
I

,~. 

" ',1 
I 

\ 

• 

to. KOn~' ~ C0:0 'IlJHIlI 
\'~ '!~o'd 'be'A I H'8:ft ,H·or11 

:' J ' ali, " ,nCTJlYl " 
~ 118pHWX 
f MCCJ810BaR_a 
IIi ." .rna 

.: t 

E~-87-t07 .. 

P.Exner, 
y 

P~S~b~~. 
:;,...,., 

P.,Stovlcek 

~ )-- .. 

"l /' 
" , 

QUANTU~ I~TERrFERE;NC~, ~ 
L rrl 

ON GRÃ,PUS 'CONTROL1~~D 

BY AN F;:~TERNAL ELE{:TRIÇ flELD li 

Pe~aKTOp 3. B. H~ annce'aax , MaKeT p • .n .. <I>OMHHÇH). 

'\ ' • r" Ilonnacaao ,8 neqaTb 30.09.87;,. , 
. CZ>opMaT GOx900G. OQ>ceTHatl neaars. Yq.-H~.n.~MC'TOB,1 J35. 

THpIDIC 49O.. 3aKa3 3,,9-6-7 9. I 

fi3Aa'teJ'I&CKHit 01.l;len. d6'Le)J.Hl;le,K~oró HHC;THTYT$ JI.o;epHbIX Hécne)J.OBaHI:lif. 
I' :'Ay'6Ha M'dCKoaCKOiroçJI,àCT~. ., 
.~. l 

, 
,~ d 

,~" '--l~ 
., , m 

~t 

~ II I 
' '. 

1987 

J 

" 
\ 
.~ 

~tIf ~!t 



'\
'f' 
~ 

. ,1,/;, 
'" ~I 

,t .. '\, 

c , 
~' 

'\,"I:I: 
.... .. 

I
I' 

~ ", 
"'1 

• .J'!, 

.~ \,." 

J; ., f .~ 'to 

I., 

\ i 

1-
;} 

:~ 
!, 
~: 

~,I, 
\1 

I
I 
I 

I 
4 

~ --'~~~t. ~.f ~~ <'~""~~~~~";'1'l ~ .. .. ~' ~ 

';t 

~.@ b~éÀHijemihIH "'HHcTH'Í'yt1. 'Hn~pHhii: 

.. ~"-'--"'-"''''''l----'-' '1,.\ ., 

> HCcn(lnOB'allHA" Jlr6Ha," i~87 "t, ,; 

1. Introduction 

The rapid development of the technigues of fabticating small metall~c 

"Ür semiconduGtor structures has opened an entirely new f-ield of rese­

arch whi.ch i8 sometimes dubbed mesoscopic physics. The term expresses 

the fact that whi~e ~he str~ctures inyolved 'are designed by an experi­

mentalist (that is, in a macrasçopic way), they are 'smal1.. enough to 

exhibit typical quantum efTects. Conductivity measu;remen'ts have been 

per~orm€d on various structures ; r~ngs, sguares und their sequences, 

honeycomb né twor ks , etc. l 5-, 7,30,39-41/. Mast a t t ent íon hasbeen pald 

.to the Aharonuv-Bo~~ effect manif~sted by magnetoresistance oscilla­

tions wh1ch representa a su babLé object for experimental investiga­í 

t í.on be.í ng s t abl e wi th respect to rvar í a t ons of the pa t t ern" geometry.í 

There are ~ther interesting situations,however.lt ia natural to ask, 

e.g., what happens if the structure is plaGed into an electri~ fi~ld, 

in particular, how its resista-nce depends on the field intensity. The 

possibillty is technically attractive, because i~ might oven way to 

á. néw type of switching devices. In arder to decide whether such a 

prospect is realistic, a careful analysis is needed. In thià papar, we 

address ourselves with this problem. 

From the microscopic point of view, the system under considera­

tion is complica ted enough tro make "1 ts complete d e sc r-í.p tâon very diffi... 

cuLt , We ahaLL not attempt to do it.: Instead, we are go ng t-o cons t ructí 

a model which, as we believe, reproduces the essential features of the 

,sys~em, and at the same time it is solvable. It i~ based bn the aSBump­

tion tbat the "wires" which are building elemen-ts of the structure are 

infinitely thin. Actually they represent a band of atoms whose width 
'O 

can be mad e as small as 20D A by lhe te chnoLog í.es mentioned above. 

