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I. INTRODUCTION 

In this work we are going to look on the generalized devia­
tion equation from a dynamical point of view. This is very na­

· d f' .. (/3/ I 3 d! 4/tural because 0 f l.ts e lnl.tl.On see , sect. • an , 
qect. IV.3) because it is intuitively clear that the equations 
(laws) of the (relative) motion of two point particles in spa­
ces Ln with the affine connection could be considercd also 
as deviation equations. 

Ideas analogous to ours have been considered in more speci­
al casE:~S in 11.2;5.61 • In /6' the deviation equation is derived 
"f two infinitesimally near inreractip& point particles in the 
space-time of general relativity. In,5, the influence of 
small perturbative forces of dissipative and periodical kinds 
in the right-hand side of the usual equation of geodesic devia­
tion in a Riemannian space Vn (n 4) is treated. Paper 111 
is an investigation of the relative dynamics of geodesies in 
spaces with an affine connection without torsion in terms of 
absolute two-point derivatives of a geodesic radius-vector. 
The closest to our work is /2' , where exact and approximate 
equations of relative motion of trial p"int particles in the 
field of external forces in a Riemanniar space are obtained in 
terms of absolute two-point derivat~ves of a geodesic radius­
vector. 

The purpose of the present work, in which the notation is 
the same as in /3. 41 is to show that in the gelleral case the 
equation of motion of two point particles in the field of ex­
ternal force in space with the affine connection is a special 
case of the generalized deviation equation. After some preli­
minary considerations and one simple example (sections 2 and 3) 
we derive in section 4 in the general case the deviation equa­
tion in the form of an equation of motion. In sections 5 and 6 
we consider two examples illustrating the developed general 
theory. 

2. THE BASIC PRELIMINARY CONSTRUCTION 

Let us define the curve x:[s'.s"l .... Ln• Lnis the space with 
the affine connection as unique solution of the following ini­
tial-value problem: 

r~"~'\e~'~Ii-l1(1'~Ii-ijb.i~-~-lflf-CTMTyT-.-- I 

1I-e"lI~JZ .~l;.: C"~Jl,.i)fllmItt I. 
611~JILj"'-i-r:,'.1 f .-...- 41;} y.,.... 1 t..... i ll'-


1 

http:11.2;5.61
http:lnl.tl.On


o lI(S) 	 a a a
F(s, x(s), lI(S)) , II '", II (s):= dx (s)---	 (2. ! ) 

ds 	 ds 

x(so) = Xo Eo Ln' lI(So) = lI ';" Tx ( ), s,so::' [s', s"l, (2.2)o o 

where O/ds is the covariant derivative with respect to s 
along xes), and F is a continuous function of its arguments. 

Physically, we shall x as a trajectory (worl~ li ­
ne) of an observer.who is affected by the force field F having 
a meaning of a force per unit mass and whose trajectory passes 
through the point Xo with a velocity lIo 

Let us define the family of curves y s : [r ' , r "J -+ Ln. S'::' 

E[S', SO] .as the unique solution of the following initial-value 
problem: 
o 

(y's (r» = F s (r) : = F s (r, y s (r), ' (r» c. Tys (T) (Ln),ds 

(2.3)y~a(r): ay~(r)lds. 

ys (r) I s = s '" X (r) Eo Ln ' y: (r) Is", s X ' (r) .;.. TX \ r) (L n ), (2.4) 
o 	 0 

where Fs , X and X' are given smooth functions of their argu­
ments,r Eo[r',r"] ,sEo[S',S") , the number so::' [S',5"} is 
the same as in (2.2) and O/dslys means the covariant deriva­
tive with respect to s along the r -curve Ys (r), r const 
(by O/ds we denote the covariant derivative with respect to 
s along the curve xes) , cf. (2.1». 

Let tbe curves xa: [ s;. "J--.. , a 1, 2 be defined by 

x 1 ( T 1 (s» : Ys (r '). x2 ( r 2 (s » : y s (r " ). 	 (2.5) 

where s E- [s', s"], and Ta: [s'. s oJ --t [s~, s; ) ,a I, 2 are 
some given smooth mapping. So, due to (2.4) the curves xl and 

pass through the points X (r') and X(r") , respectively,x 2 
and have at them tangent vectors X'(r') and X '(r") ,res­
pectively. 

