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1. INTRODUCTION

Integral equations of the Low type

F=-V4+FGF" (1.1

may be encountered, e.g., in the three-dimensional inverse-
scattering formalism’/V . In accord with Ref.’?® , the most
important and promising application of these equations lies
in the relativistic description of n—N interactions. In such
a context, the precision must be high and the realistic com-
putations may easily exceed the capacity of computers. A non-
linear structure of (1.1) leads to a number of difficulties.
as follows.

{a) We need a mathematically well-founded conversion of
integral equation into a sequence of its numerically solvable
approximate forms. In particular, a standard replacement of
integrations by the finite summations '

N
duf(u) =
f ut(u) iflf(vi)wi N 5 oo (].2)
with the "grid points" v, e
must be done properly.

(b) The resulting finite (N-dimensional) matrix equation
with the quadratic nonlinearity remains still fairly compli-
cated. An iterative method .of its solution is currently emp-
loyed. Unfortunately, the sequence of approximants of the ty-
pe of power series, e.g.,

and the "weight coefficients" w;

F{1] =V, F[2)=V+ VGV' ... . (1.3)
is often divergent and necessitates a Pade resummation 4”7/ |

(c) Of course, a many times repeated generation of appro-
ximants (1.3) is a difficult task even on the computer, es-
pecially due to the rather complicated structure of tHe rea-—
listic kernels G. For illustration, we shall consider here
the "homework” example of the #-N kernel
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G = S + C, ° (1.4)

where S is gingular and C mediates a coupling to all the
other partial waves/ 28/

In the pionic physics context, the whold power-series -
Pade approach to (1.1) is not entirely satisfactory. Indeed,
the relativistic and sometimes quite small corrections are
evaluated, but the computational errors remain rather large
New and more effective methods are also needed for a very fea-
sibility of the fully consistent calculations incorporating,
e.g., the complete crossing symmetry, ete.

In the present paper, a new non-power-series method will
be proposed and discussed in some detail. It is intended to
proceed in an iterative manner which facilitates a control
of precision in each step.

/6/

2., THE EFFECTIVE-INTERACTION ITERATIONS
2.1. The Mixing of Partial Waves

In accord with the homework-problem strucfure (1.4) of the
kernel, our integral equation

F=V +FCF' + FSFT, i 2.1

has a 'small" but rather complicated compoment FCF*. Its omis-
sion or incorporation into a modified or "effective" interac-—
tion

W=V 4+ FCF' 1 (2,2)

is thérefore a reasonable approximation. The new form of
eq. (2.1)

F =W+ FSF' : (2.3)

becomes also easier  to solve. Thus, after an arbitrary choi-
ce of an initial approximation (say, F=0, W=V), our overall
computational algorithm may proceed in an iterative manner:

fa) solve (2.3)

(b) improve W (2.2)

(¢) return to (a) if necessary.

The same perturbative strategy may also be applied to the
general Low-type equation with the structure

2

-

.F‘(x,y) =

F =V + FC()F" 4w ..+ FO(t)F' (2.4)
and with a decreasing influence of the separate components
on the final result.

2.2. A Singularity of the Kernel

In the realistic »-N problem, the partial-wave mixing
(1.4) is important and must be calculated by the above-men-
tioned iterations. In each step, we have to solve (2.1) re-
duced to an integral equation

00

=V(x,y) + f

o

F(x,y) ufduv2advF(x,u) S(u, v) F*(y,v) (2.5)

with the standard y-dependent and diagonal singular kernel‘
of the type

S(u,v) = U ®5(u-v)S(a), Sfu)=1/] E(w)-E(y)-ie]. (2.6)

Here, the symbol

E(z) = (Mjar 2"+ (m2, 22)"

e/

denotes the energies .
also the kernel (2.6),

We may decompose

S(u) = s(u) +PS(u), s(u) = i8(E(u) - E(y)). (2.7)

This is the well-known fotmula where the first term (delta-
function) is complemented by the component which requires a
special, so-called principal-value integration.

