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Introduction

In the common opinion, anomalous theories have been c¢onsidered
for a time as mathematically interesting but physically unacceptable
constructions. So, cancellation of anomalies in the local symmetries
has been used as & kind of "selection" rule or a criterion for the
physical consistency of different models. This principle was plau-
sible in the G¥S model and in D = 10 supergravity without matter
fields. Nowadays, it is widely used for fixing the gauge group in
superstring theories. ‘

The problem with anomalous theories is in their consistent
quantization. Since not all classical symmetries are respected on
the quantum level, one finds that some of the first-clags constraints
have become second-class ones; which is crucial for the quantization
procedure itself. Some progress in our understanding of anomalies
has been achieved with the observation that a scalar field, added
by hand to the action through an additional Wess-Zumino term, pre-
serves the constraints to be of the first class after quantization.
This maintains gauge invariance on the quantum level/1 . Later it
has been shown/2’3/ that the W-Z term is an indispensable ingredient
of the theory whose presence im simply explained by the impossibility
of neglecting the gauge-group volume in the Faddeev-Popov integral
in the case of anomalous theories contrary to the case of anomaly-
-free ones. In any way, it becomes clear that quantum and classical
theories may have a different number of degrees of freedom, since
some gauge transformations acquire the status of & physical field
when gauge-noninvariant interactions are present.

These new developments revived interest. in two-dimensional
gauge models as a playground where the ideas and mechanisms of gauge-
-gymmetry restoration, anomaly cancellation and consistency of the
solution can be verified. For example, the chiral Schwinger model
was largely discussed in different approaches because of the contra-
dictory results 4’5/. Recently, both its gauge invariance and noh-
anomalous nature were argued '

In the present paper an approach to the gquantization of anoma-
lous two-dimensional gauge mbdqls is developed. It is based on the
explicit solution of the constraint equations and controls the
gauge invariance at each stage. The paper is organized as followam:
Section 1 presents a brief review of the minimal quantization method
of gauge theories. In sections 2,3 the"left-handed" QED1+1 and
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the chiral Schwinger model are considered. A table of the anomalous
commutators in D = 2 is given in the Appendix.
1. The minimal quantization method

The minimal quantization method/7/ is based on the geuge-
-invariance principle used for the construction of physical variables
and in the choice of the energy-momentum tensor. The method is self-
_consistent in the sense that ensures the same transformotion pro-
perties under Lorentz transformations for classical and quantum
veriables. The gauge freedom is reduced to an algebraic one connec-
ted with the choice of the time axis of quantization.

Let us illustrate the method by the example of the Jchwinger

model-massless two~dimensional QED:
%:'%‘T/JUJ/N+1,(?X/&(9/&'1€A/A)W (1)
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According to the minimal quantization method, we exclude tho nondy-
namical field Ao from (1) through the constraint

(S\QS A _'{ 93/{ +Q' (2)
— -0 = 0~ A 470/\4 o/
SA, a:( 7

Then, a transverse projection is done with the operator 1P(A,)l

v o {-ie 8'4,] v follouing from (2)
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We would like to emphasize the main feature of the transverse
variables (3) - their invariance under gauge transformations of the
initiel fields A, ¥ /%
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The field A/u disappeared from 45 s thus reflecting the
abgence of transverse degrees of freedom in the two-dimensional
world. In the generai case we are left with the fields ‘VT s q77-,
A:‘ and quantize just them and not the initial ones. It is impor-
tant to note that vacuum hesto be defined so as to ensure the posi-
tive definiteness of the free fermion Hamiltonian. This task is
achieved by filling in the negative’energy states in the Dirac sea,
i.e. by introducing the Dirac vacuum. The price is the anomalous
term in the current commutator though ¥ 's themselves canonically

- anticommute 2 3

{W(x),qﬁ-(g)}:g(x-y) ; 3'/“': q/(x)f/,.q’(x) (5)

[ 3'4 (x),jo(;)] = ‘;4'._ ’0756(—}) )

Such a commutator structure allows an equivalent formulation of the
model in terms of a massive scalar field $(x) through the corres-
pondence relation
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So, the mass spectrum is easily found with the help of the
Heisenberg equation of motion for }o(x) :

