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I .. INTRODUCTION 

Integral equations oi the Low type 

F V + FGF + (I . I) 

may be encountered, e.g., in the three-dimensional inverse­
scat tering formal i sm / V • In accord wi th Ref -. /21 , the most 
important and pr.omising application uf these equations lies 
in the relativistic description of rr-N interactions. In such 
a context, the precision must be high and the realistic com­
putations may easily exceed the capacity of comput.e rs , A non­
linear structure 'Of (1.1) leads to a number of difficulties 
as follows. 

(a) ~e need a mathematically well-founded conversion uf 
integral equation int-o a sequenc-e of its nume.rica l l y so l.vab l e 
approximate forms. In particular~ a standar~ replacement of 
integrations by the finite summations ­

N 

rdu f(u) L f(Vi)W i 
N -+ oe 

(1.2) 

with the "grid points" Vi and the "wei3ht coefficients" w/31 
must be done properly. 

(b') The resulting finite (N-dimensional) matrix -equation 
with the quadratic nonlinearity remains still fairly compli­
cated. An iterative method ~f its solution is curr~ntly emp­
loyed. Unfortunately, the sequence of approximants of the ty­
pe of power series, e.g., 

F[l] = v, "F [ 2] = V + VGV +, ' • ~ (I .3) 

. f' d . d . P d t . /4- 711S o ten 1vet'gent an necess1tates a , a e resumma 1.on • 
(c) Of course, a many times repeated gene~ation of appro­

ximants (1.3) is a difficult task even on thB computer, es­
pecially due to the rather complicated structure of the rea­
listic kernels G. For illustration, we shall consider here 
the "homework" example of the rr-N kernel . ' 

01"\(,,. •• 11'. ~'4'iliJi\ RllC1'BTYf r
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G = S + c,	 ( 1 .4)• 
where S is ~ingular and C mediates a coupling to alI the 
other part ial waves 12,8 ! . 

In the pionic physics context, the whol~ power-series ­
Pade approacq to (1.1) is not entirely satisfactory. Indeed, 
the relativistic and sometimes quite small cQrrections are 161 

evaluated, but the computational errors remain rather large 
New and more effective methods are also needed for a very fea­
gibility of the fully consistent calculations incorporating, 
e s g , , the complete crossing symme t ry , etc. l 2I • . 

In the present paper, a new non-power-series method will 
be proposed and discussed in some detail It is. intended toL 

proc eed in an Ltera t í.ve manner which f ac i Li t a tes a control 
of precisíon in. each step. 

2~ THE EFFECTIVE-INTERACTION ITERATIONS 

2.1. The Mixing of Partial Waves , 
In accord with the homework-problem structure (1.4) of. the 

kernel, our integral equation 

F = V + F C F+ + F SF +,	 (2. 1) 

has a "small" but rather complicated component FCF+. Its omis­
sion ~r incorpóration into a modified or "effective" ínterac­
tion 

w V + FCF+	 , (2.2) 

is therefore a reasonable approximatiC?n. The new form of 
eq , (2. I) 

F = W + FSF +	 (2.3) 

becomes also easier' to solve. Thus, after an arbitrary choi­
ce of an initial apPfoximation (say, F=O, W=V), our overall 
,computational algorithm may proceed in an iterative manner: 

(a~ solve (2.3) 
(b) improve W (2.2) 
(c) return to (a) if necespary. 
The same perturbative strategy may also be applied to the 

gen~ral Low-type equatio~ with the structure" 

2 

F = V + F C ( 1 ) F+ +". . . + F C ( t ) F+	 (2.4) 

and with a decreasing influence of the separate components 
on the final resulto 

2.2. A Singularity of the Kernel 

In the realistic rr-N problem, the partial-wave m1x1ng 
(1.4) is important and must be calculated by the above-men­
tioned iterations. In each step, we have to solve (2.1) re­
d~ced to an integral e~uation 

F ( x , y) = V ( x, y) +	 f u 2du v 2dv F ( x, u ) S ( u , v) F *( y , v) (2.5) 
o 

with the standard y-dependent and diagonal singular kern€l 
of the type 

S(li, v) = u-2 õ (u - v) S(n L S (u ) = 1/ { E (u ) - E (y) - i.l ] . (2.6) 

Here, the symbol 

E(z) = (M~+ z2) 112 +	 (M: + z·2)Y2 

. /21denotes t he energ1es '
 
We may decompos~ also the Kernel (2.6),
 

SeU) = SeU) + PS(u), seu) = i.ô(E(u) - E(y». (2.7) 

This is the well-knowrt fotmula where the first term (delta­
function) is complemented by the component which requires a 
sp~cial, so-called principal-value integration. 

