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h!". I. MOTIVATION 

,.1- There are two typical conditions, under which quantum 
fields are considerably influenced by an externaI, classical 
gravitational field. First/ 1/ , the existence of horizons 
around black holes may lead to a thermal flux of radiation. 
At second/2 -4 / , the importance of quantum effects in the very 
early universe has been worked out with special emph~sis on 
cosmological particle production. With regard to this process 
estimates show/5 / , that on the one hand the externaI fieId 
approximation for the ~ravitational field breaks down for 
times t < t Planck :::: 10- 4 s , On -the other hand particle Rro­
duction becomes ine'ffe-ctive for times t > tcompton :::: 10- 21 s 
(for electrons). In the standard cosmological model these 
times correspond to energies iD the range b~tween 10 9 GeV 
and lO 19 GeV and to our present knowledge, some kind of uni­
fied nonabelian gauge theory should be responsible for descri­
bing matter within this energy range. Thus, it seems to be 
sensible to study quantized nonabelian gauge theories under 
the influence of a' cosmological space-time. Besides, the 
quantization of nonabelian gauge theories in curved space is 
also of general interest, beyond its cosmological application. 

In this paper we briefly describe a formalism, suitable 
for the quantization of nonabelian gauge theories in an exter­
naI gravitational field and some results of the 1st order 
calculation of cosmological particle production wit~in thes~ 
theories. 

~& 

2. CANO~ICAL QUANTIZATION 

Our model will be a SU(2) Yang-Mills-Higgs theory in the 
unbroken phase, but the method should be applicable to more 
intricate theories also. The Lagrangian is 

~ =f s + f O F + f OH 
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- i/1. I 1 i i (1) ~f v -s tA ./lB +--B B I,OF 'r 2 

- i J-=-g (à /1. ~ ) i (D /1. C) i ,fOR 

where 

,1..) i _ A..i ijk A j ,I.. k
(D J.l. 'fJ - 'fJ t/1 + e f /1 'P , (2)
 

F i = A i _ A i e ijk A j A k .
 
/1V ti ,p. /1.p + f /1 v (3)
 

Lagrangian (1) is a curved-space generalization of the one, 
proposed by Kugo and Ojima in Hinkowski space (/61, cf.al ­

so 17/). The term - fv":g-R </}q} allows for a possible nonminirnal 

coupling of the Higgs fieId to the gravitational field 112~ 
Indeed, our whole quantization scheme essentially rests on 
the flat~space formulation of / 6 /and the real success is to 
show that it also works in curved space. The essential points 
in quantization are 1) that the field B i is ~reated as "a La­
grange multiplier field, 12) that the Faddeev-Popov-ghosts

i 11 / c and ci / a r e taken to be Hérmitean and are quantized by 
anticommutators and 3) that alI degrees of freedom, phys­
sical as well as unphysical, are quantized on the same foo­
tinge This last procedur~, of course, demands imposing a sub­
sid{ary condition later. 

On the basis of these ingredients we have calculated the 
canonical momenta and have performed the Legendre transform 
to find the Hamiltonian under proposition of an arbitrary 
time-orthogonal metric. 

gOa = g = O.
Da
 

in/ 7/with
The commutation relations remain the same as a sui­
table generalization of the 8-function. 

For calculating physical processes via S-~atrix in the 
interaction picture we do not need the fuIl Hamiltonian, but 
only the equations of motion without interaction and the 
vertices in coordinate space. From the Heisenberg equations 
of rn~tion, applied to the non-interaction Hamiltonian, the 
follcwing equations of motion can be obtained: 

cP i : J.L 
~ 

,/1 + (JI. 2 + çR) cf; i := O, (4) '.'li 
Ai ; j1 

v;/1 
+ R/1vA1 

jJ. = 0, (5) 

z 

... 

i ;/1 
C,/1 =u, (6) 

-i :/1
c,1l =0. (7) 

One recove'rs, that the fields are "free" with respect to the 
interaction (e := 0, À:= O), but not wi.t.h respect to the gravi­
tational field, which is taken into account exactly. Note, 
that the ghost fields c i and ~J are massless, minimally 
coupled scalar ficlds, which will be . an important proposi­
tion for the cancellation of unphysical degrees of freedom. 

