cooGmenKa
00RGANNGNNOTO
NECTATYTA
AAGPHAMX
KCCACAORANMA

Ayona

E2-87-78

B.Z.1liev

THE DEVIATION EQUATION
.AS AN EQUATION OF MOTION

1987



1. INTRODUCTION

In this work we are going to look on the generalized devia-
tion equation from a dynamical peint of view. ThlS is very na-
tural because of its definition (see 37 , sect., 1.3 and 7
cect. IV.3) because it isintuitively clear that the equatlons
(laws) of the (relative) motion of two point particles in spa-
ces L, with the affine connection could be considered also
as deviation equations.

Idegs analogous to ours have been conbldered in more speci-
al cases in 158/ | 1n '8’ the deviation equation is derived
of two infinitesimally near 1nteract1ng point particles in the
space~time of general relativity. In’ 5" the influence of
small perturbative forces of dissipative and periodical kinds
in the right-hand side of the usual equatlon of geodesic dev1a~
tion in a Riemannian space V, (n = 4) is treated. Paper ' 1/
is an investigation of the relative dynamics of geodesies in
spaces with an affine connection without torsion in terms of
absolute two-point derlvatlves of a geodesic radius-vector.

The closest to our work is ‘2" , where exact and approximate
equations of relative motion of trial point particles in the
field of external forces in a Riemanniar space are obtained in
terms of absolute two-point derivatives of a geodesic radius-
vector.

The purpose of the present work, in which the notation is
the same as in’ ™%, is to show that in the geuneral case the
equation of motion of two point particles in the field of ex-
ternal force in space with the affine connection is a special
case of the generalized deviation equation. After some preli-
minary considerations and one simple example (sections 2 and 3)
we derive in section 4 in the general case the deviation equa-
tion in the form of an equation of motion. In sections.b5 and 6
we consider two examples illustrating the developed general
theory.

2. THE BASIC PRELIMINARY CONSTRUCTION

Let us define the curve x:[s’,s”]sL ,L,is the space with
the affine connection as unique solution of the following ini-
tial-value problem:
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DUE) s, k() u(sn, u® e (s)io X)) 2.1)
ds ds )

E“[S‘i S“]’ (2'2)

X(s,) = X, &L, u(s)) = u e Txﬁ(Ln), S, S,

where D/ds  is the covariant derivative with respect to s
along %(s), and F is a continuous function of its arguments.

Physically, we shall interpret X as a trajectory (world li-
ne) of an observer who is affected by the force field F having
a meaning of a force per unit mass and whose trajectory passes
through the point x, with a velocity u,

Let us define the family of curves y :lr’,r”]— L,, s =
e[s’, s8] .as the unique solution of the following initial-value
problem:

D : . oy -

—=|, L) = RO i=B Ly ., () =T, (L),

yE W= ayt@/as, 2.3)
Vsl =x (O &Ly v (D s,= X (O =Ty Ly (2.4)

where Fy , x and x  are given smooth functions of their argu—
ments, r & [r, "] , se[s’,s*] , the number s8,<[s’,35"] is
the same as in (2.2) and D/ds\yS means the covariant deriva-
tive with respect to s along the r-curve y (r), r = const
{(by D/ds we denote the covariant derivative with respect to

$ along the curve x(s) , cf. (2.1)).

Let the curves xa:[sg,sé']-*» L ,a =1, 2 be defined by

n
2 (5N =y (1), Xy lrg(s): = y, (17), (2.5)

where s € [s”,s”]. and r,:[s8",5”] —[s},s7 ], 8 =1, 2 are
some given smooth mapping. So, due to (2.4) the curves X; and
Xy pass through the points y (r*) and x(r**) , respectively,
and have at them tangent vectors y‘(r") and (") , res-
pectively.

Physically, we shall interpret Fy as a force (per unit mass)
acting in the 2-dimensional submanifold (surface) {y, (t)|s =
s8] , re v, "} (It is clear that F, and F are
analogues of the Minkowski four-force per unit mass). The cur-
ves xy and Xy shall be considered as trajectories (world li-
nes) of point particles observed from the observer defined abo-
ve whose trajectory is defined by (2.1) and (2.2).
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At the end, as has been done in 74’ , we shall define a fa~-
mily of curves n,:[p’, p "] — L, , such that 5 (p"):=x,(r,(s))
and n4(p*):= x(s8)) », s&[s’s”].

