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‘The recent development of the superstring theory has led to
reconsidering some basic ldeas concerning the relation between
relativistic particle theory and local quantum field theory. In the
modern approach (seeje.g. refs, /152/ ) one starts from a gauge=like
formulation of the relativistic particle theory /3’4/in which
constraints, such as P2+ m“:o,_ PE =0 . etc., play a role of
(super)gauge symmetry generators (in our notaion Greek/Latin
characters are used for Fermi/Bose variables, C;P(f) are coordina-
tes; P'u(t), momenta; gl"'(t), anticommuting space-time vectors, T
is an evolution pai'ameter). In the Lorentz invariant approach to
quantizing such a theory one uses the FV 5/ gauge fixing
conditions, { = d&/df =O)i,=0, where {(‘t) JA®) are the
Lagrange multipliers corresponding to the Fermi/Bose constraints.
These constraints are included in the Lagrangian by adding the
"kinetic" terms {k, A2 , i.e. the Lagrange multipliers k,.’\’_
play the role of the conjugate momenta to {,A . To cancel all
unphysical degrees of freedom, a further extension of the phase
space is enforced by adding the Faddeev-Popov ghosts,in conjunction
with the Parisi-Sourlas supersymmetry (see,e.g. /1’2/). In this
formalism all variables have equal dynamical status (all variables
are "equal "), and one can use the standar(i Liouville measure in the
extended phase space. In the second—quantized theory this fact is
reflected in the dependence of the field variables on all coor-
dinates: q/,ﬁ, ')‘ , ghost coordinates .

The meaning of the extra variables is however quite different,
and some of them are more "equal" than others. The main characters
in the described scenario are the constraints and the corresponding
Lagrange multipliers [(t), A(t) . The constraints define gauge-like
transformations and the multipliers transform similarly to pgauge
potentials. For example, in the theory o the scalar particle,

L0=P,.‘i"—;-_34(t)(|>2+m2) }' 0stsi (1)

)

the constraint 3‘:-_-‘2(p9'+m?') generates the abelian transformation
through the Polsson brackets

6P=[)C1(t)91)P]RB=O ) 8$=[§1(t)31) C”p,g, =f,&)P- @
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The action for the Lagrangian (I) is invariant if

5312';1 , H@=%0) =0, &

It follows that ﬂ(a) = ut{ (t) is invariant under the gauge transforma-
4 ! >

tion (3). The numbers aﬂ“’);o enumerate the inequivalent classes of
the gauge group and are similar to the Teichmuller parameters in the
string theory.

Taking into account the existence of the gauge invariants as
well as the dynamical equality of the variables E,K with the basic
variaples P)CL,§ 5 Oone is tempted to interpret ﬁ,}. as real gauge
potentials. However, to fully support this point of view a Lagrangian
1s required with some rigid symmetry giving the gauge Lagrangian
(1ike eq. (I) ) by the standard procedure of gauging symmetries.

The extremely simple model of eq. (1) is easy to rewrite in the
standard gauge form

L=4%%CO,-A)Y,

Vo) e 88) , A=(2d).

The transformations (2),(3) can also be presented in the standard
form

sY=Fy, SA=F +[F,A]= F+(FA-AF), (®)

where the matrix F' is obtained fronlj& by simply substituting }({)
for {(t) . The Lagrangian (4) can be obtained by gauging linear
canonical symmetries of the following simple (rudimentary) lagran—
gilan/6/

(1)

where

{ )
L0=EW‘C(3t‘HD)1~F +AB, 7

(00 ° -
Pfo _-(1 0 ) ) ZSIB = j%(]>CLJ .
One can easily convince oneself that the most general (not
touching space-=time indices) linear canonical transformation,
that 1e§ves (7) invariant, is given by eq. (2). The Lagrangian (7)
is the simplest Poincare-invariant bilinear form,[,,:-zl-c.bz', written
in the first order Lagrangian formalism. The boundary term Ag

where

influences only boundary conditions for f[t) sy it also has to
be added to eq. (4); usually we leave it aside.