Nbw, we are prepared to repeat the trick of the preceding 
paragraph and include temporarily also the se~ond term of 
(2.7) into an effective interaction, 

,00 

Veff(x,y) = V(x,y)+P r F(x,u)(E(u)- E(y))-lF*(y,u)u 2du. (2.8)r' 
o 

With this effective	 potential ahd with the delta-function 
kernel, we may re-write finally our integral Low equation as 
an algebraic one, 

eU	 ,+
F(x,y)=V (x,y)+F(x,Y)'s(y)F (y,y).	 (2.9) 

3 



This equation possesses an easy solution for any discrete 
set of the integration points 

(o) (o) .. 
X ==, x . and Y= Yf . j 1, J == 1, 2" .. , No (2.10)

1 

entering, say, the definition of the cross sections. 

3.	 QUADRATIC NONLINEARITY AND,THE CONTINUED-FRACTIONAL 
ITERATIONS 

• 
3.	 I. On-Shell Amplitudes and the Analytic Corrt i.nued 

Fractions 

Provided that we choos~ x = y and put a =.F(y,y) = b+ and 
V ef f v = (y,y) in (2.5) and in its hermítean conjugate, the 

"on-shell amplitude" F = a becomes defined by the exactly sol­
vable pair of relations (2.9), 

a ==	 v + ígab, b == v+ - ígab, (3.1) 

We may formulate immediately the following simple observa­
tions. 

(a) In general, the solution is not unique. In (3.1), the 
input interaction v = i~ leads to the pair of exact roots 

a { 1 I i (1 + 'sqrt(1 - 4g w)/(2g)	 .. (3.2) 

a {2 I 2i w/(1 + .sqrt (1 - 4 g w) . 

Only	 the second one disappears in the limit of zero interac­
tibn	 and may be considered physical. 

(b) The iterations (1.3) remove the ambiguity in general. 
Here, they reproduce correctly the second root, F(x,x) = a {21, 
at least for the sufficiently small interactions V. This re­
presentE a physical support for the use of iterations ip spi­
te of their actual divergence /5/ • 

(c) The divergence cured by the Pade technique (cf. al-" 
90/4,6,7 / ) is obviously related to the magnitude of G, V, or 
I gw\ > 1. In our particular example, the' problern may easily 
be circumvented by a transition to the well-known analytic 
continuedfractional form of 'the physical root a{21, 

F(x, x) == iw/(1- gw/(1- gw/( ... »).	 (3.3) 

This is a rather trivial special case of a general Pade appro­
ximation. Nevertheless, its specific iterative structure may

'. 
4 

;.. 

be generalized in various ways. One of them is to be described 
here. 

3.2. The Matrix Equation and Continued Fractions 

A strâightforward derivation of th~ continued-fractional 
formula (3.3) may be based on a quasilinear re-interpretation 

L." 
~	 

+ 

t ~ 

F (1 - OF ) == V . (3.4) 

of our original equation. From its combination with its hermi­
tean conjugate, i.e., from the pair of relations 

F == V/ (1- CF +) F~:::: (1 - FO+)-l V+ (3.5) 

we may formally elimina~e F+ and obtain 

F == V/(-l - O (1 - FO+)V+. (3.6) 

The iterations imply 
1 

F == V 

1- 0----­
1 

1 ­ V 
1 

1 - O 
1- V 

1 ­

which resembles formula (3.3) 
continued fraction (MCF /9/ ). 
a repeated mapping 

+ +'(F,	 F ) ~ (F', F ) ~ 

or	 iterative algorfthm 

1
 
1
 

and forms the so-called matrix 
By its .def í.n í t.Lon, it is mer eLy 

(3.8) 

F'= V/(1- H), H == or ", .F+'== (1_H+)-1 V+, H+ == FO+ 
...."	 (3.9) 

with	 the trivial initial choice of (F,F+) or (H,H+) = (0,0). 

