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Relativistic theories of particles and strings are usually for­
mulated either in a manifestly reparametrization invariant form or 
by using cons~aintswith the corresponding Lagrangian multipliers. 
However, both approaches are not easy to adapt for describing seVe­
ral interacting relativistic particles or unusual strings. In the 
first approach one has to find an invariar.t Lagrangian (nonlinear 

and unrelated to the nonrelativistic one), ar.d in the second approach 
some a priori constraints have to be chosen. In Ref. /1/ the' relati­

vistic theory of free particlea was obtained from the nonrelativistic 
one by gauging the linear canonical symmetries of a rudimentary (for­
mally nonrelativistic) bilinear Lagrangian. In this way a standard 

gauge theory emerges in which the canonical variables pCt)J~(t), S(t) 
(Greek characters are used for Grassmann variables) play the role of 
"matter fields" while the Lagrangian multipliers ~(t) act as compo­
nents of a gauge potential J\(t). Here, we wil~ show that this simp­
le observation reveals the action of a rather general principIe of 
gauging linear supercanonical symmetries. Using this principIe, allows 
one to construct, in addition to alI known modela of relativistic 
particlea and strings, quite new theories (the first example is the 
theory of massless scalar particles suggested in Ref./1/ ; the 
second, highly nontrivial application of, the principIe, is given at the 
end of thia paper). 

Following the ideas of Refs./2/,/3/ consider the following rather 

general rudimentary Lagrangian that is bilinear in canonical variables 

/-f·v il O(.~ (Lo == 3f Y fi. t~ -"2 nCJ(f3 ~ ~ - Ho P/~) ~ ) . (1) 

Here i ;::dq,/dt=. dt.C{.,;)AJV=OJ1) .•.;J)-1, the index 1 num­
bers the particles, say, i=1 , ••• , N • The symmetrical matrices fJf4Y 

and 41",p can be diagonalized by linear transformations of the 
canonical variébles. Neglecting the new ones corresponding to zero 

eigenvalues we obtain 9r v = (-~J-l) •..)-.1.J+..1.,. •• , +.1) . It can 
be shown that the quantum theory of the gauge invariant Lagrangian 
for one scalar particle (see Ref./1/) is consistent only for the 

Minkowski signature f}J4V == (-1.,+.1, •• -J +..1..) , otherwise the Hilbert 
space of the syatem has indefinite metrica. In thia aense, the gauge 
principIe implies relativistic invariance. In what follows we use the 

,Qb'}.CiJbíkUi·i~ll MilCTlrfyY i 
. t!~~Jrt!ittiX ~u:c.'f:.1lonauuÜ ~I 6 t1íSfflrJCTEHA , ~ 
'-~..-- -­



Minkowski metrics jr~y and suppress alI contracted space-time 
indices )A, y 10rentz invariar.ce i8 trivially satisf~ed every­
where. 

The Grassmann variables may be chosen, to some extent, arbitrarily, 
and this important observation car. be used for describing spin and 
internai degrees Df freedom. For simplicity,-st ., k = 1, "".:J K ,where g~ 
like p.,u a" • Introducing the notation 

l s ri 
''o/r == (Pi q,~ .Y.- PK~N $~ 

we rewri t e Lo in the form 

we consider a collection 

are Lorentz vectors, 

• • ··~K) s 

La ::=. i yTC( a, - Ho ) 'Y + t à1:(pi.~t). (2) 

Here H is the supermatrix of the bilinear form Ho(PJ'I-,~)"o 
and C is easily derivable ma trix (C 2 = - .1I. ) • The last term 
in Eq.(2) is important for deriving the boundary conditions for the 
local parametera f (t), lf (i..) at the enda of the ~volution in­
terval, O ~ t ~ .i (they follow from the invariance er the ac­
tion). The first term in the Lagrangian, depending on the derivative 

"ãi;''V ia invariant wi th respect to rigid tranaformations 

Ólf	 ::; F(-f)\f)1f, FTC +CF =0.1 

i. e. F E OjP (2N I K ) (remember that the transposed supermatrix 
For muat be defined so as to satisfy the relation (F"\V)'T=yTF T ) • 

