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Recently covariant string field theories have teen intensively
investigated. Thia was initiated by Siegel who performed the ¢ovariant
second quantization of the free bosonic string using BRST invariance

of the first quantized theory/1/

. After that, the gauge covariant free
string field theories were presented -5 and extensions to the inte-
ractions were proposed/6_9/. The relations between different kinds of
string actions were made clear/10/. The problem of gauge fixing was

a/11-14/ and a set of Peynman rules was derived

discusse

Alternatively Polykov/13/ proposed an approach to strings in which
the perturbation series appears as a sum over two-dimensional Rieman
gurfaces, An expression for the bosonic string propagator was presented
/14/and loop calculations were intensively investigated.

In the present paper, starting from the Hamiltonian Formulation
of bosonic string we calculate the Feynmar amplitude D, Inverting D
we get the kinetic operator and thus the free field action. The gauge
fixing procedure which leads to this action is discussed. We emphasize
that our expression for the propagator closely related to that in/14/

but at the same time it is essentially different.

M
The canonical coordinates of the string are X (0. 2), where T

parametrizes the position along the string and Y parametrizes its
motion in space-time. The action invari?nt/under.arbitrary T , 7
15

reparametrizations, has been written in
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The ;2 (o ¥) is an independent internal metric on the two-di-
mensional surface described by X~ (T, v) ﬂ;ZSdet ;53 and .2
j ‘A
03~/,9(r .
Let us define the canonical momentum /éz (o, v)
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where the Hamiltonian H is
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The action (1) is also invariant under Weyl transformation of zp-{a:?}
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As a result, only two elements of daa(ﬁ(ﬂ‘. %) enter in the action (1)and
Hamiltonian H independently
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Varying with respect to them one obtains the constraints

(6)
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The dependence of X and /Q‘ on U  in the open
etring can be written in the form
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and respectively, the constraints are the
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where -7 < o= 77
following
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Then the Lagrangian (3) admite the representation
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where ﬂ:[?} = J?i." {'Z’) and JL,; (v = ‘L_h (%]

It is convenient to introduce the real and imaginary parts of

Lo e 2,
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Then the conditions that fix the conformal gauge are’ 14+16:177,
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1;;_‘2!/!1 the explicit form of the metric f.xp in conformal gauge

and from Eq.(6) follow that .in this gauge 7, = */[,2,

where & =const. We choose the algn winus to fulfil the Feynman
analytic condition (or in Euclidean 8pace 10 make the integral over
Ao convergent ). Then, one can perform the integration over 1, /?)
and 2. (%) and the result is
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Following the standard procedureljsl, we introduce ghosts (o{%/ RORETs
CE{*) (n =1) and antighosts &1/, G.17), Cu‘z{?,'] (n 1) . Taking
into account Egs.(12) and (13) we write the gauge fixed action in the

form
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For the sake of convenience we put o =1.
Equivalently the action can be written as

-
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where the boundary conditions C“z (0) = C\Az (T) =0 are used and

new variables are introduced
¢
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The transition amplitude from the string state with coordinates
X, x>, 8y 6~ at % =m0 to the string state with

coordinates )(/' );,, 9; . 9)(\\, at
integral representation
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du = T/7 dx (0 d () derm)dG ) :/70/)(,, () d 17, 1) daaEoly, d,

2 =T has the following path
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To perform the integration we make a change of variables
R .
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where X ), 6’MD/T} and &A (T) are the solutions of the
clasgical equations of motion with the following boundary values
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The result is
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The function D{T,e) can be represented by the functienal integral
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where S is obtained from O réplacing X.(%/ > Y.(), 8t/ =3, 1)
9\“ () = g“‘/'z—) and the integration is over the functions which
are zero at the parameter interval boundary.
The integral measure for the matter fields ¥f2) ( ﬁ;(o“,'t/ )

