentation we only treat hera th~ sp1nless partioles. Then, 
the rudimentary Lagrangian i5 

(44) ­
Lo =ri ci i - t Pí Pi. - t Vij ('J, i - lh f I t{J -;:. r!j ~ I f1i i == o. 

) ;{12 : í 
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The most general linear canonical transformation i5 defined by the 
generating function 

G =2.i-aiJ,t>,P. +~ .. o.o. +J..c..a ,o.. =.i"lTr(aj B) ,1LJ (45)
I I I J I.J , L VJ 2.. LJ y L -VJ - 2 T ~ C T ' 

where ai.j=~c:.rCi.i=Cji. (remind t he.t we are not considering the 
Lorentz transformations and alI indices ~,v are contracted). 
The Lagrangian (44) is invariant under the transformations (43), or 

6'lf=C-i àL.G l'a][, if and only if 

[V,a]=[v,8]=oJ ~T=_~, c. 

where " is the following NxN matrix 

V:.=-~1T.. 
LI. L '" JL- v'·LJ = V"'J) 

i..i=J 
j=1 

(46)= - Va.. 

(47) 

Equations (46) leave in G not less than N independent commuting 
generators which are some linear combinations of the bilinear Lorentz 
invariants p, D. 0.0. a .0.,. Therefore, the time components of the 

, " J J I ~ vJ I Yt YJ 
coordinates and momenta can always be exoluded by solving ~ N 
'constraints together with the sarne number of gauge fixing conditions. 

The physics content of the gauge Lagrangian corresponding to the 
rudimentary Lagrangian (44) crucially depends on the coupling' para­
meters t1ii • re 1Jij =~ for alI iJj ,the Lagrangian descri'bes the 
syste~ of N identical particles with pai~ harmonic coupling. The 
gauge group in that case is rr; di' ~ e SU""_1. This can be shown w1th 
the aid of the general formulae (15)-(17). To see this more directly 
we introduce new canonical ooordinates. Define center-of-mass coor­
dinates and momenta 

Q = );; 2 avi ) Cf == ~ 2" p~ 
and choose other ccerdã.na t es 'zh and momenta ~i. (i =.i~ ''') ,N-1.) 
so as to diagonalize the Lagrangian : 

= (1j 1.'1L ,-uc:• 11 

(the paramet er 
t ). Applying 
Lagr~gian 

(48)~ • 1 i-.1. (1) +~. li, - - r. r. - u. U.2. J 'OI. 2. ,L 2. O, (f L 

~ is absorbed in coordinates, w1th due rescaling oj 
our general construction we arrive at the gauge 

u­ ... 
I 

L1 = 9>Q +-~.: ~ L - t fo eJ>'+.A12.) -1 lo t», r., + ~i Vi _ql-_.u') 
-.iE (z. 2. 1 D~ la. (49) 

:l i ~i. +~,) -iJ,ij (~i~j +~l~j)-f ij(i.'·~j-r}~i.)' 

where 
1 1 ~ 

e~1> • .==.P.. ~ l .. ==0 {~. = J i. 
(50) 

0,

1,Lj ItJL ) ~ 1.1. ) IJ 

.i 
~ L 

, Here the constraint ~oupled to lo generates the translations rr~ , 
the one ooupled ta to generates ~, and the others give the 
algebra of SUN- 1 (the oonstraints coup.l ed to {i: generate its 
Cartan subalgebra).• In wr1ting eq. (49) 1\'e nave used the abelian 
nature of the ~ and '111 generators which allowa one to add 
the mass parameters ~~ rn 2 without destroying the gauge symmetry 
(likewise, the term -~~ in the tr~ generator commuting with alI 
generators can be removed or multiplied by an arbitrary number). If 
the pair couplings are not identical, i.e. úij depend on Llj) 
the S~-1 group will be broken. Note that the gauge group for N-2 
1s rr, ~ Ui '. To obtain the corresponding ,Lagrangian from eq. (49) 
one simply has to set 2., =- ~ i = O) " ~~ , and to keep th e fir5t two 
constraint s , 

A most natural approach to quantizing this theory i5 that 
described in the first part of this reporto Hopefully, the appli­
cation of BRST-BFV modern methods /1/,76-7/ will allow one to develop 

both a relativistio quantum theory of free oomposite particles and 
an effeotive quantum field theor,y desoribing their interaotions. 