4. SINGULAR KERNEL AND THE MODIFIED 'NCF ITERATIONS 

Due to the definition of the principal value/w , the ap­
proximate integration in (2.8) must pr~ceed via à summation 
over points which are distributed symmetrically around y. 

5 
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", Thus, w,e are forced to r ep l.ace our original mesh of grid 
points (2.10) by another set 

( 1) (O)
 
Xi (f: x , j=1,2, ... ,N ) ' i,=,1.2, ...• N,1
j o 

whicb depends on y in general. This new set ·defines 
,1iary effective interaction matrix (2.8) as a sum 

N 
1
 

V'~,rr = V(x(.O), y(,OJ) + L ·F(x(,o) u(1) )w(1)
 
lJ 1 J m= 1 l' m·m


• 
(1) (o) (1)
 

xS(U )F*(Yj' u~-), i, j 1, 2, ...• No '
 m 

where the "new" matrices F(s,t) contain arguments s 
longing to the two different discrete sets (4.1). 

(4.1) 

our auxi­

( 4 •2 ) 

and t be­

In accord with our preceding discussion, the principal­

value grid poi~ts u in (4.2) depend on the external index j.
 
Hence, the actual discrete form of our C = O equation (2.5)
 
reads
 

NO 1 
- (j) + 

F ij = V ij +L Fim Sm(j )Pm F mj, NO 1 = NO x (N 1 + 1), 
m=! (4.3) 

where a formal unit (j-dependent projector p(j) ) is introdu­
ced tü compensate an extension of the summation to a union of 
all the (j-dependent) subsets of the grid points (4.1), com­
plemented also by the No "externaI" points y themselves. 

In.the power-series iterative approaches, the latter const­
ruction Ieads usually to a rapid increase of the dimensions. 
Hence, it is reasonable to keep it under control by a ca~eful 

specification of the suitable interpolation technique. Let it 
be mediated by some y - independent N0 1xNo - dimensional mat­
rix Z transforming a function at points x(O) into its values 
at the union I x(O) • u (1, 1) , ••• , u' 1, No ) I . Then, our Low 
eq. (4.3) will contain the kernel-term summation 

NO 1 No NO 

m: 1 FimSm(j)Fj~ = k: 1 n: 1 F i k G~j~ Fjn (4.4) 

NO 1 
.(j ) ~ ( j )
 

G = k Z mkSm (j) P tn Zmn.
 
kn '\ fi = 1 

We may summarise that the singularity and interpolation modi­
fy m~rely our propagator q (to a non-diagonal forrn) and give 
our; equation its final mat r í.x forro 

F = V + FH, (4.5) 

where 
N 

O (j ) 
H .. ~ L G ik F JklJ~] ('4.6)k = 1 

I, The latter expression differs from its matrix-produét pre­" . 
decessor of sect. 3. It is an element-by-element product for­
med directly from the matrix elements of the matrix F and of 
th~ set of matrices G. 

It remains for us to use the hermi~ean ~onjugation 

No
 
+ * (i)


H ij = L F ik G jk (4.7)k = 1 

and recall the MCF iterations. Alternatively, we may employ 
also a MCF definition with the slightly modified recurrenc~s 

F'= V/(l- H), F * .. = v* / (1 - H* ) 

No NO 

L r-( j) F * H.o+: G ( j ) * F
H ij \J ik jk ! lJ = L ik jk

-k = 1 k = 1 

* i.e., an iterated mapping (F;J' , Fko ) 4 (F' ,
.• t !li n 

the complex conjugate pairs Df matrices. 

5. AN ILLUSTRATIVE EXAMPLE 

(4.8) 

* F op ) 4 of , 

In accord with all our preceding considerations and with 
eq. {4.4) in particular, we may write Dur general Lowequa­
tion (I. I) in the NxN - dimensional matrix form with the j ­

~, dependent kernel, 
N 

F G{j) F+.'].4 F. =V. + L m, j =: 1,2, ... , N.mk kn njrnj mj 'k.n= 1 (5 •.1' ) 
." 

