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1. Introduction

This is the fourth part of the paper devoted to a detailed analysis
of a Lee-type model of two-particle decay. Let us recollect briefly

the contents of the previous parts/i_B/; hereafter referred to as I-III.
The model itself has been described in I , where we have proven also
)

its Galilean invarince . After separating the centre-of-mass motion,
the analysis simplifies to the perturbation problem of a simple eigen-
value embedded into a non-simple continueus specirum. Its solution
depends crucially on the properties of the reduced resolvent. In IT,
we show that for small enough values of the coupling constant g , the
reduced resolvent has a simple second-sheet pole whose position depends
analytically on g . R

Finally, in III we study the pele approximaiionin which the ana-
lytically continued reduced resolvent is replaced by the pole term alo-
ne. We show that under some mild regularity requirements on the function
v that characterizes the interaction, the deviations of the %rue decay
law from the exponential one resulting from the approximation is of )
order g¥.This gives us further s possibility of establishing the rigo-
rous validity of Fermi golden rule for the present model.

Here we shall be concerned with three other problems. In the next
section, we shall discuss relations of the model under consideration
to the scattering theory. We establish existence and completeness of
the wave operators for the situation when the two light particles that
have played the role of decay products scatter elastically. Then we
express the R-matrix and show that for a sufficiently weak coupling,
the system has just one resonance. Its position as a position of the
R-matrix pole is the same as that of the pole tonsidered in Theorem
I11.3.6 and further on.

%) In the preprint version, division of the material between the first
two parts is different - c¢f. a comment on this point in the intro-
duction to III.
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It is much more difficult to prove that the wave operators are
also asymptotically complete, i.e., that G;lng( g) =@ . This will be
done in Section 3 under some additional assumptions concerning smooth-
ness of the function v . As a technical tool, we compute here the full
resolvent of the Hamiltonian Hg . Section 4 deals with the problem of

spectral concentration : we show that the spectral projections Ey (Ag)

on a family of intervals A  that shrink around E tend to the projec-
tion Eu sy provided the shrinking is slower than gquadratic in g . In
this way, the decaying system remembers the embedded eigenvalue which
"dissolved" once the perturbation was tfurned on. Finally, the existence
of bound states is discussed in Section 5 . )

The next part will deal with the quntum-kinematical aspect of the
decay under consideration, and with the relations of an appropriate
kinematical model to the dynamical one discussed in I-IV .

2. Connectipn with the scattering theory

Consider the scattering process between the two light particles of
masses m, and m, which have played the role of decay products in
the previous parts of the paper. In view of (II.2.4), the non-trivial
part of the scattering problem concerns the centre-of-mass coordinates
only. In the following, therefore, we shall use the "relative" quanti-
ties without mentioning this fact explicitly.
The wave operators for the pair (Hg'HO) are defined by
ngt -iH.t

12 (H ,H } = s-lim e e 9 p (H
t-»to00

(2.1)

where Pac(HO) is the projection referring to the abaolutely ceontinu-
ous subspace of HO . We have the following

Theorem 2.1 ¢ The wave operators (2.1) exist and are complete, i.e.,
Ran &, (Hg,Hg) = Ran Q_(H.,Hg) = Ren P, (H,) . (2.2)

Furthermore, assume (a)-(c) and (e) (cf.Section III.2). If the function
‘31 has a piecewise continuous derivative, then JZi(Hg,HO) are also

asymptotically complete, i.e., SIng(Hg)— g .

Since the interaction Hamiltonian gV is of a finite rank, the
existence and completeness follow from Kato-Rosenblum theorem (cf.
Ref.4, theorem XI.8). It is much more difficult to establish the asymp-
totic GOmpletenesa ; we postpone it to Section 3 .

—acr

‘The wave operators (2.1) detéermine the S-matrix ef—éur.prqblehlby
5= 0. - : - L @n

In order to derive &n explicit expression for S , wé employ the-fplldp
wing Lippmann-Schwinger-type result (Ref.5, ProPosition‘6v41)‘: égppoSe
that the wave operators exist and are complete, ﬂ ﬂo*—gv is self-
adjoint and D(V) D D(H, Y , then .

S =2 (H Y + B-1i =13 Reéa-i Hy ) =R(>+i9,H) ‘x
31402 ﬁfoér j i 1 7% 1 (2.4)
2.4

. AL S (0)
x[gv - ¢ va(v\«»i;f,ug)vjpacmea agy”’
where, a8 in Sec.III.5; the decomposition of unity- {Eﬁ?)z refers: to

the free Hamiltonian Ho . The assumptions are obviously valid in our
<ase, 50 (2,4) holds. For brevity, we shall work in the followig with

_the R-matrix defined by

-Pac(‘ﬁoi_ . {2.5)

* Qur goal is now to express matrix elements of this operator. It is

clear that both S and R commute with Péc(HO) 3 in fact, S ‘is
a partial isometry of the subspace Pac(ﬂb) = ag into itself {Ref.5,
Proposition 4.6). Hence we shall consider vectors of the farm

? (v ) ® = (; ) only, restricting our attention to those with
d d
Let us first express the integral on the rhs of IQ 4). We can
write it as

