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Relativistic theories of particles and strings are usually for-
mulated either in a manifestly reparametrization invariant form or
by using constraintswith the corresponding lagrangiar multipliers.
However, both approaches are not easy to adapt for describing seve-
ral interacting relativistic particles or unusual strings. In the
first approach one has to find an invariart Lagrangian (nonlinear
and unrelated to the nonrelativistic one), ard in the second approach
some a priori constraints have to be chosen. In Ref. A the relati-
vistic theory of free particles was obtained from the nonrelativistic
one by gauging the linear canonical symmetries of a rudimentary (for-
mally nonrelativistic) bilinear Lagrangian. In this way a standard
gauge theory emerges in which the canonical variables p(‘t),q,('t), §(t)
(Greek characters are used for Grassmann variables) play the role of
"matter fields™ while the Lagrangian multipliers f}(t) act as compo-
nents of a gauge potential /A(t) . Here, we will show that this simp-
le observation reveals the action of a rather general principle of
gauging linear supercanonical symmetries. Using this principle allows
one to congtruct, in addition to all known models of relativistic
particles and strings, quite new theories (the first example is the
theory of massless scalar particles suggested in Ref./1/ ; the
second, highly nontrivial application of the principle, is given at the
end of this paper).
Following the ideas of Refs./2/’/3/

gereral rudimentary lagrangian that is bilinear in canonical variables

consider the following rather

Ly=gmPl4) ~Lh 8P — H,(pe.8).
Here (i, Edq,/d'ti tq,;/u,v =0,4,..,D-1, the index { num-

bers the particles, say, i=1,..., N . The symmetrical matrices g/u
and xp can be diagonalized bty linear transformations of the
canonical variables. Neglecting the new ones corresponding to zero
eigenvalues we obtain 3/‘”, = (—i,—‘.l)...J—ij+_i,.._, +4) . It can
te shown that the quantum theory of the gauge invariant Lagrangian
for one scalar particle (see Ref./1 ) is consistent only for the
Mirkowski signature g/w::(—i,-q-_l, -e.y+4) , otherwise the Hilbert
space of the system has indefinite metrics. In this sense, the gauge
principle implies relativistic invariance. In what follows we use the
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Minkowski metrics é7ﬂy and suppress all contracted space-time

indices /4, V i Lorentz invariance is trivially satisfied every-
where.

The Grassmann variables may be chosen, to some extent, arbitrarily,
and this important observation car be used for describing gpin and
internal degrees of freedom. For simplicity, we consider a collection
Ef, k:i,”.JK. , wWhere §/l'<'

like F¥“, ?:‘ . Introducing the notation

. Y= (Piqy o PuGn B ---$x) 5

we rewrite Lo in the form
L, :é"lFTC(at—'Ho)W +£3¢(P:%). (2)

Here ffo is the supermatrix of the bvilinear form fJo(P;$,§ ),

and C is easily derivable matrix (C2 =-_ﬂ,) . The last term

in Eq.(2) is important for deriving the btoundary conditions for the

local parameters §(t) , ¢(t) at the ends of the evolution in-

terval, 0< T < 1 (they follow from the invariance of the ac-

tion). The first term in the Lagrangian, depending on the derivative
'thF' is invariant with respect to rigid transformations

8¥ =F,9)¥ , F7C+CF=o0,

i.e. Fe 0Ap(2MIK) (remember that the transposed supermatrix

FT uwust be defired so as to satisfy the relation (F¥)T = 'VTFT ).

The full Lagrangian Lo is inveriant under the subalgebra of
03P(2/V |K) , satisfying the condition

‘[’40, F:] = f{aF: —'F'rfo =0.

Now the gauged lagrangian, that is invariant under the local trans-—
formations FT({(tL ?(t» , can easily be written

are Lorentz vectors,

L=5¥TCO-A)V.