is generally defined using a complete set of basis fields .{g:" (a; 2/}‘

{ﬂ [, m);) To define & measure invariant under the general coor-
dinate transforuwation we use weight 1/2 field variableshg/ gubjected
to the conditions
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In conformal gauge ;}—j s @ JSI"T-'I’J , where S (00%)>0
is the third independent element of the metric é (o, 'y} . One
cen make a transformation to the btasis /Q’R ; ({V })
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The Jacobian of this trasnsformation is nontrivial and depends on the
field S(?) 71320/ wpen the space-time dimension is d=26
the Jacobian of the transformation of bose variables (string coordi-
nates) and that of the transformetion of the ghosts cancel each
other and one can use the basis { G } /y Vk ) to define the
invariant measure. We expand the variables ¥ (t) /L. (t), B.(t) 9“(1-) 7,3

kn

in terms of basis function /J;; Sink&le i . The only exceptions
are the zero modes G {T) and . We expand them in
terms of functions /05(11 i and { 62/7)} with

- =/, =1,
/QO(T) Cka, (T}d’l = E\q‘h\ ) Cf‘/ﬂ} = ck [’T"} =0. (23)

The necessity of this follows from the gauge fixing (12a) that has been

imposed.

To perform the integration in (21) means to integrate over the
coefficients in the expansions, which are c-numbers for the bose vari-
ables and Grassmann values for the ghosts. The result is
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Using 5 -function renormalization we obtain

S0 i .

[](25) = const X, T(5E ) = cons? 252,
o " (24)
where the constants are independent of X and n and can be deter-
mined for the sake of convenience. The final expression for the
transition amplitude does not depend on the length of the parameter
interval T and the result is as follows
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where d=26 and the new variable P =eT is introduced.

Inverting D( .25, Z/) one gets the kinetic operator 'in the
string field theory. To obtain the free field Lagrangian let- us
introduce bosonic (fermionic) raising and lowering operators a,,,, Qi

(C,, Cu , CV_ . CQ\) which satisfy

[0 2] -5un? | (B0 0uf = [0, CufBum &

(all the others are zero).



For given n we introduce the "vacuum" function

inf - _ D2 . x X~ 7
P /Xhlﬁu,é““)*(%jlfﬁxp‘/ﬂ%x“ ’"62“5“/ (27a)

and determine the following functions
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where C are normalization constants. They are eigenfunctions
of the "Hamiltonian" H
- . o b ‘A, D2
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with the eigenvalues n(d/2-1+8), ntd/2+1+a8), n(d/2+s) and n(d/2+s).
« The following relation holds
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where Z“a( X%, e-, &" ). Then
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They are eigenfunctions of the Hamiltonian 7{ , 0f the ghost number
operator

-2 (era-alo)
w=l (33)

and form the orthonormal basis. The integral
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where Oj”

the ghost numbers of the functions is zero.

Let us define the string field ¢/X {X\\ 9“]( )
as & linear combination of the functions (32) with coefficients, which
are oc-number or Grassman values functions of x, chogen so that the
gtring field to be Grassman even. Then, the Green®s function (the
propagator) of the string field <P in a field theory with an
action
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(35)

where L = "/Di' %. is squal to D(Z, ='). This action is
the Siegel’s gauge fixed action /17, and the string field
contains all the physical relevant fields in the theory (gauge
fields ghost and amtighost fields).

Appendix We shall clarify the gauge fixing and quantization/12,
which lead to the Siegel action and respectively to the propagator
{25). ’

The gauge string field A is define as a Grassman even field with
ghost number zero. It is convenient to introduce an auxiliary gauge

" Fleld :f which is a Grassman odd and has a ghoat number-1. Then,
the action can be written in the form s

Sie =ﬁ; 99’/21/41"4 - 5aA _2( EMS} (36)

where Q is ghost npumber one and ‘M ghost number .two-operators defined
by Kato and Ogawa 0/' The action is invariant under the gauge