Now, we are prepared to repeat the trick of the preceding
paragraph and include temporarily also the second term of
(2.7) into an effective interaction,

Mxy) = V(xy)+P [ F(x,0)(E(u)- E(y) " F (v, u)uldu. (2.8)

With this effective potential and with the delta-function
kernel, we may re-write fimally our integral Low equation as
an algebraic one,

V() + F(xy)s(y) P (v y). (2.9)



This equation possesses an easy solution for any discrete
set of the integration points
(0) (0)

X =X and y =Yy

,

s i,j=1,2,..,N (2.10)

[o}

entering, say, the definition of the cross sections.
3. QUADRATIC NONLINEARITY AND .THE CONTINUED-FRACTIONAL
ITERATIONS

3.1. On-Shell Amplitudes and the Analytic Continued
Fractions

Provided that we choose x = y and put a =.F(y,y) = b+ and
v = Ve (y,y) in (2.5) and in its hermitean conjugate, the
"on~shell amplitude" F = a becomes defined by the exactly sol-
vable pair of relations (2.9),

a = v + igab, b = vt - igab. (3.1)

We may formulate immediately the following simple observa-
tions.

(a) In general, the solution is not unique. In (3.1), the
input interaction v = iw leads to the pair of exact roots

af1} = i(1 +sqre(1 - 4gw)/(2g) . (3.2)

afe }.= 21 w/(1 + sa@t(l - 4gw)).
Only the second one disappears in the limit of zero interac-
tion and may be considered physical.

(b) The iterations (1.3) remove the ambiguity in general.
Here, they reproduce correctly the second root, F(x,x) = a2},
at least for the sufficiently small interactions V. This re-
presents a physical support for the use of iterations in spi-
te of their actual divergence’%

(¢) The divergence cured by the Pade technique (cf. al--
so/46:7/ )y is obviously related to the magnitude of G, V, or
| gw| > 1. In our particular example, the problem may easily
be circumvented by a transition to the well-known analytic
continued fractional form of ‘the physical root af2},

F(x,%) = iw/(1-gw/(1-gw/(...)). ~ . (3.3)

This is a rather trivial special case of a general Pade appro-
ximation. Nevertheless, its specific iterative structure may

r
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be generalized in various ways. One of them is to be described
here.

3.2. The Matrix Equation and Continued Fractions

A straightforward derivation of the continued-fractional
formula (3.3) may be based on a quasilinear re-interpretation

F(1- GF') = V. (3.4)

of our original equation. From its combination with its hermi-
tean conjugate, i.e., from the pair of relations
F=V/(t- GFY) F*-(1-Fat)y lvy* (3.5)

we may formally eliminate Ft and obtain

F=V/1-G@1-FcHv™*. " ©(3.6)
The iterations imply 1
F=V
1
1 -G N V+
1-Vv ct (3.7
1-G — 1 vt
1-V 1 Gt .

1 -

which resembles formula (3.3) and forms the so-called matrix
continued fraction (MCF /% ). By its definition, it is merely
a repeated mapping : ‘

(F, F'y -~ (P, F" . (3.8)

or iterative algorithm
F/= V/1-H), H-GF*, F' -a-#H"'v* H*=FG* (3.9

with the trivial initial choice of (F,F+) or (H,u%) = (0,0).

4. SINGULAR KERNEL AND THE MODIFIED MCF TTERATIONS

Due to the definition of the principal value /3 , the ap-
proximate integration in (2.8) must proceed via & summation
over points which are distributed symmetrically around y.



. Thus, we are forced to replace our original mesh of grid

points (2.10) by another set

(D
x. (+# x(®
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(4.1)
which depends on y in general. This new set defines our auxi-
liary effective interaction matrix (2.8) as a sum
N
1
5 P(x@, aDy gD

i’ "m ‘m

VI oy x®, 3@
S RS TP (4.2)

1)

(1) (0) 1) ’ '
xS(um )F*(yj ,ufn"), i,j =1, 2,..

.. N,
where the "new'" matrices F(s,t) contain arguments s and t be-
longing to the two different discrete sets (4.1).