The	 full Lagrangian Lo is Lnve r í.anü under the aubalgebra of 
Ojp(2N IK ) ,satisfying the condi tion 

'[Ho• F] == HoF -FH o =0. 
Now the gauged Lagrangian, that is invariant under the local trans­
formationa F( f(-t) I lflt)) ,can eaaily be wri tten 

L = i v "c (dt. -A )"lf.	 
O) 

Here	 the matrix A is obtained from F aimply by aubatituting 

f (t )	 -? e(t), cp (i) -+ ?dt:), 

where we call trt:) J ). (t) the gauge potentiala. The full gauge 
tranaformation is quite standard 

S1f=Fo/ , &A === F + [F) A] . 
(4 ) 

.2 

Remark that,due to the commutativity condition [Ho,F]==O , the 
matrix tí o can be included in A by a aimple shift Df the vari ­
ables e and À • In the one-partlcle case (N=1) the Lagraneian 
O) is, in the uaual notation, 

L = pi - t ~k ~k -f !p2 - iÀ k (Psk ) -l ~t ~"c. ~k, (5) 

I<P where lík;:::- eki.. • Thia ~agrangian describes massless apinning 
particlBs,and for K=2 it has been derived in Ref./4/ by using much 
more complicated superfield construction (the general case has been 
treated in Ref./5/ ) . 

The problem ofquantizing the theory (5) haa been treated in 
Refa./4/ , / 5/ in the framework Df the Dirac quantization acheme. This 
treatment is however incorrect as i t usea the gauge choice t =- 1 , 
~k =O incompatible with the bDundary conditions mentioned abo­

ve. The conaistentapproach to quantizing such a system was first 
introduced by Fradkin and VilkovdakÇ6/ (FV). In the FV approach 

the potentials t, ~ are promoted to the status Df the other 
canonical variables by introducing conjugate mOTenta. k, ~ and 
adding to the Lagrangian the "kinetic" terms ke i se í\ • Thia is 
equivalent to the gauge fixing cond~tiona i=o;~=o (more gene­
ral gauge conditions can be introduced by adding "potential" terms , 
e.g. C k2 ). To understand the necessity Df the extended phase 
apace , consider the gauge theory Df the scalar particle. In this 
caae óf = j(t} and the boundary conditions f(O) = t(1) =0 
require that., l. 

beCO) =: S SeU: t (t) = fcit f (t ) = o , 
o a 

L e. ! lO) is gauge invariante Thia excludes the "obvioua" gauges 
like t ~j while the FV procedure gives a correct gauge choice. 
Further extension Df the phase space by introducing Faddeev-Popov 
ghoata allowa one to construct a BRST-invariant Lagrangian. Ih auch 
a "auperextended" phaae space the atandard path integral quantization 
with the Liouville measure is possible. AlI unphysical degrees Df 
freedom are automatically compensated in a relativistically invariant 
manner, and one finally arrives at the correct expressions for rela­
tivistic propagators. (see e.g./7/). By introducing the field~ depending 
on ~'" J t )A and ghost coordinates a gauge invariant formulation of 
the field theory can be found, such a program for scalar particles 
has	 recently been performed in/S/. 

In the string case the index i is continuous,we denote it 

3 



by -1, o ~ 1 ~ 27T • With the fundamental variables p.l" (i;,~) By gauging this Lagrangian we c.ome to the corresponding relativistic 
Cf,//(t,1) , .s~ (t,~) , « =iI 2 ;, the simpleat rudimentary theory.. Supposing k i j = k one obtains a the.ory wlth a rather 

Lagrangian obvilualy is
 
27 • • .
r --f>.' (2 l. to oI~ ~12 Z.