Physically, we shall interpret Fs as a force (per unit mass) 
in the 2-dimensional submanifold (surface) I Ys (r) I s r,:;-

Eo [s', s"]. , r r,:;- [r'. r" ] I . (It is clear that and Fare 
analogues of the Minkowski four-force per unit mass). The cur­
ves xl and x2 shall be considered as trajectories (world li ­
nes) of point particles observed from the observer defined abo­
ve whose trajectory is defined by (2.1) and (2.2). 

At the end, as has been done in 14 I , we shall define a fa­
mily of curves 17 8: [p', p"] -... Ln , such that 17 (P'): Xt (1 t (S»s
and 17 s ( P"): x ( s» , s Eo [s', s" ] . 

In the next sections we shall consider the problem of fin­
ding the deviation equation of x2 with respect to Xl as it is 
observed from x at some point x( s) (for the corresponding de­
finitions see 13.4f ). This means to express the relative (de­
viation) acceleration 02h12 (s, x)!ds 2 (h 12 (s, x) is the cor­
responding deviation vector) through the defined above quanti ­
ties, and first of all, through the force field Fs ' which 
practically means to write down the equation of relative motion 
of with respect to Xl relatively to x . In this sense, the 
equation of motion is a case of the generalized devia­
tion equation. 

3. 	 THE DEVIATION EQUATION AS AN EQUATION OF MOTION: 

EUCL TDEAN CASE 


To derive the deviation equation' we have to do the follow­
ing: using the definition of the deviation vector (see 141 • 
sect. IV. I), we have to compute its second covariant derivati ­
ve 02h 12 (S,. x)/ds 2 xes»~ and next to substitute 
in the obtained expression the formulae (2.1)-(2.4). 

To 	 make these ideas more clear we shall consider at first 
the most simple possible case, which we shall call an "Eucli ­
dean case": let us t.lke Ln to be an n -dimensional Euclidean 
space E? and IY to be a parallel transport along y • Then 
(see'4 ,sect. III.3.! anI! 14/, sect. IV.) we find the devia­
tion vector h 

12 
(s,X) to he with the components 

12(S, x) x~ (1 2(S» - x~(rl(s». 	 (3.1) 

so 	the deviation equation rs simply 

02h (s,x)
12 (3.2)F2 	 - F I ' 

2ds 

where 

Fl Foo; (r', x1(r1 (s». dxl(r l (s »/ds), 
(3.3) 

F2 Fs (r", X2 (r2 (s»), dX2 (r 2 (S»/ds). 
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are the forces per unit mass acting on the particles 1 and 2, 
respectively. 

Evidently, eq. (3.2) is nothing else but the second Newton 
law of 	dynamics, i.e. the equation of the relative motion of 
the particle 2 with respect to the particle 1 in the force 
field Fs' 

4. 	THE DEVIATION EQUATION AS AN EQUATION OF MOTION: 

GENERAL CASE 


We shall begin this section with a mathematical definition 

necessary for the following considerations: 


i 1 ••• i p 

Let A ,,( (s), ••.• zp+q(s) be components of the
J 1 .• , J q 

C l(p + q )-point -tensor A from the space 

T z1 ( Lo) 1'0'" ®Tz (s) (Lo) ®T; (s) (Lo) 181 .. : ®T; (s) (L o)' 

p p+l p+q 


where 	 za: [s'.s"] -_ Lo , a = I, ••.• p+q are some C 1-maps 
and s s[ s'. s" J • Then, by definition 

D i I •• ,ip 

--A J' J' (zl(s)' .... zp+q(s)):

ds 1'" q 

' 	 p1d l' .. Ip
:,.,_,A J' J' (Z1(s) .... , +q(S») + ~ 

rib 
b= 1 . k P (z b(s)) xds 1'" q 	 , 

q 
x Ail'" lk ib+l·,i p (s) Z (S))Z'be(S) _ ~ l,k o(z +b(S))x' , 	 1 •••• , ~D+q • h [ P

Jl' •• J q • 	 b= 1 ' 

i 1" , i A P 	 Z ,f
p+b(s), . I ) lk jb+l" 	 'i (Z1 ( , ... , zp+q(i1 , .. q 

where Z;a(s):=dz~(s)/ds • a = I, ... ,p+q and 1'~ik(Y) are 
the coefficients of tile affine connection at y E- L 0 

It ~s not difficult to see that (4.1) are components of a 
many-point tensor of the same tensor space as t)',e initial ten­
sor A. 

