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'The reeent development of t he sup er s t r-í ng theory has led to 

(1\ reeonsidering some basie 1deas eoneerning the relation between 
relativistie partiele theory and local quantum field theory. In the 
modern approa eh (see, e. g. refs •. /I , 21 ) one starts f r orn a gauge-d í.ko 
formulation of the relativistie partiele theory IJ,4/ i n which 

eonstraints, such as p2.+ m2.. = Or. p~ = O ~ e t c , , play a role of 
(super)gauge syrnmetry generators (in our notaion Greek/Latin 

characters are us ed for Fermi/Bose variables, ~"'(t) are c oordina
tes; pfl(t), momenta; sf'(t) , antieommuting spaee-time veetors, t;, 
is an evolution parameter). In the Lorentz invariant approaeh to 
quantizing su ch a theory one us es the FV /51 gauge fix:l ne 

condi bons, t == dt./dt = O} À=0 J where e(t) / .:1Ct) are the 
Lagrange muitipIiers eorresponding to the Fermi/Bose eonstraints. 
These constraints are included in the Lagrangian by adding the 
"kí ne t c " terms I k , i~ de. , i. e. the Lagrange muI tipli er s K}2í 

play th e rol e o f the conjugate momenta to {" Â • To cancel a l L 
unphysical degrees of freedom, a further extension of the phase 
spaee is enforced by adding the Faddeev-Popov ghosts,in eonjunction 
with the Parisi-Sourlas supersymme try (see, e. g. /1,2/). In this 

formalism alI variables have equal dynami~~l status (alI variables 
are "e qua'l li), and one can use the standard Liouville measure in the 

extended pha s e spa ce , In the seeond-quantized th eory t hí s fact is 
reflected in the dependenee of the field varíables on a11 eoor

dí.nat e s : q..,1 t} À, ghost co or d í na t e s • 
The meaning of the extra vari.ables s however qui te diffe ren t , í 

and some of them are more "equi1.1 li than ot ho r s . 'rhe maí n charaeters 

in the described seenario are the constraints and the eorresponding 
Lagrange mul tipliers eCt) I Â.(t) • The c ons t r a í nt s defLne gau,se-like 

transfo~mations and the multipliers transform similarly to eauge 
potentials. For example, in the theory o: the sealar partiele, 

ZLO ::: p,. i r - ±fi (i:) (p.2+ m ) o~t~i , (I) 

t ne constraint 9i =t(p2.+ m2) generates the abelian transformation 
through the Poisson braekets 

6p=[f1(t)~j.}f»P.B=O) ~q.,=[f1Ct)gj.)t]P,8. :={1(-t)P . 
(2) 
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The action for the Lagrangian (I) is invariant if 

• 
(3)~e1=:tl ) fi (O) ;= f1 (1) =0. 

It fo,llows that t~O) == Cdt lf(t) is invariant und ar the gauge transforma

tion (J). The numbers tlO}~O enumerate th e ineguivalent classes of
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the gauge group and are similar to the Teichmuller parameters in the I 

string t he or y , 

'I'ak í.ng into account th e existence of the gau~e invariant s as 
well as the dynamical equality of the variables tIA with the basic 

varia~les P'/'}, ~ , on~ is tempted to interpret ti í\ as real gauge 
potentials. However, to fully support this point of vlew a Lagrangian 
is required with some rigid symmetry giVing the gauge Lagrangian 
(like eg. (I) ) by the standard procedure of gauglng symmet~ies. 

The extremely simple model of eq. (1) is easy to rewrite in the 
161standard gauge forro .
 

T (4)

L = to/C (d~ -A) l( , 

where 

yf =({~) c =( O 1 ) A==(O-ti O
0) (5) 

-.10 . 

The_ transformations (2),(3) can also be presented in the standard 
form ., .
 

õ'o/ =,Fo/J 
SA = F t- [F/A] _ F +-(FA -A F), (6) 

where the mnt r x F is obtainéd from.A by simply substi tut ing :f(t)í 

for -f.(t) • The Lagrangian (4) can be obtained by gauging linear 
canonical symmetries of the following simple (rudimentary) Lagran
gian /6/ 

T 

Lo =fYC(dt-Ho)o/ + Â&) 
( 7) 

where 

- Lr. •H =( O O) A B - 2. \P'l,-J .o 1 O 
One can easily convince oneself that the most general (not 
touching space-time indices) linear canonical transformation, 
that le~ves (7) invariant, is given by eq. (2). The Lagrangian (7) 

is the simple st Poincare-invariant bilinear form, Lo ==f i~ wri tten 
in the first order Lagrangian formalismo The boundary term ~5 
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influences only boundary conditions for f[t) , it also ha s to 
be added to eq. (4); usually we leave it aside • 

This simple idea can further be exploited to obtain more 
complicated models 16~ Fi::'st, for m=O the Lagrangian (1) has an 
addit ronaL global symmetry of t he Weyl' type 

J l bP= - f2 P J SCf" == f~ 'tt) bB1 =.2 f~ ti. 