. X T . . et -1,
ao;-s'o(x) = 1JJJ [% (y)’zﬂ’ (X)] ) 34 51 ; a" i-"
( ?ZT being the Hamiltonian obtained from eq. (4))that gives us

BHJ;,,“(){) z -;f 4\']1:546() or (D + m")kf(x): 0 , m":j_; (6

In the same manner the conservation of the vector currentljf*
may be proved

a°3'°_(x): i[HT,;'a(x)]: 3,3', = 9'“ o 0. N

Note, that in this scheme the role of the Dirac sea is evident
since the filling of the negative-energy states is the reason for
the appearance of the Schwinger term in (5) and further polarization
of this vacuum by the gauge (Coulomb) field leads to the anomaly (6).

The minimal-quantization method is based on the excluding of
nondynamical degrees of freedom through their equations of motion




(in fact, constraints). So, the choice of the time axis of quanti-
zation becomes an essential step that has to be physically motivated.
This is the only arbitrariness of our method and it is to be oonsi-
dered separately in each case.

This operator method can be translated into a functional integ-
ral language. Let us write the Green-function generating functional

2191 ot eopfi S84 + #7+77)]

with fi given by eq. (1). Transition to transverse varianbles (3)

does not cause any change in the fermionic measure gince vector
T

gauge invariance is present. However, as ,41 =0, we have

Rh. — DA,

Solving the constraint for ,40 is equivalent to integrating over
ﬁ)AoT in the sense of extremals. So, we are led +to tho following

%7[7777’]
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with
7=
' 7 =17
and di#? given by eq. (4). Wow, the bosonization is performe
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and we finally obta%n _ . k
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Here @ fs & massive scelar field and 2, is a massless one,
quantized with an indefinite metrics. Its introduction is connected
with the consistence of bosonization procedure on the Green-function

level in the case of the free fermion theory.
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Generating functional (8) leads to the correct two-point
fermion Green function in the modeI/1O/

6 (5-y) - e-i.ﬁ[c\m (x-;)- 4"“7}]@0()(.;) ,

where 4, , 4, and G‘, are the free Green functions of a
massive end maessless scaler field and massless spinor field Tespec-
tively.

Note, that the fermionic measure in (8) is not changed again
since the transverse spinors Q’T are invariant under arbitrary
gauge transformation. So, the change of the action contains the
whole physically significant information.

However this is not the case in an anomalous theory. Due to the
anomaly, transition to transverse variables in,sg is accompanied by

& Jacobian factor apart of that, comming from the bosonization. Thus,

the operator formulation is more convenient for consideration of
anomalous theories.

2, Two-dimensional U(1) theory with left-handed fermions

In the recent discussion of the chiral Schwinger model two
different (though similar) theories have been considered: & model
with only left-handed fermions and a model with left-current coup-
ling to the gauge field. We shall treat them separately.

The "left-handed" QED, . is determined by *)

46 "Z(‘?/W‘;LM* ,‘J{//*(aﬂ-,'eﬁf,)% i

(9)
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So, we have two possible candidates for a time axig: X’a and
xt- X%+ x7 « As has been mentioned above, this is the only
ambiguity in our quantization procedure,

The choice -t = X° leads to the constraint

) Throughout this paper the follo#ﬁng matrix coﬁ?ention is
po (20 5 2o (80) 5 Pespopes (B2) 50021 (42
joo = '344 = N (’UL(A) = P-(n (P,

adopted

and
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where
. . + + +
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is just the Noether current in the theory. Lagrangian (9) on the
solution of (10) becomes

ﬁ-wrﬁa v+

RN

J 4 J +e'\70+(3,-'(?0/1,-974+/44

and for the Hamiltonian we find
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It is easily seen that neither a vector nor a (left) chiral
gauge invariance tekes place here

030(")"‘[“>80(")] _3':74 a~'J4

— ~ (11a)
S O =0T 0, w;
and \ \ I
0, 9,100 = A [H, W (0] 0 TG+ 22 27
| O ARRLAPRVAS (11b)
= 0 y/“ Tax Vo

In these calculations th'e anomalous commutators have been taken
into account (see Appendix)

