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1. Introduction

The rapid development of the techniques of fabricating small metallic
or semicondugtor structures has opened an entirely new field of rese-
arch which is sometimes dubbed mesoscopic physics. The term expresses
the fact that while the stryctures involved -are designed by an experi-
mentalist (that is, in a macroscopic way), they are -simall enough to
exhibit typical quantum effects. Conductivity measurements have been
performed on various structures ; rings, squares and their sequences,
/547’30’39—41/. Most attention has been paid
.to the Aharonov-Bohm effect manifested by magnetoresistance oscilla-

honeycomb nétworks, etc.

tions which represents a suitable object for expérimental investiga-
{ion being stable with respect to variations of the pattern’ geometry.
There are other interesting situations,however.It is natural to ask,
e.g., whet happens if the structure is placed into an electric field,
in particular, how its resist&ﬁce depends on the field intensity. The
possibility is technically attraciive, because it might open way to
4 new type of switching devices. In erder to decide whether such a
prospect is realistic, @ careful analysis is needed. In this paper, we
address ourselves with this problem.

From the microscopic point of view, the system under considera-
tion is complicated enough to make its complete description very diffi-
cult, We shall not attempt to do it. Instead, we are going to comstruct
a model which, as we believe, reproduces the essential features of the
system, and at the same time it is solvable. It is based on the assump-
tion that the "wires" which are building elements of the structure are
infinitely thin. Actually they represent a band of atoms whose width
can be made as small as 200 X by the technologies mentioned above.
Once we replace them hy lines, our proﬁlem reduces to the analysis of
motion of a gquantum particle which is confined to an appropriate pla-
nar graph .and subjected to the electric field. We limit ourselves to
the simplest non-trivial cese when the graph consists of a loop with
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two external leads. We shall assume also that the external field is
weak enough so that the semiclassical approximation may be used. The
results of the present analysis have been announced in Ref.22.

Let us describe briefly the contents of the paper. In the next
section we show, how and under which assumptions the conductivity can
be calculated. The key element of the model is to describe hew the
electron wavefuction "splits" at the junctions. This is discussed in
Section 3 ; it allows us to choose the Hamiltonian for a charged par-
esticle whose motion is confined to a planar curve in presence of an
external field. In the next section, the transmission coefficient is
calculated. Its evaluation requires the knowledge of transfer matrices
for the corresponding Schrédinger equations ; we calculate them in
Section 5 using the semiclassical approximation. In conclusion, we
give some examples of conductivity vs. field intensity plots which
show that the prospect of constructing the above-mentioned switching
devices is fully realistic.

2. fhe physical background

As we have said, .our model is intended to déscribe a charged quantum
particle (an electron) ‘moving on a loop with two external leads under
influence of (&) "a voltage U applied

to the leads and (b) a homogeneous
electric field of intensity paral-
lel to the graph plane and perpendicu-
lar to the ledds. The motion on the
loop is assumed to be ballistic, i.e.,
both the elastic and inelastic scatte-
ring is negligible,

Let us first say a few words
about ‘the ways in which such systems

Fig.1. Scheme of the model

can be prepared. The metallic rings
and similar stuctures are usually produced lithographically, by an

atomic beam drawing a required graph on a substrate (cf. the referen-

ces ‘quoted in the introduction). The technique is fairly elaborated at
present ; its appealing feature is that in principle an arbitrary pla-
nar graph can be drawn.

‘The situation is not so simple ‘with semiconductors. For them, too,
inter;erence experiments have been proposed and performed, but in dis-
tinction to the above named ones, they employed heterostructures grown
by the epitaxial technique/12/. It was even suggested to use the
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problem

interference in heterostructures in switching devices/jl/ 3 our analy-
sis shows, however, that the "graphs" sre more suitable for that pur-
pose., ket us remark in this connection that though our model is not

applicable to the heterostructures, since the channel thickmess cannot

be neglected in this case, there is a way how this difficulty might be
overcome. It iIs cannected with a solution to the so-called Injection
/21/ which we are going to discuss in a separate paper.