~nce we replace them by lines, our problem reduces tn'~he analysis of 

motion of a quantum particle which is confined to an appropriate pla­

nar graph 8nd subjected to the electric field. We limit our8elves to 

the simplest non-trivial ~ase when the graph consists of a loop wlth 

~,' ·(ib~Jlitleiji'lj.iii gHCTlrryT! 
I Gll-e~!iYX f:H:c.!j~l103aU8~ 
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two externaI leads. We shall assume also that the externaI field ia 

weak enough so that the semiclassical approximation may be used. The 
results of the present analy&is have been announced in Ref.22. 

Let us describe briefly the contents of the paper. In the next 
sectíon we show, how and under which assumptions the conductivity can 
be calculated. The key element of the model i6 to describe how the 

electron wavefuction "splits" at the jUl'l;ctions. This is discussed in 
Section 3 ; it allows us to choose the Hamiltonian for a charged par­
~icle whose motion is confined to a planar curve in presence of an 

externaI field. In the next section, the transmission coefficient is 
calculated. Ita evaluation requires the knowledge of transfer matrices 

for the corresponding S~hr~dinger equations ; we calculate them in 

Section 5 using the semiclassical approximation. In conclusio~, we 
give some examples of conductivi ty vs , field ,intensity plots whi,ch 
show t,hat t,he proepect of constructing the above-mentioned swi tching 
devic~s is fully realistic. 

2. The physical background 

As wehave said, .our model ia intended to déscribe a charged quantum 
particIe (an electron) -mov í ng on a loop wi th two externaI leads under 
influence of (a) "a vol tage U applied ri--------------­

to the leads and (b) a homogeneous 

ele~tric field of intensi ty paral­

leI to the graph ~lane and perpendicu­
lar to the leáds. "The motion on the 
loop is assumed to be balliatic, i.e., 

, uu ,both the elaatie and inelastie aeatte­ 2 
ring is negligiõle. 

Let us firet Bay a few worda 
Fig.t. Scheme of the modelabout 'the ways in which sueh systems 

can be prepared. The metallic ringe 

and similar stuctures are usually produeed Iithographieally, by an 

atomic begm drawing a required graph on a aubstrate (cf. the referen­

ees 'quoted in the introduction}. The teehnique ia fairly elaborated at 
present ; ita appeaIing feature is that in principIe an arbitrary pla­
nar graph can be drawn. 

'The situation is not so simple'with semiconductors •. For them, too, 
inter[erence experimenta have been proposed and performed, but in diB­
tinction to the abové 'named ones, they empIoyed heteroBtructurea grown 

by the epitaxial technique/ t 2/. It was ~ven suggested to uae the 

2 

interference in heterostruetures iti switch~ng deviees/ t 1/ ; Our analy­

ais shows, hOowever, that the "graphs" 8re more suitable far that pur­

pose. 1e~ us remark in this Qonnection that though our madel ia not 

,applieab~e to the heterostructures, since Lhe channer thiekness eannot 
be neglected. in this case, t.he re is a way, how t.hí.s difficulty might be 

overcome. It is co.nneeted with a solution to the ~o-called 1njeetion 

problem/27/ whieh we are going to d.ís cus a in a separate paper ,' 

Very recently a new techni~ue has been reported whieh opens way 
to. fa'brieating semiconductor- grBph struetures/38/ . In a'sense, it .~om­
bines the p.r oc eduzes .entioned above , Orie pr-epar e s first a s.emí.conduc­

tor layer on a substrate and draws lithographically metallie lines on 

it.. The graph is afterwards used as a mask when the layer is removed 
by inn bombarding. 

The essential assumption of our model is that the eleetrons move 
ballistically on the loop. It can be fulfilled ii the electron mean 

f r ee. pa±h ia much longer· than t.he 1 oop size. In ~emieonductors this 
quantity dependa heavily on how mueh the material is doped. It ean be 

made as long as ~ t;<m 50 tlie assumption ean bejustified in this 
case. The situation i8 not 80 good in metaIs, but even here experiments 
with l:>allistie electrons eould be eXJlected in the near~st fu.ture/4 1/ . 