,. To obtain a theory of discrete strings, i.e. of linear chaina 
~ of particles bound by harmonic foroes, we choose V;J' = bli -j I :1. 

for open strings and tlij = SIi-il,1 +S'N6j 1 + bl1 ÓjN . for cloa~d 
ones, and employ the general formulae (46),(47). The detailed 
derivation will be presented elsewhere and hera we only calculate 
the number of the gauge parameters. The equations for 6~. are 
easy to solve. For t he open string ~ii =- O and for the olosed one 
the oondition [V, ~J ==0 ia equivalent to the relations 

~ ::::g.. i<j; i » j . 
ij J-1. J eLJ.. = ~ IV"-li-jl 
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Toge-ther with Bii ,= -Bj i this 1eaves JúI-'O/!LJ independent 

parameters B:t,) I ~ rcN'-1 }(2.J where the square brackets denoteo" 

the- intege-r part of the enolosed number. The most difficul t to solve 
are the equations [V, a1= O • Fór the open string there are N 
independen~ par'aaet ez s Qi.i) as­

j+I-1 1)' •"" a ( )1.-JTI.-:L .• ~/ • iaij = L 11.. - 1 (.. S j ~ IV - t +..L ;
 
e~j-i+f )
 

aij = QK-j -rJ.. N - i + 1., ) i+j /" N+i. . r 
For the olosed string the equations [V, aJ:: O are rather oomplioated 
due to periodicity conditions. However, the number of independe~t 

paramet~rs aiJ is easy to ca1oulate, i t is [C3N -.i ) I .2] . 
T.he total number of independent gauge parameters for the c10sed 
6tring i6 

(J.#- 2) if /li is even; (2N-t) if IV i6 odd. 

The generators oorrespond~ to the Virasoro generators for the ,cloaed 
string. The deta11ed derivation of the disorete string"Virasoro 
algebra"will be presented elsewhere. Note that the olosed "atring" 
with N~J is desoribed by eq.(49). 

In conc1usion we mention some possible extension and applioa­
tions of our results. By adding suitable Grassmann variables one 
oan desoribe the bound states of IV spinning partioles having in­
ternal degreee of freedom. Similarly one oan oonstruot disorete 
strings of different sorts, a.g. oompactified on tori or orbif~lds. 

The *theory of N- particle bound states can be applied to the quark 
model of hadrons; while the theory of discrete strings, 
to an approximate description of massles8 string states in realistic 
modele. A quantum f1eld theory of discrete strings ie possibl;r 'f 
simpler than that of oontinual ones. The saheme disoussed here oan in 
prinoiple be applied to construating othar relativistio disorete 
theories, e.g., membranes (i.e. two-dimensional lattices of part1cles 
with nearest-ne1ghbour harmonic couplings). To find the gauge group 
in that case 1s a more oomplioated technical problem. 

J. Finall;r, we will make several general remarks and 11at Bome
 
problema for futura investigations. The observed interrelation between
 
l1near oanonioal transformations and speoial relativ1ty looka, at
 
first sight, saD8what mysterioua, and it oertainly requires further
 
oon~id.rations. T.ne praotioa1 adTantages of our gauge approaah over
 
th. usual ono, based on reparametrization invarianoe, are indisputable.
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For free particles and strings the gauge symmetry is more or less 
equivalent to reparametrization symmetry, but, even in this case, 
our method gives the final answer in a much more direct and c1ear 
manner. Using the standardapproach one has either to guess a 
reparametrization invariant' La'grangian (non1inear and unrelated to 
the nonre1ativistic one) or ohoose some a priori constraints (also 
having nothing to do with the nonrelativistic Lagrangian). Our prin­
oiple of gaug1ng linear canonical symmetries givesJ1n a stra1ght­
forward way, the one and on~y relativistic theory corresponding to 
a given nonrelativistio Lagrangian(up to now we have used only 
bilinear Lagrangians). One may view this principIe as a device for 
transforming simple nonrelativistic theories into the corresponding 
re1ativistio ones. Applying this device to N particles bound by 
harmonic forces immediately produces the well-def~ned olassioal 
,relativ1stio Lagrangian (49), which oan easily be quantized. It is 
terribly diffiou1t to find an equivalent reparametrization invariant 
theory of this Lagrangian, and moreover suoh an equivalent theory 
would be practically impossible ~o quantize. 