(3)

Here the matrix A is obtained from F simply by substituting
$8) > L), p@) — Alt),

where we call [{‘i‘), )(t)

transformation is quite standard

the gauge potentials. The full gauge

sY=Fw, §A=F +L[FAT.
: 4)

Remark that,due to the commutativity condition L_HO,F] =0 , the
matrix M, can be included in A by a simple shift of the vari-
ables £ and X . In the one-particle case (N=1) the Lagrangian
(3) is, in the usual notation,

L = pg —é_ﬁék _2L£P2 - iAk(‘P?ﬂ_aL;ttikEk; (5)

where z;k == Bk; . This Lagrangian descrites massless spinning
particles,and for K=2 it has been derived in Ref./4/ by using much
wore complicated superfield construction (the general case has been
treated in Ref./B/).

The problem ofquantizing the theory (5) has been treated in
Refs./4/'/5/ in the framework of the Dirac quantization scheme. This
treatment is however incorrect as it uses the gauge choice ZEJ. ,

%k =0 incompatible with the bpundary conditions mentioned abo-
ve. The consistent approach to quantizing such a system was first
introduced by Fradkin and Vilkovdsk§6/ (FV). In the FV approach
the potentials E, A
canonical variables by introducing conjugate momenta, k, x ard
adding to the Lagrangian the "kinetic" terms ke, i®A . This is
equivalent to the gauge fixing cond;’.tions €=0,5\=0

are promoted to the status of the other

(more gene-
ral gauge conditions can bte introduced by adding "potential" terms ,
e.g. ¢ kz ). To understand the necessity of the extended phase
space , consider the gauge theory of the scalar particle. In this
case 6£=§.(t) and the boundary conditions £(0) =4(1) =0
require that

l .
60 = § }a 1) = (dt $(t) =0,
0 4

i.e. flm
like 4 =4
Further extension of the phase space by introducing Faddeev-Popov
ghosts allows one to construct a BRST-invariant Lagrangiar. In such

a "superextended" phase space the standard path integral quantization
with the Liouville measure is possible, All unphysical degrees of

is gauge invariant. This excludes the "obvious" gauges
while the FV preocedure gives a correct gauge choice,

freedom are automatically compensated in & relativistically invariant
manner, and one finally arrives at the correct expressions for rela-
tivistic propagators. (see e.g./7/). By introducing the fields depending
on 1’3 2,2 and ghost coordinates a gauge invariant formulation of
the field theory can te found, such a program for scalar particles
has recently been performed in 8/,

In the string case the index 1t is continuous,we denote it



by 4, 0<3=< 27 . With the fundamental variatles P~ (t,3)
94 (t,8) » §5(t,3) » & =4,2 , the simplest rudimentary

Lagrangian obvilusly is
2

T .
e A2, 22 H N _ i oB
L0=A§d" ib(.t,j), I’a - FCL Z(P +q/ )+2—$o(§o( 2 Eﬁf G‘j fa b
© ' (6)
'=Y g =2 6. . o
where (L = oq/ =09 , z is the Pauli matrix, Writing
"‘{JT= (P g %, §,) 1t is easy to represent Lo in the form
52) and to find its rigid symmetries depending on the parameters §0%

( .
" gr-gvenrv, 5-(3 ), =(30),2-(53),
(1)

(i3], -0 )

WR?
PN\ -¢
2 2
where 'f':t :é({zi ';'1) . The operator ) is acting on
all functiors to the right of it. The ordering of as well as
the form of the matrix § are defined by the closure requirement,
[§,8,1~ &, - Now, defining the gauge potential, A=D,AD_
by the usual substitution, -f; 92; \pi e )i we obtain the
gauge invariant Lagrangian

E=pi =4 b (P igTes) ~h(pyshss) - iXep -iAG 3]
(8)

2

2 J

As usually, the gauge transformations are defined by Eq.(4) where
A>A , F—> 9 . The Lagrangian (8) for the fermionic string
was originally proposed in Refs, for description of the Neveu-
-Schwarz-Ramond superstring. The approach to quantizing the theory-
(8) may be developed in strict analogy to the particle case descrited
atove. The main difference and the principal difficulty is that the
differentiel operator ?
(in a discrete representation it is represented by the set of matri-
ces nicg where n=1,2,3,...). We hope that the transparent
presentation of the gauge structure in string theories found here
will allow one to search for some new and simpler approach to the
difficult problem of constructing field theories of strings.