Under this aseumpt í.on , one ia able ta solve the on'e-partiele prob­
Fem, 1.e., to d educ e the tranBmiBs~on coeífieient T(E) fpr an, elec.t­
ron moving towards the loop wi th an energy E., It a Ll.owe us further 
'ta caleulate the conductivi~y. For 'a bulk metal, the current correspon­
dlng to the apllied voltage U i8 ,given by/29/ 

e O(J ,T,(E): 
I = ~- J[f(E+eU) - f(E)] 1 _ T(E) dE (2.1a1 

O 

where r denotes the Fermi-Dirac distribution, 

E- E \\-1 
f(E) = (.1-+ exp(~n (2.tb) 

A typ-ieal Feriu energy in metaIs is a, few eV so kT <<t EF (recafL 
o ' 

that 1 eV corresponds to the 't empereture 1t60S K ). The- voltage tf 

in the ab ove. qu o.ted experimente was of order of mic-ro.vol ta BO eU-« EF 
too. If the transmission cbefficient iss slowly varying funetion oí 

energy in this s ca'l e , we ge t for tl'le eonduetivity G=I/U from (2.\-a) 

the following ~pproximative expressi9n 

e 2 T('E) 
('2.2 }G ;: 3(11 1'- T(E) 
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where E~EF' Notice that in fact th~ distribution of electrons in4 

the conduct vi ty band Ls n'Oit given by (2. H)), since the wire does notí 

Tepr~s~nt a bulk met~l, and th~refore E should be replaced by an'O­
F 

th€r	 value. However, the correction again ~~es not ~xceed kT. 

In eemlconductors the situation is compl€telY di~férent. There are 
, , , 

much lesa electrons in the condu~tivity band~ On the other hand, they 

hav~ tYPically a small e~fective mass (for GaAs , e.g., we have m·= 

s: .o.. 067 m ) ~ and'" therefore only a few tr-ansveraa1. moo:es are contained 

• in theeo:'duetivi ty band/24 / . The conduo t Lvity will be th-en calculated 

irom the formula ~2.2) again, but now E will be the iowest-transver­

sal mode energy. It ~epenàs not only on the material, but also cn the 

e hape of the w!.re ; f.or 200 ~ thickwires~ 1t ia of order of 10-2eV . 

3. ~he mathematlcal backgroud 

For the sake ~~ simplicity, the electrons will be assumed to be spin­
lesse ~he state Hilbert space of our problem ia then of tae forro 

:11 = ]',2{0, 00) E9 'L2 tp, 1 <i' L 2 ( 0,1 (f) L 2 r- 00, O)	 ( 3. 1 ) 2) 3) 

where the orientation ofaxes !s chosen in fi way that allows to 4escri ­

be the two junction in a similar fashion. The central problem is;ho~ 

t'Ü chooae the Hamiltonian ~ of the modelo Two requirements must be 
fulfilled : 

(a) . H 1~ se1f-adjoint, 

(b)	 if the wavefunctlDn has a SUpPDrt separated from th~ junctions, 

tben H describes the appropriate motion on the halfline ar on 
the l'Oop. 

Such an operatór can be cDnstructed by taking fi~st'a suitable pre-Ha­

miltonian BO which is non-selfadjoint, the branching points of 'the 

graph being removed {rom its domain. The admissible Hamiltonians are 
then	 ob t.aã.ned as' ~'81f-adjolnt extens í one'<of . H{) • 'rbe same method has 
been applied recently in different conte'xts!J-4, ,.,. 16-22,28,31-36 / . 

~he Hamiltonians describing a free motion on a branching graph 

have been studied in Reis. 20,2 t • In particular, 'we derived there boun­

ldary condltions wnich sp~cifY the self-adjo1nt extensions of the pre­

Hamil~on1an HD .They can be used obvi~usly for an Electron moving 

und~r influence af an externaI field.as lQng as the ln~eraction rema!ns 

bàunded. ~hia i~ true in our case: we ahall ahow a rittle later that 

the ~tarting operator HO may be chosen as 

4, 

;,. 

4 
H.{) (9 ( 3. 2a)110, j-j=1 

with 

f{2	 2 ) 
HO J" =.( - -~ ~ + Vj(x.) -~ ~(Mj)	 (3. 2b) 

, 2m dx. J 
. J 

where M ia the appropr1ate part of the configuration manifold, m*
j 

is the e f f'e c t Lve maas ; furthermore, V j is a bounded f'unc't í.on on the 

Loop , j = 2,3 , while Vj =O. on the' leads., j =1,4 • 

In general, the def1ciency ind~ces of H are (18,18) so it has
O 

a vast family ~f self-adjoint extensions~We adópt the follo\1ing reatri ­

ctions on the Hamiltonian H: 