Tn the next sections we shall consider the problem of fin-
ding the deviation equation of x, with respect to x,; as it is
observed from x at some point %(s) (for the corresponding de-
finitions see 7347 ). This means to express the relative (de-
viation) acceleration D2h, (s,x)/ds® (hyy(s,x) is the cor-
responding deviation vector) through the defined above quanti-
ties, and first of all, through the force field F , which
practically means to write down the equation of relative motion
of %, with respect to x,; relatively to x . In this sense, the
equation of motion is a special case of the generalized devia-
tion equation. ‘

3. THE DEVIATION EQUATION AS AN EQUATION OF MOTION:
EUCLIDEAN CASE

To derive the deviation equation  we have to do the follow-
ing: using the definition of the deviation vector (see /47,
sect. IV.1), we have to compute its second covariant derivati-
ve Dzhlg(s,x)fdsg {along x{s)) and next to substitute
in the obtained expression the formulae (2.1)-(2.4).

To make these ideas more clear we shall consider at first
the most simple possible case, which we shall call an "Eucli-
dean case': let us take L,  to be an n-dimensional Euclidean
space E_ and 17 to be a parallel transport along y . Then
(see "*", sect. IIT.3.1 and /%/, sect. IV.1) we find the devia-
tion vector hy, (s,x) to be with the components

h, (5, %) = x5 (ry(s) = x7(r (s), (3.1
so the deviation equation is simply

2
D h12 (s, x)

5 = F2 - Fl, (3.2)
ds

where

Fo o= F..-; (l", X (r (S)), dx( (S))/ds),
1 1\ 1t (3.3)

Fb: = F, (7, xz(%(S»' dxg(rz(SD/dS)a



are the forces per unit mass acting on the particles | and 2,
respectively.

Evidently, eq.(3.2) is nothing else but the second Newton
law of dynamics, i.e. the equation of the relative motion of
the particle 2 with respect to the particle | in the force
field Fg.

4. THE DEVIATION EQUATION AS AN EQUATION OF MOTION:
GENERAL CASE ’

We shall begin this section with a mathematical definition
necessary for the following considerations:
il"'ip

Let A . oz 08y,

(s)) be components of the
31...Jq

z
p+q

(p+4q)-point ¢! -tensor A from the space

TosTa) @ 8Ty (o (L) eTy gy (L) e STy L » (L

where z,:[s’,8"”] - L, , & = l,...,P+q are some (Jl—maps
and s «[s”", "] . Then, by definition
D L ir---dp
s A A . {2 (8)eer, 2 (s): =
ds Jl...]q 1 p+q
d 11...11.) P ‘lb
- =h Spedg 1O e B (D4 X T (2y(5))

q
. , I 4 Lk
qu(zl(&)..... Zoe SN ZY (8) - bill .jb?(zp+b(8))x

poeeip N
X A _] § ki _(Zl(S),...,Zp+q(S})Zp+b(S), ([}.])
1 et ey g
where Zga(5)1=dzi(s)/ds , a2 =1,...,P+9q and ijk(y) are

the coefficients of tlie affine connection at y ¢ L.,

It s not difficult to see that (4.1) are components of a
many-point tensor of the same tensor space as the initial ten-
sor A.

From this definition it is easy to check that the operator
D/ds is a differentiation with respect to the tensor products

of (wany-points) tensors, i.e. the usual Liebniz rule holds
for tensor products (D(As B)/ds =(DA/ds)e B + Ag(DB/ds)) and
D/ds commutes with the contraction operator, and as a conseq-
wence of this, D/ds commutes also with the contracted tensor

products (e.g.,

D(Aj,j (ZI(S), ZE(S))BJ (22(5))/(718 =
n .
-5 uUp@l; (z,(s), 2y () B (zg(s))/ds ]

Za= 2
j=1 3 2

k = j

Let us now recall the definition of the deviation vector
of %, with respect to % relatively to x at the point

hio(s, x)
X%S} (see " , sect. IV.1):

Mg v’ Ys .

L= [ I (I' dr,
1112 (s, %) = l1(1(71(.‘5))a X(S)ri' Ve (1) X407 (8) s ) (4.2)
or (see’3* , sect. 11.2.4)
k k " b g
hlz(s,x) = H-p f' A.q ys(r)dr, (4.3)
r ’

(R4 a J Ts ' Vs :
where y (D! =dy, (1)/dr ,1...  and T ... are the gegeﬁgk}*
zed transports along n¢ and ¥s , respectively, defined in /37,
sect. IT.1 and

k k , g k
H.p o= Hop (x(s), ys (1) "(Iyg(rﬁ - x(s))'p’
-1 , Ts -14p
CEIEEE LN NGO PR IO I (S MRS (4.4)
R Ys \P
A = A )y @ = (T oY g

are the components of the two-point tensors representing the
corresponding linear mapping I... in a given basis (see’8/
sect. IT.2.4).