For the separable potentials Vmj = < m] a> g<a \j > and ampI í.tu­
des 

F mj <mia> f j <ai j > (5.2) 

we may reduce the matrix equat í on (5.1) to a "vectorí.a l," one , 

6 7 



N 

f, g + ~ f M(j) r ' = 1,2, ... ,N (5.3)
J k kn n'

k, n= 1 

This is suitable for numerical tests. 
For the sake of definitness~ let us consider now a schema­

tic mode! characterised by the particular two-dimensional and 
one-para~etric family of kernels 

1 1/2 
,M (2) = zM (1) ,M ~ 1) = (1/2- ) , z E- (-00, oe ).

1 (5.4) 

After such a choice, our eq. (5.3) ac~uires the form 

1'1 = g + Q (f1 ' f2 ) f 2 = g + Z Q (f l' f2 ) , Q (x, y ) = x 2 + xy + Y 2 (5.5) 

the solutions of which ~ay De understood veryeasily. 

5~t. The Power-Series Iterations 

Our very way of writing equation (5.5) is a direct inspi­
ration Df the standard power-series iterative ,algorithm 

x"=: g + Q(x,y) y"=g+ zQ(x,y) (5.6) 

which is usually initiali~ed by (x,y) = (0,0)/4-?~ For the 
suffici~ntly small-couplings g ~O, it should generate a con­
vergene power series in g. 

Due to the simplicity of our exam~le, the rigorous analy­
sis of its convergence is in fact very easy•.Indeed, our map­
ping (x,y) ~ (x',y') becomes one-dimensional after a transi­
tion to the new variables Q and Q'(=Q(x',y'», 

Q .. = 3 g 2 + 3 (1 + z) g Q + (1 + Z + Z 2 ) Q 2. (5.7) 

This formula may be complemented by the definitions (5.6)w 
l~en we put Q' = Q in (5.7), we obtain the two solutions 

(Q~/-) ) of (5.5) (or fixed points of the'mapping (5.6» 
from the quadratic equation. Both these roots remain real for 
couplings in an interval 

g G- ( ~ (~) (z), g ~) (z», "g ~) = (1 - z f 2 
(-1 - z + eD Y2 ), e = ±i , 

D = 4(1 + Z + z2)/3 (5.8) 

whích contains also the P?int g = O in its interior. 

1l 

" 

I 
i 

, I 

J 

~
 
I 
I
 
I
 

I 
I
 
I
 
\ 
~ 
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Outsíde the interval (5.8), the complex values of solutions 
Qo cannot be reached by the power-series iterations since alI 
these approximants remain real. We obtain at least àn oscilla­
tory divergence, unless we start fróm some complex initiali ­
zation. 

The mapping Q~ Q' (5.7) has an obvious necessary condition 
of conver'genc e raQ'/aQj < 1 and a suff í.c ent cond í t í.on of diver­í 

gence ra Q" / aQ I > I. After an insertion of the explicit for­
mulae and restriction of t he. couplings to the ,llpermitted in­
terval" (5.8), this impli~s that the power-series iterations 
never converge to the unphysical fixed point and they 

(a) diverge for Z2 O and for the couplings lying in the 
interval 

(1) (1) (1) -2
 
g E- (g ( z), g ( z )), g '= - (1 + e ,TZ) , e = -1 ar + 1, (5.9)
- + e 

(h) may converge to the physical solution otherwise (i.e., 
for the couplings in the interval (5.8) and out of interval 
(5.9». 

5.2. The Present 'Method 

The "divergence interval" (5.9) is negative and lies aI:'" 
ways in the interior of interval (5.8) .. Both these intervals 
become infini te for a disappearing j-depend'ence (z ~ 1, g~ 1) ~ 
~ 0Cl g~1) ~ -1/4) in'our model kernels (5.4). Thus, we may , 

conclude that the power-series method definitely fails for 
móst values of the "permitted" couplings. Moreover, numerical 
tests indicate that even an incidence of couplings g in thé 
'''second permitted" interval (g~O) ,g~1) ) leads always to a 
quick divergence (caused by our bad choice of the initial va­
lues. In a comparison, our MCF method seems a priori less 
dependent on both the couplings and initial values. 