Very recently & new technique has been reported which opens way

to fabricating semiconducter graph structures 38/

In a sense, it com-
bines the procedures mentioned above. One prepares first a semiconduc-
tor layer on & substrate and draws lithographically metallic lines on
it. The graph is afterwards used as a mask when the layer is removed
by ion bombarding.

The essential assumption of our model is that the electrons move
ballistically on the loop. It can be fulfilled if the electron mean
free path is muck longer than the loop size., In semiconductors this
quantity depends heavily on how much the material is doped. It ean be
mede as long as 5’ham so the assumption can be justified in this
case. The situation is not so good in metals, but even here experiments
with ballistic electrons co@ild be expected in the nearest future 41

Under this assumption, one is able to solve the one-particle prob-
Yem, i.e., to deduce the transmissjon coefficient T(E) for an elect-
ron moving towards the loop with an energy E . It allows us further

‘ta caleulate the conductivity. For :a bulk metal, theé current correspon-

ding to the apllied voltage ki is'given‘by/~29

e ~ T(E):
1= \![f(E—reU) -2®)] Ty 9B (2.1a)

where f denotes the Fermi-Dirac distribution,

) E-E,\\-!
f(E) = (1+ exp(—EE}) ) (2.10)

A typical Fermi energy in metals is a few eV sa kT << By (recall
that 1eV corresponds to the temperature 11605°K ) . The voltage U
in the above quoted experiments was of order of microvolts so eUﬂ4<EF
too. If the transmission coefficient is a slowly vearying function of
energy in this scale, we get for the conductivity G =1I1/0 from (2.ta)
the following approximative expression

e? T(E)

G ;9}—’;{ ————-T_T(E) , (2.2)



where E;\\J,EF_~ Notice that in fact the distribution of electrons in
the cvonductivity band is no% given by (2.1b), since the wire does not

represent a bulk metal, and therefore E should be replaced by ano-

ther value. However, the correction agaig'dces not exceed T .

In semiconductors the situation is completely different. There are
much less electrons in the conductivity band. On the other hand, they
have typidélly a small effective mass (for GadAs , e€.g., we have m't=
= 0.0671@8), and” therefore only a few transwversal modes are contained

® in the conductiwity band 24/. The conductivity will be then calculated
from the forimula {2.2) again, but now E will be the lowest-transver-
sal mode energy. It depends not only on the material, buft also on the
shape of the wire ; for 200 2 thick wires, i% is of order of IO_QeV.

3. The mathematical backgroud

For the seke of simplicity, the electrons will be assumed to be spin-
less. The state Hilbert space of our problem is then of the form

# = 1%(0,00) ® 1%(0,1,) ® 12(0,15) @ 12(~0,0) , (3.1)

where the orientation of axes is chosen in e way that allows to descri-
be the two junction in a similar fashion. The central problem is how

%0 choose the Hamiltonian #H of the model. Two requirements must be
fulfilled 2

(a) ., H 1is self-adjoint,

(b) if the wavefunction has a suppoft separated from the junptions,
then H describes the appropriate motion on the haifline or on
the loop. . -

Such an operator can be constructed by taking first'a suitable pre-Ha-
miltonian HO which is non-selfadjoint, the branching points of ‘the
graph being removed from its domain. The admissible Hamiltonians are
then obtained asrself—adjoint extensionsof. H, . The same method has
been applied recently in different contexts’ !~%s13+16-22,28,31-36/

The Hamiltonians describing a free motion on a branching graph
have been studied in Refs.20,21 . In particular, we derived there boun-
‘dary conditions which spécify the self-adjoint extensions of the pre-
Hamiltonian HO .They can be used obviously for an electron moving
under influence of an external field.as long as the interaction remains
bounded. This is true in our case : we shall show a little later that

the starting operator HO may be chosen as

g

4
H,= ® H (3.2a)

0 = 2 Moy
with
2 2
Y R SR :
Ho, ; -(- o7 ax? + Vj(xj)) Pd‘g(Mj) - (3.2b)

where M is the appropriate part of the configuration manifold, ot

is the effective mass ; furthermore, V. is a bounded funétion on the
loop, j=2,3 , while ¥.=0 on the leads, j=1,4 .

