

объединенныи институт Ядерных исследовании
 дубна

E2-87-65

B.-D.Dörfel, A.A.Vladimirov

ON THE HIGHER-LEVEL BETHE ANSATZ

Submitted to "Теоретическая и математическая физика"

The Bethe ansatz equations in their simplest but, nevertheless, typicel form read $/ 1-3 /$

$$
\begin{equation*}
e^{i L p\left(\lambda_{j}\right)}=(-)^{M-1} \prod_{k=1}^{M} e^{i B\left(\lambda_{j}-\lambda_{k}\right)}, \quad j=1, \ldots, M \tag{1}
\end{equation*}
$$

with $P(\lambda)$ and $B(\lambda)$ being the momentum and two-body phase shift of elementary excitations, respectively $(P(-\lambda)=-P(\lambda), B(-\lambda)=$ $-b(\lambda))$. If the vacuun state of the model corresponds to $L, M \rightarrow \infty$ with a density $n=M / L$ fixed (and finite), then the parameters of physical excitations happen to obey an analogous system $/ 4 /$

$$
\begin{equation*}
e^{i L P_{\alpha}}=(-)_{\beta} e^{i F(\alpha-\beta)} \tag{2}
\end{equation*}
$$

where the momentum P_{α} and phase shift $F(\alpha-\beta)$ are now the physical ones. It is natural to call eqs. (2) the higher-level Bethe ansatz equations.

In this note we try to retrace the origin of the relations of such a type in terms of general functions $p(\lambda)$ and $b(\lambda)$. The ideas of each individual step within our approach are not at all new. However, the program as a whole has not been carried out in the literature; so, we hope that the present note would be instructive.

At first, we describe in our terns the atandard procedure/1,5,6/ of obtaining the integral Bethe-ansatz equations from the discrete ones (1). For our purposes it will suffice to consider the solutions
$\left\{\lambda_{j}\right\}$ with all λ_{j} real. Taking a logarithm of (1) results in

$$
\begin{equation*}
L P\left(\lambda_{j}\right)=\sum_{k=1}^{M} P\left(\lambda_{j}-\lambda_{k}\right)+2 \pi Q_{j}, j=1, \ldots, M \tag{3}
\end{equation*}
$$

where Q_{j} are $i n=1$ egers or half-integers (it depends on M being odd or even). A vacuun configuration corresponds to the set $\left\{Q_{j}\right\}$ with
Q_{j} as closely spaced as possiole, $Q_{j+1}=Q_{j}+1$, from $-\frac{M-1}{2}$ to $\frac{M-1}{2}$. The vacuun root density $\rho(\lambda)$,

$$
\rho\left(\lambda_{j}\right)=\lim _{L \rightarrow \infty} \frac{1}{L\left(\lambda_{j+1}-\lambda_{j}\right)} \quad, \quad \text { i.e. } \Delta Q=L \rho(\lambda)_{\Delta \lambda(4)}
$$

enables one to approximate the sums over roots by integrals:

PHB SUYTEKA

$$
\begin{equation*}
\frac{1}{L} \sum_{k} \phi\left(\lambda_{k}\right) \simeq \int_{-1}^{\lambda} d \lambda \rho(\lambda) \neq(\lambda) . \tag{5}
\end{equation*}
$$

Subtracting eqs. (3) for adjacent j 's, we obtain the integral equetion for $\rho(\lambda)$,

$$
\begin{equation*}
2 \pi \rho(\lambda)=h(A)-\int_{-1}^{1} d x a(1-x) \rho(x), \tag{6}
\end{equation*}
$$

where $a(\lambda)=b^{\prime}(\lambda), h(\lambda)=p^{\prime}(\lambda)^{-\lambda}$, and $\pm \Lambda$ is the Fermi surface. A value of Λ is to be found from the normalization condition

$$
\begin{equation*}
\int_{-A}^{n} d \lambda \rho(\lambda)=n \tag{7}
\end{equation*}
$$