At second, from the interaction part of the Hamiltonian 
we can read off the Feynman graphs. One finds, that they 
can be obtaihed from the Minkowski-space Feynman-gauge graphs 
in coordinate space by the following rules: 
1) Write down the cdordinate-space vertex in Minkowski space. 
2.) Substitute TJ/1V ~ g/1V • 
3) At each vertex attach an additional factor y~-g . 
4) In the lines for AJ, ~i, c i and ~i substitute the corres­

ponding modes as solutions of (4)-(7). 
For details of the interaction picture used, see /9,10,131 and 
chpt , 9 in 151 • 

3. COSMOLOGICAL PARTICLE PRODUCTION 

As an interesting application we have applied this theory 
to the calculation of cosmological Higgs- and gauge boson 
production in a spatially flat Friedman-Robertson-Walker 
metric 

ds 2 
:= C 2 (7]) (d TI 2 _ dx 2 _ dy 2 _ dz 2 ) • (8) 

· f 110/·· k h h·Er om t he ca1cu1a t i on o Lotze t t i.s nown, t at t e a.nt erac-: 
tion between electrons and photons does not only lead to an 
additional production of electron-positron-pairs, but also 
enables the production of photons, which v.anishes to oih or­
der because of conformaI invariance. Thus, a similar effect 
might occur also here. 

As has been shown in 191, s tarting at conforma l time TJ = -00 
with the in-vacuum state jO,in>, the number of particles ~re­
sent at 7]=+00 is for a scaLar f í.e l d 

- () ( . i out -+ + i out -+ I ( " N +00 = <t/J + (0 ) In I c,6 (k) ~ . (k). t/J +(0), ín> . (9), 

cf; i out (k) and ~ i out (k) + are the ann í h i La t í.on , r e sp . , creation 
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operators, which appear in the development of ~i(x) into mo­ 2) After i~Eosingcondition (12), there remains a zero-norm 

subspace Co which must be shown not to give any contribu­des, which are pure posit.ive frequent at 71 = + 00. Formula, 
tion to expectation value~ of physical observabl~s.similar to (9), is also applied to the other degrees of free­

Exploiting Poincare invariance in Minkowski space it has beendom. 
proved in/6/ that for a theory of the type considp.red hereFirst, we have to relate the out- operators to in~ opera­
the quotient space Hphys=Cphys/C'o Ls indeed a Hilberttors and at second we have to calculate the state \W(+oo),in> 

l.from IO,in> via per turba t í.on theory. The f í r s t step is usual­ \+) space and that the 8-matrix restricted to Hphys is unitary. 
i: Because of lack of Poincare-invariance this is far from being;ly done by the Bogol i.uhov transformation /11/ 

obvious here. 
(.2 ~ 24> i ou t (;) == ea oo ~ i in Ó~) + ~ (3 * (k) cP i in (-k) +, k = k (10) At first, we find that the third group of states does not 

fulfill çBI > == O, thus they must no t be con t a i ned in Il/íi{+oo),in>. 
A careful inspection of the coefficient functions indeedThe same transformation law is valid for the longitudinal 
shows, that in alI these cases, after a finite number bf par­and scalar gauge bosons as well as for the ghosts with the 
tial integrations, their contributions to It/J(+oo}, in> va­only modification, that for them ~ = O and ç= O because o f 
nish. Thus we can cancel them in (10). Evaluating the scalarmasslessness and minimal coupling. On the other hand, the 
products of alI residual states shows, that the zero-norm­Bogolubov transformation for the transversal gauge bosons 

is trivial, a = 1, f3 = O. Because the Bogolubov coefficients subspace Co is spanned by the second group of states. As a 
at leàst for the simplest expansion laws in (8) are well ­ result, only the first group of states belongs to Hph S • 

Now, inserting (11) into (9) and the similar formuias forknown /5/, e'q , (10) poses no further problems. 
the other degrees of freedom leads to the follówing results:The main difficulty is the calculation of the state 
1) The combined number of longitudinal and scalar gauge bo­1~(+oo)~>.Evaluating the 8-matrix to first order leads to 

sons plus both kinds of ghosts, produced by the gravita­the following expression (i + j 2: 2) 
'li tional field is equal to zero. Me net unphysical particle~1 int 4 ':~ 
(I·-It/J(+oo),in>==(l-i r }{(x)d x ) lo, in> + (J (eÍÀ J) are produced by the gravitational fie1d. 

