

E2-87-65

B.-D.Dörfel, A.A.Vladimirov

ON THE HIGHER-LEVEL BETHE ANSATZ

Submitted to "Теоретическая и математическая физика"

The Bethe ansatz equations in their simplest but, nevertheless, typical form read $^{\prime 1-3/}$

$$e^{iLp(\lambda_j)} = (-)^{n-j} \prod_{k=j}^{M} e^{i\beta(\lambda_j - \lambda_k)}, \quad j = 1, \dots, M , \quad (1)$$

with $\rho(\lambda)$ and $\beta(\lambda)$ being the momentum and two-body phase shift of elementary excitations, respectively ($\rho(-\lambda) = -\rho(\lambda)$, $\beta(-\lambda) = -\ell(\lambda)$). If the vacuum state of the model corresponds to λ , $M \rightarrow \infty$ with a density N = M/L fixed (and finite), then the parameters of physical excitations happen to obey an analogous system^{4/4}

$$e^{iLp_{\alpha}} = (-)^{\nu} \prod_{\beta} e^{iF(\alpha-\beta)} , \qquad (2)$$

where the momentum ρ_{α} and phase shift $f'(\prec -\beta)$ are now the physical ones. It is natural to call eqs.(2) the higher-level Bethe ansatz equations.

In this note we try to retrace the origin of the relations of such a type in terms of general functions $p(\lambda)$ and $\ell(\lambda)$. The ideas of each individual step within our approach are not at all new. However, the program as a whole has not been carried out in the literature; so, we hope that the present note would be instructive.

At first, we describe in our terms the standard procedure /1,5,6/ of obtaining the integral Bethe-ansatz equations from the discrete ones (1). For our purposes it will suffice to consider the solutions $\{\lambda_j\}$ with all λ_j real. Taking a logarithm of (1) results in

$$Lp(\lambda_{j}) = \sum_{k=1}^{M} l(\lambda_{j} - \lambda_{k}) + 2\pi Q_{j} , \quad j = 1, ..., M , \quad (3)$$

where Q_j are integers or half-integers (it depends on \mathcal{M} being odd or even). A vacuum configuration corresponds to the set $\{Q_j\}$ with Q_j as closely spaced as possible, $Q_{j+1} = Q_j + 1$, from $-\frac{\mathcal{M}-1}{2}$ to $\frac{\mathcal{M}-1}{2}$. The vacuum root density $\rho(\lambda)$,

$$p(\lambda_j) = \lim_{L \to \infty} \frac{1}{L(\lambda_{j+1} - \lambda_j)}, \quad \text{i.e. } \Delta Q = L p(\lambda) \Delta \lambda (4)$$

Оритьнесси вистяту васряна вссяемования Визблистена

enables one to approximate the sums over roots by integrals:

1

$$\frac{1}{L}\sum_{k}\phi(\lambda_{k}) = \int_{-\Lambda}^{\Lambda} d\lambda g(\lambda) \phi(\lambda) .$$
⁽⁵⁾

Subtracting eqs.(3) for adjacent j s , we obtain the integral equation for $P(\lambda)$,

 $2\pi p(\lambda) = h(\lambda) - \int_{-\infty}^{\infty} dx \, a(\lambda - x) p(x) ,$ (6) where $a(\lambda) = b'(\lambda)$, $b(\lambda) = p'(\lambda)'$, and $\pm \Lambda$ is the Fermi surface. A value of Λ is to be found from the normalization condition

$$\int d\lambda \rho(\lambda) = n \tag{7}$$

and can prove, in general, finite as well as infinite.

A physical excited state from the class treated in this paper is parametrized by a set $\{Q_i\}$ which is precisely the vacuum set $\{Q_i\}$ with several numbers Q_i removed and (or) several extra numbers $Q_{\overline{a}}$ added. We shall use the notation $\Sigma' \equiv \Sigma - \Sigma$ that means taking into account the removed Q's (holes) with plus and extra ones (particles) with minus sign. The roots T_i of the excited state satisfy the following system of equations:

$$Lp(\widetilde{\lambda}_{j}) = \sum_{k=1}^{M} \ell(\widetilde{\lambda}_{j} - \widetilde{\lambda}_{k}) - \sum_{k}' \ell(\widetilde{\lambda}_{j} - \widetilde{\lambda}_{k}) + 2\pi \widetilde{Q}_{j}' . \tag{8}$$

Here j numbers only roots, not holes. Parameters λ_{j} related to the holes are not defined yet; moreover, they, in fact, drop out from (8). However, we choose to keep formally $\widetilde{\lambda}_{\mu}$ in (8), anticipating the replacement of (8) by an integral. An explicit definition of $\widetilde{J_{lpha}}$ will be given later; for brevity, we write $\mathcal{T} \equiv \boldsymbol{\prec}$.