*0 .
c=z{ B HeE® {2.6a)

% . ? . ..

where B{J) denotes the product of the square brackets, because the

sapport of dE&O) is B+ . Moreover, in the corresponding expression

of (¥,CP) ‘the integral is actually taken over a finite interval

A= IO,do] , since the supports of ‘ﬁa,ék are by assumption contained
in -a ball of radius J’zT\O for some 9 . The integral is defined
{ef,Ref.5, Section 6.1) as a strong limit of the corresponding Rieman-
nian sums, sSo we have

(¢,c8) = ai:l’ué %'. (BQ«B‘??.EO(A;)Q') , _, {2.6b)

3 .



whore Al L the pointe of some partition of p («!,)GA".1 = (J,r.l,v\.'iJ,
n J J 3773
dnd- 5;-max 5 , where §j

1ng in the Iast expression can be writtem down explicitly im “fhe momen-

is the length of A? . The vectors eppear-

tum representation,

*2
T - _ . . K
(Bpahg)y (B) = tp)y(A (2rr} ‘ (2.72)
and -
BPY) () = -g%V(E) r_ (a+id,H )f’—*i?) 2 D, (k) aK
(BAY P 4(P) = -g"V(E) 1, (4+19,H, ‘BV( 72 12 2% '

‘ & (ﬁ‘*)‘ 1 (2.7b)
where the term linear in ¢ is absent in view of the condition
€I1.3.3). Substituting from here into (2.6b), we get

_ . . n n N.en .
4,08) = Ji_l’né Z;‘ Cﬂe“j»ﬁ:ajﬁj , (2.8a)
where
-1 T T Al A -
Cla,u,2) = 2 f €BL™Y) (BT (D) ap (2.8b)

M(«, &)
and M(4,g)= By (Vom@d+g) )\B (V2ma) . The sum on the rhs of (2.8a) is
Just the 1ntegral of the step function F thatl assumes the value

. n n n
Fp(a) = Gt u5,d%)

for \A\GA‘?- . So we have
>

(¥,cé) = 11 P (W) dw , 2.8¢
¥.cé nflovfn (2.8¢)

N

/

“provided 1lim Afn =0 .

n-peo A
Suppose now. that the function vt fulfils the assumption (d).
Since (2.7b) is a continuous function of 4 and E , one checks

easily that

lin F (A) = m/2my f usu)*y) (/2m3 1) % 17) als (2.9a)
I —po> 2
where 52 is the unit sphere and A€A . Further (2.7b) and (2.8b)

gives the estimate .

[ote, w2yl < ,IJ AL 19,0

M,(Jm;)

-

TR R

In viéw of the stated assumption (recall that ﬁdc C'&([R})-_) ,- modulus

of the integrand in the last integral is bounded by a positive K

-

within B (./Zm.xo') . Then the integral may be estimated by K f ag <
< 49m 2mx, ¢ for OLACU+ESA, , and we have the Ny
following £-independent bound
L, 8amK{Zmy .
fatp,n, Ot € —5—2 2% iyl y - (2.9%)

?J

The relations (2.8c) and (2.9) together with the dominated-convergence

theorem then show that

(ed) = [ aa m,/zma.,f (BFY) (/2md B) g, (Zma B) aQy =
5} s, ‘
-2\ a -
= &;3 (B(g—m) })dd»’) 9B & .

Combining now the relations (2.4),(2.5) and (2.7b), we get

(T’Ré)‘ =

€2.10)
2 - A A
= g°lim 1i ak ( { +iiH ——7— v R(K) .
e s [ o8 [ #3004 Br )( R
Zm 2m

Assume mnow that'for each 4 >0 , there is a finite limit

lim r (2, Hy y='r, (.uio.H ) and that the function (A,J)l—aru(uki*idr,ﬂg)
Z A

Imz>0

is bounded in (O,Jo)x (O,LQ) g - This is true, e.g.,

under the assumptions (a)-(e) for a sufficiently small coupling constant

for some

& f Q . Since ﬁd'ia have compact supports, the dominant-convergence
theorem implies

V(@Y (B) .
2m  2m

2
fnd ;E
d(p)ru(Qm*io’Hg)(kZ -*2) ’?_
b +

Next we must intercharige- the limit 7 -0+ with the integrals. Consi-

der first ihe second integral : we can write it as

o 2i 2 AT, -
11:& dk ?-1—?1—2——-—— v, (kY ./ Y‘d(kn) d'aﬁ' .
>
? 0 (Zm 2m}+'2




.. A 00 ) . . .
Since ﬁie CO(BS) y. the last integral is a bounded continuous function
of k ; we denbte it as [w(k) . Intreducing the variable y =
o . .
= (k°- 32)/2m7 > the last expression cen be rewritten as

. . ’ dy - A uA j
2im lim J; —= \/p2+ 2mpy vl(/??+2m?y) %é/g2+2m7y) . (2.11)"

-0+ _ D
! ~ 2m

1+y

However, 91 is bounded by the assumption (d), and the limit can Se
therefore calculated by the dominated-convergence theorem to be
ZﬂimpG‘(p)I (p) . Using once more the fact that the integral in (2.11)
cun be estimated independently of 7 in an interval (O,ZO) y We are
able to justify application of the dominated-convergence theorem to.
the interchange of the limit with the first integral. Together we get