A:.p.othzr important remark is related to the "No -1nteraction 
theorem/17 J~ For some time, it has been known that a gauge-like 
approaoh to interaot1ng'relativistio particles allows one to bypass 
the restriotions of this theorem (soe.e.g. 118/,/19/ and a detai1ed 
reoent discussion in Ref./20/ ). The prioe to be paid for avoiding this 
theorem 1s that the phase-spaoe coordinates ptlq;; are, in general, 
not observable, as they are not gauge-invar1ant. This is not á 

defeot of the theory but a direct oonsequence of the need of having 
some auxiliary variables in the re1ativistic desoription. T.he 
constraints (i.e. the generators of the gauge transformations), 
together with the oorresponding gauge cond1tions, completely fix 
the independent physioal observables. One may find in the current 
literatura the inoorreot statement that different gauge ohoices 
might oorrespond to different physical systems (see,e.g. /20/ ). 
This opinion is probably based on naglect1ng the boundary oonditions 
for the gaug~ transformation functions and Te1chmüller parameters 
that are def1ned using gaugo fields (e. ~ , !~Ol ~ 5~Jt f-((t), etc.') . 
As it has been etreosod above, different values of thes8 paramet~r~ 
correBpond to d1fferent gauge orbits of the same physioal system., 
This simple faot hao beon obaoured by the use of rather comp11cate~ 

and usually not Loronta-1nvariant gauge fixing conditions. A more
 
detailed d1souse1on oí tho gnuge fixing oonditions will be g1ven
 
els81'1here.
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We finish this report with an incomp1ete 11st of problemaS 8. Mannheim P.D. Phys.Lett., 1986, 166B, p.191; 
1) The prob1em of g1ving a oomp1ete quantum theory of part101es Monaghan 8. Phys.Lett., 1986, 178B, p.-231. 
with spin and internaI quantum numbers. ~f specia1 intereat is the 9. Fi1ippov A.T. JINR Rapid Commun1cat1ons, 1987, N 3(23), p.5. 
mass1ess partic1e theory with the di1atat1on invariance. 2) T,he IO.Te1telboim C. Phys.Rev., 1982, D25~ p.J159; 
problem,of oonstructlng the corresponding quantum fie1d theories, Henneaux M., Te1te1boim C• .Ann.,Phy.s .., 1982, 143, p.127. 
fol1owing the BRST-BFV-Par1si-Sour1as approach. 3) The prob1em of 11.Br1nk L., D1 Vecchia P., Howe p. Phys.Lett., ~976, 65B, p.47l. 
finding alI possible continUaI stringa. Oi specia1 interest is the Deser S., ZuminG B. Phys.Lett.~ 1976, 65B, ~.369. 

Green-Schwarz auperstring (in the atandard approach it containa 12.Fi1ippov A.T.. In: "Kvantovaia Teoria POlia i F1z1ka Vysokikh 
second~class constraints while the gauge approach can only Energij", Moscow University Pub1., Moscow, 1987. 
generate first-01ass ones). 4) The prob1em of formu1ating a first ­ 13. Filippov A.T. Prepr.JINR E2-87-659, Dubna, 1987. 
-quantlzed theory of AI bound partic1es and trying to find a corres­ 14.Fi1ippov A.T. Frepr.JINR E2-87-771, Dubna, 1987. 
ponding effe~tive fie1d theory (seoond quantlzation). An interes­ 15. Berezin F.A., Karinov M.S. Pis'ma v Zs.Expt1.Teor.Fiz., 1975, 
ting app1icatlon wou1d be a construction of some new basis for the 21, p.678. 
Bethe-Sa1peter descr1ption of confined quarks. 5) The problem Df 16.Casa1buoni R. Nuovo Cim., 1976, 33A, p.389. 
genera11zing the N_partic1e model to treat rea11stic bound states 17.Currie D.G., Jordan T.F., Sudarshan E.C.G. Rev.Mod.phys., 1965, 
of quarks and gluons (i.e. inc1uding the sp1n and internaI degrees v.J',p.J50. 
of freedom). 6) A very interesting prob1em ia to study gauge Leutwy1er H. Nuovo Cim., 1965, 37, p.556. 
theories of discrete strings. 18. Todorov I. T. In: "Quantum Theory, Groups, Fie1ds and Particles", 