(c) H ia locai in the sense that supp Rue supp ufor a H, UED(H), 

{d)	 H is locally permutation-invariant at each junction : if the 

support of u is sufficiently concentrated around one of the 

junction~, and is the operator permuting the j-~h andP j k 
k-th wire at the junçtlon, then P jku ,", D( H) and P jkHU = HP.jléU • 

The iast condition meana that if the electric field is .swítched 'Off, 
the electron whose mot í.on La governed by H does no t distinguiah the 

wires provided it ia .close enough to the juction. 
Under the .conditions (c) and .(d), the self-adjoint ext ens í.one H 

are characterized by two pairs of real parameters, each of them refer­

ring to one junction. Most of the e~tensions c8n be e~pressed by ~he 

following boundars condit10ns 

u ! 0 ) A1u{(O) + B,u.;(O) +Blu~(O)1

u B1u ; ( 0 ) +A B,U;(O)	 (3.3a·)
2(O) 1u;(0)+ 

u:s{0-) B 1U;(0) + A,U;(O)1a.{(0) + B

and 

U:2 (1.2) A u;( + B U;( ) + B2u~ (D)
2	 2) 2 3

u 3(1 J ) 13
2
U;( 2) + A2U;(13) + B2u~(0)	 <3. 3b) 

u 
4 

(O). B2U;( 2) + :B2 U; ( 1 :s) + A2u~(.0) 

where u . (O) , u: (lJ) , u .n;} and U ' (1. ) are understood as the limita 
J J J., .... j J 

from the appropriate -side. With-the chosen orientation of the axes, the 
two junctions are the same if 
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A1-- =- A2 B =-	 <3.'4)
1 B2 

The conditions (3.3) do not exhaust all the operators H fulfilling 
the requirements (a)-{d). There are two additiona~ one-parameter clas­
ses of boundary conditions at eacn junction that also lead to a self ­

adjoint H - cf.Ref.21 • However,the considerations presented below 
are adapted easily to these exceptional cases, and we shall not treat 
them explicitly in the following. r 

The last thing we must fix are the potentials Vj appearing in• 
(3.~b). A natural guess which can be supported by the standard quanti ­

zation procedure/14,37/ i5
 

Vj{X j )	 = -eE~j{xj) (3. 5) 

where J'j{Xj) marks the distance from a fixed equipotential line ;
 
conventionally,we choose zero value of the potential on the leads. Un­

fortunately,the problem is more complicated.The graph lines in our mo­

del substitute thin stripes,apd therefore the potentials should contain
 
curvature-dependent terms/8-10,25,26/. Simple estimates show, however,
 

that for the ring struQtures mentioned in the introduction, the ansatz
 
(3.5) represents a good ápproximation. We ehall use it therefore in
 
the present paper ·leaving the analysis of the curvature effects to a
 
subsequent -publioation.
 

4. The	 transmission coefficient 

Now we are ready to solve the scattering problem for the loop.We shall
 
use the time-independent framework ; then one has to find the function
 

that belongs looally to the domain of the extension
u= (u1,u2,u3,u4)

H· choaen to play ~he role of Hamiltônian, and fulfils
 

-ikx1 ikx1u (x ) e +ae	 (4.1a.)1 1

u ) c (x +c	 (4. 1b)
2{x2 lf1 2) 2f2{x2) 

.u	 = d 1.g 1(x + d (4.1c)3<'x3) 3) 2g2{x) 
-ikx
 

u (x ) = b e 4 (4.1d)
4 4 
, 

where are the solutions to the Sohr6dinger equationf 1,f2 

6 

)í2 
- -	 f"{x ) + V2{x = Efk {x (4.2a) 

2m' k 2 2)fk ( X
2) 2) 

wi th E =)f2k2/2m fulfilling the boundary conãitions 

(4.3a)f 1 ( O) =f;( O) = 1 fí'{O) = f 
2 

{O) =O 

and s1milarly, g1,g2 are the solutions of 

2
L " -'	 (4.2b).* gk{x + V {x )g k {x3 ) ­3)	 3 3 Egk{x3)2m 

corresponding to the boundary conditions 

g1 (O) =g;{O) = 1 g.; ( O) =g 2( O) =O (4. 3b) 

the potentials V are given by (3.5) as mentioned above. We shall2,V3 
need also the transfer matrices nj :: n{lj} , j = 2,3 , 

