

D20

E2-87-711

1987

Ya.Z.Darbaidze*, V.A.Matveev, Z.V.Merebashvili*, L.A.Slepchenko*

GLUON BREMSSTRAHLUNG K-FACTORS IN N=1 SUSY QCD

Submitted to "Physics Letters"

HEPI TSU, Thilisi

§ 1. Introduction

q

Recently the radiative corrections to the basic processes of QCD are calculated (see e.g. $^{/1/}$ and the literature cited therein). It is interesting to make analogous calculations in Supersymmet-ric (SUSY) QCD.

Here, we use the results of $^{/2/}$, where the exact formulas are presented for the scalar quark pair production and bremsstrahlung gluon in the quark-(anti)quark collisions and gluon fusion processes:

$$q_{\alpha}(\rho_{i}) + \overline{q}_{\beta}(\rho_{2}) \rightarrow \Phi_{\alpha}(\rho_{3}) + \overline{\Phi}_{\beta}(\rho_{4}) + G(\kappa)$$
(1)

$$q_{\alpha}(p_1) + q_{\beta}(p_2) \rightarrow \Phi_{\alpha}(p_3) + \Phi_{\beta}(p_4) + G(K)$$

$$G(p_{4})+G(p_{2}) \rightarrow \Phi(p_{3})+\overline{\Phi}(p_{4})+G(k).$$
(3)

In the note we limit ourselves to removing of the infrared (IR) singularities and estimate corresponding IR finite corrections to the Born cross-sections, i.e. the so-called K-factors

 $K = \frac{1}{M} \left[\frac{(ab \rightarrow cd)}{a_{s}^{2}} \right] \left[\frac{M(al \rightarrow cd)}{a_{s}^{2}} \right]^{2}, \quad (4)$ where $\left[\frac{M(ab \rightarrow cd)}{a_{s}^{2}} \right]^{2}_{a_{s}^{2}}$ is the spin-color averaged matrix element squared for the processes $ab \rightarrow cd$ in α_{s}^{n} order of the perturbation theory. Thus

$$K = 1 + \frac{d_s}{2\pi} \hat{\alpha}$$
,

 $\alpha_s = q^2/(4\pi)$ is the strong interaction running constant and $\hat{\alpha}$ is a constant number which we receive after the integration and adming of the real and virtual gluon emission graph contributions in the soft limit (K \rightarrow 0).

Соредения институт Соредования Соредования

§ 2. Soft limit calculations

As is known the desired corrections to the Born cross-sections are the virtual gluon loop diagrams (V-graphs) and the real gluon bremsstrahlung (R-graphs) $^{/3/}$.

In this section we give the detailed calculations for the Rand V- graphs of the process (i). Firstly we make the real gluon phase-space integration in small momentum limit of the emitted gluon $K \rightarrow 0$.

The gauge-invariant set of the corresponding diagrams is given in Fig.1.

Fig.1. Gauge-invariant set of Feynman diagrams of the process $q \bar{q} \rightarrow \Phi \bar{\Phi} G$. Full line is fermion quark, wave is gluon, deshed is scalar quark.

It is easy to verify, that in soft limit we are left with 24 squared IR Regraphs, depicted on Fig.2. Here the diagrams ie6 correspond to the s-channel gluon exchange, 7-12 to t-channel and 13-24 are the contributions of the interference terms. Integration is suitable to perform in $n=4-2\epsilon$ edimensional space. In this case we have the integral of the type $^{/3/}$

$$R(p_{i}, xp_{j}) = \int_{0}^{2\epsilon} \int_{(2\pi)^{n-1} 2K_{o}}^{2\pi} \frac{(\rho_{i} \rho_{j})}{(\kappa + \rho_{i})^{2} (\kappa + xp_{j})^{2}} = \frac{1}{(4\pi)^{2}} \cdot \frac{G(\epsilon)}{2x\epsilon^{2}} \left(\frac{\kappa_{max}^{2}}{\pi}\right)^{\epsilon}, \quad (5)$$

$$G(\epsilon) = \frac{\Gamma(1-\epsilon)}{\Gamma(1-2\epsilon)}, \quad \kappa_{max}^{2} = (\rho_{i} + xp_{j})^{2}/4, \quad x = \pm 1.$$

Here p_i , p_j are the arbitrary momenta of the massless particles. Note, that the $\kappa \rightarrow 0$ limit means the following replacements $\frac{1}{(\kappa - p_i - p_j)^2} \rightarrow \frac{1}{(p_i + p_j)^2}$, $\frac{1}{(\kappa + p_i - p_j)^2} \rightarrow \frac{1}{(p_i - p_j)^2}$.