In accord with our preceding discussion, the principal-
value grid points u in (4.2) depend on the external index j.
Hence, the actual discrete form of our C = 0 equation (2.5)
reads

Noy

Fij = Vl] + 2

e ot
Fim Sm()Pp Froj.  Noy= Ngx (N + 1), ,
=, Dim Sm0)Pr Py Noy= N (N + 1) (4.3)

where a formal unit (j-dependent projector p ) ) is introdu-
ced to compensate an extension of the summation to a union of
all the (j-dependent) subsets of the grid points (4.1), com-
plemented also by the N, "external" points y themselves.
In.the power—series iterative approaches, the latter const-
ruction leads usually to a rapid increase of the dimensions.
Hence, it is reasonable to keep it under control by a careful
specification of the suitable interpolation technique. Let it
be mediated by some y - independent Ny,;xN, - dimensional mat-
rix Z transforming a function at points x(® into its values
at the union ! x©@® , u(LD , u(No )} | Then, our Low
eq. (4.3) will contain the kernel-term summation

N1 No Mo 0
3 *x £
mE ) FinSn (D Fyp = kzl DE X Fix Gyn Fin (4.4)
N
G o )
Gkn ,:mg' ) kasm (NP Zpyy.

We may summarise that the singularity and interpolation modi-
fy merely our propagator G (to a non-diagonal form) and give
our, equation its final matrix form

6

(4.5)

N
O )
S G, F .
Sy (4.6)

The latter expression differs from its matrix-product pre-
decessor of sect. 3. It is an element-by-element product for-
med directly from the matrix elements of the matrix F and of
the set of matrices G.

It remains for us to use the hermitean conjugation

+ (1)
Hy ‘kflpikGTk (4.7)

and recall the MCF iterations. Alternatively, we may employ
also a MCF definition with the slightly modified recurrences

F’'=V/(1-H), F*7 = V¥/(1 - H*)

T ) Mo
] *
Hy=- = GQF Hi = 3

ij jk

()
G ik *ij
k=1 K = .

(4.8)
1

13 3 [ * ’ *
i.e., an iterated mapping (Fu > Fpop ) » (an, Fop‘)+ ... of
the complex conjugate pairs of matrices. ‘

5. AN ILLUSTRATIVE EXAMPLE

In accord with all our preceding considerations and with
eq. (4.4) in particular, we may write our general Low egua-
tion (I.1) in the NxN — dimensional matrix form with the j-
dependent kernel,

N

F. .=V  + 3

m) mj

() o+ )
F G F ., m,j=12,...,N.
Kon= 1 mk kn nj (5 ])

For the separable potentials Vij = <m|a> g<al|j> and amplitu-
des

F‘mj = <m!a>fj<a|j>

(5.2)

we may reduce the matrix equation (5.1) to a “vectorial” one,

7



N

f.=g + X
k,n=1

+
n’

£, M)y i=12,...,N (5.3)

This is suitable for numerical tests.

For the sake of definitness, let us consider new a schema-
tic model characterised by the particular two-dimensional and
one-parametric family of kernels

i 1/2 '
1
méP = ), n® zM(l), Z € (—om, =)o
vz 1 4 (5.4)
After such a choice, our eq. (5.3) acquires the form
f =g +Q(f, fy) fo =g+ 2Q(fy, fp), Ax,y)=xZ+xy+y % (5.5)

the solutions of which may be understood very easily,

5.1. The Power-Series Iterations

Our very way of writing equation (5.5) is a direct inspi-
ration of the standard power-series iterative ,algorithm

’

=g + Q(x,y) y'=g+ 2z2Q(x,y) (5.6)

which is usually initialised by (x,y) = (O,O)/4_7{ For the
sufficiently small couplings g -0, it should generate a con-
vergent power series in g.

Due to the simplicity of our example, the rigorous analy-
sis of its comvergence is in fact very easy. Indeed, our map-
ping (x,y) > (x',y') becomes one—-dimensional after a transi-
tion to the new variahles Q and Q'(=Q(x',y")),

+

Q= 3g2+ 3(1+2)gQ +(1+ z + Zz)Qz. (5.7)

This formula may be complemented by the definitions (5.6).
When we put Q' = Q in (5.7), we obtain the two solutions
(ng_) ) of (5.5) (or fixed points of the mapping (5.6))
from the quadratic equation. Both these roots remain real for
couplings in an interval '
0 0 ~2 y .
g < (52 (=), g(f) (z)), ‘g(e)z (1-2y%(1-2z+ eD”? ), e= 1,
D =4(1+ 2z + 2°)/3 (5.8)
which contains also the point g = 0 in its interior.