Uj {l j ) } _ (uj{O») (4 ..4a)
( uj(lj) - nj uj{O) 

Using the above mentioned solutions to the eqs.{4.2), we may express 

them as 

f 1(l2 )	 g 1(13)f::(12») g:(l3.») . f4.4b)n2 =( f;(12) f (l 2 ) n3 =(-gi{13 f g2(l})2 

Our aim is to find the coefficient b assuming that the functi ­
ons (4.1) fulfil the boundary conditions {3.3}. To solve this problem, 
we express first the coefficiente c 1 , c with the help of •2 d1,d 2 
The boundary conditions for the first junction yield the equations 

1+ a	 -ikA 1(1-a)· + 02B1 + d2B1
 

-ikB 1(1-a) + c A + d
c 1 2 l 2B 1
 

d -ikB (1-a) + c B +d

1 t 2 1 2A1 

Excluding a trom here, we get a eystem of two linear equations· fOr 

c1~c2 whioh ie solved by 

0 1.) = {Z,-{k») + C1(k)(d 1) {4.5} 
(.c 2 - z2-(k)- d 2 

7 



where 2ik From here the coef~icients d, ,d may be found ; the other three paira 
z2(k) (A,-B, )z, (k ) z, (k ) (4.6a) 2 

, + ik(B,-A, ) of coefficients are then obtained from (4.7) and (4.9). In particular,
 
and
 we have 

c (k ) = . X
 
, B,[' + ik(B,-A,)J
 

x (A, +ik(B~-A~) (B,-A, ) [(A, +B, )('-ikA, )+2ikB~ ] ) (4.6b) 

2 2 . . 
'-ikA, -A,-ik(B,-A,) 

• The boundary conditions at the second junction yield the equations 

c, = c A2 + d B - ikbB2 2 2 2
 

C B + d A - ikbB
d, 2 2 2 2 2
 

b c B +d B ikbA
2 ­2 2 2 2 

~here we have introduced 

.: , ) = n2(c,)= (U~(12)) (4.7a)
( c 2 c 2 u2(12)
 

and
 

U~ ( 1 3 ) ) (4. 7b){U = n,(::) ( 
u (l 3 ) .

3
 

Excluding b frem the above system,
 

13 2 IV 'V 

b = (c +d ) (4.8)
1 + ikA2. 

2 2 

we arr1ve at equations for C, ,c
2 

• They are solved by 

(4.9)(U = C2(-k) (~J 
where C2(k) ia given by (4.6b) with A, ,B, r e pLa c ed by:._ A .'

2,B 2 
Now we are in position to find the coefficients in (4.'b,c). 

Notice that the matrices appearing in the above relationa are non-sin­

guIar ; one finds easily that det C.(k) =-, , and furthermore,. J 
det nj ia the Wronskian of the córresponding solutionã, and therefbre 

non-zero. The relations (4.5),(4.7) and (4.9) give 

fl;'C 2(-k)n3 (:~) = (~~~~n + C,(k{:,~) 

(~, ) =[n-' - C (km-' C (-k)-']-' (z, (k)) (4.'Oa)c 2 , 3 2 z2( k ) 
2 

~1 ) =[n-'c (-k)-C (k)n-'J-' (Z,(k)) (4. , Ob)J ( d 2 2 , 3 z2 (k)
2 

provided the matrices in the square brackets are non-singular (~t is 

sufficient that one of them is non-singular). Combining no~the rela­

tions (4.8) and (4.'0), we get the sought tra~smis~ion coefficient 

2 __ 1 2:82..- [c + dT(E) I b 1
2 

- 2 2 2, (4. " ) 
2 

where E =)Í2k2/2m'f. • 'In a similar way, the reflection coefficient àt 

energy E is given by 

2l2-B,(C )12+d 2R(E) lal2 (4. '2) 
, + k 2A2, 

5. Sernralassical expressiona for the transfer matrices 

The relations (2.2) and (4.") represent the .olution to our problem. 

In order to calculate the conductivity, however, one must know the, 

transfer matrices (4.4). They can be written down analytically for very 

few potentials, so one must loo~ for another way. One possibility is 

to solve the eqs.(4.2) numerically ; it will be done in a separate 
paper/'5/. 