[U:(x), 75(3?}‘- [U.*(x),vf(y)] i;—t %, X(X-}) (12a)
[Uo ), 'U*(\J:I:-—_a §(x- ?) (12b)
[ Mo, 95 00]=-[Ho, ¥, (0] 2_57 9,4, (x). (120

There are different ways to compute them. We have followed the BJL-
-methdd (see, for example, n/,,

Since just the current that is coupled to the gauge field, is

-
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anomalous, one cannot expect that transition to transverse variables
will make the model content more transparent on the Hamiltonian
level. Indeed, one finds

~7T x 3
“j{iT: PR/ ﬂf,aq‘l’f——:» ‘Ufai} 7, (13)

with the same expression for the chiral-current divergence (11b).

Relations (13), (11b) are very similar to (4), (6). Nevertheless,
an analogous interpretation in terms of a bose field is impossible
due %o eq. (11a). It destroys the canonical structure of the pair
{*79’ JT;DOLPj , defined through the relation

‘J (X)‘—V:_ Lf()()

since commuta.tors(\P(X) ‘P(})J and[W(X) Jf((‘;)] do not vanish.
The other possibility for t is t=X*. The Lagrangian takes
the form

it 4
z: ;—9{(9.,4+"a+~4_>+'l¢1. 94.% +e('ut.qi/4+' (14)
Instead of (10) we have the constraint

&S 20 = A,- % (a,a+;4_+4ei7_+) (15)

A,

a.nd the Lagrengien on its solution becomes

,,{;_Naw +2,e‘<'7 v,,+eva 2, A.

(16a)
The corresponding Hamiltonian is
. 2 {
= -Xe —_ .
H 2e*J, Tl (16b)

Since the only anomalous commutator in the cone frame is (see
Appendix)

[ 7, (x )”\7(;;)]-4 _ 9. 8(x™-9)

the Heisenberg equation with x as a physical time and Hamiltohian

(16b) determine the following time evolution of :7
1’ - ~ -
UV‘ZZ[H)’V;(X)]:—E_a_ (U.'.(X)-

In other words, J,; satisfies the Klein-Gordon equation



Recalling the one-parameter formula for the mass spectrum of the

model/12/

2 2

et
1. -0 €17)
m-= 3 o~

1

one easily sees that we have just singled out the value Q= 2.
Pig. 1 gives some evidence for the physical motivation of the

choice of X% as a time axis. The only physical field UQ
propagates just along this axis and . x° .
the only interaction that is present \5- %/
in the model has a Coulomb structure N w,/’
a) with respect to the frame (Xi XO N cﬂj’
when t = X 9 s h\‘ x‘

b) with respect to the cone frame - N

when t=X + . d N

So, it is not surprising that / N

the choice of case (b) ensures in- / >
ternal consistency of our further
considerations. FPige 1

In such a way, the minimal quantization method leads to a
consistent unitary theory with mass generation. The massive mode
repredents a fermion bound state and the value of the mass is fixed
uniquely.

In the functional integral language the situation looks out
much more complicated. The transition into the transverse space is
comnected with a nontrivial Jacobian factor. Here we mean considera-
tion of quantum fermions in an external field which has to be consis-
tently quantized, If we start from a classicel system and try to
quantize it as a whole, these treublesome transformations can be
performed on a classical level without any influence on the fermionic
measure, which is constructed directly as 59Q;T}59UT , thus simpli-
fying the problem. However, the latter treatment in fact ignores
the anomalous nature of the model.

3. The chiral Schwinger model

The chiral version of two-dimensional QED is determined by the
following Lagrangién:

Z:_biyu{;f“’ 4,-c?(fl/*['o’/&~-ie'{—'é’é/1ﬂ]q’=

. (18)
- ;%Sta’f PR AR A N AL AL e

Though only left current is coupled to the gauge field, the
presence of R-fermion term in (18) changes significantly the situa-
tion if compared to the one of the previous section.