(¥, rd)

H

.2 A g 2 oy A,
27 ag b, -
Fimg f} wd(p)[v](p)l ¢ ru(?_m i0 .Hg) Sje Pq (1) dﬂ.—-n

h

- 2
L2 2 X = 2 P, fdd
i
2%img /3dp Vd(p)lv1(p)l p ru(Zm +10, Hg) §/ Pytpn’) dfa.
R 2
where the second equality follows frum Fubini theorem. Since CgﬂRj)
is dense in Jh , we get '

2
= - . 21 A 2 . A .
(Ré)d(p) = 277img ’V1(P)l D ru(gﬁ + 10, H‘) J wh(pn )dllal . {2.12a)
2 .
The operator R is bounded so by standard density arguments the

validity of the last relation may be extended to each Jel¥.
Let us conclude the above discussion.

Theorem 2.2 : ASsume (a);(e), then the relation (2.12a) holds. In
other words, R isa decomposable operator on Jﬂif L2(R+;ﬁ2(§23) and
its component R(4) for a given Jde R* is the Hilbert-Schmidt opera-
tor with the kernel

ROTL R = orimg®] ¥, (Vo) [2/2m r @10, 1) (2.125)

Now we are able to write down the amplitude of the elastic scatte-
ring with the initial momentum P =pn  and final momentum T=pn .
It equals (cf.Ref.5, eq.(7.48)) <-2yi (2mq)_1/2RLA;H,?') , i.e.,
v

f3; 3 — ) = 4.ﬂ2mgzl?r1(\/2m.x)]2ru(~a+io, H) (2.173)

Furthermore, the assumptions of Theorem 2.2 ensure that both A+ .
— [v1(JEEE)]2 and W ru(¢+i0;H ) can be continued analytically
from the upper halfplane to the region 8.  that contains (O,kﬂ

{as for the first of them, recall that we choose the cut of the square
root conventionally along the negative real axis). For small enough g,
the continued function Ar> rucA+iO,H,) has, according to Theorem
11.3.6, a simple pole whose position depends analytically on g . The
same is then true for the scattering amplitude. In the commonly accep-
ted terminology, this fact can by expressed as

Proposition 2.3 : Under the assumptions (a)-(e), there are a positive
g, and a complex region &1 D (0,00) such that for 0<l[gl<g, ,

the above described scattering system has just one resonance in Jl,
whose position is given by the relations (I1.3.16).

In order to illustrate typical features of the resonance scattering,
let us calculate the crosg section and the phase shift. The differen-
tial cross section is equal to the squared modulus of (2.13). In order
to get the squared modulus of ru(J+i0,H ) , one must use the relations
(I1.3.11) and (II.3.15). A short calculation then gives

16:Am2g4‘{$l(‘2m4ﬂ4

[A-E-47g°1a,v]%+ 329*0 e a3, (Vama|*

«

46 -
a8 P 1) = (2.12)
It is clear that the scattering is isotropic as a consequence of the
fact that v 1is rotationally invariant. In that case, the total cross
section does not depend on the chosen initial direction and equals
497(86/dS) . It means that both of them have the same shape as functions

bf ‘the energy. For O e.g., we have

tot ?
¥ Mg, )2
6, (A = =—— (2.15a)
tot N L AT T L
where )
E(g,a) = E +478°1(a,v) (2.15b)
Plgyn) = 8ﬂ2mg2141(dzm4)]2J2m¢ . (2.15¢)

If the coupling constant g is sufficiently small and the function 91
is slowly varying around E , then we obtain an approximative expressi-
on to (2.15a8) replacing E(g,A) by E(g,E) and [(g,a) by /M™g,E)=
= r%(g) . The cross-section formula acquires the familiar Breit-Wigner
shape with the peak situated at E(g,E) , and with the width given .
again by the Fermi-rule expression (III.5.2). At the same time, it is

7



clear that the cross section miy have accidental peaks connected with

the shape of the function 31 .
Let, us turn now to the phase shift. According to (2.5) and Theo-

rem 2+2, S 1is a decomposable operator on ﬁ% and its component for

a2 given A 1is SGA)=I+R(A) . Only the s-wave part is non-trivial

according to (2.12a). The s-wave phase shift db(J) is determined b& '

the relation H

2150(.)\) !

Sp(a) = e I= (1+4RAGEAT (2.16a)

the higher phase shifts éi(d) =0, 1=1,2,... . Using now the abbre-
viations (2.15b,c}, one finds after a short calculation that

-A+E(g,a) + %I’(g,u\)

S5(W) = T (2.16b)
- X+E(g, N - 5F(g,a)
and therefore
1
. —I"(g,-\)
() = arctg —2&——  (mod 7) (2.17)
0
E(gvd) "A

For a weak coupling and a slowly varying 3‘ » One has an approximative
expression of this function around E(g,E) , namely

1
(&)
2 F
tg cee
R P J4< E(g,E) }
Foxd I ceo A=E(g,B) (2.18)
. 1n
ST (g)
2F= . A > -
T +arctg 5z, E) <% E@.E)

again modulo J . Tt shows that the phase shift has a sheer increase
which changes its value on about ¥ . This is another characteris%ic
feature of a resonance.