and can prove, in general, finite as well as infinite.
A physical excited state from the class treated in this paper is paranetrized by a set $\left\{Q_{j}\right\}$ which is precisely the vacuurn set $\left\{Q_{j}\right\}$ with several numbers Q_{α} removed and (or) several extra numbers Q_{α} added. We shall use the notation $\sum_{\alpha}^{\prime} \equiv \sum_{\alpha}-\sum_{\bar{\alpha}}$ that means taking into account the removed Q 's (holes) with plus and extra ones (particles) with minus sign. The roots I_{j} of the excited state satisfy the following system of equations:

$$
\begin{equation*}
L p\left(\tilde{\lambda}_{j}\right)=\sum_{k=1}^{\mu} b\left(\tilde{\lambda}_{j}-I_{k}\right)-\sum_{\alpha}^{\prime} b\left(\tilde{I}_{j}-\tilde{\lambda}_{\alpha}\right)+2 \pi \widetilde{Q}_{j} \tag{8}
\end{equation*}
$$

Here j numbers only roots, not holes. Parameters $\tilde{\lambda}_{\alpha}$ related to the holes are not defined yet; moreover, they, in fact, drop out from (8). However, we choose to keep formally $\tilde{\lambda}_{\alpha}$ in (8), enticipating the replacement of (8) by an integral. An explicit definition of $\tilde{\lambda}_{\alpha}$ will be given later; for brevity, we write $\lambda_{\alpha} \equiv \alpha$.

Now our goal is to derive an analog of (5) for excited states. Let us introduce the function $f(\lambda)$,

$$
\begin{equation*}
f\left(\lambda_{j}\right)=\lim _{L \rightarrow \infty} \frac{\tilde{\lambda}_{j}-\lambda_{j}}{\lambda_{j+1}-\lambda_{j}} \tag{9}
\end{equation*}
$$

which obeys, due to (8), the equation $/ 5 /$

$$
\begin{equation*}
2 \pi f(\lambda)=-\int_{-1}^{1} d \times a(\lambda-x) f(x)-\sum_{\alpha}^{1} b(\lambda-\alpha) \tag{10}
\end{equation*}
$$

It is natural to represent $f(\lambda)$ as a sum in α,

$$
\begin{equation*}
f(\lambda)=\sum_{\alpha}^{\prime} f(\lambda, \alpha) \tag{11}
\end{equation*}
$$

where $f(\lambda, \mu)$ is given by

$$
\begin{equation*}
2 \pi f(\lambda, \mu)=-\int_{-1}^{\hat{d}} \mathrm{~d} x a(\lambda-x) f(x, \mu)-b(\lambda-\mu) \tag{12}
\end{equation*}
$$

Hote that (12) does not involve parameters of physical excitations α 。

Let $\widetilde{\phi}$ be some (additive in elementary excitations) quantity related to the excited state. Subtracting the corresponding vacuum quantity ϕ we get $\tilde{\phi}-\phi \equiv \sum_{k}\left[\phi\left(T_{k}\right)-\phi\left(d_{k}\right)\right]-\sum_{\alpha}^{\prime} \phi(\alpha)=$

$$
\begin{aligned}
& \int_{-\hat{1}}^{A} d \lambda(\lambda) \phi^{\prime}(\lambda)^{k}-\sum_{\alpha}^{\prime} \phi(\alpha) \\
& \text { this expression is, in turn, }
\end{aligned}
$$

Because of (11), this expression is, in turn, additive in physical excitations: $\tilde{\phi}-\phi \simeq \sum_{\alpha}^{\prime} \phi_{\alpha}$,

$$
\begin{align*}
& \phi_{\alpha}=-\phi(\alpha)+\int_{-1}^{\wedge} d x f(x, \alpha) \phi^{\prime}(x) . \tag{14}\\
& \text { in }(14) \text { is a backflow (i.e. reaction of }
\end{align*}
$$

The integral in (14) is a backflow (i.e. reaction of the sea) due to insertions of holes and particles.