Lo =} d·j to (t, j), cJ.,o = PCJ..- - '2 P +q; ) +2~o( t", -2 5lJ( 6 3 ;>~ , 

'0 (6 ) 

where ~' == d q" == Óq." b 5 is the Pauli mat r í x, Wri ting1

V T 
=: (p ~ ri t.a) i t is easy to represent Lo in the form 

.(2) and to find its rigid symmetries depending on the parameters f(~~ 

f(~) (d± O) _( àO) _(1. O)'
~ '0/ = C;1f = .P+ FP_ 1V, ])± = O 11 ~ d+ - 01 1 à_ - O () , 

'\ d (7 ) 
_ -f 'f . = tz f , "'== f+o+ f-+ O =-i cf,-'P:.

(
O 

1 

F- (H) , f (f, fJ, t -f-)+~fJ, 'f ('f, !~~(~ fi) 
i f ~-~ 

where ft:=::' 2. (f2 ± +,) . The operator à is acting on 
a Ll, functior.s to the righ!.. of i t , The ordering of ~ aa well as 
the form of the matrix f are defined by the closure requirement, 

[Si S J~ ~ . Now, defining the gauge potential, A ==1)+ A·J)­
J 2. ;$ 

by the usual substitution, f~ ~.fi.) \fi. ~ ? L..J we obtain the 
gauge invariant Lagrangian 

';;f::=. fi -fef(p~~/2+ i~Tb~~) -l2(P~/+t~T'f/) - i):r~.p -i~'T'G3'~~~ 
(8 ) 

As usuàlly, the gauge transformations are defined by Eq.(4) where 
A ~ v4 , F ---.,. ~ • The Lagrangian (8) for the fermionic string 

was originally proposed in Refs./9/ for description of the Neveu­
-Schwarz-Ramond superstring. The approach to quantizing the theory· 

(8) may be developed in strict analogy to the particle case described 
above. The main difference and the principal difficulty is that the 
differential operator Ô corresponds to infinity of generatora 
(in a discrete representation it is represented by the set of matri ­

ces ni U2. where n=1 ,2,3, ••• ). 'IIe hope that the transparent 
presentation of the gauge structure in string theories found here 
will allow one to search for some new and simpler approach to the 
difficult problem of constructing field theories of strings. 

Finally, consider N particles bound by harmonic forces. The 

r rich gauge structure. We write the gauge invariant Lagrangian forI 
! the three-particle case, N=): 

· · , 1 D z. 2­eL =: Z!:J + r f ~{+22~2. -2'(..1(~ +-.M )f, -1 e2. (-ê/' + ~: + 'tt + H; - ~z._ m2.) ­

1 4 D (' 2, 2 2. 2. D( )- 2" t.j' ~, + ~i - e; -H:J. ) - l--'f ~1 rz' + !di 'J:z. ­

- e5'(73,~2. -22Y1)· (10) 

Here ~)f, 2)1 are the ca non.í ce-L center-of-mass coordinates, ';j;, Zi 
describe the relative motion of the particles 1 and 2 while ~:) 2~ 

are the canonical coordinates of the third particle in the center­
. -of-mass system of the particles 1 and 2. The parameter k is 

absorbed in coordinates ~l with due rescaling of t. Considering 
the cor.straints appearing in Eq.(10) as generators of symmetry trans­
formations, we see that the first constraint generates the usual trans-

La t í.on group rr':t. ' the second produces ~ ...... S 02 rotations while 
the rest generate the 503 -transformations. The full gauge group 

of the three-particle system is thus 

~ @ Ui 81 5°3 " 

This result can be generalized for arbitrary values of N. To obtain 
the two-particle Lagrangian one simply sets ~e: = Z!:;z. == O in Eq• .< 10). 
Due to the abelian nature of the potentials .[1 and /2. ,we are 
free to add arbitrary mass parameters t1~ and m2. • It has to be 

stressed that the individual masses of the particles cannot be defined 

in this gauge theory. 
If the parameters k.. are different (for example, we have 

LJ 
particles of two sorts), the gauge symmetry SOl/ is corres­
pondingly broken. Our approach can also be used for constructing a 
gauge theory of the discrete string (the "linear" system of N par­

ticles, Le. with sue h harmonic forces that kij =k S/i.-il, i ). 