Now our goal is to derive an analog of (5) for excited states. Let us introduce the function $f(\lambda)$,

$$f(\lambda_j) = \lim_{L \to \infty} \frac{\tilde{\lambda}_j - \lambda_j}{\lambda_{j+1} - \lambda_j} , \qquad (9)$$

which obeys, due to (8), the equation "

$$2\pi f(\lambda) = -\int dx \, a(\lambda - x) f(x) - \sum_{n}' b(\lambda - x) \,. \tag{10}$$

It is natural to represent $f(\lambda)$ as a sum in λ ,

$$f(\lambda) = \sum_{i}^{\prime} f(\lambda, x) , \qquad (11)$$

where $f(\lambda, \mu)$ is given by

$$2\pi f(\lambda, \mu) = -\int_{-\pi}^{\Lambda} dx \, a(\lambda - x) f(x, \mu) - R(\lambda - \mu). \tag{12}$$

Note that (12) does not involve parameters of physical excitations ۲.

Let $\breve{\boldsymbol{\phi}}$ be some (additive in elementary excitations) quantity related to the excited state. Subtracting the corresponding vacuum quantity $oldsymbol{\Phi}$ we get $\widetilde{\phi} - \phi = \sum_{k} \left[\phi(\widetilde{\lambda}_{k}) - \phi(\widetilde{\lambda}_{k}) \right] - \sum_{k} \phi(\widetilde{\lambda}_{k}) = 0$

$$\int_{-a}^{a} d\lambda f(\lambda) \phi'(\lambda) - \sum_{a}^{a} \phi(\alpha).$$
⁽¹³⁾

Because of (11), this expression is, in turn, additive in physical excitations: $\tilde{\phi} = \phi \simeq \Sigma' \phi$

$$\Phi_{\mu} = -\Phi(\alpha) + \int_{-\Lambda}^{\Lambda} dx f(x, \alpha) \Phi'(x)$$
(14)

The integral in (14) is a backflow (i.e. reaction of the sea) due to insertions of holes and particles.

Now we use (13) to perform the following transformations:

$$p(\lambda) - \frac{1}{L} \sum_{k} \mathcal{B}(\lambda - \bar{\lambda}_{k}) + \frac{1}{L} \sum_{k} \mathcal{B}(\lambda - \lambda) = p(\lambda) - \frac{1}{L} \sum_{k} \mathcal{B}(\lambda - \lambda_{k}) - \frac{1}{L} \sum_{k} \mathcal{B}(\lambda - \bar{\lambda}_{k}) = p(\lambda) - \int_{-\infty}^{\infty} \mathcal{B}(\lambda - \lambda_{k}) + \frac{1}{L} \sum_{k} \mathcal{B}(\lambda - \lambda) = p(\lambda) - \int_{-\infty}^{\infty} \mathcal{A}_{k} p(\lambda) \mathcal{B}(\lambda - \lambda) + (15)$$

$$\frac{1}{L} \int_{-\infty}^{\infty} \mathcal{A}_{k} f(\lambda) a(\lambda - \lambda) + \frac{1}{L} \sum_{k} \mathcal{B}(\lambda - \lambda) = p(\lambda) - \int_{-\infty}^{\infty} \mathcal{A}_{k} p(\lambda) \mathcal{B}(\lambda - \lambda) - \frac{2\pi}{L} f(\lambda).$$
Denoting the r.h.s. of (15) by $\widetilde{\mathcal{A}}(\lambda)$

Denoting the r.h.s. of (15) by $\varphi(\lambda)$,

$$\widetilde{P}(\lambda) = p(\lambda) - \int_{-\infty}^{\infty} dx \, p(x) \, \mathcal{B}(\lambda - x) - \frac{2\pi}{L} f(\lambda), \quad (16)$$

we see from comparing (8) and (15) that $\widetilde{\varphi}(\lambda_j) = \frac{2\pi}{L} \widetilde{Q}_j$ for the roots. So, it is only natural to take condition

$$\widetilde{\varphi}(\varkappa) = \frac{2\pi}{L} \, Q_{\varkappa} \tag{17}$$

as a definition of the hole positions 2 as well (note that the equality (17) is 'exact). As a result, the eqs.(6),(7),(11),(12), and (17) form a complete set of relations which enables one. in principle, to determine \checkmark 's in an explicit form.