Instead of that, we ahall use here an analytically expressed but 

approximative solution. In fact, the WKB-approximation is applicabl~ 

to nearly alI situations in our model with the exception of those when· 

the. energy is near the top "o f the. potential barrier, or a plateau in 

the "upper" branch of the loop. We restrict our attention, however, to 

the simplest situation represented by the weak-fiéld case when no
']1, I tunneling occurs (Fig.2).' This La ttue if 
. I 
t_ 

E 
( 5. , ) es 2ae 

8 9 



where a is a .charac-teristic s í.z'e
 

of the "upper"branch, say, the
 

radius of the ring. Taking a~
 

E~ 2·10-5cm and a typicalFermi 

.energy for metaIs, we get ê:&
 
5 -1
;S. 10 'V cm • For semiconductors,
 

this õound is correspondingly
 
lower, e ~lO}.V cm- t , but still
 1 x.
 

eit ia possible to oõtain in~erfe­
 3 J
 

rence minima before the tunneling Fig.2. To the solution of
 
Tegime takes place.
 eqa.(5.2)
 

The WKB-approximation may be
 

appl1ed if f Oí/ p j (x j)) '/ <<.1 , where
 

Pj(X (2m:f!(E_V~(Xj»)1/2 (5.2)j):: 

Sínce Pj(X)~J2m*E in the weak-field case, it yields the condition 

t ~ (2m*E)3/2 • (5.3) 
m*e){ 

In metaIs, this. leads to the requirement e« 109 V cm:",l • In semicon­

ductors, we get ê« l Q5 Vcm- 1 which ia still fine. 
The general WKB-solution to eq.(4.2a) 1B well-known/2}/ ; it is 

only necessary to select the two soIutiona that fulfil the boundary 

cond~tions (4.3a). We obtain 

p CO) )1/2 (X )
f (x ):: _2__ ' 1 2 
t 2 ( P2(X ) , cos Ri P2(y) dy ­

Z
 
(5.4a) 

_ m~){V2(0) (1 x2 )
2p (0)5/2 (x } 1/2 s í.n i JP2(y) dy

p2 2 2 O 

, 3 
m -V,22' ( O)p (x)3 • ~ x )'" V2 ( x 2)P2(0) 2 1 

2
 
fí(x 2 ) 2(p(0)p (x »5/2 coe i J P2(Y)dy
 

2 2 2· O
 
(5-.4b) 

3- - ~ x2- )(m )í)2'v;(o-)V~(x2) +4(PZ(0)P2(x2» Bin'i f P2(y)-dy 

4~(P2(O)P2~x2»5/2 'o 

2 
f ( x ) )Í { X ) (5.4c)2 2 (P2(O)P (x »172 si ~J P2(y) dy
 

2 2 O
 

~ ; ) 1/2 ' ~ x 2 )
f~(X2) (~•
I

- P2(O) cos~ ~ P2(y) dy +
 

(5.4d) 

+ 
m*!ívz(xç ) ~ x2 );j 

2P2(0)1/2p (x )5/2 sin Rf P2(y) dy 
2 2 O 

substituting x 2 = 1 2 and using' (4.4b), we get the sought expression 

of n2 • The transfer matrix ~ expresses in quite the same way by 

means of P3' V and V;.3 

6. Conclusions 

On the following pages, we present a few examples of conductivity plots 

calculated in the above described way. The shape of the loóp is sket­
ched on each graph ; the junctions are supposed to be the same and 

such that A1:: B1 =-A 2 =-B2 = 1 • The first three plots are calculated 

for gold (EF = 5.49 e V), while the remaining ones refer to a GaAs - wire ; 

in that case we choose E =0.05 eV i in accord wi th the resulta of 
Ref.24 • Variating the parameters that characterize the junctions, the 

~oop shape and the energy E, we obtain other curves. The qualitative 

character does not change, however. The conductivity always exhibits 

large oscillations with well-distinguished minima at reasonably low 
field intensities. 

Let us add a few comments. The resulta of our model for metaIs 
have only an academic meaning becausê the applied field is screened in 

this case. For a bulk-metal wire, the .Boreening would be complete. For 

ultrathin wires whose cross eeotion contains ~102 atoma, however, at 

least the electrons near the surface feel the f~eld and the effect BUr­

vives, though the conductivity plot ia expecteâ to be ameared. lri' order 

to find it on the basis of the abov~ considerations, one has to aolve 

the corresponding electrostatic problem and to éalculate the (appropri­
ately weighted) average over the potentials V •j 

In semiconductore, a similar smearing effect might be caueed by 
self-ecreening if eU~ficiently many electrons were injected into the(~ 
structure. However, taking into account typical currents (~A to nA

~l f 6-107cm/B)region) and velocitiea (t0 in these experimenta, we eee that\., 
typically a single conductivity electron is present on the loop. 