The last approximative formula holds in the resonant region only.
The asymptotic behavieur for large and small X can be also easily
obtained under some additional, not very restrictive assumptions.
From Lemmss II.3.4 and II}.2.2, we know that I(.,v) is bounded,

’ {L

fr(a,vils ¢

2

under the assumtions (a),(b) and (d). Therefore eq.(2.17) gives
“

Fo) & -axPme?} 8, (IO [ (moa 1) (2.19a)

. . g

as A —»00 , the asymptotic region being specified by the requirement

ASn E-+4wg202 . In particular, one has
lim dy(d) = 0 (mod ¥) . (2.19b)
J->00

To find the behaviour for JA— 0+ , we need to know the limit of

I(a,v) ftrst.

Lemma 2.4 : Assume (a) and (d), then

-]
2
1(0+,v) = Lim 1) = -2n J 1¥,¢0)) ap . (2.20)

A0+ 0

Proof : To a given A > 0 , we choose a positive A so that A2> 4ma .
Then I(A,v) exists according to Lemma II.3.3 and

A 13, (p)]? p? TR, (p)2p2
I(U\,V) ::?j 1—dp +j——1—7dp .
0 A-% A ‘)‘_gx—n

By the dominated-convergence theorem,

L
AN )
lim f 57— dp = -2m f lv,(p)l dp
A

A-20+ ~\-%—
m

(note that 316 L2(R+) according to the assumptions (a) and (d)).
A simple calculation gives

A 1R (m]%p? Ay () - v, (/)
pp Bl | ey
0

> pdp +
0 ¥ N g4 - 2=
2m 2m (2.21)
A

+mv, (/2ma) In .

2 2

A,
2m

Since |v2( ZmA)]S C1J§Ea by the assumption (d), the second term

tends to zero as JA—>0+ . With the help of the finite-difference for=-
mula, one checks that the integrand in the first term onm the rhs of .
(2.21) is bounded uniformly with respect to A . So the integral exists
in the sense of Lebesgue and the dominated-convergence theorem yields

A t“ 2_2 A
v
e Pl dp e on [ 19007
- 0 _b_
A 2m 0
Summing the two contributions, we arrive at (2.20). a
9 -




Let us now dgnote

w L 1-1/2
Bop = g'/2 [87/‘51_/ [v‘(p)[2 dpJ . (2.22)
0

Proposition 2.5 ¢ Assume (a)-(e) and [g’f: Bop * Then

lim d“o(q) =0 (mod ) - (2.23a)
A2 O+

Furthermore, if I:rllzé C([0,e)) =and l?ﬁ(O)l -f=0 , then
42%0g? %, ()% 2m

ONEYES S
E[1 - (8/8,,) ]

(mod ) (2.23b)

as A-» 0+ .
Proof : The relations (2.23%) follow from (2.17) and Lemma 2.4 . @
For [g|= 8oy » W€ Bre able to deduce the analogous conclusion

under an additional assumption on v . We need an estimate on I(u,v)
first.

Lemma 2.6 ¢ Assume (a),(d) and -%[91(;))]2 bounded in {0,00) . Then
there is a positive ¢ such that

A
[T, v) - 1(0+, )] < c1n g (2.24)
for A >0 .
Proof : Let us choose A>0 and denote ! (p) = fv (p)l . Since

I(.,v) is bounded, it is sufficient to c.ons;Lder JG—_(O A /4m) . By
Lemme 3.4 ,

(s3]
v,{p)dp
I(A,v) = I(0+,v) = 2m.A-?/J-—2— . (2.25)

We estimate

P v, (p) s
j —‘L—zdp 54—‘; fv4(p)dp<oo )
A N\-.ll— A A
2m
Furthermore,

,

A A
(p) Jom (F(4,p))
.Pjv MAAA dp:v(./—_)f A+ vem :2mf rafp) p‘,dp
(VNN 2m 0 p+\/~2mJ

where sg(q,p) i & number between ¢2mJ and p . Since

10

—

" —
et ——

2 - 2(2
o<-&1nﬂ—+——m=‘/é£1n(l+ 2/2m J\) (+J_)m

24 A - 200 A A - Joma A
? d K|

0 < —k_ . 1n(1+ 1n(f ) %m;-ﬁ )
0 p+y2my

the inequality (2.24) follows with a suitable c¢ . @

2ma

Proposition 2.7 ¢ Assunme (a)-(e). Let the function |3112 be conti—
nuous in [0,e0) and continuously differentiable in (0,00) with

N

lvl(O)f fO , and [g[:gcr . Then

lim Jo(.x) =12r (mod ) . (2.25)
A-20+

Proef : The egs.(2.16b) and (2.22) give
~a+0a[1n g ) + 45°ing? [¥) (V2na)| * Voma

S,(A) =

0 -A+ 0(A ‘lnﬁl) - 412img2[\"r1 (,/2m.k)|2\/ 2ma
so, according to Lemma 2.6, SO(\A) tends to ~1 as A—>0+ and
(2.25) follows. [ ]

3. Asymptotic completeness

Now we would like to complete the proof of Theorem 2.1 . In order to
do that, we need a more complete information about the full resolvent
(Hg-—z)_ of the Hamiltonian. The obtained formulae will be useful
also in the next section.