K 2) Evaluating the number of t ransvarse gauge bosons, as well 
= i<IO, in> +!8 T-T> +\ L T T> as the number of Higgs bosons produced one recovers thát 

indeed the three-partic1e states belonging to CO gi.vev.no+1 T T T> +18LT> + ilccT> +! L L T> 
contribution.+\ <iJ ~ T À +\8 8 T> + 18 L L> + /.i I c c L> 

3) Concerning the Higgs sector, the formulas given in/ 9/+14>4» + i 8 8 L > +ilcc8> +1 4> c/J L > 
for apure 4>" -theory are reproduced with modifications+1 4> 4> ~ 4> > +IS 8 S> 
by group factors of the order 3 to 8.+/4> <p S> (I 1) 

4) There is an additional contribution of Higgs production, 
Here, the notation is a symboLí c one , I S L T> for instance arising from the in~eraction with the gauge field and 
denotes a three-fold momentum integral over a coefficient which, contrary to the terms obtained aIready in/9/ , is 
function, consisting of solutions of (4)-(7) times a three~ proportional to the gauge coupling squared. 
particle state with one scalar, one longitudinal and one 5) The interaction with the Higgs fieId enables the produc­
transversal gauge boson. tion of transverse gauge bosons a1so, which is absent to 

1)1~ Now we enter the question of finding the physical subspa­ Oth order because of conformaI invariance in the gauge 
ce. Following/~/ this is done in two steps. sector. This contribution is found to be proportional to 
1) Find the subspace rphy s C C which obeys t he subs í.di áry con­ the gauge coupling squared, too. 

The fuIl formula obtained together with detai1s of the cal­dition 

'.'

culation will be pubIished elsewhere.
 

çB I phys > = O, (12) ~J We should mention, that a complimentary investigation on
 
the production of massive gauge bosons in the broken phase, 
negIecting interactions, has been carried out before/14 / .where çB is the BR8-charge /15/ in the asymptot Lc region. 
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Ba3nep M.	 E2-87-779 
KaHOHHt.IeCKOe KBaHToBaHHe H KOCMOnOrHt.IeCKoe 
.pO)K)J;eHHe l.IaCTHQ B neaõerreasrx Ka.JI-HÕPOBOl.IHhIX TeoplUIX 

C<l>opMynHpoBaHa cxexa KaHOHMt.IeCKOrO KBaHToBamUI Heaõene­
BbIX KanHÓpOBOl.IHbIX norreã BO BHe'WHeM rpaBHTaQHOHHor-1 rrorre , 
TIOTOM Ha OCHOBe 3Toro <POpMaJIH3Ma Hccnep;oBaHo KOCMonorH­
t.IeCKOe poxnenae xarr coasrx li KaJIHÕpOBOtIHhIX Õ030HOB. 

PaõoTa BwnonHeHa B naõopaTopMH TeOpeTHl.IeCKOH ~H3MKH 

OHHll. 

Ilpenpiorr 06õe.nmH~{HOrOHHCTHTYTa smepHhIX HCc""lenOBaHHH. )ly6aa 1987 

Bas1er M. E2-87-779 
Canonica1 Quantization and Cosmo10gica1 Partic1e 
Production in Nonabe1ian Gauge Theories 

A canonica1 quantization scheme for nonabe1ian gauge 
fie1ds in an externaI, c1assica1 gravitationa1 fie1d is 
formu1ated and app1ied to the problem of cosmo10gica1 
Higgs and gauge boson production. Via interaction, the 
mass of the Higgs fie1d not on1y 1eads to additiona1 
Higgs production, but a1so enab1es the production of mass~ 

1ess gauge bosons. 

The investigation has been performed at the Laboratory 
of Theoretica1 Physics, JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna 1987 

6 