8

] e = iy . e

~omar——

— 4 —— ———

P —

Outside the interval (5.8), the complex wvalues of solutions
Qo cannot be reached by the power-series iterations since all
these approximants remain real. We obtain at least an oscilla-
tory divergence, unless we start from some complex initiali-
zation.

The mapping Q-+ Q' (5.7) has an abvious necessary condition
of convergence [0Q°/dQ| <1 and a sufficient condition of diver-
gence [dQ’/dQ| > 1. After an insertion of the explicit for-
mulae and restriction of the couplings to the ''permitted in~
terval” (5.8), this implies that the power-series iterations
never converge to the unphysical fixed point and they

(a) diverge for z2 0 and for the couplings lying in the
interval .

A}

- (D) (1 1 -
(e (2),8, (20 g0 =-(+eVT) %, e-—tor+1,

(5.9)
(b) may converge to the physieal solution otherwise (i.e.,
for the couplings in the interval (5.8) and out of interval

(5.9)).

5.2. The Present Method

The "divergence interval" (5.9) is negative and lies al-
ways in the interior of interval (5.8). Both these intervals
become infinite for a disappearing j-dependence (z-1, gl -
> e g&” + -1/4) in our model kernels (5.4). Thus, we may
conclude that the power-series method definitely fails for
most values of the "permitted" couplings. Moreover, numerical
tests indicate that even an incidence of couplings g in theé
"second permitted" interval (g9 , g{¥ ) leads always to a
quick divergence (caused by our bad choice of the initial va-
lues. In a comparison, our MCF method seems a priori less
dependent on both the couplings and initial values,

An application of our gemeral MCF prescriptions (3.9)+
+(4.6~7) or (4.8) to the particular model (5.3) is very
straightforward and gives the prescription

= {[1+(1-2z)alg-a}/(1-b-za), y'={1-(1-2z)blg-zq}/(1-b-za)

.1
q=(e-1)q, (5.10)

&=—;—(x+2y), b=%(y+2x),
where we have to put e = 1 (this type of notation enables us
to return to eq. (5.6) by using simply e = O here).

In spite of a highly schematic character of our present
example, its numerical behaviour is extremely illuminating.
It does not only illustrate the typical convergence pattern




of the power—series iterations (Table 1, the first column),
but it exhibits also nicely both the re-summation role and
efficiency of the present MCF algorithm (Table 1, the second
column). For the sake of definitness, we have chosen here g =
= 0.05 from within the "convergent" interval (-0.084, +0.023)
of couplings. The Table displays the relative errors | f - )
- f(exact)| /| f(exact)| of the N-th approximant, with f(exact)=
= {-0.0460, -0.0260) for z = 6. A similar picture could be
obtained also for the various other choices of the parameters.

Table 1
A typieal convergence patternm for the power-géries (ES)
and MCEF “iterations

N PS MCF

2 0.40 0.11

4 0.18 0.007 4

6 0.085 0.000 51

8 0.042 0.000 035

10 0.021 0.000 002 4
12 0.010 0.000 000 14

5.3. A Comparison with the Newton Method

In «he numerical practice, nonlinear equations of the type
of our pair of equations (5.5),
Fl(xsy)=01 Fg(x:)’) =0 (5.]])
are often treated by the generalised Newton method. Here, the
corresponding iterative prescription reads

x’={{1+ (1-2)Alg-Ql/(1-B-z4), y’={l1-(1-2)B]lg-2Ql/(1-B- z4)

(5.12)
Q - x?% 4 Xy + y2, A =x+2y, B =y + 2x,

In accord with the theorem of Kantorovich (cf.’¥ , parag-
raph 20.2-8), the convergence of this mapping is quadratic
(this+is a reward for its rather complicated derivation) and
may be guaranteed under very weak assumptions. In the present
context, the underlying quasilinearization of the nonlinear
mapping is in fact simulated in a simplified manner (formulae

-
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of the type (5.12) will hardly be available in the realistic
calculations).

In accord with the numerical example as given in Table 2
(computed at g = -0.5), the prec¢ision of our quasilineariza-
tion is not bad. Indeed, the first few MCF and NKA iterationmns
produce a quite comparable precision. Moreover, the NKA eq.
(5.12) coincides with our MCF eq. (5.10), provided only that
we modify it slightly and choose e = 2 there.

