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Introduction 

In the cornmon opinion, anomalous theories have been éonsidered 

for a time as mathematically interesting but physically unacceptable 

constructions. So, cancellation of anomalies in the local sYrnrnetrieo 

has been used as -a kind of "selection" rule or a criterion for the 

physical consistency of different models. ~his principIe was plau­
sible in the GWS model and in D = 10 supergravity without matter 

fields. Nowadays, it is widely used for fixing ~he gauge group in 

superstring theories. 
The problem with anomalous theories is in their consistent 

quantization. Since not alI clasBical syrrmletries are respected on 

the quanturn leveI, one finds that some of the first-class constraints 

have become second-class ones, which i3 crucial for the quantization 
procedure itself. Some progress in our understanding of anomalies 

has been achieved with the observation that a scalar field, added 
by hand to the action through an additional We3s-Zurnino terrn, pre­

serves the constraints to be of the first class after luantization. 
This maintains gauge invariance on the quanturn level/1 • Later it 

has been shown/2 , 3/ that the W-Z term is an indispensable in~edient 
of the theory whose presence 18 8imply explained by the impo~8ibility 

of neglecting the gauge-group volume in th. Faddeev-Popov integral 
in the case of anomalous theories contrary to the case of anomaly­

-free ones. In any way, it becomes clear that quanturn and classical 

theori~s may have a different nurnber of degrees of freed~m, since 
some gauge transformations acquire the status of ~ physical field 
when gauge-noninvariant interactions are presente 

These new developments revived interest. in two-dimensional 

gauge models as a playground where the ideas and mechanisms of gauge­
-symmetry restoration, anomaly cancellation and consistency of the 

solution can be verified. For example, the chiral Schwinger model 

was largely discussed in different approaches because of the contra­
dicto~y results/4, 5/ . Recently, both its gauge invariance and non­
anomalous nature were argued/G/ . 

In the present paper an approach to the quantization of anoma­

lous two-dimensional gauge mod~ls is developed. It is based on the 
explicit solution of the constraint equations and controls the 

gauge invariance at each stage. The paper i8 or~.n1zed a. followB: 
Section 1 presents a brief review of the minimal quantization method 

of gauge theories. In sections 2,3 the"left-handed" QED1+1 and 
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the chiral Schwinger model are considered. A table of the anomalous 

commutators in D ; 2 is given in the Appendix. 

1. The minimal quantization method 

The minimal quantization method/7/ is based on the gauge­
-invariance principIe used for the construction of physical variables 
and in th. choice of the energy-momentum tensor. The method ia eelf­
-consistent in the senae that ensures the sarne transformat1on pro­
perties under Lorentz transformations for classical and quantum 
variables. The gauge freedom is reduced to nn algebra1c one connec­
ted with the choice of the time axis of quantization. 

Let us illustrate the method by the exarnple of the Gchwinger 

model-rnassless two-dimensional QED: 
Jt =- f :f)J1I Jt + i lfr~( d~ -ieAt')lf (1) 

~ iJ ; 

According to the minimal 
namical field Ao from 

8";)	 :: o 
óA o 

~r Av .- (3 v Ar ' jA J.,) :: 0,.( o
 

quantization method. we exclude tho nondy­

(1)	 through the constraint 

==? Ao = .i;2. (8., 0oA-t + e;,o) (2)o 

8., 

Then, a transverse projection is done with the operntor v-{A.,) I 

7Y:: fIX(l {- i e 0.,-" A., 1 ,following from (2) 

T ( i 1\) -IA.j	 :: 1}' A1 ~ e o, lJ- (J) 

T - T - -(
0/	 ': lJ- 4J I tp:. 4J'lJ' 

and	 the effective Lagrangian is obtained 

T	 e2.( _lo)," -7" ft':l V/Ii	 :: ~ a" Jo + 1- ljJ f 'r r (4) 
o 

efl :h 

We would like to emphaaize the main feature of the transverse 
variables (3) - their invariance under gauge transformationa of the 

initial fields Aj') Y /8/ 

A}	 = ~(A1f~lJ.)( 
lV}~31f 
~~	 :: {iff 
lY~:: 1J' CA 

1
<}) :; &8'1 

2 

A;~>v~( A/+~()1)(1J-@)-1=A1i 
'0, 

~	 1f'T,'~])-~4J}:::1f7 

lj; I, d :: ijJ ~(lJ"~) -~ = 41 T 

\ 
I 

t 

\ 

\ 

The field AIA disappeared frorn /; , thus reflecting the 
absence of transverse degrees of freedom in the two-dimensiDnal 

.	 , - T 
woz-Ld , In the general case we are left with -the fi"t31ds lf ,lf , 
A( and quantize just them and not the Lndt LaL on es , It is impor­
tant to note that vacuum hasto be defined so as to ensure the posi­
tive definiteness of the free fermion Hamiltonian. This task is 
achie~e~ by filling in the negative energy states in the Dirac aea, 
i.e. by introducing the Dirac vacuum. The price ia the anomalous 
terrn in the current commutator though ~'s themselves canonically 
anticommute/9/: 