Fig.2. Infrared R-graphs in the soft limit $K \rightarrow 0$. The dashdotted line — . — denotes the unitarity cut of the smplitude.

We notice also that in the calculations Feynman gauge was used. It is convenient because in the limit $K \rightarrow 0$ there exist 24 squared V-graphs (Pig.3) such that the singularities of the Rand V-graphs cancel each other in each pair (i,i').

It is easy to see that each pair (i,i') has the same topology and differs only in cutting rule.

The following integral corresponds to the V-graphs:

$$V(\rho_i, xp_j) = \int^{\infty} \int^{2\epsilon} \int \frac{d^n \kappa}{(2\pi)^n} \frac{(\rho_i \rho_j)}{\kappa^2 (\kappa + \rho_i)^2 (\kappa + \rho_j)^2} \mathbf{x}^2 = -\frac{i \mathcal{G}(\epsilon)}{(4\pi)^2 2\pi\epsilon^2} \left(\frac{x (\rho_i \rho_j)}{2\pi \int^{\infty} \int^{\infty} \int^{\infty} \int^{\infty} (\epsilon) d\epsilon \right)$$
(6)

3

2

Fig.3. Infrared singular Vegraphs, which differ from the corresponding graphs of Fig.2 by the cut rule.

Some results. Firstly we observe the cancellation of the ε^{-2} posles in each pair (i,i'), e.g., for diagrams (1) and (1') in the limit $k \rightarrow 0$ we have

$$2 \cdot (1) = -\frac{4}{27} \frac{\mu t}{s} \frac{1}{(\kappa p_1)(\kappa p_2)}$$
, $2 \cdot (1') = -\frac{46}{27} \frac{\mu t}{s} \frac{L}{\kappa^2 (\kappa - p_1)^2 (\kappa + p_2)^2}$.

Table 1. Spin and color averaged matrix elements squared for $2 \neq 2$ processes of N_x1 SUSY QCD^{/4,5/} and QCD^{/11/} in the α_s^2 order of the perturbation theory.

$\left \left M(q\overline{q}\rightarrow\Phi\overline{\Phi})\right ^{2}\right ^{2}$	$g^{4} \frac{N_{c}^{2} - 1}{2N_{c}^{2}} \left(2 \frac{ut}{S^{2}} + \frac{u}{t} - \frac{2}{N_{c}} \frac{u}{S} \right)$	SUSY QCD
$\left M(qq \to \Phi \Phi)\right ^2$	$g^4 \frac{N_c^2 - 1}{2N_c^2} \left(\frac{u}{t} + \frac{t}{u} \right)$	ų —— ų
M(GG→ΦΦ) ²	$g^{4} \frac{1}{N_{c}} \left(1 - \frac{2N_{c}^{2}}{N_{c}^{2} - 1} \frac{tu}{S^{2}}\right)$	n 11
$ M(qq' \rightarrow q,q') ^2$	$g^{4} \frac{N_{c}^{2} - 1}{2N_{c}^{2}} \cdot \frac{S^{2} + u^{2}}{t^{2}}$	QCD
$ M(qq \rightarrow qq) ^2$	$g^{4} \frac{N_{c}^{2} - 1}{2N_{c}^{2}} \cdot \left(\frac{S^{2} + u^{2}}{t^{2}} + \frac{S^{2} + t^{2}}{u^{2}} - \frac{2}{N_{c}} \frac{S^{2}}{tu} \right)$	u u
$ M(q\bar{q}\rightarrow GG) ^2$	$g^{4} \frac{(N_{c}^{2}-1)^{2}}{N_{c}^{3}} \frac{t^{2}+u^{2}}{t u} \left(1-\frac{2 N_{c}^{2}}{N_{c}^{2}-1} \frac{t u}{S^{2}}\right)$	u
M(GG→GG) ²	$g^{\mu} \frac{4N_{c}^{2}}{N_{c}^{2}-1} \left(3 - \frac{ut}{s^{2}} - \frac{us}{t^{2}} - \frac{st}{u^{2}}\right)$	u u