From this definition it is easy to check thar the operatur 
D/ds is a differentiation with respect to the tensor products 

of (;r.:my-poinL') tensors. i.e. the usual Liebniz rule holds 
fN' tensor products (D(A® B)/ds = (DA B + A.&(DB/ds)) and 
D/ds commutes with the contr:i.ction operator. and as a conseq­
uence of this, D/ds commutes also \v~ tl' the contracted tensor 
product'o (e. g. , 

D(A. 
j 

j (zl (s), z2 (s)) BJ
, 

(z2 (s) Id s 

'" ~ 
o 

If D . i (zl (s), z2 })B 
k 

(Z3(s s II 23 = z2 ). 
j = 1 

k 	 j 

Let us 	now recall the definition of the deviation vector 
of x2 with respect to xl relat to x at the pointh 12 (s x) 
14! sec t. IV. 1 ) : Xes) 


r" 
''I s Ys 
I Ys (r)dr.h	 (S,X): Ix S»>X(s) Y (r). s ») 	 (4.2)12	 s1 r' 

or (see /3 ~ , sec t. I 1.2.4) 

k k " p • q 


h 12 (s. x ) H. p A 
, q 

Y s (r)dr, (4.3) 

r' 


11 s Ys
• a a r ••• and r ... are the p;enerali ­where Y8(r): ",ays(r)la r 
Ys • respectively. defined in /3! ,zed transports along 1/8 and 


sect. II.: and 


k k 1/ s k 

H, p (x(s), Ys (r')) :
H, p 	 (Iys (r') ->X(S)L p • 

11 s -1 p 

(H-1)P : = Hp (Ys (r') ,xes)) '" (Oy ( .X(S») l,q' (4.4) 


, q • q s 


Ys 

APA p : '" (Y (r'), Y (r»: = (Iys (r) ... v (r'):q'. q • q.g .s 	 . s 

ar.o the components of the two-point tensors representing the 
corresponding linear mapping I::: in a given basis (see f31 , 

sect. II. 2.4). 
Now we are ready to derive the deviation equation of x 2 

with respect to Xl relatively to x at xes): 
For some time, for the sake of shortness, we shall suppre~s 

the indices and the arguments of all quantities. Thus, we can 
rewrite (4.3) symbolicallv in the form 

(4.5)h=H.(A.y, 

4 
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where the dot (.) means a contracted tensor product (e.g., ...A.y is a vector with components C\.y)i:=Aj.k ·k=Ai.k(Ys(r'), 	 • q [ (R 
q
• ij e (y s y~i (r)y~(r) + T :je (Y8(r»F; -+­

• k r \ " r.\· dr d )ys(r»Ys(r),J,'Y,"'I,'y an soon. 
So, using (4.1) and (4.5), we get: 

0 2 0 D 02 H 
-- I h: _I (--, h) __ . Ie 1, h + 
ds2 x ds x Js x ds2 

OH OA. Oy 0 2 ,\ D,\ Oy 02y 
+ 	2- ( y--\.--)LH.« y + 2 ._+ A· --). 

ds ds ds d ds ds ds2 

(4.6) 
By a direct calculation Qne can check the following equflli ­

ty: 

0 2 p . D Y' j DT :jk
Til y,j)yk -'­(R 	,,' '/' \ "" I• l,lK 	 - , ·jk 


!is ds
<I 

'uP "1\1 ·,i·,.j 	 "p 
D ,i 

L I Y + - ,ii Y )' 	 , . 1.j ----11• j .;- (I'P + T P r-l! )' i "j ~ k 1 
d s 	' ,ij. k • iq 'kj Y >. , 