Now we use (13) to perform the following transformations:
$p(\lambda)-\frac{1}{L} \sum_{\alpha} b\left(\lambda-\tilde{\lambda}_{k}\right)+\frac{1}{L} \sum_{\alpha}^{\prime} b(\lambda-\alpha)=p(\lambda)-\frac{1}{L} \sum_{k} b\left(\lambda-\lambda_{k}\right)-$ $\frac{1}{L} \sum_{k}\left[b\left(\lambda-I_{k}\right)-b\left(\lambda-\lambda_{k}\right)\right]+\frac{1}{L} \sum_{\alpha}^{\prime} b(\lambda-\alpha)=p(\lambda)-\int_{-A}^{\hat{d}} d x \rho(x) b(\lambda-x)+(15)$ $\frac{1}{L} \int_{-1}^{n} d x f(x) a(\lambda-x)+\frac{1}{L} \sum_{\alpha}^{1} P(\lambda-\alpha)=p(\lambda)-\int_{-A}^{1} d x \rho(x) P(\lambda-x)-\frac{2 \pi}{L} f(\lambda)$. Denoting the r.h.s. of (15) by $\bar{\varphi}(\lambda)$,

$$
\begin{equation*}
\bar{\varphi}(\lambda)=p(\lambda)-\int_{-1}^{1} d x \rho(x) b(\lambda-x)-\frac{2 \pi}{L} f(\lambda) \tag{16}
\end{equation*}
$$

We see from comparing (8) and (15) that $\tilde{\varphi}\left(\tilde{\lambda}_{j}\right) \simeq \frac{2 \pi}{L} \widetilde{Q}_{j}$ for the roots.
So, it is only natural to take condition

$$
\begin{equation*}
\widetilde{\varphi}(\alpha)=\frac{2 \pi}{L} Q_{\alpha} \tag{17}
\end{equation*}
$$

as a definition of the hole positions α as well (note that the equality (17) is exact). As a result, the eqs. (6), (7), (11), (12), and (17) form a complete set of relations which enables one, in principle, to detemine $\alpha \cdot s$ in an explicit form.

To transform (1/) into the higher-level ansatz form (2), one has to do more calculations. Consider the total monentum of the excited state. From (14) it follows that

$$
\begin{equation*}
\widetilde{P}-P \simeq \sum_{\alpha}^{\prime} p_{\alpha} \quad, \quad P_{\alpha}=-P(\alpha)+\int_{-1}^{1} d x f(x, \alpha) h(x) \tag{18}
\end{equation*}
$$

Transform the integral using (6) and (12):
$\int_{-1}^{1} d x f(x, \alpha) h(x)=\int_{-1}^{1} d x d y f(x, \alpha)[2 \pi \delta(x-y)+a(x-y)] \rho(y)=$

$$
\begin{equation*}
-\int_{-1}^{1} d y \rho(y) b(y-\alpha)=\int_{-1}^{1} d x \rho(x) b(\alpha-x) \tag{19}
\end{equation*}
$$

We now see that

$$
\begin{align*}
& P_{\alpha}=-P(\alpha)+\int_{-A}^{A} d x p(x) b(\alpha-x) \tag{20}\\
& \tilde{\varphi}(\lambda)=-P_{\lambda}-\frac{2 \pi}{L} \sum_{\beta}^{1} f(\lambda, \beta) \tag{21}
\end{align*}
$$

Substituting $\lambda=\alpha$ we obtain

$$
L P_{\alpha}=-2 \pi \sum_{\beta}^{\prime} f(\alpha, \beta)-2 \pi Q_{\alpha}
$$

or, in the exponentional form,
$e^{i L P_{\alpha}}=(-)^{V} \prod^{\prime} e^{-2 \pi i f(\alpha, \beta)},(-)^{\nu}=e^{-2 \pi i Q_{\alpha}}= \pm 1$.
This is the higher-level ansatz equation for the parameters α of physicel excitations. The "dressed" momentum P_{α} appears in the I.h.s. of (23) owing to the algebraic structure of the principal eqs. (6) and (12). This fact has first been established in $/ 6 /$; our proof (19) is simpler and, in a sense, minimal.