An application of our general MCF prescriptions (3.9)+ 
+(4.6-7) or (4.8) to the particular mod~l (5.3) is very 
straightforward and gives the prescription 

x ' = H1+ (1 - z) a] g - q li (1 - b - za ) , y" '= {[ 1 - (1 - z) b] g - zq li (1 - b - za) 

(5. la) 
q,=(e-1)Q, a = 2"e 

(x + 2y), b = ~ (y + 2x),
2 

where we have to put e = 1 (this type of notation enables us 
to return to eq. (5.6) by using simply e = O here). 

In spite of a highly schematic character of our present 
example, its numerical behaviour is extremely illurninating. 
It does not only illus~rate the typical convergence pattern 

9 
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of the pqwer-sertes iterations (Table 1, the first column), I 

Ibut it exhibits also nicely both the re-summation role and 
efficiency of the present MCF aleorithm (Table 1, the second 
column)~ 'For the sake ~f definitness, we have chosen here g = I 
= 0.05 from within the "convergent" interval (-0.084, +0.023) 
of couplings. The Table displays the relative errors I f - , 
- f (exact)\ /1 f (exact) 1 of the N-th ápprox ímant , with f (exac t )> 
= (-0.0460, -O~0260) for z = 6. A similar picture could be Jobtained also for the various other choices of the parameters. 

• Table 1 1
lA typieal convergence pattern for the power-séries '(RS) 

and MCF iterations 

N 

2 
4 
6 
8 

10 
12 

5~3. 

PS ,HCF 

1 
0.40 O. 11 t 

0.·18 0.007 4 I0.085 0.000 51 
. ! -0.042 0.000 035 

0.021 0.000 002 4 I0.010 0.000 000 14 I 

I, 
A Comparison with the Newton Method 

In ~he numerical practice~ nonlinear equations of ·the type 
of our pair of equations (5.5), 

FI (x , y) == O, F 2 (x, y) == O (5. 11) 

are often treated by t,he generalised Newton method. Here, the 
corresponding iterative prescription reads 

x'==l[l+ (l-z)A]"g-Q l/(l-B-zA). Y'==I[l-Çl-z)E]g-zQI!(l-B-zA) 

2 2 (5.12)
Q =x +xy+y. A == x + 2y. B == y + 2x. J 

In accord with the theorem of Kantorovich (cf. I~ , parag­
raph 20.2-8), the convereence of this mapping is quadratic 
(this,is a reward for its rather complicated derivation) and 
may be guaranteed under very weak assumotions. In the present 
context, the underlying quasilinearization of the nonlinear 
mapping is in fact simulated in a simplified manner (formulae 

" 

10 

of the type (5.12) will hardly be available in the realistic 
calculations). 

In accord with the numerical e~ampl~ as giv~n in Table 2 
(computed at g = -0.5), the precísion of our qua~ilineariza­
tion is not bad. Indeed, the first few MCF and NKA iterations 
produce a quite comparable precision. Moreover, the NKA eq. 
(5.12) coincides with our MCF eq. (5.10), prov~ded only that 
we modify it slightly and choose e = 2 there. 

Table 2 
The similar comparison of the MCF results with the 
Newton - I~ntorovich alg~rithm (NKA) (in the domain 
where the power-series diverges) 

N MCF NKA 

2 0.10 0.68 
3 0.038 0.24, 
Li 0.010 I 0'.052 
5 0.003 O b.003 8 
6 0.000 84 0.000 024 
7 0.000 24 0.000 000 11 
8 0.000 069 0.000 900 078 

We may summarise that equation (5.10) is a common form of 
the above three different iterative prescriptions. A priori, 
we may expect therefore that the properties of our MCF algo­
rithrn will lie somewhere in between the above two extremes 
and "interpolate" somehow between the "very simple" power­
series iterations and the quadratically convergent Newton­
Kantorovich prescription. 