To transform (17) into the higher-level ansatz form (2), one has to do more calculations. Consider the total momentum of the excited state. From (14) it follows that

$$\widetilde{P} - P \simeq \sum_{\alpha}' \rho_{\alpha} , \quad P_{\alpha} = -p(\alpha) + \int_{-\alpha}^{\alpha} dx f(x, \alpha) h(x) . \quad (18)$$

3

Transform the integral using (6) and (12):

$$\int_{-\Lambda}^{\Lambda} dx f(x, x) h(x) = \int_{-\Lambda}^{\Lambda} dx dy f(x, x) [2\pi\delta(x-y) + a(x-y)] P(y) = (19)$$

$$-\int_{-\Lambda}^{\Lambda} dy P(y) \theta(y-x) = \int_{-\Lambda}^{\Lambda} dx P(x) \theta(x-x).$$

We now see that

$$D_{x} = -p(x) + \int_{-x}^{x} dx p(x) \delta(x-x), \qquad (20)$$

$$\widetilde{\varphi}(\lambda) = -\rho_{\lambda} - \frac{2\pi}{L} \sum_{\beta}' f(\lambda, \beta) \,. \tag{21}$$

Substituting $\lambda = \lambda$ we obtain

$$L p_{a} = -2\pi \Sigma' f(a, \beta) - 2\pi Q_{a}$$
(22)

or, in the exponentional form,

$$e^{iLP_{a}} = (-)^{\nu} \prod_{\beta}' e^{-2\pi i f(a,\beta)}, (-)^{\nu} = e^{-2\pi i Q_{a}} = \pm 1.$$
⁽²³⁾

This is the higher-level ansatz equation for the parameters \checkmark of physical excitations. The "dressed" momentum p_{\checkmark} appears in the l.h.s. of (23) owing to the algebraic structure of the principal eqs.(6) and (12). This fact has first been established in^{6/}; our proof (19) is simpler and, in a sense, minimal.

To prove that $f(\varkappa, \beta)$ in the r.h.s. of (23) can be viewed as a two-body phase shift of physical excitations, we have to use the direct method proposed by Korepin⁷⁷. If we consider the \varkappa -space structure of the Bethe wave function proper to (8) and evaluate the total phase shift for a root $\overline{\lambda_j}$ nearest to a hole \varkappa ($\overline{\lambda_j} \simeq \varkappa$) on the full interval $[-L_{2}, L_{2}]$, we get

$$\exp i\Delta\varphi = \exp i\left[Lp(\lambda) + \sum_{k} B(\overline{\lambda}_{k} - \lambda) - \sum_{\beta} B(\beta - \lambda)\right] \simeq$$

$$\exp iL\overline{\varphi}(\lambda) = \pm \exp i\left[-Lp_{\lambda} - 2\pi \sum_{\beta} f(\lambda, \beta)\right].$$
(24)

From here the interpretation of $f(\boldsymbol{\varkappa},\boldsymbol{\beta})$ as a physical phase shift becomes evident.

In conclusion, we shall make two remarks. The first is that when dealing with arbitrary functions $\rho(\lambda)$ and $\beta(\lambda)$ we have no control over the accuracy of our approximation procedure. In concrete models, as a rule, the neglected terms in (5),(13) etc. are of the

order $O(\frac{1}{2})$. Note that (21)-(23) are exact by definition. It enables us to rewrite eq.(18) in the exact form too

$$\widetilde{P} - P = -\frac{2\pi}{L} \sum_{\alpha}' Q_{\alpha} = \sum_{\alpha}' P_{\alpha} + \frac{2\pi}{L} \sum_{\alpha,\beta}' f(\alpha,\beta)$$
(25)

(the first equality results from (8)). We see that the total momentum $\widetilde{\rho} - \rho$ is discrete whereas the sum of dressed momenta $\sum' \rho_{\star}$ is not unless a quantity $\sum' f(\prec, \beta)$ equals zero. The latter can be transformed as follows:

$$\sum_{x,y}^{n} f(x,y) = \sum_{\alpha}^{n} f(\alpha) = -\frac{1}{2\pi} \int_{-\Lambda}^{\Lambda} dx f(x) \sum_{\alpha}^{n} a(\alpha - x) = \int_{-\Lambda}^{\Lambda} dx f(x) \left[-\frac{1}{2\pi} \int_{-\Lambda}^{\Lambda} dy f(y) a'(x - y) \right] =$$
(26)
$$\int_{-\Lambda}^{\Lambda} dx f(x) f'(x) = \frac{1}{2} \left[-\frac{1}{2} \left[-\frac{1}{2}$$