.7) 

where R:)iik and T: jk are the components of the curvature and 
ton1ion tensors, resp~c[ively, y,t1: y'~!(r): ill' s(r) as 
I ,a 	 , ,\,11 ", b , f3 y. 0 - '" " ' f3 )' rJ X • 

It :~, not difficult to show that the sum in square brackets 
in (4.7) is 

.. p 0:. k.. ,J D TP , J ----1_ 
rIs ds , Jk as 	 .R) 

Substituting (4.8) into (4.7), then the so-obtained equa­
lity in (4.6) and using .1)-(2.4), we finally get the follo­
wing deviation equation: 

0 2 D 2 H k 
h k) 'P 1 P , 1i' X ----- i H-) h (s, x)


ds x 
I 

ds 2 'q 


rn 0 ,p 	 O}.q (r)OH~p r 	<I(,q.q (r) + .\~ __8__ )+2- r ----}'
ds S q d s ds 

• qPr" 	 02\Pk 	 OA. q o s 
+ 	H, p ( d r I J. q ). q ( r ) + 2 ... 

r' ds2 s <Is ds 

6 

oT 	q E (Ys (r» 'j (r)H,e--~. -L:_____ y s s + 
ds 

o .r Ol',q(r) 
q ( , j (r) ~ (r) + __s__ ll. 	 (4.9)+ T ,0_ 	 Ys• J [ Ys ds dr 

,) 
We want to remark that the force F acting on the observer 

is also presented in .9), but implicitly it is hidden in 
the second derivative 02H~p/ds2 

Thus, we see that 	the deviation equation (4.9) really has 
a meaning of an equation of motion of the particle 2 with res­
pect to t.he particle 1 as it is observed from an observer with 
a traj ectory x • 

From a dynamical point of view, the most important terms 
in the deviation equation (4.9) are those in which the force 
Fs(r) appear;;, viz. 

r " 
k 

H. p A:q (T:d (Ys(r»f'; (r)y~(r) "'" OF;I(r)/dr)dr 

r' 


F PrHk (\p
• 

-- (') (")F J 
(" s )-- I • P 	 ,I ,j Iys r • Ys r s r ) ­

r" 	 . r o AP, (v (r'_~). y s' f'Sj (r) <I r • • J 	 • S -- __. ____ U ~ ) ... H k p q (, 
• P 	 (A.qT'jf )s Ys (r) ------- ­

r 
, dr 


(4.10) 

where we have done an evident integration by parts of the term 
i\~ IL OF;(r)/dr . 

From (4.10) we see that the only independent of y terms 
in (4.9) are those in the square brackets in (4.10), which are: I equal to the definec by means of the generalized transports 
I~~. and I~~. difference of the forces acting on the obser­
ved particles. 

5. 	 EXAMPLE: EUCLIDEAN CASE 

The most simple application of the general theory from the 
previous section is the derivation of the Euclidean equation 
of 	motion (3.2). 

7 



In the Euclidean case (see section 3), we replace Ln with 
the En space and I Y with a parallel transport along y • So, 
working in a global coordinate basis in which r: ~ y co 0 , we ha-

a a a (~a 	 ~ a , f3 )ve H. f3 = A . f3 = 0 f3 i5 8 = I for a = f3 and U f3 = 0 for a F • 


Thus, in this case due to (4.9) the deviation equation is 


0 2 
r" dFs(r)

0 +d;21x h 12 (s. x) 0 + r d r ( 0 + . " 0 + -d--) = F s (r") - F s (r'), 
, r 

r (5. I) 
which, because of (2.3) an~ (3.3), is identical with (3.2). 