Now we are ready to derive the deviation equation of X,
with respect to x;, relatively to x at x(s):

For some time, for the sake of shortness, we shall suppress
the indices and the arguments of all quantities. Thus, we can
rewrite (4.3) symbolically in the form

h=H. Ay, (4.5)



where the dot (+) means a contracted tensor product (e.g.

Ay 1s a vector with components (A —z\J = Al (ys(r)
Ys(”)ys (1) » JA -y = A y dr and so on)
So, using (4 1Y and (4.5), we get:
D? D D D* -
| hi=—! (omei h) = ——=.H" 0 =+
as® % ds * 4s % ds
DH DA Dy DA, DA Dy D?;
P Jurh i et W A S ¢ SR pr2—Lan—1,
ds ds ds ds ds ds ds
(4.6)
By a direct calculation ane can check the following equali~
tare .
2.p . Dyl DT . o
D7y =RP el ol 4 > ik y Iy ko
P + ik ’ -k k
ds” ds ds
. U R RS A I Dy’ J lp TP 4y .1 ,j'k]
Y o s i 4 ) ~1j MM*V + 4 »ij, k + .qu.kj Yy ¥y v *
ds .
{(4.7)
where R - ijk and T m are the components of the curvature and
tOt“lOﬂ tensors, esnectively, y =yt =ay iy as o,
¢ WD
5}, = By [7. 3
It is not dlfflcult to show that the sum in square prackets
in (4.7) is
. D, DyP ) ,; D ¥
feen] = = (Ex oy oope e 2
] ds ds ik ds (4.8)

Substituting (4.8) into (4.7), then the go-obtained equa-~
lity in (4.6) and using (2.1)-(2.4), we finally get the follo~-
wing deviation equation:

—d---é-ﬁx h, (s, %) = d_—_p—(H”l)_pqh?g(s,x) -
S s
puk DAl Dy (0
P2 P A (— 8 () . AP L .
ds 0 ds ds
e DZAP DAY, DyY(r
cHE D dr—285a ) 42 3 vs @
P is2  ° ds ds

s A TR Y e )y Oy 2y + T GenFl @) +
DT Y9, ¢
N .38 Vs (r) ’J (l‘})y () +
ds
q j o DFJ () (4.9)
Toy by ) —2— + —— 1. :

We want to remark that the force F acting on the observer
is also presented in (4.9), but implicitly it is hidden in
the second derivative DQI{FP/GSQ

Thus, we see that the deviation equation (4.9) really has
a meaning of an equation of motion of the particle 2 with res-
pect to the particle | as it is observed from an observer with
a trajectory X% .

From a dynamical point of view, the most important terms
in the deviation equation (4.9) are those in which the force
Fo(r) appears, viz.

I _ ‘ 7
HY, 0 AT (T g ) F] 3 ()« DR () /danar =
T

ook b , s N b,

! H'p (A'j s (1), yy O"NFL (07 = F(r™) ] +
DAY (y (1), y (t) ,

LR AN OO Ll R O,
‘ ’ dr
[ (4.10)

where we have done an evident integration by parts of the term
DF (r)}/dr .
(%rom (4.10) we see that the only independent of y terms
in (4.9) are those in the square brackets in (4.10), which are
equal to the definec by means of the generalized transports
I7s., and 178, difference of the forces acting on the obser-
ved particles.

5. EXAMPLE: EUCLIDEAN CASE
The most simple application of the general theory from the

previous section is the derivation of the Euclidean equatlon
of motion (3.2).



In the Euclidean case (see section 3), we replace L, with
the E, space and IY with a parallel transport alongy . So,
working in a global coordinate basis in whichli%},z(), we ha-
ve H® =Aa.)3 =373 (8% = 1 for a =B and 8% =0 fora# B).
Thus, in this case due to (4.9) the deviation equation is

2 ,,
D r dFg (r)
_d"s"‘é"{xhlz(s,x) = O+ O+ f’ dr(0+...0+ dr__)zps(r'f)_ps(r')’

r (5.1)
which, because of (2.3) and (3.3), is identical with (3.2).

6. EXAMPLE: THE FIRST ORDER DEVIATION EQUATION
(EQUATION OF MOTION)

In this section we shall derive the first approximation to
the exact deviation equation (equation of motion) (4.9), or
more precisely, we shall write down eq. (4.9) within terms of
an order of O(p” - p*) and O((r” -r*)?) with respect to
the parameters of the families 74:[lp”, p” 1 —» L, and yg:
:[r’,r”} — L, , respectively (see section 2). As we shall
see below, this approximation is independcnt of the concrete
choice of the generalized transports I7s and I7s

Having in mind that by definition (see section 2) nglp )=

= k(g ()i =g (1), 15(p”) = X(S) , yo(t") = xy(re(s)) and
r e[r’,r”]. and using eq. (2.6) from "3/ | sect. I1.2.4 (which
means thatlij y - = id for any y ¢ L —-see/3/,sect.II.]),
we immediately derive from (4.4)

k k — ] P, rd
H =8, +0(p"-p"), (H I)Pq=3§+ 0(G”-p"),

Ap =‘3p + 0(['”-- rl). (6.1)
*q q

On differentiating these two-point tensors with respect to
s ¢[s’,8”], we get due to (4.1)

k 2__k 2 e ,
DH', /ds = D H.,/ds” = 0(p”-p"),

(6.2)
DA? /ds = D° A /ds® = ot —17).