The first part of this report representa the inv1ted ta1k of Ed. Barut A.O., Re1de1, Dordreoht, 1983. 
the author giTen at the Moscow seminar -Quantum Gravity·, May 1987. 19.Todorov I.T. Comm.JINR E2-10125, Dubna, 1976. 
A bu1k of it has been pub11shed in Ref./12/ (in Russian). T-he 20.Longhi G., Lusanna L. Prepr.Univ. of Florence, DFF 86 N 30, 
seoond part ia based on Refs./13,14/ • The third part is an attempt F1orenoe, 1986. 
to answer numerous questions raised in d1scussions of the ideas 
presented in these papers. 

Th. author 1s grateful to alI partioipants of these 'disousslons. 
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~HJIHDDOB A. T. E2-87 -806 
Kanu6poaoliHLie TeopHH t~acnn~, cTpyH 
H CB.R3aHHbiX C HHMH nOJieH 

B ,D;OKJI~e npHBe,D;eH o63op pa6oT no Kanu6poBo'IHoMy no,D;Xo­
AY K TeopH.RM pe.JUITHBHCTCKHX t~aCT~ H CTPYH. Pe.JI.RTHBHCTCKHe 
TeopHH CHCTeMaTH'IecKH CTpO.RTC.R no Hepe.JI.RTHBHCTCKHM C no­
MOIUbiO npo~e,D;ypbl JIOKRnH3~ JIHHeHHhiX /cynep/ KaHOHH'IecKHX 
CHMMeTpHii npocTeiirnux 6HJIHHeiiHLIX narpaH:>KHaHOB. Bec&Ma 
npOCTbiM H DOCJie,D;OBaTeJibHbiM MeTO,D;OM llOJiy'leHbi H3BecTHhie 
Teopuu cnHHOBhiX qacTH~, 6o30HHhiX H <PepMHOHHhiX CTPYH· llocT­
poeHhi HOBbie KanH6pOBO'IHbie MO,D;eJIH '!aCT~, CB.R3aHHbiX rap­
MOHH'IeCKHMH CHJiaMH, B TOM 'IHCJie KanH6pOBO'IHbie MO,D;eJIH ,!J;HCK· 
peTHbiX CTpyH. Bee 3TH KanH6pOBO'IHhie TeopHH qaCT~ MO)IQ{O 
KBaHTOBaTh MeTo,D;aMH EPCT-B<l»B. 

Pa6oTa BhinOJIHeHa B Jia6opaTopuu TeopeTH'IeCKOH cPH3HKH 
OH.RH. 

Coo6wettHe Ofu.eJUIHeHHoro IIHCTHTY'fa ll,llepm.IX Hccne.u;oaaHIIA. Jly6Ha 1987 

Filippov A. T. E2-87 -806 
Gauge Theories of Particles, String 
and Corresponding Fields 

A review of the gauge approach to relativistic particles and 
strings is given. Relativistic theories are systematically produced 
from nonrelativistic ones by gauging the linear (super) canonical 
symmetries of simplest bilinear Lagrangians. The known theories 
of spinning particles, bosonic and fermionic strings are derived in 
a simple and transparent manner. New gauge models for N relati­
vistic particles bound by harmonic forces, including gauge models 
for discrete strings, are proposed. All these gauge theories of par­
ticles can be quantized by BRST-BFV methods. 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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