To prove that $f(\alpha, \beta)$ in the $r, h . s$. of (23) can be viewed as a two-body phase ahift of physical excitations, we have to use the direct method proposed by Korepin $/ 7 /$. If we consider the \times-space structure of the Bethe wave function proper to (8) and evaluate the total phase shift for a root T_{j} nearest to a hole $\alpha\left(T_{j}=\alpha\right)$ on the full interval $[-L / 2, L / 2]$, we get
$\exp i \Delta \varphi=\exp i\left[L p(\alpha)+\sum_{k} b\left(\lambda_{k}-\alpha\right)-\sum_{\beta}^{\prime} b(\beta-\alpha)\right]=$
$\exp i L \bar{\varphi}(\alpha)= \pm \exp i\left[-L \rho_{\alpha}-2 \pi \sum_{\beta}^{\prime} f(\alpha, \beta)\right]$
From here the interpretation of $f(\alpha, \beta)$ as a physical phase shift becomes evident.

In conclusion, we shall make two remarks. The first is that when dealing with arbitraxy functions $p(\lambda)$ and $f(\lambda)$ we have no control over the accuracy of our approximation procedure. In concrete models, as a rule, the neglected terms in (5), (13) etc. are of the
order $O(1 / L)$. Note that (21)-(23) are exact by definition. It enables us to rewrite eq. (18) in the exact form too

$$
\begin{equation*}
\widetilde{P}-P=-\frac{2 \pi}{L} \sum_{\alpha}^{\prime} Q_{\alpha}=\sum_{\alpha}^{\prime} P_{\alpha}+\frac{2 \pi}{L} \sum_{\alpha \beta}^{\prime} f(\alpha, \beta) \tag{25}
\end{equation*}
$$

(the first equality results from (8)). We see that the total monenm tum $\widetilde{P}-P$ is discrete whereas the sum of dressed momenta $\sum_{\alpha} P_{\alpha}$
 transformed as follows: $\alpha \beta$

$$
\begin{gather*}
\sum_{\alpha \beta}^{\prime} f(\alpha, \beta)=\sum_{\alpha}^{\prime} f(\alpha)=-\frac{1}{2 \pi} \int_{-\Lambda}^{\wedge} d x f(x) \sum_{\alpha}^{\prime} a(\alpha-x)= \\
\int_{-\Lambda}^{\Lambda} d x f(x)\left[f^{\prime}(x)+\frac{1}{2 \pi} \int_{-A}^{\wedge} d y f(y) a^{\prime}(x-y)\right]= \tag{26}\\
\int_{-1}^{\Lambda} d x f(x) f^{\prime}(x)=\frac{1}{2}\left[f^{2}(\Lambda)-f^{2}(-\Lambda)\right]
\end{gather*}
$$

For finite \wedge this expression may perfectly well be nonzero. However, for $\Lambda=\infty$ the l.h.s. of (26) is necessarily zero, and the sum of dressed momenta turns out to be discrete:

$$
\begin{equation*}
\sum_{\alpha}^{\prime} P_{\alpha}=-\frac{2 \pi}{2} \sum_{\alpha}^{\prime} Q_{\alpha} \tag{27}
\end{equation*}
$$

Really, if $\Lambda=\infty$ we derive from (10) that

$$
\begin{align*}
& f(\lambda)=\sum_{\alpha}^{\prime} f(\lambda-\alpha), \quad \text { i.e. } \quad f(\lambda, \mu)=F(\lambda-\mu), \tag{28}\\
& 2 \pi F(\lambda)=-\int_{-\infty}^{\infty} d x a(\lambda-x) f(x)-b(\lambda) \tag{29}
\end{align*}
$$