By vertue of eq. (3.3) from”3/ , sect. II.3 we have
8

’,

r

P .q . P 2 . .
f A.q ve MDdr = y ()@ =1")+ O(r*~ 1) ) (this result is
i’

a direct consequence of (6.1) and (6.6) (see below)); thus
from (4.3) and (6.1), we find

h,(s, x) = & = O(” -1, (6.3)
where the vector

£ = £(s) =y (1)@ - 1) (6.4)

is called an infinitesimal (local) deviation vector and evi-
dently has an order of O(r*”" - r’)
Now substituting (6.1)-(6.3) into (4.9), we get

’,

) r
2
D £ - 07 ) = 0 1))+ [ dr @) +
ds r’

i i N o f
SR Gy Oy O3 0 - T G )R 03 Lo -

‘i . f
+ DFS@/dr « y SI@D(TEp (y (1) v, )/ ds].
(6.5)
But for any smooth function f: [r”, r" ] - R the following equa-
lity is fulfilled:
r” 2
[ I(mydr = fe)@” =) + O(r” = ") ). (6.6)
r’
(Proof: expand the integral in (6.6) into a Taylor series with
respect to the difference (r”~r1’) at the point r°).
Thus, applying (6.6) to the integral in {6.5) and using

(6.4), we find the following final result:

D? | k k ’ Si ., b .. [}
_d———_52 lxr_f = R_”-g(ys(r ))y'S (r )ys (') ¢ -
DF §(1)
4 ‘

LN , (@7 - 1) 4 T_k,-p ()/S(r’))st (r’)fg +
dr r=r J =

+

4
D(TE ,(y (1” ) 2
( .if Ys ))‘f . O(p”~P’) + 0((r,,_r,)z)'

yian)
ds 6.7)



If we neglect here the terms of an order of O(p”~p”) and
O((r”-r")®?) , we shall get the first order deviation equa-
tion (or all the same the first order equation of motion) who-
se solutions {with respect to ¢ ) are the first approximation
to the solutions of the general equation (4.9).

From (6.7) one can easily get the derived in 6" equation
of relative motion (deviation equation) of two point particles
which are moving along the curves X(s,v) and x{(s,v + dv) ( s
parametrizes their trajectories) of the family of CZ®-curves
x(o, ) .Defining u®: =0 x% (s, v)/ds , substituting x(s,v) for
ye(r) , v forr* , v+dv for r”, ul for y;i(r) and putting
p”=p° , we get from (6.7):

¢ ‘ k
D2 ¢k Py DF ¢ (v
- £ = R%iﬂ u' ! & (— s )« dv
9s? ’ av
(6.8)
e ¢ 5 Dk eh .
+ T 9 FP (V& + u + O(dvy ),
- 8
Js
where
a dx% (s, v) Kk Duk :
R A Fo(v) = . (6.9)
av ’ ds
To get from (6.8) the deviation equation derived in /6‘,

one has to neglect in (6.8) the terms Q((dv)?) and to put
T.ijj =0 Lecause in /6’ the usual space-time of general rela-
tivity withour torsion is used.

7. CONCLUSION

In this article we have shown that the equations of relati-
ve motion of two point particles in the field of external for-
ce Fg(r) , as they are observed from a third point particle
(observer) which is influenced by another force field F(r),
are a special case of the generalized deviation equation.

One can give many examples, e.g., for the force field F(r)
(c£.727 ). For instance, if the observed particles are in an
electromagnetic field described by a tensor Fi; , we have to
put

10

Fa = 2= gih (@ NF, G, Ny la,

m

I (o R ) (7.1)
L0 = Eog o R b ey e,

where e, m’ and e’” and m’ are the electric charges and the
masses of the particles 1 and 2, respectively, and we have ad-
mitted that [, is endowed (may be independent of the connec-
tion) also with a metric temsor with contravariant components
gk
The values of F4(r) for r & (r’,r ”)have to be chosen from
physical considerations conserning the choice of the curves
vs (), whose physical meaning was mentioned in’' %/, sect.Tv,2.
The author thanks Professor N.A.Chernikov for the useful
discussions.
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' neralized deviation equation is given for the case when
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