Gauging this symmetry gives a new gauge theory which ls obtained 
from (1) by simply 8ubstituting 

( - f~ O \ (- e:z. O ) 
F :::: f1 f2. ) J A = t

1 
e:z. 

lnto (6) and (4). The particle described by this theory is n~ssless 

due to the non-abelian nature of the gauge transformation for t. : 
• . ~ 

~e1 = f1 + 2f:z fi -2f1 f2. , $e~ = f2. . 
Presumably, this model glves a particle description of the 
dilaton. 

The other extension of the idea consists in using rudimentary 
Lagrangians depending on antieommuting varjables $ and describing 
spinning particles /7,8,3,41. Sueh Lagrangians have some 
supereanonic a'L symmetries by gauging which one ob t a í.ns , Ln an 
extremely simple and transparent manner, geneTal supergMge theories 
(one-dimensional supergravities) of particles with different spins 

deseribed by supercoordinates 5~ ) k = 1..) ... J K . 
For K=f,2 such theories were first obtained in ref .13 ; by u sí.ng 
a rather complieated superspace formalism; to other values of }( 
the resul t s were cxtend ed in /9/. 

These observations reveal a rather general principIe of gauging 
linear (super)canonical symmetries of bilinear rudim~ntary 
Lagrangians. Employing this principIe allows one to construct 
in a tran$parent and unified manner alI known models of relativistic 
particles as well as gauge formulations of bosonic and fermionic 
string theory 110/ • In addition, quite new theories .can be 
derived. A nontrivial example has been given in ref./IO/ - a rela
tivistic gauge theory of 2 and 3 scalar particles bound by 
linear (harmonie) forces. As pointed out in /10/ the approach 

can be used to obtain the N_particle theory, however, the iden
tification of the relevant N-particle gauge group, given in/lO/ 
is incorrect. Here, a general relatlvistic tbeory of N particles 
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bound by hé1rmonic forces is given. It can be applied to 
hadrons, strings, rnernbranes, etc. 

Fir s t wc present a rather gener al, formulation of our appr oach 
to gauging canonical symmetrics. Extending the ideas of refs. 
/7,8,3,6/ , consider the following rudimentary Lagrangian 

L == q .)1 • 11 _ i I o( • 13 '11 ( 
(8) 

o alH' Pe. t L 2 h otf3 S ; - <!to P, q", ~) , 

where the index i =1) li'} N enumerates t he particles. The constant 
matrices aJ"") and can be diagonalized by su table linearíhoif3 
transformations of canonical variables. Neglecttng the new ones 

corresponding to zero eigenvalues, we obtain gl"y:::.(-J..J.",-i,/-J..J",,+1). 
lt can be shown that t h e quantum theory of the gauge invariant 
Lagrangian (1) (and of its generalizations) is consistent only for 

the Minkovski signatir e, i. e. ~}411= ( -1, +1 ,•.j:1) ,otherwise the 
Hilbert space of the system has indefinite metric • In that sense, 
the gauge prjnciple irnplies relativistic invariance (for quantizine; 
the theory one can employ the DiTac method /3,7-9/ OI' modern 
approaches /5,4/' ). In what follows we use the Minkovski rnetric 

8j1v and suppress al I contracted space-time indices fA) J,I ; 

Lorentz invarianceis trivially satisfied everywhere. The anti 
commuting variables S may be chosen, to some extent, arbitrarily, 
and this allows one to describe spin and internaI degrees af 

freedom (e.g., adding to (1) t h e term -.t~)" i p gí.ve s t~e spin 
1/2 massLe s s particle Lagrangian, adding to that -t ~J> ~.J) 

gives the theory of the Dirac particIe) • The Lagrangian (8) can 
eas í.Ly jbe wr í.t t en in thé standard form (I). Its rigid 'supercanoni

cal symmetries, ó'o/= F(f, lf) 1fT , satisfy the condit Lons 
T 

F C + CF = O, [F, Ho ] .= F Ho - HoF := O (9) 

'T' 
(remember tha t the transposed supermat rix , F t t s defined so as to 

T T 
preserve the relation (F 0/) T = 0/ F wl th due respect to anti 
conunutativity). Now the gauged Lagrangian, L) that is Lrrv a r í an t 

under the local t r ans f orrna t t on s , ~1f=F(f{t),lf'(t)) y , can be pre
sented in the forro (4), where t he supermatrix ACt,À) is obtained 

from' F(f, q» sirnply by substituting f ~ t I lf~ í\. The gauge 
transforrnations of A are defined by the standard formula (6). 