Obviously, $f(-1)=-F(\lambda)$, and we arrive at $\sum_{\alpha \beta}^{\prime} f(\alpha-\beta)=0$
The second remark concerns the $\Lambda=\infty$ case. Here, one can use, in complete analogy with the vacuum state, the root density $\tilde{\rho}(\lambda)$ from the very beginning $/ 2,8 /$. The rost density for excited states,

$$
\begin{equation*}
\widetilde{\rho}(\lambda)=\rho(\lambda)+\frac{1}{L} \sum_{\alpha}^{\prime} \sigma(\lambda-\alpha) \tag{30}
\end{equation*}
$$

is defined through the integral equation

$$
2 \pi \hat{\rho}(\lambda)=h(\lambda)-\int_{-\infty}^{\infty} d x a(\lambda-x) \tilde{\rho}(x)+\frac{1}{2} \sum_{\alpha}^{\prime} a(\lambda-\alpha)
$$

which epproximates (8). For $\sigma(\lambda)$ it follows thet

$$
\begin{equation*}
2 \pi \sigma(\lambda)=a(\lambda)-\int_{-\infty}^{\infty} d x a(\lambda-x) \sigma(x) \tag{32}
\end{equation*}
$$

and it is easy to deduce that

$$
\begin{equation*}
\sigma(\lambda)=-F^{\prime}(\lambda) \tag{33}
\end{equation*}
$$

Integration by parts shows that the $F-$ and 5 - approaches are consistent. The key formula (14) assumes the form

$$
\begin{equation*}
\phi_{\alpha}=-\phi(\alpha)+\int_{-\infty}^{\infty} d d \phi(\lambda) \sigma(\lambda-\alpha) . \tag{34}
\end{equation*}
$$

A simple algeoraic nature of the mechanism observed supports our confidence in its relevance to a much richer clasp of solutions than that of purely real solutions of (1) directly considered in this paper.

We are indebted to L.V.Avdeev, V.B.Korepin, and A.A.Natveev for numerous helpful discussions.

REFERENCES

владимиров А.А., Дёрфель в.-Д.

Механиям получения уравнений "вторичного анзаца" из ин тегральных соотношений аняаца Вете прослежен в общем виде для широкого круга моделей.

Работа выполнена в Лаборатории теоретической физики ОНЯи.

1. Thacker II. B. - Rev. Nod. Phys.,53(1981) 253.
2. Lowenstein J. H.-In: Recent Advances in Field Theory and Statistical Mechanics (Les Houches 1982 Summer School), Ansterdam, Nowth Holland, 1984.
3. Tarassov V.O., Takhtajan L.A. and Feddeer L.D. - TMF,57(1983) 163.
4. Destri C. and Lowenslein J.H. - Nucl. Phys., B205 (1982) 369; Baoclon O., de Vega H.J. and Jialle: C. W. - Hucl. Pijs., B220 (1983) 13;
Japaridze G.I., Nersesjan .A. and Wiegman P.B. - Phys.Scripta, 27 (1983) 5.
5. Lieb E.H. - Mhys.Rev., 130 (1963) 1616.
6. Yang C.N. and Yang C.P. - J. Wath. Phys., 10(1969) 1115.
7. Korepin V.E. - TMF, 41 (1979) 169.
8. de Cloizeaux J. and Pearson J.J. - Phys. Rev., 128 (1962) $2131 ;$ Takhtajan L.A. and Faddeev L.D. - Zap. Nauch.Semin. Lowl, 109 (1981) 134.

Препринт Объединенного института пдерных исследований. Дубна 1987

Dörfel B.-D., Vladimirov A.A

The origin of the higher-level Bethe ansatz is studied for a large class of integrable models.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