In general, the deficiency indices of HO are (18,18) so it has
a vast family of self-2djoint extensions.We adopt the following restri-
ctions on the Hamiltonian H :

(c) H 1is local in the sense that supp Hu< supp u for all uGD,(H/),

14) H is locally permutation-invariant at each junction : if the
support of u is sufficiently concentrated around one of the
junctions, and P.k is the operator permuting the j-th and

k~th wire at the junction, then ijue D(H) and ijHu=H'PJ:kvu .

The last condition means that if the electric field is switched off,
the electron whose motion is governed by H does not distinguish the
wires provided it is close enough to the Jjuction.

Under the conditions (c) and (d), the self-adjoint extensioms H
are characterized by two pairs of real parameters, each of them refer-
ring to one junction. Mosit of the extensiens can be expressed by the
following boundary conditions

uy(0) = A,u;(0)+Bu(0) +B,us(0) ,
u,(0) = Bius(0) +Auj(0)+ Bui(0) , (3.3a)

u3(09

B1u’(0)4-B1u2(0)-+A1u3(0)
and
uy(1y) = Ayuj(1,)+ Boug(l) +B,u,(0)
u3(13) = :Beuz(lz)+A2u3(13)+82u4(0) , (3.3b)

u4(0) = Bzu2(12)+ B

2u3(13)A-A2uﬂOO) ,

where uj(O), uj(B) ,uj(l ) and u)(l,) are understood as the limits
from the appropriate side. With the chosen orientation of the axes, the
two junctions are the same if



B, =-B - (3.4)

The conditions (3.3) do not exhaust all the operators H fulfilling
the requirements (a)-(d). There are two additional one-parameter clas-
ses of boundary conditions at each junction that also lead to a self-
adjoint H - cf.Ref.21 . However,the considerations presented below
are adapted easily to these exceptional cases, and we shall not treat
them explicitly in the following.

The last thing we must fix are the potentials V. appearing in
(3.2b). A natural guess which can be supported by the standard quanti-

zation procedure/14’37/ is

Vj(xj) = —ezas(xj) ) (3.5)
where Jﬁ(xj) marks the distance from a fixed equipotential line ;

conventionally,we choose zexro value of the potential on the leads. Un-
fortunately, the problem is more complicated.The graph lines in our mo-

del substitute thin stripes,and therefore the potentials should contain

curvature-dependent terms 8—10’25’26/. Simple estimates show, however,
that for the ring structures mentioned in the introduction, the ansatz
(3.5) represents a good dpproximation., We shall use it therefore in
the present paper leaving the analysis of the curvature effects to a
subsequent publication.

4. The transmission coefficient

Now we are ready to solve the scattefing problem for the loop.We shall
usge the time-independent framework ; then one has to find the function
u= (ut,uz,uB,u4) that belongs locally to the domain of the extension
H- chosen to play the role of Hamiltonian, and fulfils

-ikx1 ikx1
u,(x1) = e +tae , (4.1a)
u2(x2) = c‘f1(x2) +02f2(x2) , (4.1b)
y(xg) = 48, (x5) +dE,(xy) (4.1¢)
—ikx4 .
u4(x4) = be , (4.1a)

A ]
where f1,f2 are the solutions to the Schr8dinger equation

-

2
K . _
- ;;; fk(xz) + V2(x2)fk(x2) = Efk(xg) (4.2a)

with E==K2k2/2m fulfilling the boundary conditions
£,(0)=£(0) =1 , £(0)=£,(0)=0 , t4.38)
and similarly, g118, are the solutions of

2
- ii; gk(x3) + V3(x3)gk(x3) = Egk(x3)~ (4.2p)

* corresponding to the boundary conditions

g,(0) =g, (0)=1 , g(0)=g,(0)=0 (4.3b)

the potentials V2,V3 are given by (3.5) as mentioned above. We shall

need also the transfer matrices ”i = ﬂj(lj) , 1=2,3,

1 0
(hq( j)) = 1, By )) A . ‘ (4.48)
uj(lj) uJ(O)