To derive the boundary conditions for the gauge parameters 

f(t), e.pC-t) one ha s to calculate the variation of the boundary 
term ~B' This completes formulating our gauge construction. 

I' 
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A more practical approach to determining the rigid symmetry·1 
group of the rudj~entary Lagrangians as well as to constructing the 

corresponding gauge theory i5 based on using, instead of the super
matrices F, the generating function of the supercanonic~. transfor

matlons 

Y]
 S'X =[G-,XJ P,B. ( Ia)

G(PI ~I ~) == I ta 3a. -t-I lfot ~oc , ,.
 Q. o(
 

de; :dG _ • 'd'-G 
~~ . bp = - dq.. , ~ 9-- = õ p , ó 5 - 1. Ô ~ • (lI) 
1
 

Under local symmetry transformations, [G-J Ho] P. 8. =: O, and Ho
 

is unchanged, while the variation of Lagrangian (8) is
 

L 
(12 )

bL =, L[p9G + J... ~ 'dLG _ GJ + f '0<;. + ~ dG
o clt "'ap 2. Q~ of I 3ep 

The first t errn defines the boundary conditions for f( tz) I rei) , 
and other terms are cancelled by adding to (8) the obvious compen

sating terms 
(13) 

-l.fCA'V=-I e (t)~a(PJq..J5) - L Ào«t) ~ot(p'~JS)'
Z ~ ~ ~ 

T 
where Y=(p, Q i ~o(). The t ransformat Lon Law for the gauge pb-

O J-I'" J 
tentials VI À can be derived eHher from e q- (6) OI' directly 
by applying to the new Lag rang'í an the requiremcnt of gauge inva

riance (remember that the superalgebra of the generátors 
is cIosed with respect to the Poisson brackets, due to the condi 

tion [G,HoJ r.a =0). 
Now we apply the general approach to constructing relativistic 

gauge models for N particIes bound by harmonic forces. To simplify 
the presentation we only treat here the spfnless particIes. Then, 

the rudimentary Lagrangian is 

= Pia.• --i p; b i -7:1 v: (0.-0.)2 tr.. :=:tr.. ir . =0 
(14) 

LO -v, 2 .. I .. #'f lJ V l. VJ J I..J J-1.. J 'l . 
The rnost general linear canonical transformation is defined by the 

generating function 

c;. =.i. a..p.·p +t .. D.Q. +1..c.. o :a "= J-';;;'(QT gC 
) 1Ú (15)

'1
 2 LJ t j lJ I e. VJ 2 lJ ve. Vj - 2 T . B T,
 

IJ where ctij =Qjc. J C~j = Cj t.. (remind tha t Vle are no t considering 
t.he Lorentz transf ormations and alI ind 1 ces )' J)I are contracted). 
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'rhe Lagrangian (14) is invariant under the transformations (11)( or, 

b Y -= C-i àL 
(;. / dV) if and only if 

(16) 
[V)a] =0 = [v, ~] , B

T =-8
J 

c = - Va.. , 

where V 

V. , 
U. 

is the fallow ing NxN matrix 

}/ 

= - "" 1J'.• , V = 1J.. L fj (17) 
L- &'J i.j CoJ , f
J==

Equations (16) leave in G not less t ha n N commuting generators 
which are some linear combinations of the bilinear Lorentz inva

riants Pi.Pj} p~'ltj}q,/fj. Therefore, the time components of the coor
dinates and momenta can always be excluded by solving ~ tV 
constraints together with the same number of gauge fixing 
conditions. 

The physics content af the gauge Lagrangian corresponding to 
the rudimentary Lagrangian (14) crucially depends on the coupling 

parameters 1J"Lj "If t!i.j == ~ -' for alI i, j , the Lagrangian 
describes the system of N identical particles with pair harmonic 
coup'l Lng , The gaug e grau p in that case is r

1 
~ 0"1 Q:9 S11N-.L . 