6. 	 EXAMPLE: THE FIRST ORDER DEVIATION EQUATION 

(EQUATION OF MOTION) 


In this section we shall derive the first approximation to 
the exact deviation equation (equation of motion) (4.9), or 
more precisely, we shall write down eq. (4.9) within terms of 
an order of O(p" - p') and 0« r" - r ')2) with respect to 
the parameters of the families TJs: [p', p"] -. Ln and Ys: 
: [r'. r"] __ L n ,respectively (see section 2). As we shall 
see below, this approximation is independent of the concrete 
choice of the generalized transports ITJs and IYs • 

Having in mind that by definition (see section 2) TJs(p'): = 

:= xl(Q(s)): = Ys (r') ,TJs(p"): = xes) ,Ys(r")= :X 2(T2(s)) and 
r ~[r'.r"], and using eq. (2.6) from/ 3! , sect. 11.2.4 (which 
means that I;'; y : = id for any y Go Ln - see/ 3 /,sect.II.I), 
we immediately derive from (4.4) 

Hk ok +0("- ') ( H -1 ) P = 0 P + 0 (p " _ p , ) • P P P P • q q 	 , 

(6. I)AP oP + O( r" - r') •
• q q 

On differentiating these two-point tensors with respect to 
s Go[ s'. s"], we get due to (4. I) 

k
OH Ids = 02 H k /ds 2 = O(p"- p')• P • P 	 , 

(6.2)
OAP Ids 0

2 A~q/ds2 O(r"- r').• q 

/3!By 	 vertue of eq. (3.3) from ,sect. 11.3 we have 

r" 
P • q • P 2

f A. q )' s (r) dr y s (r ')(r":... r') + 0« r" - r') (this result ~s 
r' 

a direct consequence of (6. I) and (6.6) (see below)); thus 
from (4.3) and (6. I), we find 

h 12 (s. x ) I; 0 «r" - r') 2) , 	 (6.3) 

where the vector 

I; : .1; (s): }' s (r ') (r" - r') 	 (6.4) 

is called an infinitesimal (local) deviation vector and evi­
dently has an order of O(r"- r') 

Now substituting (6.1)-(6.3) into (4.9), we get 

r"
0 2 
_I I; k 

O(p"--p') + 0«r"_r,)2) + r dr[O(r'-r) + 
2ds	 r' 

k 
+ R. ijP (y (r))y,l(r)y,J(r)/ (r) + Tko (y (r))F J (r)ye(r) + 

s s s s 'Jl S S S 

+ o Fsk(r)/dr + y;j(r)O(T.kjf (ys (r)) Ysf (r))/ds]. 

(6.5) 
But for any smooth function f: [r'. r"] -.IR the following equa­
lity is fulfilled~ 

r" 

2
f f(r)dr fer ')(r" - r ') + O«r" - r') ). (6.6) 

(Proof: exp~nd the integral in (6.6) into a Taylor series with 
respect to the difference (r" - r') at the point r'). 

Thus, applying (6.6) to the integral in (6.5) and using 
(6.4), we find the following final result: 

0 2 , k k .. f 
-~Ixl; = R'ijf(Ys(r'))y~l(r')y~J(r')1; ~ 

k() 	 k j ')C f 
+ OF....:!..!_i , (r"- r') + T.jf (ys(r'»Fs (r <;' + 

d r f= f 

y 	 2 
. , O(T.kf(Ys~~L~ ~ O( "_p') + O«r"-r') ) • 

.L Y~ J (l' ) -~--L.d-; p 	 (6 • 7) 

9 
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If we neglect here the terms of an order of O(p"-p') and 
0((r"_r,)2) ,we shall get the first order deviation equa­
tion (or all the same the first order equation of motion) who­
se solutions (with respect to ~ ) are the first approximation 
to the solutions of the general equation (4.9). 

From (6.7) one can easily get tIte derived in '6' equation 
of relative motion (deviation equation) of two roint particles 
which are moving along the curves xes, v) and x(s,v + dv) ( s 
parametrizes their trajectories) of the family of C 2-curves 

ax(a. r) .Defining u : ~(!xQ(s, v)/cJs , substituting x(s,v)for
i)'s(r) v for r' ,v + dv for r ,u for y~i (r) and putting 

p 	 =p' ,wegetfrom(6.7): 

k_0 2 ~'k k I j V OF s (v) ,-- R. ij V U U I; ( -) d v 

cls 2 (Iv 


(6.8)k ~ p)k . f' j o (T . j P 2 

T • J P F' 

~ 
J (v)[

. 
I u ------- +- O((dv) ), 


as 

where 

Q
(lx (s, v) I 	 Ou k 

~a -----( v F key) 
s 	 (6.9)

rlV 	 rI s 

.. . . . '6 (get f rom () the devIat10~ equatIon derIved In ,To 6.8 
one has to neglect in (6.8) the terms 0((dv)2) and to put 
T \j cO Lecausein 16'1 the usual space-time of general rela­
tivitv without" tor,oion is used. 