Table 2

The similar comparison of the MCF results with the
Newton — Kantorovich algorithm (NKA) (in the domain
where the power-series diverges)

MCF NKA

2 0.10 0.68

3 0.038 0.24

4 0.010 ' 0.052

5 0.003 0 0.003 8

6 0.000 84 0.000 024

7 0.000 24 0.000 000 11
8 0.000 069 0.000 000 078

We may summarise that equation (5.10) is a common form of
the above three different iterative prescriptions. A priori,
we may expect therefore that the properties of our MCF algo-
rithm will lie somewhere in between the above two extremes
and "interpolate" somehow between the "very simple" power-
series iterations and the quadratiecally convergent Newton-
Kantorovich prescription.

In practice, the number of iterations will always remain
restricted., Then, our MCF method may prove useful due to its
combination of efficiency and universality with simplicity.
In fact, even our simple example enables us to notice that
at a fixed and finite number of iterations N, an optimal va-
lue of e (giving the best results) remains often close to one
for small N and moves towards two slowly. This is illustrated
in Table 3 and represents our last argument here. Of course,
the final evaluation of the MCF technique may only be made
after its future use in the realistic computations.

11



Table 3
The N-dependence of the optimal values of e in eq.{5.10)

(a) z = 1.1 and g = —-420.0
N 2 4 6 8 10 12 14 16 18 20
1.0 1.0 1.1 1.2 1.4 1.6 1.9 2.0 2.0 2.0
(b) z = 0.1 and g = -2.0 '
N 2 3 4 5 6 7 8 9 10
e 1.2 1.5 1.8 1.8 2.0 2.0 2,0 2.0 2.0
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TrcTemaTHILC KN MTEPAUNOHHNN NGRXOA K YPasHennaM Tana Jloy o

Henuvemie CHHIYAAPHWE KHTErpancheie ypassenva tuna floy nosenmorca npu
onucatsin #- N aMnnMTyA PacCesHMa NpH PENATHBUCTCKUX IHepruax. OGuKHOBEH-
HOE HTEPAUMONHOE PeNIEHHE DACXOAMTCR M HE flaeT QOCTATOUHO TOUMEX peaynbTa~
TOB Aame NpH NpumeneHwu annpoxcumauuu {laga. B cravse npepnaraeTcs Hoswh
NOAXOA, NOCTABNeHHIA Ha NPUGNUIUTEARHON AMHEADUIILAN YPIBHEHMA W BERYEMH
K PAsBUTHIO AMAMTYQ B PODME MaTPDHuUHEX uenwux spobei. Mpoctoll npumep noxa-
WBAET, 4TO HORMA METOA YAYUSIAET CXOAMMOCTS CTAPWEro NQRXOAd M IHAUMTENLHO
pacwmpreT obnacTs ero cxoaumocTH. C apyrof CTOPOHM MOKA3HBALTCR ero He
IKBMBANEHTHOCTS Gonee CROmHOoMY MeToAy HwotoHa - Kanroposuua. B Gyaymux,
Gonee PEAnUTTHUECKNX NMPUMEHENAAX METORA BOIMONHO OWMAATL NOBMWEHME Hapew—
HOCTH pPesynsTaros. ’ . :

PaGova sunonnena 8 NaBopatopuy TeopeTHueckod duiamuu DHAH. ‘

Cootinenne Oﬁswm NHCTHTYTS AZCPHBIX Hecnenobanmit. JyGus 1987
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A Systematic Iterative Approach to the Equations of Low Type i
in the formallsm described, e,g., by Kopaletshv}1} and Machavariant
{Ann. Phys. (N.Y.) 1/5, 1 (1987)), the relattyistic plon = nucleon scate
tering amplltude may be speclfled by means of a non)inear and singular
Integral equatien of the Low type. |n the present paper, a new lterative
approach to Its solutlon Is proposed. {ts essence lies In a repeated for- |
mal simplificatlon of the equation {vla an Introduction of the effective
interaction) accompanjed by a representation of the simplified ampl{tude
in a generallzed contInued~fractiona) form, In this way, the prectston .
of the approximations may always be kept under control, Presumahly, the
method will be able to {mproye or eyen replace the standard }tepatlon
procedures based on the use of Pade approximants « this +s demonstrated
on a simple schematic example numerically, )
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