This can be shown with the aid of' the general formulae (15)-(17.). 
To see this more directly we introduce new canonical c oor-dí.na t e s , 
Define center-of-mass coordinates and momefrta 

Q = lN '2 C1;, tp = _1 ~ Pi.{N L- , 

and choose other coordlnates M~ and momenta l~ (i = l.J '''J }/-i) 
so as to diagonalize the Laf,rangian : 

• 2... • 1 1.Lo = CfQ -frp + li. ~i. - Te;. li. - 2 lidJi (lS) 

(the parameter ~ is absorbed in coordinates, with due rescaling 
of t ). Applying our general construction we arrive at the ga~ge 

Lagrangian 

• • D Z 2L = q'Q + ri ~L - 11.11 (P +M 2 
) - f ei.(êi~é. +~i~i -p -m') 

(19) 

a, 1... t~ (l· r. + u . u ,"\ - .L e~ ("l. 4. - 'lo U.)2. LJ L J oL () J ) 2 loJ L aJ J a, , 

6 
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li 
-: 

where 
I. N-t 1
 

li
·1 ii: = Ej~ ~ t·· -= O e~. == - E (2 0)


L H j: 
L=1 

Here the constraint coupled to ~o generates the translations 'T' 
o .1. , 

iAI; lhe one coupled to '1..1 generates U~, and the ot.he r s give the 
( I • algebra of SV#-1. • ('Ihe constraint s coupled to ~i.: generate 

its Cartan subalgebra). In writing eq. (19) we have used the 
abelian nature of the ~.1 and lJi generators which allows one to 
add the mass parameters M~ m2 without destroying the gauge 
symmetry (likewise, the term -9>2 in the Ui gene r-at or , commuting 
with alI generators,can be removed or multiplied by an arbitrary 
number ). If' the pair couplings are not identical, Le! 'Úi.j 

depend on LJj, the StJ#_i group will be broken, Note that the gauge 
group for N=2 is 7"1oJ VJ-. 7'0 obtain the cor-r-espond í.ng Lagrangf.an 
from eq. (19) one simply has to set ri = ~ i. = O, i.. ~ 2 , 
and to keep the first two constraints. 

A most natural, approach to quantiz1ng this theory i5 that 
described in the introductory para,raph of this letter. Hopefully, 
the application of modern methods 1,2/ will allow one to develop 

both a relativistic quantum theor,y of free composite particles and 
an effective quarrt um field theory describing t he í.r Lnt er-act í one , 

To obtain a the ory of dis crete "s t r í.ngs'; i. e. or linear chaí.ns 

of particles bound by harmonic forces, we choose 'Úij, = ~1i.-JI}.i. , 

for open strings,and Oij =&'i.-jl}.1 +bi.NbjJ.+Ói1bjNJfor closed ones, 
and employ the general formulae (16),(17). The detailed der~vation 

will be presented elsewhere and here we only calculate the number 
of the gauge parameters. The equa t ons for Bi j are easy to solve.í 

For the open string ~ij ~ O, and for the closed one the condi
tLon [V} g] =O is equivalent to the relations 

~ ij = ~j - i ) i < j; Bij = g11 -/ ;,- j I) i. »j , 

Together with ~ij:= - ~j~ " this leaves [01-0/2. J independent 

parameters .gJ..J."., ~[(N-f)/~ J , where the s quare brackets denote 
the integer part of the enclosed number. The most difficult to 
solve are the e qua tí.cns [V/a] =O • For the open string 
there are N independent parameters a 'J as 

• • l , 

J+'-1.. f-j + i. -1. ,
 
QiJ==,L Qie(-1) i.$j~tv'-l+L;
 

t=j-i+~ .J 

ali =ClN_j+.i.JN-i+.i , i.+j > N +.i. 
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For the closed string the e quat í.ons [V, a] =0 are rather complicated 
due to periodicity conditions. However, the number of independent 

paramet er s ai,j is easy to cal.cul at e , it is [(.3N'-.i.)!zJ. 
The total number ~ independent gauge parameters for the closed 
string is 2N-2, N even~ 2#-i , N odd. 