Proposition 3.1 : TLet f’de ,-and assume that =z belongs to the

resolvent sets of Hg and HO , then

o it ) % =1a 2 . A A
By(Hm2) T Bg¥y = (igme) ™'y +67r, (238 ) (6, 0800, , . (3.1a)

where the vectors ‘p_)z are defined by

b1, = Hm)T'S g, = DT : (3.1D)

In the last relation, (Ho—z)_ stands as a shorthand for multiplica-
tion by (p2/2m—z‘)_] - c¢f.(I1.2.9).

Proof : The first part. of the.argumént is similar to the proof of

Proposition II.3.1, with the roles of 'J/u,?/d reversed. We start from
the second ‘resolvent identity which. yields the relations.

11 .



H

B,(f-2)""E, = 5 A 2)7"E, - g8, (R -2) g B (H ) e, -
attgT® Ba T fatto a~ 8% g u'“a' "o a

&~ -1 A A _ -1
-gEd(Hg—A) B, VE (Hy-2)" By

f-y'g - A=) 'g ¥ - 'g
Ed(Hg_z) Eu = —gEd g—Z Eu " O—Z Eu -

—gi (R ~2)"'g FE_(f -2)"'E

€54 g d "u 0 u. ’

where we have used commutatitvity of Eu’Ed with ﬁ ~, orthogonality
of these projections and the relation Eu+ Ed= I . The last term on
the rhs of the first equality is zero in view of the Friedrichs con-
dition § the same is true for the first rhs ‘term of the secend equali-
ty, because EuVEu= 0 . Now one has to substitute from the second rela-
tion to the first one, and to multiply the obtained operator identity
by ﬁo-z from the right. It gives

a1 s - S S N T :
Eq(H -2) Eq{Bq(Hy-2) B, ~ €“B4VE, (Hy-2) EuVEdj = E, . (3.2a)
This equation is solved by
RS XS S S S B .
By (-2 By = {5 [, - 2 -e%Te, A2 T]E ST, (3.2b)

where the inverse refers, of course, to .8(9%) .

Comparing to Proposition II.3.1, the situation is now more diffi-
cult, because we are looking for inverse of an infinite-dimensional
operator. Fortunately, the problem is solvable. The curly-bracket ope-
rator in (3.1), which we denote by Az for a moment, acts as

A4, A A
AP @B = (g—i_z) PN P ALLAS Lk U (3.3)
E-z

It differs therefore from the projection of ﬁo—z to 5% by a rank-
one operator. Then one has to employ the corollary of the second-resol-
vent identity which is known as Krein formula 6 3 according to it,
the difference of the ceorresponding resolvents is again of rank one.
It suggests the following guess, '

. =2
[l —1 A -» -1 -2 A A -
(Bq(Hp-2) "Egpq)(p) = (g—m-Z) ‘@d(p)+m(z,g)(¢/22,¢d)¢1z(p) y (3.4)

are given by (3.1b) (recall that ve LZ(R’))
and o(z,g) 1s an unknown complex number. Then we express

A - y
(Ed(Hglz) IEdAziﬂ)(i;) using the relations (3.3) and (3.4}, the
expression

where the vectors tsz

12

a

Ao 6‘(?_))
%‘Z(p) = 3_2 o
om z

and the analogous one for {522 (with =z replaced by z ). In view of
(3.2v), it must be equal to ¢G(§) . This requirement leads to a condi-
tion which yields :

2

g ..
. (3.52)

2,4 A .

E-z-g (VZZ’V)

“(218) =

. I =-1: -y Y
The same argument applied to (AZEd(Hg—z) Ed¢d)‘p) gives

2
£

E-z —g2(:r,l?1z)

oK(z,g) = (3.5b)

A
The conditions (3.5) are, however, consistent because (¢2Z,‘3) =.(w';,l,01z)~=
= -G(z) . Combining the relations (3.5) with (IT1.3.4), we get o(z,g) =
= gzru(z,Hg) , i.e., the desired result. ;]

Remark 3.2 ¢ With the help of the relations used in the proof, ome
can easily write down also the "non-diagonal blocks" of the resolvent.
For any ';Zde% , we have

A -1 _ oA
By (Hpm2) 'Bay = -er (2B ) @oraf) - (3.6a)

The result is, of course, a complex number, i.e., an elemént of ?{u
(recall that we work with a,re}: [ 4>] LZ(ERB) ). On the other hand, for
any yugﬁu we have

A -1 ~ A -

By(H=2)" "By, = gy, ¥ (ZH)p, - (3.6b)
The relations (3.6) together with (3.1) and (II.3.4) describe the re-
solvent (fl\ -z)-1 completely ; after a short calculation, we obtain
for any y= (%u) the expression

Ya
2 12 _ - A -1
@27 = () TR +
(3.7
A A - A A
* 1-u(z'Hg) [y’u -g(PZ’z’#d)][?u-g‘(vd“’p‘lzﬂ °

Noew we are ready to deal with the problem left from the preceding

seetion | .
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Proof of the asymptotic completeness - Theorem 2.1 j First of all, we .
must estimate Im(@,(fi\g—Z)-L@) for '@: v’g) of a dense set in & .