corresponds to infinity of generators

Finally, consider N particles bound by harmonic forces. The
rudimentary Lagrangian is obviously
*

L, = Piél; _ZLP,;P; “%k:j (C[.z“l;)z; yi=1,..., /- )

By gauging this Lagrangian we come to the corresponding relativistic
theory, Supposing kij =k
rich gauge structure. We write the gauge invariant Lagrangian for
the three-particle case, N=3;

one ottains a theory with a rather

L=zy +7 914‘229.7_ —%84(22""”2) -
~Fh (2 2yl eyl —2 )
~ L b Ryl -2 yE) ~ b (Bt Y g

- Zg(zlgz _2231)- (10)

Here g”, 27 are the canonicel center-of-mass coordinates, y:, Z’"
describe the relative motion of the particles 1 and 2 while ;)zg
are the canonical coordinates of the third particle in the center-

- —of-mass system of the particles 1 and 2. The parameter k is

absorbed in coordinates ii with due rescaling of +t. Considering
the corstraints appearing in Eq.(10) as generators of symmetry trans-
formations, we see that the first constraint generates the usual trans-
lation group 'T'i , the second produces U1~ SO2 rotations while
the rest generate the 503 -transformations. The full gauge group
of the three-particle system is thus

TeU e SO0;

This result can be generalized for artitrary values of N, To obtain

the two-particle Lagrangian one simply sets Y, =Z,=0 in Eq.(10).
Due to the abelian nature of the potentials {; and fl , We are
free to add arbitrary mass parameters P?z and m? . It has to te

stressed that the individual masses of the particles cannot be defined
in this gauge theory.

If the parameters kii
particles of two sorts), the gauge symmetry 50”
pondingly btroken. Our approach can also be used for constructing a

gauge theory of the discrete string (the "linear" system of N par-

are different (for example, we have
is corres-

ticles, i.e. with such harmonic forces that /‘U =k Sli‘il,i ).
Using the standard quartization formalism described atove will

probably enable us to construct a relativistic quantum theory of in-

teracting composite particles including the discrete strings).



Por discussions and questions the author is grateful to A.V.
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Oununnos A.T. E2-87-659
0 kanuGpoBouYHOIl GopMyJIHpOBKE Teopuit

PEeNIITUBHCTCKHX YacCTHL H CTPYH

B paborTe mokasaHO, 4YTO NpHMEHEHHE NPHHUMNA JIOKanu3a-
UK JIHHeHHbIX KaHOHUYEeCKHX CHMMEeTpPHH N03BOJIAeT KOHCTDPYH—
pOBATh DPENATHBHCTCKHE KaNmHGpOBOUHbE TEOPHH YaCTHI H
CTDYH, HCXOAA HS HepenATHBHCTCKHMX. B kKadecTBe npHMepoB
noJsiyueHs! H3BeCTHble JarpaHihaHbl OIA YaCTHl C MPOH3BOJIbHLIM
CIIMHOM M Onsa depMHOHHOW CTpyHbl., [IpemsyioxeHa Takxe HoBas
pelIiTHBHUCTCKasn KanubpoBouHaa Teopua cucTembl N uacTuu,
CBASaHHBIX I'apMOHUYECKHMH CHIIaMH, KOTODYH MOXHO KBAaHTO-—
BaThb MeTomaMM, OOLIMHO NpPHMEHSAEMbIMH [JI1 KBAaHTOBAHHA KallHM-—
OpPOBOYHBIX TeOpUH IoJA.

PaBGoTra BhimonHeHa B JlaGopaTOpHH TeopeTHUYECKOH ¢(H3IHKH
OUSAH.
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Application of the principle of gauging the linear
canonical symmetries is shown to produce relativistic gaud
ge theories of particles and strings starting from the
nonrelativistic ones. A relativistic gauge theory des-
cribing N particles bound by harmonic forces is obtained
which can be quantized by the standard methods.

The investigation has been performed at the Labora-
tory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987