Using the above mentioned solutions to the egs.(4.2), we may express
them as

£,(1,)  £,(1) , _ (81113 ex(ls)

! 3 5= ! 3 ¢4.4b)
ft(l2) f2(12) gi(13) gz(lj)

5 =

Our aim is to find the coefficient b assuming that the functi-
ons {(4.1) fulfil the boundary conditions (3.3). To solve this problem,
, With the help of dy,d, -
The boundary conditions for the first junction yield the equations

we express first the coefficients CysC

1+ a = —ikA‘(1—a)~+02B1-l-dzB1 s
¢y = —ikB1(1--a)-+c2A1+dzB1 ,
d‘ = —ikB.r(1-a)+cZB1 +d2A1 .

Excluding a from here, we get a system of two linear equations for
cysCy which is solved by

(zr“‘)} * c1<k)(‘*1) : 4.5y
zsz) d,

(2)-



where 2ik

z,(k) = (A=B)z, (k) , z,(k) = ;j:;;zg::;:; (4.6a)
and :
c, (k) = B [T 1K@, A ])] x
A+ix(Bi-aD) (B -a ) [(A,+B)) (1-1ka, )+2i kB ] (4.6D)
1-1kA, -a,-1k(B2-a%)

The boundary conditions at the second junction yield the equations

¢y = 02A2-+d2B2-ika2 ,
(24 ~ o~ .
d1 = 02B2-+d2A2-1ka2 ,
b = c282+d2B2-ikbA2 ,
where we have introduced
~
("1): ﬂ2(°1)= uy(1y) (4.7a)
2 2 up(1y)
and
i‘\)= fy d‘) = (usils) ] (4.70)
d, a, u3(13)
Excluding b from the above system,
v B2 ~
b = ———(&, +d .8
1+-ikA2F02 2) s (4.8)
we arrive at equations for 31,32 . They are solved by
e d
Srl=c (=) [21] (4.9)
c 2 d -
2 2
where 02(k) is given by (4.6b) with A,,B, replaced by- A,,B, .

Now we are in position to find the coefficients in (4.1b,c).
Notice that the matrices appearing in the above reélations are non-sin-
gular ; one finds easily that det C.(k) =-1 , and furthermore,
det ﬂj is the Wronskian of the corresponding solutions, and therefore
non-zero. The relations (4.5),(4.7) and (4.9) give

-1 d _[z,(k) d .
natexm (3]« (466) + eliy)

From here the coeffjcients d1,d2 may be found ; the other three pairs
of coefficients are then obtained from (4.7) and (4.9). In particular,
we have

STz - e aonzle, (o=t [ 20 (4.10a)
EN AR Sy (e

&\ _n-t -17-1 { z, (%)
1) =|N5"e, (=k) - ¢, ()] 1 ) (4.10Db)
(dz) [ 272 1 3] (zz(k)> ‘

provided the matrices in the square brackets are non-singular (it is _
sufficient that one of them is non-singular). Combining now the rela-
tions (4.8) and (4.10), we get the sought tragsmisSion coefficient

2
B
7(E) = [b]%2 = —25— [3,+7,|2 , (4.11)
| 1+k%§[2 ﬂ

where E= ﬂ2k2/2m*
energy E 1is given by

In a similar way, the reflection coefficient at

2

2-B,(c +d,)]

[2-3, 252 . (4.12)
1+ k%A

R(E) = [al? =

5. Semiclassical expressions for the transfer matrices

The relations (2.2) and (4.11) represent the solution to our problem.
In order to calculate the condbhctivity, however, one must know the.
transfer matrices (4.4). They can be written down analytically for very
few potentials, so one must look for another way. One possibility is
to solve the egs.(4.2) numerically ; it will be done in a separate
paper/15/
Instead of that, we shall use here an analytically expressed but
approximative solution. In fact, the WKB-approximation is applicable
to nearly all situations in our model with the exception of those when-
the. energy is near the top ‘of the potential barrier or a plateau in
the "upper" branch of the loop. We restrict our attention, however, to
the simplest situation represented by the weak-field case when no
tunneling occurs (Fig.2). This is true if