We take @dg.cgﬁR3) . Purther we choose a finite interval [a,b] C LN
C.Q1f\(0,oo) (cf.Theorem II.3.6) and consider z=4A+if with Aefa,b] :
and 2 >0 . For the free resolwent, we have

A a2
SRR L L (3.8) !
Yo = 3 ﬁ? 2 .2 ) :
& (Zm—'\) +8

, the rhs of (3.8) may be estimated as follows

A A
Im (@d,(HO—Z

If we denote &= WA/g

(J2mg ¥)[2 dk
(2m)3/2 /& f lv’d 7 K 4#(2m)3/ Ve sup [1& (p)l f :
RB % —x) +1 pGR (k —) 241

o ——

In the last integral, we substitute u=:k2—-x and estimate it as

f Nutx leT[+f du=£+g‘/% ) N
S 2(u +1) S 2(uPs) V2 '

Together we get

0 € In (P, (Hym2) P < 827072 sup_ 19 (3)!2(5 +/_) (3.9) F
Ber’

)
so the imaginary part (3.8) is a bounded function of 2z in |
[a,b] x [0, £,] for any £,>0 . We shall set &;=1 in the following. '
The relations (3.7) and (3 9) then give l

1]

(,Im ,('@,(ﬁg-Z)"?)] < 87:%3/2 (1 +fg) sup h/»d(p)l2

+
pem - :
T, D) U T ” -
i a4 d -> .
e [idetet| [, =g =l [t |, = 2l
2m 2m
Under the assumptions (a)-(c), the function ru(.,H ) is continuous

for a sufficiently small g , and therefore bounded in [a,b] x [0,1]
Suppose that the function 31 has a bounded derivative in [e,b]

Slnce Vh EC (R ) , the same argument as in the proofs of Lemmas II.3.3
end II1.3.4 shows that the function defined on [a,b] X(0,1] by

TEB)
Z>g —Q=5 dr
- B3 éLm -z i

and extended continuously to Imz =0 1is continuous within [a,beE),ﬂ.
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and tﬁereﬁore bounded ; the same is. true for the other function that
4prears in the last estimate. Collecting these results, we see that

b C o o |
sup | Im (¥, (2 -a-i2))] 2 du < 20 (3.10)
0<E<1 3 &

for any gq>1 The well-known criterion (cf.Ref.[.27, Theorsm XIII.19)
then implles Eﬁ ((a, b))@(:?é (H ) . Since cg(m3) is dense in LQ(EB),

it follows that Ran B4 ((a, b)wc x, (H 2

Now we would like %o extend this result to the whole R+ Accor-
ding to the assumption (e) and Lemma II.3.4, r (.,A ) may be continued
analytically accross B+ , with a possible exceptlon of the points
AeR' in which W =E+g2G(n)
of ﬁg . However, the analyticity assumptions (b) and (e) imply that

These points correspond to eigenvalues

snch points are isolated with no accumulation points except infinity.

If none of them is contained in [a,b] , the above described procedure

may be carried out. N '
We have required Q‘ to have a continuous derivative within

[a,b] . By assumption, ?{ is piecewise continuous, i.e., its discon-

tinuity points are isolated and have no accumulation points except

infinity. Together we have g closed‘subset M<:fA;3c: m* such that

in its points either nu(.ZH ) is not bounded or v, is discontinuous.

1

Let dj’dﬁ+1 be any two neighbouring points of M . Then Eﬁ ((a,b))c
. A

’ i o
C WaC(Hg) for any \A3< a<b<ka\‘1 o beea, B (G ’J\i ) c?éc(ﬂ ) .

A A £} K

1t means that Ep @'\ < ?{ac(ﬂg) , and therefore fslng({g) is
void. &
itemark 3.3 * (a) The result holds without any limitation on g . If

|gl is small enough, -then Theorem'IT.3.5 ensures that r (.,H ) has
no real-axis poles around E . Such a pole can appear in the strong-
coupling case, however, it is always an isolated pqint which does not
contribute to (H ) .

81ng g
(b) In someé cases, H_ has no eigenvalues - cf.lemma III.2.4 . The
eigenvalue problem will be further discussed in Section 5.
(c) The smoothness requirement on 31 does not follew from the assump-

tions I1I.2.1, since the latter concern the modulus of 91 ‘only.,

4. Spectral concentration

We have seen that the embedded eigenvalue E corresponding to the
initial particle disappears once the interaction is turned on. Never—
theless, the system "remembers" the dissolved eigenvalue : if the

coupling is sufficiently weak, the states whose energy support does not
1]
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contain a small interval around E are nearly orthogonal ‘1:9 the ori-
ginal eigenstate ; thie weaker is the coupIling, the smaller is this
interval. This effec¢t is known as Spectrsl concenfratiaon ; we are

going to formulete it now for the model under consideratiaon.