For finite Λ this expression may perfectly well be nonzero. However, for $\Lambda = \infty$ the l.h.s. of (26) is necessarily zero, and the sum of dressed momenta turns out to be discrete:

$$\sum_{k}' \rho_{k} = -\frac{2\pi}{L} \sum_{k}' Q_{k} \qquad (27)$$

Really, if $A = \infty$ we derive from (10) that

$$f(\lambda) = \sum_{n} f(\lambda - \lambda), \quad i.e. \quad f(\lambda, \mu) = F(\lambda - \mu), \quad (28)$$

$$2\pi F(\lambda) = -\int dx \ \alpha(\lambda - x) F(x) - B(\lambda). \tag{29}$$

Obviously, $f(-\lambda) = -F(\lambda)$, and we arrive at $\sum_{\substack{\alpha \neq \beta}} f(\alpha - \beta) = 0$.

The second remark concerns the $\Lambda = \infty$ case. Here, one can use, in complete analogy with the vacuum state, the root density $\tilde{\rho}(\lambda)$ from the very beginning^(2,8). The root density for excited states,

$$\widetilde{\rho}(\lambda) = \rho(\lambda) + \frac{1}{L} \sum_{\alpha}' \sigma(\lambda - \alpha) , \qquad (30)$$

is defined through the integral equation

$$2\pi\widetilde{\rho}(\lambda) = h(\lambda) - \int_{-\infty}^{\infty} dx \, a(\lambda - x)\widetilde{\rho}(x) + \frac{1}{L} \sum_{x}' a(\lambda - x)$$
(31)

which approximates (8). For $\mathcal{T}(\lambda)$ it follows that

$$2\pi \, 6(\lambda) = a(\lambda) - \int_{-\infty}^{\infty} dx \, a(\lambda - x) \, 6(x) , \qquad (32)$$

and it is easy to deduce that

$$6(\lambda) = -F'(\lambda). \tag{33}$$

Integration by parts shows that the f - and 5 - approaches are consistent. The key formula (14) assumes the form

$$\Phi_{\alpha} = -\phi(\alpha) + \int_{-\infty}^{\infty} d\lambda \,\phi(\lambda) \,\delta(\lambda - \alpha) \,. \tag{34}$$

A simple algebraic nature of the mechanism observed supports our confidence in its relevance to a much richer class of solutions than that of purely real solutions of (1) directly considered in this paper.

We are indebted to L.V.Avdeev, V.E.Korepin, and A.A.Matveev for numerous helpful discussions.

REFERENCES

- 1. Thacker H.B. Rev.Mod.Phys., 53(1981) 253.
- Lowenstein J. H.-In: Recent Advances in Field Theory and Statistical Mechanics (Les Houches 1982 Summer School), Amsterdam, North Holland, 1984.
- 3. Tarassov V.O., Takhtajan L.A. and Faddeev L.D. TMF, 57(1983) 163.
- 4. Destri C. and Lowenstein J.H. Nucl.Phys., B205 (1982) 369; Baoclon O., de Vega H.J. and Viallet C.M. - Nucl.Phys., B220 (1983) 13;

Japaridze G.I., Nersesyan A.A. and Wiegmann P.B. - Phys.Scripta, 27 (1983) 5.

- 5. Lieb E.H. Phys. Rev., 130 (1963) 1616.
- 6. Yang C.N. and Yang C.P. J.Math. Phys., 10(1969) 1115.
- 7. Korepin V.E. TMF, 41 (1979) 169.
- 8. de Cloizeaux J. and Pearson J.J. Phys. Rev., 128 (1962) 2131; Takhtajan L.A. and Faddeev L.D. - Zap.Nauch.Semin.LOM1, 109 (1981) 134.

Received by Publishing Department on February 6, 1987. Владимиров А.А., Дёрфель Б.-Д. К вопросу о вторичном анзаце Бете

Механизм получения уравнений "вторичного анзаца" из интегральных соотношений анзаца Бете прослежен в общем виде для широкого круга моделей.

E2-87-65

E2-87-65

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Dörfel B.-D., Vladimirov A.A. On the Higher-Level Bethe Ansatz

The origin of the higher-level Bethe ansatz is studied for a large class of integrable models.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987