The generators correspond to the Virasoro generators for the 
closed string. The detailed derivation of the disc'Tete string 
gauge algebra wil1 be presented elsewhere. Note that the closed :I 
"string" with N=J i8 described by e q, (19). I 

In conc1usion we mention some possible extensions and applica I 

tions of our results. By adding suibable Grassmann variables 
one can describe the bound states of N spinning particles having 
internaI degrees of freedom. Similarly one can construct discrete 
strings of different sorts, e.g. comp~ctified on tori or orbifolds. 
The theory of 'N-particlc bound states can be applied to the quark 
model ofhadrons; while the theory of discrete strings, to an 
approximate description of massless string states in realistic 
m9dels. A quantum field theory of discrete strings is possibly 
sDnpler than that of continuaI ones. Finally, the scheme proposed 
here can in principIe be applie~ to constructing other relativistic 
discrete theories, e.g., to membranes (i.e. two-dimensional lattices 
of	 particles with nearest-neighboQr harmonic couplings). To find 
the gauge group in that case is a more complicated tüchnical 
problem. 

Refercnces 

1.	 Siegel W. - Phys.Lett., 1985,151B, p.J91;
 
Siegel W., Zwiebach B. - NucLvPhys , , 1987, B282, p.125.
 

2.	 Neveu A., West p. - Phys.Lett., 1986, 182B, p.J4Jj
 
Preprint CERN _ TH. 4564/86, Geneva, 1986 L
 

J.	 Brink L., Di Vecchia p., Howe p. - Nucl.Phys., 1977, Ei18, p.76. 

4.	 Henneaux M., Teitelboim C. - Ann.Phys., 1982, 14J, p.127. 
5.	 Fradkin E.S., Vllkovisky G.A. - Phys.Lett., 1975, 55B, p.224. 
6.	 Filippov A.T. - JINR Rapid Communications, 1987, N J (2J), p.5. 
7.	 Berezin F.A., Marinov M.S, - Pis'ma v Zs.Exptl. Teor.Fiz •• 

1975, 21, p.678.
 
~. Casalbuoni R. - Nuovo Cim., 1976, JJA, p.J89.
 
9.	 Gershun V.D., Tkach V.I. - Pis'ma v Zs.Exptl.Teor. Fiz., 

1979, 29, p.J2 0•
 

10.Filippov A.T. _ preprint JINR E2-87-659, Dubna, 1987.
 
l~Monaghan S. _ Phys.Lett., 1986, 178B, p.2Jl.
 

Received by Publishing Department 
on October 27. 1987. 

8 

4>.111I11nn06 fi. T.	 E2-87-771 

PenRTIII6\11CTCKaR Kanlll6poBo4HaR MOAenb N 4aCT\I1~, 

CBR3aHH~X rapMOHIII4eCK\I1MIII C\l1naM\I1 

np\l1MeHeH~e np~H~~na nOKan1ll3aUIII~ K n~He~HWM KaHOH~4eCK~M C~MMeTp~RM 

npocTe~w~x /PYA~MeH.apH~x/ 6~n~He~H~X narpaH~~aHOB n03BonReT nonY4~Tb penR

T~B~CTCKY~ Bepc~~ narpaH~~aHa AnR 4aCT~U, CBR3aHH~X rapMoH~4ecK~M~ c~naM~.
 

AnR nonapHO CBR3aHH~X TO)HAeCTBeHH~X 4aCT~U Kan~qpoBo4HaR rpynna eCTb
 
T, 0 UI 0 SU _ . YKa3aHo TaK~e KaK CTpOIllTCR MOAenb n~He~Ho~ uen04K~


N 1N 4acT~U /A~cKpeTHaR penRT~B~cTcKaR CTPYHa/. npeAnO~eHH~e Kan~6poBo4Hble 

Teop~~ 4aCT~U MO~HO KBaHTOBaTb cTaHAapTHwM~ MeToAaM~. 

Pa60Ta B~nonHeHa B na6opaTop~~ TeopeT~4ecKo~ <t>~3~K~ O~~~. 

TIpenpHHT Ofi"be.l1HHeHHorO HHCTHTyra SJJ1epH~IX HCCJIellOBamm. .uy6Ha 1987 

Fil ippov A.T.	 E2-87-771 

A Relativistic Gauge Model Describing N Particles Bound 
by Harmonic Forces 

Appl ication of the principIe of gauging to linear canonical sammetries 
of simplest /rudimentary/ bil inear lagranqians is shown to produce a rela
tivistic vers.ion of the Lagrangian describing N particles bound by harmonic 
forces. For pairwise coupled identical particles the gauge group is' 
TI ~ UI ~ SU • A modeI for the reIativistic discrete string /a chain ofN_ IN partlcIes/ is aIso discussed. AI I these gauge theories of particles can 
be quantized by standard methods. 

The investigation has been performed at the Laboratory of TheoreticJI 
Physics, JINR. 

ProprinL oC Lhe Jolnt lnJUtutc ror Nuclear RD/IOD.rch. Dubna 1987 