Using the standard quar.tization formalism described above will 

probably enable us to construct a relativistic quantum theory of in­

~ teracting composite particles including the discrete strings).rudimentary Lagrangian is obviously 
"- • I 1 k 2. •• -1 A/LO -P,'t-.-2:Pi,Pi-2: ij(Cf,,-lJ,j)' ~j- )o._,'V· 

(9 ) 
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Efremov, A.P.laaev, V.K.Ivíitryushkinand. V.I.Tkach.
 

References 

1.	 Fi1ippov A.T. - Jllffi Rapid Communications, 1987, N3 (23), p.5. 

2.	 Berezin F.A., Marinov M.S. - Pia'ma v Zs. Expt1. Teor. Fiz., 
• 1975, 21, p.678. 

3.	 Casa1buoni R. - Nuovo Cim., 1976, 33A, p.389. 

4.	 Brink L., Di Vecchia P., Howe P. - Nuc1. Phys., 1977, B118, p.76. 

5.	 Gershun V.D., Tkach V.I. - Pis'ma v Za. Expt1. Teor. Fiz., 1979, 

29, p.320. 
6.	 "Fradkin E.S., Vi1koviskyG.A. - Phya.Lett., 1975, 55B, p.224. 

7.	 Henneaux M., Teite1boim C. - Ann. Phys., 1982, 143, p.127. 

8.	 Neveu A., West P. Phys.Lett., 1986, 182B, p.393. 

9.	 Deser S., Zumino B. Phys.Lett., 1976, 65B, p.369;
 
Brink L., Di Vecchia P., Howe P. - ibid., p.471.
 

Received by Pub1ishing Department 
on August 27, 1987. 

6 

vt 

t L 
11 
!'l/;I 

:1 

\1: 

(, \,
 
I
 
r 
I 

r 
l 
i 

~ 

c%lliJIHrrrrOB A.T.	 E2-87-659 
o KaJmÕpoBol.IHOH 4>oPMYJIlipOBKe TeopHfI 
peJIHTliBliCTCKliX qaCTIi~ li CTPYH 

B paõoTe rroKa3aHo, qTO rrpliMeHeHHe rrpliH~lirra nOKaJIli3a­
~Iili JIliHeHHb~ KaHOHliqeCKliX cliMMeTpHH rr03BOJIHeT KOHCTPYIi­
poaars peJIHTliBliCTCKHe xamrõpoaoxnsre r eopaa xac-ran li 
CTpYH, liCXO~H li3 HepeJIHTliBliCTCKHX. B KaqeCTBe rrpHMepOB 
norryvensr aaaec'rnue nar'panxaaau P;JIH xac-ran c npoaasonsnsm 
crrHHOM H P;JIH 4>epMlioHHOH CTpYH~. npep;JIO~eHa TaK~e HOBaH 
peJIHTliBliCTCKaH KaJIliÕpOBOqHaH reopaa CliCTeMbl N xacrau, 
CBH3aHHblX rapMOHliqeCKliMIi CHJIaMIi, KOTOPYW MO~HO KBaHTO­
aars MeTo~aMIi, OÕblqHO rrpliMeHHeMblMIi P;JIH KBaHTOBaHHH xana­
ÕPOBOqH~X TeopliH rrOJIH. 

PaÕOTa B~rrOJIHeHa B naõopaTopliH TeOpeTliQeCKOH 4>li3HKIi 
OlHJH. 

OpenpHHT 06'benHHetfHOro HHCTHTyT8 RnepHblX HcCnenOBaHHA. ny6H8 1987 

Filippov A.T. E2-87-659 
A Gauge Formulation for Relativistic 
Theories of Particles and Strings 

Application of the principle of gnuging the linear 
canonical symmetries is shown to prod~ce relativistic gnu 
ge theories of particles and strings starting from the 
nonrelativistié ones. A relativistic gauge theory des­
cribing N particles bound by hormonic forces is ohtnined 
which can be quantized by the standard methods. 

The investigation has been performed at the Labora­
tory of Theoretical Physics, JINR. 
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