) 
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Hence we ean canelude that the prospect of eonstrueting a new 

type of switching device {quantum interference transistors, lf you -i. 
like) based on the ultrathin semicondue-tor wires is fuIlyrealistic. 

They wo uLd ·have two attractive features. For one, the values of field 

intensities eorre-sponding to interference minima show that such a 

d ev í.ce eould operate at véry 10Ti swi t ch í ng vol tages, since the electro­

des generating the externaI field can be placed very cIose to the loop. 

Even more appealing is the possibility of taiIoring the conductance 

plot by choosing an appropriate shape of the loop. 
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3KCHep n., We6a n., WTOBH4eK n. 
KBaHTOBaR HHTep$epeH4HR Ha rpa$HKaX, ynpaBJ1ReMaR BHeWHHM 
3J1eKTPH4eCKHM noneM 

E2-87-707 

PaccMaTpHaaercn ABH~eHHe aapn~eHHO~ KBaHroao~ 4aCTH4~ Ha nerne c ABYMR 
BHeWHHMH npHBOAaMH, noMe~eHHO~ B 3JleKTpOCTdTH4eCKOe none. raMHJlbTOHHaH neTJ1H 
B~6HpaeTCR npoCTe~WHM o6pa30Mj 4T06~ CBR3aTb ero C raMHJlbTOHHaHaMH npHBOAOB, 
Hcnonbayercn MeTOA, ocHoa~aa~H~CR Ha caMoconpn~eHH~x pacwHpeHHRX. HaKnaA~­

aan YCJ10BI1e CHMMeTpHH, Mbl nony4aeM nOJlHbl~ raMHJlbTOHHaH, 3aBHCR~HH OT 4eT~pex 
cao60AH~x napaMerpoa; Ka~Abl~ KOHTaKT xapaKrepl1ayercn OAHO~ napoi:1. PaccMarpH­
aaeMaR CHCTeMa npeACTaBJ1ReT C060H MOAeflb MeTaJ1JlH4eCKOH HJ1H nonynpOBOAHHKOBOH 
CTpyKTyp~, KOTOp~e MOryT npOH3BOAHTbCA npH nOMO~H AOCTynHbiX CerOAHR TeXHOJ10~ 

rHH. B npeAnono~eHH11 6annHCTH4ecKoro pe~11Ma AflR aneKrpoHoB B~4HcneHo conpoTHB 
neHHe raKoH crpyKrypw a aaBHCHMOCTH or HHTeHCHBHOCTH BHewHero nonA. Peaynbra­
Tbl noKa3~Ba~T B03MO~HOCTb C03AaHHR KBaHTOBWX 11HTep$epeH4110HH~X TpaH311CTOPOB, 
y KOTOPbiX pa3Mepbl H B~KJ1~4a~~Ce HanpR~eHHe MoryT 6~Tb HaMHOrO MeHbWe 4eM 
B npHMeHReMbiX cerOAHR MHKpOCXeMaX. 

Pa6ora BblflOilHeHa B fla6opaTOPHH reopel H4eCKOH $H3HKH mum. 

Coo6mettue 06»e.nHHeHHoro HHCTHTyTa HllepHbiX uccneAOBaHHii. Jly6Ha 1987 

Exner P., Seba P., Stovi~ek P. 
Quantum Interference on Graphs Controlled by an External 
Electric field 

E2-87-707 

We consider motion of a charged quantum particle on a loop with two ex­
ternal leads which is placed Into an electrostatic field. The loop Hamilto­
nian is chosen in the simplest possible way; in order to join It to the free 
Hamiltonians describing the leads, we employ a method based on self-adjoint 
extensions. Under a symmetry requirement, the resulting full Hamiltonian 
contains four free parameters; each junction is characterized by a pair of 
them. The system under consideration represents a model of metallic or semi­
conductor structures that can be fabricated by presently available technolo­
gies. Assuming the ballistic regime for electrons in such a structure, we 
calculate the resistance dependence on intensity of the external field. The 
results suggest the possibility of constructing quantum interference transis­
tors whose size and switching voltage would be much smaller than in the pre­
sently used microchips. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 

Communication of the Joint Institute for Nuclear Research. Dubna 1987 