Theorem 4.1 : Let a,ﬁ be positive numbers, F<2 , and denote

Ag = (E‘«-IZ&IF,E+u[g';§)' . (4.\.:;)
Suppase the assumptions (&)-(¢) are valid and \?1 is continuously

differentiable in some neighbou'rhoodr of E , then

s-I'tm Er (A)=E . ' (4.19)
g20 % n

Proof ¢ In.view of Theorem II.3.6, we can choose & positive 9% such

that the functions ru(.,H Y sand Q{ are continuous in A for all

g such that ©0< Fg!(go . :The proof presented in the previous section
- A :

then shows that Ran Ej ng) c ﬂac‘(ﬁgf . Then we l.mve

o, B 4 1 = <w,EH (2,7 = 1im

t-o()+ R

A" L K}
p fm (B, (B -4 -18) Wyaa ,
A
_ (4.2)
where the second equality follows from the Stone formula -
cf. Ref.I.27, Theorem VIf.13 . Now we choose f;de C'g(!Rs) and calculate
the limit of (4.2) as g—=>0 . In view of (3.7), we have

1§ 4
lim (? EH (A )'Q) =4 lim lim Im{f M

R L (R
(pW 3
+ ru(¢+ia,;{g;[yu f p}x (4.3)
’ —4 -ig
B+
[ -sf ‘;d Bgd“\ .
E_
>m -A-12
The estimate (3.9) gives
M ap .
< lim Hm f el t pd.:\ <
g0 20+ A (.L - +£
oL
£ lim lim e¥2m>/? sup (1; 3\ (\/' ,/w)- 20([3!,3 =
240 £40+ GIR
p
o - 16

CAn ke i b i
i - o

TR
-

o e e e

= lim 16ann’/? s 1 (p)lz‘/—(ﬁ4d[g[F)L LS

g0 PeR

i,e., the contribution of the first term is zero. We shall use once mo-

re the proof of the preceding section : it shows that the second teru
in the curly bracket in (4.3) is bounded. Then we mcy 1nterchange the
limit &€ - 0+ with the 'ifitegral obtaining in this way

lim (@P; (Ag)'_@) =

g-0 g
T, (D) :
:y%llm flmr (A, H )[’l/, -g lim f V’d d?’lx (4.4
7¢b A

E~0+ 3 1_ A-if

T )( ) o
- preip -
x{yu - g lim f ?d dp}

&0+ D_ X
®’ om ~ M1t

provided the limits in the square bruckels exist. It cen bve verified,

N . . L N A . -
however, in the same way s in b preceding sectiorn j since v1‘ and
¥4 are continuous, Lhe limits

OVE, Gy
lim f Y E— ap
£ z
- O+ R> 'S_m A 3if

exist. Moreover, they are continucus and beunced fdn;;tions cf A . The
came is then true for the rroduct of the two square brackets in (4.4),
uh1ch we dencte for a moment as 5(J,;) . Next one has te express

r m Byl from (11.3.1) end (11.3.15), wnd calculate the limit

lim f Im T, LJ\ jt )g(Jk,g) dX =
g+0 &,

B ~
N E:{«xlgl A EDINES |
= 1lim (Aoe) dd .
E+0 g ayg (B [E A+ ae I(J\,V)l2 + 327%g mauv (2w}t 5 ’

One substitutes x =g° (A~-E) &and uses the deminated-convergence
theorem, then the limit equals '

4Im]v (FE)? J35E C(5,0) ax
§ ‘f[x—zw‘l(h v 1%+ 322*0’e ¥, (/ZmE)|*

=7r£(E.o) .




"R e
: e

Since j('E,O) = ]'%12 , the relation (4.4) implies

11m ('!{;,EH a .)'!)

wi2 = (%ED : - {4.%)
£-0 v“‘ . ot

for all !é G;h) with v%»e cB’{_ﬁ’) . Using the fact that this Set is

a—

dense in L (IR37 together with the polarization identity, we get

" w-lim EA (A ) = . . -t
g0 Hg & "

- -

At the same time, (4.5) together with the density argument give

11m HEH la )3[—1‘2 "E !"2

for all @i}( . The last two relations imply

s-1im Ej (A ) = &,
&0 g

which is the p-representation form of [(4.1b). Hence the theorem is
proved. 2

5. Bound states

Let us turn now to the problem of the existence of bound 'sta%’,es, i.e.,

eigenstates of the Hamiitonian H_ .
Al

o .
Proposltlon 5.1 ¢ A bound state 1/ =("]’) with energy 8 exists
if Pet (ﬁ3) .

“

sotv (p)
’\7« B = ‘—2 (5.1)
o
€-%
and
%47, (p) {2
€= E+ams® [——5 2% (5.2)
0 £- p°
2m
{the last integral exists because 1;&12(33). ).
Proof ¢ The assertion follows immediately from the Schrddinger egua-
A A . Fl
tion H ﬁ E‘!« ] :

Proposition 5.2 ¢ #ssume g $0 . Let '9‘160(0,00) and £>0 is mn 3

eigenvalue of Hg s then

i8

7.(/2nE) = 0 . (5.3)

belongs to C'(0,%0), then a positive & is am
i1ff the relations (5.2) and (5.3) hold.

