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The Bethe ansatz equations in their simplest but, nevertheless,
typical form read’ 1™
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ks
with p (J ) and f( A) being the momentum and two-body phase shift of
elementary excitations, respectively ( P(-4} = - p(4d ), F{-J)=

~ &) )). If the vacuum state of the model corresponds to [, , /M =wco
with a density M =/1/£ fixed {and finite), then the parameters of
physical excitations happen to obey an anelogous system 4/
il J (F(u-p)

et =wirie f @)
where the momentum }24 and phase shift fr(al-JS) are now the physical
ones. It is natural to call egs.(2) the higher-level Bethe ansatz
eguations.

In this note we try to retrace the origin of the relatiomns of
such a type in terms of general functions P( A)and €(A4). The ide~
as of each individual step within our approach are not at all new.
However, the program ag & whole has not bteen carried out in the lite-
rature; 8o, we hope that the present note would be instructive.

/1,5,6/

of ovtalning the integral Bethe-ansatz equations from the discrete

At first, we describe in our terms the standard procedure

ones {1). For our purposes i1t will suffice to consider the solutlons
{}-} with all )- resl., Taking & logarithm of (1) results in

Lpli) = Zf/—/lf ) +2x&; , j=2,m, O

where C? are 1ntebers or half-integers (it depends on M belng

odd or even). vacuum configuration corresponds to the set {Q? }w1th
Q as closely spaced as possiole, &  =(J + 1, from — 222 4o 24

i+t J 2 2
ine vacuum root density f;())

1 dees -
p(y;) = Lme , a@=Lph)ats)

enables one to approximate ihe sums over rootg by integrals:
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flote that (12) does not involve parameters of physical excitations

>+, = f‘“ pG)+0). (5) Lo
. Let 4> be some (additive in elementary excitations) quantity
Subtracting egs. (3) for adgacent J 'S, we obtain the integral eque- related to the excited state. Subtracting the corresponding vacuum

tion for P ( A, \ quantity 9 we get ¢ b =
27r/) =Lﬂ\}-—f c/xaﬁ—x/fﬂr/, . Z[d’/k) 4’/I<}_7 Z“‘b(}m
F (6)

where a(}) I,ﬂj L(;‘\} p’/,\) , and + A 1is the Fermi surface. f C“{A)‘#’/A) - E#:(;/) (13)

A value of A is to be found from the normalization condition Because of (11), thls expression is, in turn, additive in physical
. : itations: .y /
JAp(a ) =n (1) eres — b~
.J_‘A ’F/ #> ¢ Z ‘¢’u{ *
and can prove, in general, finite as well as infinite. {14)
A A CY fdxf/«M/J

&4 physical excited state from the class treated in this paper

is parametrized by a set {Jﬁ which is precisely the vacuum set The integral in (14) is & backflow (i.e. remction of the sea) due to

ingsertions of holes and particles.

z/ with several numbers tQ.e removed and (or) geveral extra num-
- s Py s
bers’ Q added. We shall use the notation ; Z that mean Now we use (13) to perform the following transformations:
taking into account the removed 0 g (holes) w1th plug and extra ; P
ones (particles) with minus sign. The roots ’lj of the excited state P()]"‘“ 2‘( )&}**Zf( .(/ ,0/) Z iﬁ —Jk} -
gatisfy the followiné, gystem of equations- A
- A _ - ‘IE'
LE[06-T,) - 8 -1,)] £ 2 2i4) =p (i) [orp )80+ )

LP(A} Z (/,1 -T) - Z f/J' T J+2xd. . (8) j
Here j numbers only roots, not holes. Parameters Aa( related to the Ifdxf/) (»x}f"z_—ﬂ/ ,() P/} fd’xf/}iﬁ x/ ”{A .

holes are not defined yet; moreover, they, in fact, drop out from
(8). However, we choose to keep formally ,l‘( in (8), anticipating

the replacement of (8) by an integral. An explicit definition of Ax E/A) PA ‘f dk_fﬂ'/é’( )r) _ r/ﬂ/, 16y

will be given later; for brevity, we write I; = ok .

Denotlng the rohes. of {15) by ?’(A Y

we see from comparing (8) and (1%) that P/ /“" (9 for the roots.