This simple idea can further be exploited to obtain more
complicated models 6. First, for m=0 the Lagrangian (1) has an
additional global symmetry of the Weyl tymne

6!):‘{'2?1 SQ«: 29, S81 =2’C2£.L'

Gauging this symmetry gives a new gauge theory which 1s obtained
from (1) by simply substituting

(B0 A=)

into (6) and (4). The particle described by this theory is massless
due to the non-abelian nature of the gauge transformation for y :

Sto= £ +2£,0,-2£0, , SB—-{

Presumably, this model gives a particle description of the
dilaton.

The other extension of the idea consists in using rudimentary
Lagrangians depending on anticommuting variables § and describing
spinning particles /7+853,4/ Such Lagrangians have some
supercanonical symmetries by gauging which one obtains, in an
extremely simple and transparent manner, general supergéﬁge theories
(one-dimensional supergravities) of particles with different spins
described by supercoordinates §‘f , k = i,..., K .

For K={,2 such theories were first obtained in ref./3/ by using
a rather complicated superspace formalism; to other values of K
the results were extended in /94

These observations reveal a rather general principle of gauginé
linear (super)canonical symmetries of bilinear rudiméntary
Lagrangians., Employing this principle allows one to construct
in a transparent and unified manner all known models of relativistic
particles as well as gauge formulations of bosonic and fermionic
string theory . In addition, quite new theories .can be
derived. A nontrivial example has been given in ref./10/ - a rela-
tivistic gauge theory of 2 and 3 scalar particles bound by
linear (harmonic) forces. As pointed out in the approach
can be used to obtain the N—particle theory, however, the iden-
tification of the relevant N-particle gauge group, given in/10/
is incorrect. Here, a general relativistic theory of N particles



bound by harmonic forces is given. It can be applied to
hadrons, strings, membranes,etc.

First we present a rather general formhlation of our approach
to gauglng canonical symmetries. Extending the ideas of refs.

/7,8

consider the following rudimentary lagrangian

L" - 3/‘“’ Féﬂ%: -—ZL l’dP gdgp —J{O(P,q/,E_), ®
where the index 1= i)“‘) enumerates the particles. The constant
matrices g}“, and hup can be diagonalized by sultable linear
transformations of canonical variables. Neglecting the new ones
corresponding to zero eigenvalues, we obtain 8 y=CL 1040 i).
It can be shown that the quantum theory of the gauge invariant
Lagrangian (1) (and of its generalizations) is consistent only for
the Minkovski signatire, i.e. 9 4y =( =1,+1,.51) ,otherwise the
Hilvert space of the system has indefinite metric . In that sense,
the gauge principle implies relativistic invariance (for quantizing
the theory one can employ the Dirac method /3,7-9/
approaches 5547 e

or modern
In what follows we use the Minkovski metric

, and suppress all contracted space-time indices /A) v
Lorentz invarianceis trivially satisfied everywhere. The anti-
commuting variables § may be chosen, to some extent, arbitrarily,
and this allows one to describe spin and 1nterna1 degrees of
freedom (e.g., adding to (I) the term -———f"
1/2 massless particle Lagranglan, adding to that -+ gD 2
gives the theory of the Virac particle) . The Lagrangian (8) can
easily ,be written in the standard form (I). Its rigid supercanoni—
cal symmetries, &Y = F({,?) Y , satisfy the condittions

T
FC+CF =0, [FHo] = FHy=HoF =0 ©)
-
(remember that the transposed supermatrlx F
preserve the relation (qu)T qf F wlth due respect to anti-
commutatlvity).Now the gauged Lagrangian, L 5 that is invariant
under the local transformations, &Y =F(§(t),9(t)) ¥ , can be pre-
sented in the form (4), where the supermatrix A (f,A) 1s obtained
from* F({ “P) simply by substituting §—7£ $Y-> A. The gauge
transformations of A are defined by the standard formula (6).

gives the spin

is defined so as to

To derive the boundary conditions for the gauge parameters
}(t),(f(t) one has to calculate the variation of the boundary
term Lg . This completes formulating our gauge construction.