7. 	 CONCLUSION 

In 	this article we have shown that the equations of relati ­
ve 	motion of two point particles in the field of external for­
ce 	 Fs(r) , as they are observed from a third point particle 
(observer) which is influenced by another force field F(r) , 
are a special case of the generalized deviation equ~tion. 

One can give many examples, e.g., for the force field Fs(r) 
(cf. '2/ ). For instance, if the observed particles are in an 
electromagnetic field described by a tensor Fij we have to 
put 

10 

F j 	 (r') £gjk(y (r'))Fko(y (r'))y,e(r'),s m' s [S S 

(7. I)
Fj 	(r") _e" gjk (}' (r "»F ° (y (r"» y,e (rn). 

S m" s kt S S 

where e', rn' and e" and rn" are the electric charges and the 
masses of the particles I and 2, respectively, and we have ad­
mitted that Ln is endowed (may be independent of the connec­
tion) also with a metric tensor with contravariant components 
g jk . 

The values of F s (r) for l' ,~. (r' ,r ") have to be chosen from 
physical considerations conserning the choice of the curves 
)'S (r) ,whose physical meaning was mentioned in~4/,se(t:,TV.2. 

The author thanks Professor N.A.Chernikov for the useful 
discussions. 
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IfuHes B. 3. E2-87-78 
YpasaeHHe AeBHa~HH KaK ypasaeHHe ABHEeHHH 

Ha OCHOBe llOHHTHH 0 HeHH$HHHTe9HMaJihHOM BeKTOpe AeBHa­
~HH AaH HOBbJH BbiBOA B npOCTpaHCTBaX a$$HHHOH CBH3HOCTH o6-
o6~eHHOrO ypaBHeHHH AeBHa~HH B cnyttae HeHBHOrO 3aAaHHH /no 
CpeACTBOM AH$$epeH~HaJihHbJX ypaBHeHHH BToporo llOPHAKa/yttaCT 
BYIOJlUIX: B ero onpeAeneHHH KPHBbiX, KOTOpble MoryT fihiTh KaK 
reoAe3HttecKHe, TaK H uereoAe3HttecKHe. lloKa9auo, ttTo ttacT-
HbJM cnyttaeM 3TOrO ypaBHeHHH HBJIHIOTCH ypaBHeHHH OTHOCHTeJib­
HOrO ABIDKeHHH ABYX TOtJetJHbiX ttaCTHQ B llpOCTpaHCTBaXa$$HH­
HOH CBA9HOCTH B none BHemHHX cHJI. B KatteCTBe npHMepoB pac­
CMOTpeHbr 11 eBKnHAOBhlif cnyttaH11 H o6~ee HH$HHHTe3HMaJihHOe /no 
KaJIJ.Hoe/ ypasuerme AeBHaJ:.UiH. 

Pa6ora BbinOJIHeHa B naoopaTOpHH TeopeTHtJeCKOH $H3HKH 
OH.HH. 

Coo6IQeJIHe Ofue,u.HHeHHoro HHCTH'fYTa R,nepHbiX accmmoallHHH. ,lly6Ha 1987 

Iliev B.Z. E2-87-78 
The Deviation Equation as an Equation of Motion 

On the ha<ds of a noninfinitesimal deviation vector a new 
derivation (in spaces with the affine connection) of a ge­
neralized deviation equation is given for the case when 
the. curves appearing in it, which can be geodesic as well 
asnqngeodesic, are given implicitly (by second order dif­
ferential equations). It is shown that the equations qf 
relative motion of t\-TO point particles in spaces with the 
.affine connection in the field of external forces are spe­
c~al cases of the generalized deviation equation. As exam­
ples the "Euclidean case" ~nd the general infinitesimal 
(local) deviation equation are considered. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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