Table 2. $K_{m} = \frac{d_{s}}{2\pi} \cdot \hat{\alpha}$ factors in N=1 SUSY QCD and QCD

âqq→ +	<u>16</u> π ²	
$\hat{u}_{qq \rightarrow \phi\phi}$	<u>16</u> 页 2	
$\hat{\alpha}_{GG \rightarrow \Phi \overline{\Phi}}$	26 9 π²	
$\hat{a}_{qq' \rightarrow qq'}$	<u>46</u> J ²	<u>28</u> √2 *) 9 √2
âqq -> qq	<u>16</u> g ²	28 T ² *)
â _{qā→GG}	<u>26</u> ग्र ²	31/12 T ⁻² *)
â _{cc→cc}	4 st ²	3π² *)
Âqą→J*G	17572 9	4,512 *)

*) A.P.Contogouris e.a./3/ results.

4

5

After the corresponding integration we have

$$\begin{aligned} & 2 \cdot (1) \Rightarrow -\frac{32}{2^{2}} \frac{ut}{s^{2}} \mathbb{R}(p_{1}, p_{2}) , \quad 2 \cdot (1') \Rightarrow -\frac{32}{2^{2}} \frac{ut}{s^{2}} i \mathbb{V}(p_{1}, -p_{2}) , \\ & s = 2(p_{1}p_{2}) , \quad t = -2(p_{1}p_{3}) , \quad u = -2(p_{1}p_{4}) , \\ & \mathbb{R}(p_{1}, p_{2})_{\mathcal{E}} \xrightarrow{\sim} 0 \quad \frac{1}{32\pi^{2}\mathcal{E}^{2}} , \quad \mathbb{V}(p_{1}, -p_{2})_{\mathcal{E}} \xrightarrow{\sim} 0 \quad \frac{i \, \mathcal{E}^{-i\pi\mathcal{E}}}{32\pi^{2}\mathcal{E}^{2}} \left(1 + \frac{\pi^{2}\mathcal{E}^{2}}{6}\right) , \\ & so \\ & g^{6} \left[2 \cdot (1) + 2\operatorname{Re}(1')\right] \Rightarrow \frac{g^{6}}{2^{2}} \quad \frac{ut}{s^{2}} \left[-\frac{1}{\mathcal{E}^{2}\pi^{2}} + \frac{1}{\mathcal{E}^{2}\pi^{2}} \left(1 - \frac{\pi^{2}\mathcal{E}^{2}}{2}\right) \left(1 + \frac{\mathcal{E}^{2}\pi^{2}}{6}\right)\right] = \\ & = -\frac{g^{6}}{g_{1}} \quad \frac{ut}{s^{2}} . \end{aligned}$$

Now we sum the s-channel, t-channel and interference contribu-

 $2\sum_{i=1}^{6} [(i) + \operatorname{Re}(i')] \Rightarrow 9^{6} \frac{16}{84} \frac{ut}{s^{2}}, \qquad (7)$ $2\sum_{i=1}^{12} [(i) + \operatorname{Re}(i')] \Rightarrow 9^{6} \frac{16}{162} \frac{u}{t}, \qquad (8)$ $2\sum_{i=1}^{24} [(i) + \operatorname{Re}(i')] \Rightarrow -9^{6} \frac{16}{243} \frac{u}{s}. \qquad (9)$

Comparing (7-9) with the corresponding Born cross-sections $^{4,5/}$ (Table 1) for the process $q\bar{q} \rightarrow \phi\bar{\phi}$ we get the following values for K-factors (see Table 2)

$$K_{q\bar{q}\to\phi\bar{\phi}} = K_{s} = K_{t} = K_{int} = 1 + \frac{d_{s}}{2\pi} \left(\frac{16}{9} \pi^{2} \right)$$
(10)