S,

A more practical approach to determining the rigid symmetry.
group of the rudimentary Lagrangians as well as to constructing the
corresponding gauge theory is based on using, instead of the super-—
matrices F, the generating function of the supercanonical transfor-

mations
G(P, g, E) =0 faBa t2 Pu¥u , §X=[6X]pg (10
26 ple _;¥6
6p=—%,8 = P,8§ YR (11)

Under local symmetry transformations, [G, Ho]p,&:O, and Ho
1s unchanged, while the variation of Lagrangian (8) is

_d T, , 1,36 136 3‘(}_ (12)
M"—’E[P%p +2§a'g_‘6_] +7La; HRAFT

The first term defines the boundary conditions for -f(t), ?Ct),
and other terms are cancelled by adding to (8) the obvious compen—
sating terms

(13)
_L{fc,w:—z £, (£)9a(P 9, %) —.Z_ A (£) 6, (P19, 8),

where Yf (PL,Qw ) The transformation law for the gauge po-
tentials ZVX caﬁ be derived elther from eq. (6) or directly
by applyling to the new Lagrangian the requirement of gauge inva-
riance (remember that the superalgebra of the generators
is closed with respect to the Poisson brackets, due to the condi -
tion [GHlPB_O)‘ l

Now we apply the general approach to constructing relativistic
gauge models for N particles bound by harmonic forces. To simplify
the presentation we only treat here the spinless particles. Then,

(14)

the rudimentary Laprangian is
Lu = P9 — PLPL (QQ %J Ub :IG;, U& =0.

The most general 11near canonical transformation is defined by the

(ch ) 13)

(remind that we ave not considering
are contracted).

generating function
=1 ' 1o 9.
=74 PPj +gij Pe9i +2¢%9:%; =

where Q.,‘J"‘a_,“C =Cji
the Lorentz transformations and all indices m,¥




The Lagrangian (14) is imvariant under the transformations (II.)( or,

$Y = ¢4 a"G/a“tF) if and only if

(16)
T =~
EV)Q:{:O:[V"&], 8:-3) c=~Va,
where V is the following NxN matrix
L4 . (7
\/'u‘. = _j=1 1)'.”. s Vi,j =Y, L)

Equations (16) leave in & not less than N commuting generators
which are some linear combinations of the bilinear Lorentz inva-—
riants F’t%,Pi%,%%' Therefore, the time components of the coor-
dinates and momenta can a2lways be excluded by solving =N
constraints together with the same number of gauge fixing
conditions.

The physics content of the gauge Lagrangian corresponding to
the rudimentary Lagrangian (14) crucially depends on the coupling
parameters ;. o If U"ij':’—__ U, , for all i,j , the lagrangian
describes the system of N identical particles with pair harmonic
coupling. The gauge group in that case is 'T',rﬂ U1 & SU,/-_L,
This can be shown with the ald of the general formulae (15)-17.
To see this more directly we introduce new canonical coordinatels.
Define center-of-mass coordinates and momenta

= L =1.5p.
Q“\/;;Z‘% , ® WZP«—,

and choose other coordinates Y, and momenta 2 (i=iJ..., /‘/'i)

so as to diagonalize the Lagrangian ¢

L, = Q’é _ZL@"L + Z; g.; —Z.LZ;Z; —-2‘}‘#8: (18)

(the parameter U; is absorbed in coordinates, with due rescaling
of t ). Applying our general construction we arrive at the gauge

Lagrangian
L:?é-&agi_%jﬂ@%MZ)_%gfaa+##i_?gmg_
(19)
3 a
Ay @iy Yy — 4 By (2o —2540)
. 6

—apat

N

ﬁ

where

0L =-0 (20)

v y Y

=0 54 <o
) t
t=1

Here the constraint coupled to eo generates the translations T’
the one coupled to '81 generates Ui, and the others give the *
algebra of SU/V—i . (The constraints coupled to {: generate
its Cartan subalgebra). In writing eq. (19) we have used the
abelian nature of the lT':L and Ui generators which allows one to
add the mass parameters M?;m2 without destroying the gauge
symmetxry (likewise, the term —@2 in the Ui generator, commuting
with all generators,can be removed or multiplied by an arbitrary
number ). If the pair couplings are not identical, l.e, U';_J-
depend on L,j. the SU -y group will be broken, Note that the gauge
group for N=2 is '711@ U,. To obtain the corresponding Lagrangian
from eq (19) one simply has to set 2, =Yy, =0, =22,
and to keep the first two constraints.