E
£ 8 355 > (5.1)



where a 1is a characteristic size
of the "upper"branch, say, the
radius of the ring. Taking ax

£2:10"%cn and a typical Fermi
.energy for metals, we get 65
5105ch—1. For semiconductors, 1 v
this Bound is correspondingly
lower, & <10>Vem~! , but still o T T x
®it is possible to obtain interfe- 3

rence minima before the tunneling

FPig.2. To the solution of

regime takes place. eqs.(5.2)
The WKB-approximation may be

applied if f(ﬂ/’pj(xj))'|<<1 , where

py(x;) = (20¥(E-V,(x mte . (5.2)

J

Since pj(x)ﬁa/Zm*E in the weak-field case, it yields the condition

3/2
5«(—2‘£E)—/— ) (5.3)
n¥e}l

In metals, this leads to the requirement E <«<109Ven! . In semicon-

ductors, we get & <<10° Vem™'| which is still fine.

The general WKB-solution to eq.(4.2a) i=s well-known/23/ s it is
only necessary to select the two solutions that fulfil the boundary
conditions (4.3a). We obtain

p,(0) 2%
f1,(x2) = | S—— cos ¥ } pz(y) dy | -

P2(x2) "
(5.4a)
w*Rv.(0) *2
2 1
- sin p,(y) dy '
2p2(0)5/2p2(x2)1/2 i{ 2
. 3 . 3 X
V. (x,)p,(0)? =¥ (0)p,(x,) . 2
f{(x2) = p*-2-27°2 2 5;2 2 eos L f pz(y)dy -
2(p2(0)p2(x2)) 0
(5.4b)
, . x
. ) {m K)ZVZI(O)VZ(xz) "‘4»(132(0)7}72()&?))3 oinld fzp yray)
4H(p,(01p,(x,)) /2 Xy 2
) 10

1]

P
£,(x,) L4 17'2 si %fzpz(y) dy) ) , (5.4c)
(p,(0)p,(x,)) 0 ’

, Py \1/2 [ %
f,(x,) = -(pz(o) ) cos|y { py(y) dy | +

(5.44)
o¥ KV, (x,) Xo )
272 1
- sin p,(y) dy H
2"2(0)1/21’2“‘2)5/2 (i£ 2

+

substituting X, = 12 and using' (4.4b), we get the sought expression
of n2 . The transfer matrix ”3 expresses in quite the same way by

and V. .

means of p3, V3 3

6. Conclusions

On the following pages, we present a few examples of conductivity plots
calculated in the above described way. The shape of the lodb is sket-
ched on each graph ; the junctions are supposed to be the same and

such that Al= B =-—A2==—B2= 1 . The first three plots are calculated

1
for gold (EF =5.49eV), while the remaining ones refer to a GaAs - wire

-e

in that case we choose E=0.05eV ,in accord with the results of
Ref.24 . Variating the parameters that characterize the junctions, the
;OOp shape and the energy E , we obtain other curves. The qualitative
éharacter does not change, however. The conductivity always exhibits
large oscillations with well-distinguished minima at reasonably low
field intensities.

Let us add a few comments. The results of our model for metals
have only an academic meaning becausé¢ the applied field is screened in
this case. For a bulk-metal wire, the .soreening would be complete. For
ultrathin wires whose cross section contains 'V102 atoms, however, at
least the electrons near the surface feel the field and the effect sur-
vives, though the conductivity plot is expecteé to be smeared., In order
to find it on the basis of the above considerations, one has to solve
the corresponding electrostatic problem and to calculate the (appropri-
ately weighted) average over the potentials V., .

In semiconductors, a similar smearing effect might be caused by
self-screening if sufficiently many electrons were injected into the
structure. However, taking into account typical currents QuA to na
region) and velocities (106—107cm/s) in these experiments, we see that
typically & single conductivity electron is present on the loop.