\$3. Exact formulas for the gluon bremsstrahlung cross-sections and K-factors

Note, the picture presented here for the K-factor estimation is realized in Feynman gauge and breaks in other (axial, lightlike) gauges. The latter are very useful² because the large number diagrams of SUSY GCD vanish. This breaking is due to the existence of the equal topology R- and V-graphs but they have different IR behaviour. In light-like gauges it is impossible to have the pair of diagrams which cancels the IR divergencies in \mathcal{E}^{-2} . Besides, there arise new propagators with $(n_{\rm K})^{-1(2)}$ and correspondingly new type of integrals with the axial vector $n_{\rm c}$, which need additional analysis⁶⁶. Below we propose a simple method for K-factor evaluation based on the exact cross-sections of the processes (1-3) Than arbitrary gauge without V-graphs.

Recently, some computing algorithms^{77/} are developed for the bremsstrahlung cross-section evaluations by the analytical programming methods REDUCE^{/8/}, which allow to obtain the cross-sections of the (1-3) processes in factorized form with the brems-strahlung factor pick out^{/2,9/}.

In order to single out the IR structure it is necessary to rewarite the matrix element squared in the form of the sum of certain eikonal factors $^{/10/}$. E.g. for the process $q\bar{q} \rightarrow \Phi\bar{\Phi}G$ (see Fig.1) we have the exact result

 $\left| \mathsf{M}(\mathsf{q}_{a}\overline{\mathsf{q}}_{\beta} \to \Phi_{a}\overline{\Phi}_{\beta}G) \right|^{2} = g^{6} \sum_{i=s,t, int} \mathsf{A}_{i} \cdot \left| \mathsf{M}_{i}^{(0)} \right|^{2} \cdot \overline{\mathsf{I}}_{i}, \qquad (11)$

where the indices $\dot{\iota}$ denote the s-, t- and interference channel contributions,

$$A_{s} = 4 , |M_{s}^{(0)}|^{2} = \frac{ut + u_{1}t_{1}}{ss_{1}}, s_{1} = 2(\rho_{3}p_{4}), t_{1} = -2(\rho_{2}p_{4}), u_{1} = -2(\rho_{2}\rho_{3}),$$

$$I_{s} = \{C_{1}([14] + [23]) + C_{2}([13] + [24] - [14] - [23]) + C_{3}([12] + [34])\} \delta_{d,\beta},$$
(12)

$$A_{t} = 4, |M_{t}^{(0)}|^{2} = \frac{ut + u_{t}t_{1}}{2tt_{1}},$$

$$I_{t} = C_{t} ([14] + [23]) + C_{2} ([12] + [34] - [14] - [23]) +$$

$$+ C_{3} ([13] + [24]),$$

$$A_{int} = 2, |M_{int}^{(0)}|^{2} = \frac{(ut + u_{t}t_{t})(ss_{t} + tt_{t} - uu_{t})}{2ss_{t}tt_{t}},$$
(13)

(14)

 $I_{int} = \{C_4(2[14]+2[23]-[14,32])+C_5[14,32]\}\delta_{\alpha\beta}$ Here [ij] denotes the eikonal factor

$$\begin{bmatrix} \iota j \end{bmatrix} = \frac{(P_i P_j)}{(P_i \kappa)(\kappa P_j)} ,$$

$$\begin{bmatrix} i j, \kappa \ell \end{bmatrix} = 2 \begin{bmatrix} \iota j \end{bmatrix} + 2 \begin{bmatrix} \kappa \ell \end{bmatrix} - \begin{bmatrix} i \kappa \end{bmatrix} - \begin{bmatrix} i \ell \end{bmatrix} - \begin{bmatrix} j \kappa \end{bmatrix} - \begin{bmatrix} j \ell \end{bmatrix} ,$$

and the color Casimires are

$$C_1 = \frac{N_c^2 - 1}{8N_c} , \quad C_2 = \frac{(N_c^2 - 2)(N_c^2 - 1)}{8N_c^3} , \quad C_3 = -\frac{N_c^2 - 1}{8N_c^3} ,$$

 $C_{1} = \frac{C_{2}}{8N_{c}}, \quad C_{2} = \frac{(N_{c}^{2} - 1)^{2}}{8N_{c}^{3}}, \quad C_{3} = -\frac{N_{c}}{8N_{c}^{4}},$ $C_{4} = \frac{(N_{c}^{2} - 1)^{2}}{8N_{c}^{4}}, \quad C_{5} = \frac{N_{c}^{4} - 1}{8N_{c}^{4}}$ In the case of the color SU(3) group N_c =3.