Let us begin with the case f :,Xo. The constraint equation is
the same as (10) and on its solution (18) becomes

2 -
e 7+{ 74 . ) +add - + (19)
= = —_— +,‘{/ ‘;V+67 14 617147
A/J 73 59[10 / s ¢ Y Yohy 1" g (
where the notation of section 2 is used. So, for the Hoether cur-
rent in the model we find

2 ~d
Mj,u,:‘j% 0,4, + %_ o vt (20)

For the left and right current we find, respectively,

kij+~i13"7+
0 Taxy (21)
ok 22 0.4,

va

Eq. (21) reflects the presence of the R-fermion term in the

free Hamiltonian. Though this current is not coupled to the gauge
field, its anomaly can be removed in a suitable gauge. This
point is new as compared to the case in the above section as well

as to the nonanomalous theories (for example, the situation with

‘the axial current in the ordinary Schwinger model)).

The fermion asymmetry suggests two types of "transverse"

variables

4T (hys L0)
R
%47: Ve v

; 1
A:;&(@ +%3J# and
A
wér =l}'9k
where Vr= (’/L/(, {-ie 344/44} .

S0, wo obtain two different Hamiltonians



,4) =OA) (TA) 2 -
AR A A
(22)
(.8) - (7,8) (1,8) o2 _ 4
- 2 ¢ A (VA
7{ z 1LP d’qaaa 2 0 9’170 .

(T, A) . . 3 .
Note that in :ﬁg a new interaction term is present which
points the difference between the transverse projection and the
gauge fixing in this anomalous model, Of course, the same relations
(20), (21) for current divergences take place.
Thus, we are faced with a situation that is analogous to the

one in the "left-handed" QED1+1.
i

R e—

In fact, tyLls and #% S
propagate separately along X+
and .X.-, respectively. Right
fermions do not interact and
the interaction between left
currents is of a Coulomb type
with respect to the frame

(x% x7) {case "a"). So, a
suitable rotation of the coor-
dinate frame seems natural with

x* as a time axis (case "b").
The Lagrangian then takes the
form

Fig. 2

L=L 30 il o, Ve WDy e LA,
7 (23)

and the equations for nondynamical variables ‘44 and Qﬁ{ are

3_114“:3_54/4_"‘4874 '
'a‘% = O.

On their solutions Lagrangian (23) coincides with the corres-
ponding expression (16a ) in left-handed QED1+1. So, a massive
scalar mode with mt=4e€¥X is found.

The R-fermions which propagate freely along the X - axis
give, rise to an additional massles mode.
There is one more possible choice: += X (case "c"), that

means A_ and ul are the nondynamical variables with the follow-

ing equations of motion :
0, A_ =24,
J"'(fl—: O

= #,:0
(or a+q'LT: o, WLT:'}%)

Lagrangian (23) takes on their solutions the form
<o 4
EZf - 1 4} 9_ q} .

So, we are dealing with a free fermion theory, which is equivalent,
ag is known, to a free massless scalar field one.

Conclusions

We have used the ideas of the minimal'quantization method
in the case of anomalous gauge models in two-dimensional space-time.
The fermion asymmetry in the models under consideration puts the
problem of a correct choice of the time axis of the system we are
going to quantize in. This step is essential since it determines
the structure of the constraints in the theory (the equations of
motion for its nondymamical variables). Remind that it is just the
Gauss law (the constraint that is connected with the nondynamical
component of the gauge field) that causes troubles in the anomalous
theories.

We have shown that the natural and physically motivated choice
is the lightcone frame. In this frame the Coulomb interaction (the
only one that is present in these models) is consistent with the
fermion propagation direction,

Quantization then leads to the mass spectrum containing

- a massive scalar particle (fermions bound state) with
m%= 4e*/F in "left-handed" QED,, .;

- a massive (m%=4e®*/X ) and a massless scaelar modes in
the chiral Schwinger model.

We have obtained consistent, unitary theories with uniquely
determined mass spectra. The value Q= 2 of the regularization parame-
ter in the mass formula is singled out (see, also/13 ) due to the
requirement for self-consistence of the minimal quantization
method. So, this requirement plays an analogous role with the
gauge-invariance principle which fixes the value of the parameter
Q. (A= 0) in the case of anomaly free theory.