11



Hence we can conclude that the prospect of comstructing a new
type of switching device {quantum interference transistors, if you
like) based on the ultrathin semiconduetor wires is fully realistic.
They would have two attractive features. For one, the values of field
intensities corresponding to interference minima show that such a
device could operate at very low switching voltages, since the electro-
des generating the external field can be placed very close to the loop.
Even more appealing is the possibility of tailoring the conductance
plot by choosing an appropriate shape of the loep.
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IxcHep N., lieba N., Wroeuuex M.

KBaHTOBaA uHTepdepeHuyna Ha rpagukax, yNPaBNAEMAR BHEWHWUM
3NEeKTPUUECKMM NONEM

E2-87-707

PaccmaTpupaeTcA gsvmeHue 3apAxKeHHOM KBAHTOROM YaCTUMUb HA nNeTne C ABYMA
BHEWHWMU NPUBOAAMM, NOMEWEeHHOM B 3NeKTpocTaTuueckoe none. aMunbs TOHnaH neTnu
BobnpaeTca npocTelunM obpa3om; uToBw CBA3aThb ero c ramMnbTOHMAHaMW NPUBOAOB,
MCNONb3YEeTCA MeTOf], OCHOBHBAKUWMINCA Ha CaMOCONPAMEeHHuX pacwmpeHuax. Haxknagw-
B8aA YCAOBUE CHUMMETPHUU, Mbl NONYU3EM MNONHLIW FaMUNbTOHWAH, 3aBMCAWMA OT YeTupex
cBOGOAHMX NapaMeTpoOB; KamAbi KOHTAKT XapakTepuayeTCA OAHoOW napon. PaccumaTtpu-
BaeMan cucTema npegcTtasnaeT cobon Mogernb MeTannNuueckon MAM NONynpoOBOAHWMKOBOWH
CTPYKTYPH, KOTOPHE MOTYT NPOM3BOAMTLCA NPU NOMOWKM AOCTYNHHX CEroOgHA TEXHONOr
rui. B npeanonowmeHnn 6annnMCTUUECKOTO pexrMMa ANA 3NEeKTPOHOB BHMYMCNEHO CONPOTUB
fleHMe TaKOoM CTPYKTyps B 3aBUCUMOCTM OT MHTEHCMBHOCTW BHewHero nona. PeaynbTa-
TH NOKa3KBalT BO3MOWHOCTb CO3[4aHWA KBAHTOBHIX WHTEPPEPEHUUOHHBHX TPaH3ULTOPOB,
y KOTOpHX pa3Meps W BuKAKYaowee HanpaxeHue MOryT ObTb HaMHOrO MeHbuie 4eM
B NPUMEHAEMBIX CErOAHA MUKPOCXEMax.

Pabora BwnunHexHa 8 NaBopaTopun Teopertnmueckon ¢uavku OUAK.,

Coobenne O6beHHEHHOr0 HHCTHTY T2 HAEPHbEX HeenenoBaHui. Jy6ua 1987

Exner P., Seba P., Stovi¥ek P.

Quantum Interference on Graphs Controlled by an External
Electric Field

€2-87-707

We consider motion of a charged quantum particle on a loop with two ex-
ternal leads which is placed into an electrostatic field. The loop Hamilto-
nian is chosen in the simplest possible way; in order to join it to the free
Hamiltonians describing the leads, we employ a method based on self-adjoint
extensions. Under a symmetry requirement, the resulting full Hamiltonian
contains four free parameters; each junction is characterized by a pair of
them. The system under consideration represents a model of metallic or semi-
conductor structures that can be fabricated by presently available technolo-
gies. Assuming the ballistic regime for electrons in such a structure, we
calculate the resistance dependence on intensity of the external field. The
results suggest the possibility of constructing quantum interference transis-

tors whose size and switching voltage would be much smaller than in the pre-
sently used microchips.

The investigation has been performed at the Laboratory of Theoretlical
Physics, JINR.
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