The enalysis carried in preceding section shows that the results obtained above (7-9) can be reproduced without drawing the virtual graphs. To see this we need the following replacement in (12-14):

7

6

$$S = S_{i}, t = t_{i}, u = u_{i}, [i_{j}, \kappa \ell] \Longrightarrow 0,$$

$$[i_{j}] \Longrightarrow 4 [R(p_{i}, xp_{j}) + Re V(p_{i}, -xp_{j})] = \frac{1}{24}.$$
(15)

We make similar calculations for processes (2) and (3). For the matrix element squared of process (2) we have

$$|\mathsf{M}(\mathsf{q}_{a}\mathsf{q}_{\beta} \rightarrow \Phi_{a}\Phi_{\beta}G)|^{2} = g^{6} \sum_{i=u,t} \mathsf{A}_{i} \cdot |\mathsf{M}_{i}^{(0)}|^{2} \cdot \mathsf{I}_{i} , \qquad (16)$$

Here indices i stand for to and u-channel contributions

$$A_{t} = 4, ||M_{t}^{(0)}|^{2} = \frac{\mu t + \mu_{1} t_{1}}{2t t_{1}},$$

$$I_{t} = C_{1} ([12] + [34]) - C_{2} ([12] + [34] - [14] - [23]) +$$

$$+ C_{3} ([13] + [24]),$$
(17)

$$A_{u} = 4 , |M_{u}^{(0)}|^{2} = \frac{uc + u_{1}c_{1}}{2uu_{1}} ,$$

$$I_{u} = \{C_{i}([12]+[34]) - C_{2}([12]+[34]-[13]-[24]) + C_{3}([14]+[23])\}\delta_{\alpha\beta} .$$
(18)

Inserting (15) into (17-18) and comparing with the corresponding Born cross-sections (see Table 1) we obtain

 $K_{qq \to \phi\phi} = \mathbf{i} + \frac{\alpha_s}{2\pi} \left(\frac{16}{9} \pi^2 \right).$

Similarly, for reaction (3) we have

$$\begin{split} \left| \mathsf{M}(\mathsf{G}\mathsf{G} \to \Phi\bar{\Phi}\mathsf{G}) \right|^{2} &= \frac{9^{6}}{32} \cdot \frac{N_{c}^{2} - 1}{4N_{c}^{2}} \cdot \left[\frac{(s + t + u_{1})^{2}(s_{1} + t + u_{1})^{2} + u^{2}t^{2} + u^{2}t^{2}}{ut u_{1}t_{1}} \right] \times \\ &\times \left\{ [34] + N_{c}^{2} \left([34] - [13] - [14] - [23] - [24] - \frac{tt_{1} + uu_{1}}{SS_{1}} \left[34] \right] \right\} \\ &+ \frac{N_{c}^{4}}{SS_{1}} \left[\left([12] + [14] + [23] \right) tt_{1} + \left([12] + [13] + [24] \right) uu_{1} \right] \right\} \end{split}$$

and for corresponding K-factor (N_{c} =3)

 $\mathsf{K}_{GG \to \Phi \overline{\Phi}} = \mathbf{1} + \frac{\partial s}{2\pi} \left(\frac{26}{9} \pi^2 \right).$

Thus, Table 2 represents calculated values of K-factors for the basic processes of SUSY QCD and $QCD^{/1,9/}$ too. We use some results of papers $^{/10,11/}$.

\$4. Conclusion

We must note that the results for QCD are in disagreement with the Contogouris e.a. $^{/3/}$ results.

In the formulas of the type (11) and (16) $\ln^{(2,9)}$ the first factor $|M^{(0)}|^2$ is connected with the lowest order, elastic process, and the second one is related to the IR factor which describes soft quantum emission and defines the corresponding K-factor. However, in the case of the reaction (3) t and also for reactions $q, \bar{q} \rightarrow GGG$ and $GG \rightarrow GGG$ in QCD) for the soft limit $\kappa \rightarrow 0$ the first factor does not reproduce the elastic cross-section and can have another physical interpretation $^{12/}$. It is remarkable that for processes mentioned after integration (15) the values of the elastic cross-sections are fully reproduced from the product of both the factors.