I express my gratitude to Dr.V.N.Pervushin for introducing me to
this problem and for helpful suggestions. I would also like. to thank
Profs.B.M,Barbashov and A.V.Efremov for valuable discussions and AV,
Radyushkin and E.A.Ivanov for fruitful conversations.
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Appendix Calculations in terms of cone variables with X as a physical

To calculate the antwmalous commutators in the models under con- time can be performed in a similar way with the following differences
sideration we use the method of ref./11/. We consider currents ;}~ taken into account:
and the free Hamiltorian Ko as local limits of the following func- i) instead of (A.1) we have 'K {;Lz' 1? (xf;y)
tionals after their regularization - - 1h-T g - I
: Pyl G Jdhdge™ 7 e F(x.9)
I(F) = Sdxdy YRy Y T ,
ii) the equal-time Green function has the form
H(F4)=Séx&3 W) Ryl v y) mo 7:4(*.;1):931:()(.;)’ . JL Lap.x”
h . ' : - - 42 )
where ik, Kot oo ‘1'9"()(’"7‘) N ! 6 (X ) , i 5 Q(P-) < &P-
2\dk,dg, e e F(kig0) K240
F (x40 = (22) 199 "4 ;
' So, we find the only anomalous commutator
foe 2O (1) ’ [9,00), 9,60 - 2 2. 6Cc-)
I = fs for  J,(F) —™ ¢ X1
XE for H (F4) — D?Zo ‘ ‘ which has to be used in solving the corresponding Heisenberg equation
Por currents '\\7/3 this [ -matrix acquires additional projection ) e 1 [H U]
factors /, . The change of the fermion Green function under vector + = 2 ’

end axial gauge transfor?zzisns is taken into account that follows frow the representation of the wave function as
W) > e “ My | 3 Sd 5 )dia(p_xwp;x*)
3 —7‘4(»')5 (x-y) M(y)_ ' - P p- '
olr-y) — e o (x-g/ e (x.2)
The anomalous term in commutator [U(F),:7(G)7 is-calculated as
. 15" . &
0 (£.6) =~ el FBITL3 i) o T
Sb, the following commutation relations are o{tained

T f
[ .Jo+ (), 70*(})] N| :744 (), 314(3)] s o % &[y-y) References
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MuHyuManpHOe KBalTOBalMe OBYMEDIILX Moaenecit
C KHpanbHLIMH aHOMalHAMH

B paMkax Meroma MHHHMalbHOI'O KBAHTOBAHHA PACCMOTPEHbI
OBYMEpHhle Mofmeny C¢ KupanbHolt anoManue#t - '"nesaa' K31 u
KHpankHaa Mopenb lIBuHrepa., O6ocHoBaH BbHIGOD KOHYCHOr'o Bpe-
MeHH KaK ¢MsSHuUecKoro BpeMeHHM CHCTeMb KBaHToBaHMA. IlonyueH
XOpOmO MSBECTHbIf MacCCOBHHI CneKTp, HO C (HKCHPOBAHHLIM 3HA-
yenueM perynfapusauuoHHoro napaMerpa a = 2. Takas ofHO3HAuA
HOCTbL ABNAETCHA PesSYJIbTATOM XeCTKOro TpeGOBAHHA COrJaCOBAaH-
HOCTH B MeTOAe MHHHMMANbHOT'O KBAHTOBAHHA, OTpaxawuleroca B
¢H3nUYecKH OBOCHOBAHHOM BhGOpE OCH BPEMeHH,

PaGora BbmnosHeHa B JlaGopaTopun TeopeTHYeCKol GHSHKH
OUAH. )

TMpenpunt O61eMHMHEHHOrO MHCTHTYTA ANEPHBIX Hccrenonannit, ly6ua 1987

Ilieva N, E2-87-588
Minimal Quantization of Two-Dimenslonal
Models with Chiral Anomalies

Two-dimensional gauge models with chiral anomalies -
"left-handed" QED and the chiral Schwinger model, are
quantized consistently in the frames of the minimal quanti
zation method. The choice of the cone time as a physical
time for system of quantization is motivated. The well-
known mass spectrum is found but with a fixed value of thd
regularization parameter a=2, Such a unique solution is
obtailned due to the strong requirement of consistency of
the minimal quantization that reflects in the physically
motivated choice of the time axis.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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