Moreover, if HJ
eigenvalue of Hg

Proof : One has only to use Proposition 5.1, and to realize that for
Iw’l\‘| GC1(0,bo) , the function (5.1) is square-integrable iff (5.3) holds. -
B

Proposition 5.3 ¢ let g+ 0 , then £=0 is eigenvalue of }J[g iff
the funotion pHp-2$1(p)eL2(m+,p2dp) and

o0
E = 87g°m fl?r,(p)le dp -
0
Proof is an immediate application of Proposition 5.1. a

Proposition 5.4 : (a) There is at most one bound state with energy
£<0 .

(b) Let Qr1 eL2([R+) , then a bound state with energy £ <0 exists iff

O
E < 878°n [ 131(1))[2 dp . (5.4)
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Proof : If £<0 , then the function (5.1) is in L2(!RB) . The 1lhs of
(5.2) is increasing, while the rhs is non-increasing with respect to
& in (-e0,0) so the equatian (5.2) has at most one solution.
Furthermore, both sides of (5.2) are continuous functions of 8 in
(-00,0) ,

and for QIG L2(IR+) ,

°1F, ()2 *o
lim [E+ aag? [ —L—— p2dp] = & - ommg® [ |v,0)%ap .
E0- £-2 0
2m
A solution 8 <0 to (5.2) clearly exists iff the last limit is ne-
gative. . 2

Corollary 5.5 ¢ Let 316 L2(IR+,p2dp) be a function with non-zero
values whose modulus is continuous in (0,80) and g fo. Then there
is a bound state (just one, and with a negative energy) iff

€2> 82 = e — ‘ (5.5)
°T  gam goli‘r](p)lzdp ¢

Proof ¢ According to Propositions 5.2 and 5.3, there is no non-nega-

tive eigenvalue of Hg

s ! Iy A
under our assumptions. Since |v1| is conti-
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nuzous, and therefore bounded in a (right) vieinity of zero, G1€‘L2(m+).
Then a bound state exists iff g°>g3  due to Proposition 5.4b. M

Remark 5.6 ¢ We have seen in Proposition 2.5 that the s-wave phase
shift changes its behaviour at A—>0+ for lg|= Eor * Since the bound
state emerges at the same walue of g , the validity of a Levinson-type
theorem is indicated - in this connection cf. Ref.7 .
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*| »n cBA3aHHLIE COCTORHWUA

-HepenaTusyctckan mopens AsyxyacTUUHOro pacnapa,
" CBA3b C Teopnell pacceaHuA, CrnexTpanbHam KOHUEHTpPauwa

B nactoaueid paBore, KoTopas npeacraansier coboit ueTBepTywo uYatTh .Cépun., Mo~
CRAMEHHOM aHanua3y NPOCTON MOAeNu ABYXUYAaCTMUHOrO pacnaga Tuna mogenm flu, o6- .
cympanTca Tpu npoBnems, Nepnan M3 HUX KacaeTCR CBA3M MOAENU clreo$heﬁv§acr
ceavnn. BuBepena 2CHMATOTUUECKAA MONHOTA ANA YNPYroro pacCesHWA ABYX Nerkux
uvacruy. flokasaHo, 4To B cnyuae gocTaTouHo cnaGoit ceA3u, cucTema obnapaer
B8 TOUHOCTH OIHUM DPB3OHAHCOM, NOMOWEHWE KOTOPOro COBNAafaeT € NONOKEHWEM FOoMo-
ca, onpeaensoWero: rNasHuwii BKNag B8 38Kow pacnapa. Bropas npoGnema xacaerca'
CREeXTPanbHOi. KOHLEHTPALUN) [OKA3aHO, UTO OHA MMEET MecTo ANA cemencTs oTpes-~
Ko Bokpyr E, CTArMBanWMXCA MefneHHee YeM KBAaApaTUYHO NO OTHoweHwo K g. Ha-
Kownery, o6CyxganTca HeobxoauMbie, U [OCTaTOUHNE YCNOBMA CYWECTBOBAHWUA CBA3AHMBIX

. COCTORHMIA,

Pa6oTa. BwnonHeHa B JflaGopaTopuu TeOpe Mueckod ¢uasukm OHUAH,

i

Cooburesrive O61enmmenHoOro MHCTHTYTa ;gepuux Hcenenosanmii. JyGua 1987
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Dittrich J., Exner P. "£2-87-599
Aiﬂbn-Relafivistiﬁ Model of Two-Particle Decay.

Relation to' the scattering theory, ‘spectral

"concentration, and bound. states .

The p[esent_pape?, which represents the fourtﬁ*paq? of the series devbted |

to analysis ‘of a simple Lee-type model of two-particle decay, déals with 1
three problems. The first one congerns relation of the model to the scatte-
ring theory. We ‘prove asymptotic completeness: for the elastic scattering,of .
the two light particles -and show thdt for a sufficiently weak coupliqg,
this system has just one resonance whose position is the same as that of
the pole which yields the main contribution to the decay ‘law. The second
problem concerns spectral copcentratibnﬁ we prove its occurrence for famisx
lies of intérvals around E that shrink slower than quadratically'in g. Finalq
Iy, necessary and sufficient condjtions for existence of bound states are
‘discussed. ' : )
The investigation has been performeg at ‘the Laboratory of Theoretical
Physics, JINRs
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