‘transformations

A —A'=A 1GAy +ME,

A (37)
R 3 —-)5’:—_3 -L}/\_'+.§g>z,
where the gauge parameters fulfil
/6A_‘ :*A_’ [§[_2:‘Zf-2 (38)

and are Grassman odd and even, respectively. The generators R1,R2
of the transformations (37) (R:aQ'Rg-M ; Rj=-b, R3=Q) are linear
dependent. One can find the vectof(!1, Y2) which satisfies

RE + R =0 (39)

As a result, the number of conditions required to fix the gauge is
smaller than those of the gauge parameters. It is evident from (36)
that the condition

10
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3 =0 (40)

which corresponds to the parameter /4-, fixes the gauge, Following

the standard procadure/18/ we introduce Nakanishi-Lautrup (NL) field
13/ which 18 Grassman odd and has ghost number 1. Correspondingly,

we introduce the antighost which is Grassman even and has the same

ghost number. The ghost Ctj and ’?-z correspond to the gauge

parameters. They fulfil (38) and are Grassman even and odd. The

gauge fixing and Faddeev-Popov terms are

ZGF+/:/D = B’ E * aLC-I N EI& ?-Z' (41)

As a result of (39) the Lagrangian (41) is invariant under the gauge
transformations

Cp =Cy =Cs+ @A+ ME
'4
— = - + £~ .
Dy Za = Doy LN+ B2 w2

The above transformations are the same as those in (37), so that
the scheme of quantization must be repeated, Reiterating the procedure
to infinity we obtain the gauge fixing Lagrangien

e Gl lB2,GLC 00T,
where 2,=§

Finally, inﬁegrating over the NL fields 23u and over the auxi-
liary fields i?.“ one.gets the action

S -JdxdufsALA 2 Gl

Introducing the string field

. §D ) /4 _+:éil ﬁiﬁ + éf;‘(:_“

3)

(44)

we obtain the action (35) from (44).
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work

After this paper was submitted for publication we Teceived the

/22/

in which an analogous representation for the string propa-

gator is cbtalned by a different approach.

/1/.
/2/.
/3/.
/4/.
/5/.
/6/.
/1/.

/8/.
/97.
710/.

711/,

/12/.
/13/-
/14/.

/15/.
/16/.
1/,
/18/.
/194,
/20/.
/24/.
/22/.
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OT HmepBHYHO KBAKTOBOW KO BTOPHYHO KBAHTOBOM
TeOpHHM (O03Se—-CTpYHH

E2-87-739

Hexopst ¥13 raMHNILTOHOBOM GOpPMYIHPOBKH 003e—CTPYHH METO-
OOM KOHTHHY&NBHOTO HHTerpalla BeUHCIAeTCH deliHMaHOBCKas
aAMIIIATY DO nepexona D(Zi,Zf). Tlonnyuen o6patHeRiEl K D omepa-
TOp, & TCM CA&MbIM W CBOGOImHOe [OelicTBHe B IIOJeBOM TeOpUH
cTpyHul. O0cyxpaercs mpouenypa dukKcaunud KalubpoOBKH BO BTO—
PUMYHO KXBAHTOBAHHOM TeOpHH, HPHBOAMMAS K 3TOMY OEHCTBHIO
H TeM caMhiM K NOJIydYeHHOMYy IpornaraTopy 603e CTPYHH.

PaBora swmonueHa B JlaGopaTopuu Teopeanecxoﬁ.¢u3ﬁKH
QUsIn.

TIpenpurt O6H00MHEHHOr0O HHCTHTYTA ANEPHBIX HecaenoBanuii. y6na 1987

Karchev N.TI. E2~87—739

} Fronm the First to the Second Quantized

String Theory

Starting from the Hamiltonian formulation of bosonic
string we calculated the Feynman transition amplitude D. |}
Inverting D we get the kinetic operator amd thus the free |
field action. The gauge fixing procedure which leads to

this action is discussed.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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