Now our goal i1s to derive an analog of (5) for excited states.
S0, 1t is only natural to take condition

Let us introduce the function 7( (A,

F(A ) = €in T'“*ﬁ_ P(<) =27 g, (1)

S T (9)
A+t 4 e
which obeys, due to (B), the equaiion 5 as a definition of the hole positions oL as well (note that
R ) , the equality (17) isvexact). As & result, the eqs.(6},(7),(11),(12),
2%‘){(‘) - —fdxa(l—x),(ﬂ'/ _ Z gﬁ__ _(} ‘ (10) and (17) form a complete set of relations which enables one, in
24 oL principle, to determine of 's in an explicit form.
It is natural to represent -f (A) as & sum in «, To transform (17) into the higher-level ansatz form (2), one has
‘[6} - ZJ{/A .(J (11) v to do more calculationg. Consider the total momentum of the excited
state. From (14) it follows that

where { (A .j‘) is given by
20 f(i,p) = —[ I ali-x)ttip) = £(-1). (12)
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Transform the integral using (6) and (12):

-£ Jx{ﬁ,x}L&/ :fc/xd'(yfﬂr,.e)/jé‘rﬁ&-[y)+a(:'-g;)]f’(3) = (19)
..f d(jf(:Jje(a' .{) f dkf/)?ﬂ( x}

We now see that

.= .._p(/ez/+f_:a’xfﬁ}€&—xjj (20)
?A/="P4—gfg:/@ﬁ/. e

Supstituting Az o we obtain

Lp,= 2w T (7, p) —2md, (22)
f

or, in the exponentional form,

This is the higher-level ansatz equation for the paramelers oL of
physicel excitations. The "dressed™ momentum P“ appegars in the
l.hes. of (23) owing to the algebraic structure of the principal
eqgs.(6) and (12). This fact has first been established in 5 our
proof (19) is simpler and, in a sense, minimal.

To prove that f (&, f) in the r.h.s. of (23) can be viewed as
& two-body phase shift of physicael excitations, we have to use the
direct method proposed by Korepin 7/. If we consider the X =~space
gtructure of the Bethe wave function proper to (8) and evaluate the
total phase shift for a root A nearest to & hole &£ ( A =) on the
full interval [-Lj , LAl we get

exp (op =expifLp() + Z 45 -<) =3 #lp-4) ] =
exp L-L;}'@/:. * exp ‘-["LP«:( —2#%/.//-(,;)].

From here the interpretation of f:(u(,}?) as a physical phase shift
becomes evident.

(24)

In conclusion, we shall make two remarks. The first is that when
dealing with arbitrary functions p(‘J) and #{ 1) we have no cont-
rol-over the accuracy of our approximation procedure. In concrete
models, &8 & rule, the neglected terms in (5),(13) etc, are of the

0rder{§?2{/. Note that (21)-(23) are examct by definition., It en-
ables us to rewrite eq.(18) in the exact form too

[5] — = ,.zﬁA ! - ! « 2 ! r
P-P= L 24 =2 P z.”';}j'/éfj (25)

(the first equelity results from (8)). We see that the total momenw
tum 25 P is discrete whereas the sum of dressed momenta :Z';&
is not unless & quantity 2 f( x"ﬁ) equals zero. The latter Can ve
transformed as follows: “f

! ’ A ,
z Hap) = Z5) = L [ et )Z ale—x) =
jAAg(xf&j[_f'/A} +2—£_IAAd<? {Gja%"J/] = (26)
[\ AB)f16) =4 [£A) ~4*Ca)].

For finite A this expression may perfectly well be nonzero. How-
ever, for A=po the l,h.s. of (26) ig necessarily zero, and the sum
of dressed momenta turns gut to be discrete:

! »
R A
Really, if A=oo we derive from (10) that
$G)=2b-2), e F0,p)=Fl-p), (26)
2;;./:’//- -—fafx ali-x)Fx) — £/1) . (29)

Obviously, f'/wj) _Fﬁj and we arrive at 2 f‘ﬂ(-—f} O
“f

(27)

The second remark concerns the A =oo cagse. Here, one can use,
in complete analogy with the vacuum state, the root dens;ty {j)
from the very beginning/z’g/. The rost density for excited states,

Fﬁ)—“‘—f’ﬁ)*—z’-?/ﬁﬁ—d} , (30)

ig defined through the integral equation

20pi) = b(3) = Jdr aGoslpt) + £ 2 'a i< o

which spproximates (8). For § (A ) it follows that

‘«?ﬁ(ﬂ}-ﬂd@) :fdx aﬂ~x}€ﬂr/, (32)



and it is easy to deduce that

6‘/)}=—--—PVAJ, (33)

Integration by parts zhows that the fT - and 5~ approaches are
consistent., The Xey formula (14) assumes the form

*, ”'*#@)*Ta’l )6 -], (34)

A simple algevraic nature of the mechanism observed supports
our gonfidence in its relevance to a much richer clasg of solutions
than that of purely real solutions of (1) directly considered in
thia paper,

We are indebted to L.V.Avdeev, V.,E.Korepin, and A.A.Matveev for

numercus helpful discussions.
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MexaHuaM moOnyveHHs ypaBHeHui "'BropHuYHOro axsaua'' w3 HH-
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