In practice, the number of iterations will alwBYs remain 
restricted. Then, our MCF method may prove useful due to its 
combination of efficiency and universality with simplicity. 
In fact, even our simple example enables us to notice that 
at a fixed and finite number of iterations N, an optimal va­
lue of e (giving the best results) remains often close to one 
for small N and moves towards two slowly. This is illustrated 
in Table 3 and represents our last argument here. Of course, 
the final evaluation of the MCF technique may only be made 
after its future use in the realistic computations. 
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Table ;3 

The N-dependenoe of the optimal values of e in eq. (5.10) 

(a) z = 1.1 and g -420.0 

N 2 4 6 8 10 12 14 16 18 20 


e 1.0 1.0 1.1 1.2 1.4 1.6 1.9 2.0 2.0 2.0 

(b) z = 0.1 and g ::: -2.0 

N 2 3 4 5 6 7 8 9 10 

e 1.2 1.5 1.8 1.8 2.0 2.0 2.0 2.0 2.0 
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3HOMn H. E2-8]-67S 
CMcTeI4'HI4'!e~ MTepall.MOHHWiI n~ I< ypaBHeHMJlM THna lloy 

HenMHeAHIoIe CHHrYNlpHiole HHTerpanbHlole ypaBHetlHR nma lloy noAMIIIITCJI npM 
OI'IMCaHMIf ,,- N aMnnKT¥A pacCeaHMA "PM penJlTMBMCTCKMX 3HeprMRX. 06wI<HOBeH-
HOe MTepaqMOHHOe pelleHMe paCXOAMTCR M He AaeT AOCTaTo<IHO TO..HIoIX .peaynbTa­

• I 	 TOR Aa*e npM nPHMeHeHHM annpOKCMMal.\MM flaA3. B CTaTbe npeAOClraeTCR HOawA 
nOAXQA. nocTaaneHfIIIA .... .nptt6.nMaMTeAltHoli IlMHeaj)MlICIl.IMH ypaBHeHMR it BeAYllJ<di 
I( paa8MTJCID CIMIUlMTYA B fOplile 1IoIaTPtt..HIoIX qenHlolx AJ)06eA. l1pocniIA nPHMep ool<a­

~ 
3WBaeT. "TO HO~ MeTOA Yn~eT CXOAMMOCTb CTapwero nQAXQAa If lIHa'tMTenbHO 
paclllMpReT 06nac11o ero CXQAMI4OCTM. C APyr~ CTOPOHW nOltaawaaeTcR ero He

1 31<BHBaneHTHOCTit 60nee cnoMHOHY MeTOAy H~mTOHCI - RaHTopoBH'ta. 8 fiYAY~. 
60Slee pe<llll'lCTM'tecKMl< npHHeHeHMRX ~eTOAa 803140*140 OIllMAaTb no....weHMe HaAe*­
HOCTI4 peaynltTaTOB. 

Pa60Ta BwnonHeHa B na6opaTopMM TeopeTH'teCI<i>A ....3HI(M OMHH. 

Coo&ueM_ ~ .fcmnyra II,lJepKWII IICCII<!JI.OBIIHIUI. Jly&ta 1987 

Zno] 11 H. EZ-87-615 
A Systematic Iterative Approach to the Equations of Low Type 

In the formal hi'll descrtbed, e,g•• by Kopi'lietshvtlt and /'I~ch~VIII'\anl 
(Ann. Phys. (N.Y.) 1/5. 1 (1.987)). the re1llttyhttc pton ... nuc1t!9R $c.t.. 
terlng amplitude ~V,be speclfl~d by mean$ of a nonlinear ~d singular 
lntegral equatlen of the Low type. In the pre$ent paper. a new Iter.tlve 
approach to I t. sol uUon 1s proposed. Hs essence lie, In a f'Bpeat.ed for... 
mal simpl1flcatlon of the equation (Viii! an fntroductton of the dfeGt've 
Interaction) acCOlllpitnfec:t by II representCltton 0,' the s!mpllfIed CItllfIlftude 
In a general !zed contlnued..fr,.ctlonlll form, In thh \/tay. the prects.lcm 
of the approxJllliltlons IIIiIY a.t~ys be kept iJnde, control; Pre$umilbly. the 
method wi Ube able tQ tmproye or even replace the stllndudtteratlon 
procedures ba$ed on the us-e of 'ade appr.oxt"'Clnts " tfltsh ~e/IIOn$tr<tted 
on a slmple$ch~t'c ~~Je numer1clllly, 

.~ 

The Investigation has been performed at the laboratory of TheoretIcal 
Physics, JUtR. 

Co i t J ILCIIU •• ottilie oIoIn\ 1DKt!;Q&e,for N...,.,., ae-h.Dul:Iaa lt8'l 

"" 12 

http:f'Bpeat.ed
http:1987,42.93