A most natural approach to quantizing this theory is that
described in the introductory paragraph of this letter. Hopefully,
the application of modern methods /1’2/ will allow one to develop
both a relativistic quantum theoxry of free composite particles and
an effective quantum field theory describing theilr interactions:

To obtain a theory of discrete”stringsy i.e. of linear chains

of particles bound by harmonic forces, we choose U-U = Sli—jl,i R
for open strings,and (f‘-j =5li-jl,1+6ir/‘gji +5"18J-N,fof closed ones,
and employ the general formulae (16),(17). The detailed derivation
will be presented elsewhere and here we only calculate the number
of the gauge parameters. The equations for ij are easy to solve,
For the open string 0= Q , and for the closed one the condi-

tion D/) g]:o is equivalent to the relations
8y = gj-i,i<3 ; gU :18~-4Lﬂ(, >,

Together with gij =-@ji, this leaves LW-1)/2] independent
parameters 8L, .+ 3 PLew-~1)727 » Where the square brackets denote
the integer part of the enclosed number. The most diffieault to
solve are the equations EVI'a] =(0 . For the open string
there are N independent parameters aiJ as
-t P-jri—i ?
Q‘LJ':Z_ A 1 , lsdsN-i+L;
l=j-t+1
a,. = . . 49
i a//—J+J.,/V—L+.L , L+ 2 N+4.



For the closed string the equations [Uﬂa] =0 are rather complicated
due to periodicity conditions. However, the number of independent
paramet ers a""J‘ is easy to calculate, it is [C3/V—i_)/2_] .
The total number o independent gauge parameters for the closed
string 1s 2N—-2, N even] 2/-1 , N oda.
The generators correspond to the Virasoro generators for the
closed string. The detailed derivation of the discrete string
gauge algebra will be presented elsewhere. Note that the closed
"string" with N=3 1is described by eq. (19).
In conclusion we mention some possible extensions and applica—
tions of our results. By adding suitable Grassmann variables
one can describe the bound states of N spinning particles having
internal degrees of freedom. Similarly one can construct discrete
strings of different sorts, e.g. compactlified on tori or orbifolds.
The theory of N-particle bound states can be applied to the quark
model ofhadrons; while the theory of discrete strings, to an
approximate description of massless string states in realistic
models. A quantum field theory of discrete strings is possibly
simpler than that of continual ones. Finally, the scheme proposed
here can in principle be applied to constructing other relativistic
discrete theories, e.z., to membranes (i.e. two—dimensional lattices
of particles with nearest-neighbour harmonic couplings). To find
the gauge group in that case 1is a more complicated technical
problem.
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Penatusuctckas kanuBposouHaa mogens N uvacTtuy,
CBA3aHHBIX FAapMOHUYECKUMU CUNAMM

NpumMeHeHWe npuHUMNa NOKANU3AUMM K NUHEZHBIM KAHOHUUECKUM CUMMETPUAM
npocTenunx /pyauMeHTapHux/ BUNUHENHHX NarpaHkuMaHOB NO3BONAET NONYyUUTL penA-
TUBUCTCKYO BEPCUMI0 NarpaHKMaHa [NA 4acTuy, CBA3AHHBX FaPMOHUUECKUMU CHMNaMK.
[na NONapHO CBA33HHLHIX TOKAECTBEHHLIX YacTuy kKanMbOpoBO4YHAA rpynna ecTb
Tl @ Ul ® SUN—I' YKa3aHo TaKme KaK cTPOMTCR MOAeNb NUHENRHON Lenouku
N uacTuy /aMckpeTHana penaTUBMCTCKaA cTpyHa/. lpeanoxeHHwe kanmBpoBOuHbe
TEOPMU UaCTUY MONHO KBAHTOBATH CTAHAAPTHLIMA METOOAMM.

Pabota amnonHeHa & flaBopaTopum TeopeTuueckonm ousukm OUAU.

INpenpunr O6venHENBOro HHCTHTYTa nnepm;u uccnenopanui. [Jy6ua 1987
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A Relativistic Gauge Model Describing N Particles Bound
by Harmonic Forces

Application of the principle of gauging to linear canonical sammetries
of simplest /rudimentary/ bilinear lagrangians is shown to produce a rela-
tivistic version of the Lagrangian describing N particles bound by harmonic
forces. For pairwise coupled identical particles the gauge group is-

Tl ® U esu A model for the relativistic discrete string /a chain of
N particles/ is also discussed. All these gauge theories of particles can
be quantized by standard methods.

The investigation has been performed at the Laboratory of Theoretica?
Physics, JINR.
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