The authors acknowledge A.C.Hearn, D.V. Shirkov, A.N. Tavkhelidze for interest in the problem and support, and I.S. Avaliani, D.Yu.Bardin, V.P.Gerdt, A.L.Kataev, A.A.Khelashvili, G.P.Korchemski, A.V.Radyushkin for fruitful discussions.

References

- 1. Ellis R.K., Sexton J.C. Nucl. Phys., 1986, v. B269, N2, 445.
- 2. Matveev V.A., Darbaidze Ya.Z., Merebashvili Z.V., Slepchenko L.A. Phys.Lett., 1986, v.B177, N2, 188; Phys.Lett., 1987, v. B191, N1/2, 179.
- 3. Contogouris A.P. e.a. Phys.Rev., 1984, v.D29, 1354; Phys.Rev., 1986,wD33, 1265;

Contogouris A.P. Phys.Rev., 1982, v.D26, 1618.

- 4. Matveev V.A., Slepchenko L.A. Teor.Mat.Fiz. 1984, v.59, 224; Dawson S., Eichten E., Quigg C. Phys.Rev., 1985, v.D31, 1581.
- 5. Glück M., Reya E. Phys.Rev.Lett., 1982, v.48, 662; Avaliani I., Matveev V.A., Slepchenko L.A. Teor.Mat.Fiz. 1984, v.59, 91.

6. Leibrandt G. Phys.Rev., 1984, v.29, 1699;

Khelashvili A.A., Khmaladze V.Yu., Natroshvili K.R. In: Proceedings of workshop "Infrared singularities problem in QCD", TSU, Tbilisi, 1985.

7. Nöhring H.J. and Schiller A., In: Intern. Conf. on systems and techniques of analytical computing and applications in theorem tical physics, JINR, Dubna, D11-80-13, 127, 1980, Darbeidze Ya.Z. e.a. In: Europe Conf. on Computer Algebra, Leipzig, June, 1987.

8. Hearn A.C., REDUCE User's Manual Version 3.3, Rand Corporation, Santa Monica, CA, 1987.

- 9. Berends F.A. e.e. Phys.Lett., 1981, v.B103, N2, 124.
- 10. Ellis R.K., Marchesini G., Webber B.R. Nucl. Phys., 1987, v. B286, 643.
- 11. Combridge B.L., Kripfganz J., Ranft J. Phys.Lett. 1977, v. B70, 234:

Cutler R., Sivers D. Phys.Rev., 1978, v.D17, 196.

CALCUL Collaboration. Nucl. Phys., 1982, v. B206, 61;
 Parke S.J., Taylor T.R. Phys.Lett., 1985, v. B157, 81;
 Herzog F., Kunzt Z. Phys.Lett., 1985, v. B157, 430.

Received by Publishing Department on September 25, 1987. Дарбаидзе Я.З. и др. К-факторы в №1 суперсимметричной КХД

1

E2-87-711

Вычисляется К-фактор для процесса qq → Фф в N=1 суперсимметричной КХД. Получены точные формулы для тормозного излучения глюона с явно выделенной инфракрасной структурой, позволяющей непосредственно вычислить соответствующий К-фактор. Для иллюстрации приведены расчеты для сечений процессов qq → ФФQ и GG → ФФG.

Работа выполнена в Лаборатории теоретической физики. ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Darbaidze Ya.Z. et al. E2-87-711 Gluon Bremsstrahlung K-Factors in N=1 Susy QCD

K-factor for the $q\bar{q} \rightarrow \Phi\bar{\Phi}$ process in N=1 susy QCD is calculated. The exact gluon bremsstrahlung matrix elements squared allowing for computation of the corresponding K-factors are obtained. As an illustration the cross-sections for the processes $qq \rightarrow \Phi\Phi\bar{Q}$ and $Q\bar{Q} \rightarrow \Phi\bar{\Phi}\bar{Q}$ are presented.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987