{\IJ()()'~+(d)},:S()(-d) ; ip-=(j;(y.)trlJl(x) (5) 

[a~()()'io(!)]= ;i ô1S(r: -i ) ' 

SUch a commutator structur"t3 allows an equival"t3nt formulation of the 
model in terms of a massive scalar field ~(x) through th~ corres­
pondence relation 

j5t" (x)' : J..- Ô}.llf(x) j~r (>t) z (f(}t)l5lr <f(i).
fir f 

So, the mass spectrum ia easily found with the help of the 
Hei-senberg equation of mo t Lon for /50 (») 

à.i;, (.],iJcid ["J(, T(:;> .j,.r.Jj ,a'J5' -~ Ô;'jJf 
,

(1<. being the Hamiltonian obtained from eq. (4»that gives ua 

P	 ( e1 
-. t' I. ) l.:f) Z 2­

Ô J~t- )()=--;-iJ., J~l\)()or lo+m~ J(K}=O, m ; ; "(6) 

In the sarne manner the conservation.of the vector current J'~ 
may be proved 

õ°a'0.(X):' i [H T )/0 ()()] ": ô"i1 ~'ô~g',u.:: O, (7) 

Note, that in this scheme the role of the Dirac sea ia evident 
since the filling of th"t3 negative-energy states is the reason for 
the .ppearance of the Schwinger term in (5) and further polarization 
of this vacuum by the gauge (Coulomb) field leada to the anomaly (6). 

The min~al-quantization m"t3thod is baaed on the excluding of 
nondynamical degrees of freedom through their equations of motion 
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(in fact, constraints). So, the choice of the time axis of quanti­
zation becornes an essential step that 'ha s to be physically mot í.va t ed , 
This is the only arbitrariness of our method and it is to be oonsi­
dered separateIy in each case. 

'Chia operator method can be transIated into a functional integ­
ral Ianguage. Let us write 'the Green-function generating functional 

J:[1'fl::)'X)ljl)lfx)Ar ~~1~5dlx(i -f- L;;7 f7 Cf)J 
with íC given by eq. (1). Transition to transverse variables (3) 
does not cause any change in the fermionic measure oince vector 
gauge invariance is present. However, as A 'T=O , we huve

1

J' Ar 4 ;llÁo
T 

. 

Solving the constraint for Ao i8 equivalent to integrnting over 
5õ AoT in the sense of extremaIs. So, we are led to tho following 

~7r1: 7/]: 

'J;[?" fJ .~ JJJiV5J'f 
TMf+ Jr. c; + f lf ' . lf'7')J 

with 

7i 1./1z: 

7i ~ 717-' 

and -L given by eq. (4). Now, the bosonization ia perfo~ned/10/ 
eff 

T d;,t~-(~(~)+1.(/C)) ';/
YJ (x): : e : Xc (x) • ,;)tI)Co ()f);: O , 

and we finally obtain 

~f7', 7') ~ J'liX, 7J'to'iJ ~ YJ.t 0J'f- {i jd 'x [ f}<p p!'cf;­

_i I'Y/ <(l - i Ô4 z ô ~.t + 'l ~ yto rv -+ ..JJ ]1 ls. :L I o t;'-o Iv(s) J (8) 

.I - 7 1" r; /s (<p fI) . - .-.i. ~tr (cP + ~~ 
L(5):: 1 :e . :lo T Xo' e .7 

Here ~ !s a massive GcaIar field and ~ is a massless one, 
quantized with an indefinite metrics. Its introduction is connected 
with the consistence of bosonization procedure on the Green-function 

leveI in the case of the free fermion theory. 
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Generating functional (8) leads to the correct two-point 
fermion Green function in the modeJ!10/ 

("l -1· Ji[ dtn ( X-/jJ- 4o (X-/ )) ,. ( .. ) 
LA (x-~) ~ e . Cfa y-, ' 

where .4 In ' ~ o and Go are the free Green functions of a 
massive and massless scalar field and massless spinor field }'espec­
tively. 

Note, that the fermionic measure in (8) is not changed again 
since the transverse spinors 'IJ T are invariant under arbitrary 
gauge transformation. Se, the change of the action çontains the 
whole physically significant information. 

However this ia not the case in an anomalous ~heory. Due to the 
anomaly, transi tion to transverse variables in:C is accompanied by 
a Jacobian factor apart of that, comming from the bosonization. Thus, 
the operator formulation is more convenient for consideration of 
anomalous theories. 

2. Two-dimensional'U(1) theory with left-handed fermions 

In the recent discussion of the chiTal Schwinger model two 
different (though similar) theories have been considered~ a model 
vdt~ only left-handed fermions and a model with leit-current coup­
ling to the gauge field. We shall treat them aeparately. 

The "left-handed" QED ia determined by )(J1+1 

L :: -i r1r-v (/"}4J + l' ~ j'f-( 'OI-' - ie A~) r, :: 
(9 )" .t . +r.l (/,+ A= -:1(}4 .., L (JIL ()+ <lJt. +- e '1'/.. ~ +-' 

Jv 

So, we have two possible candidates for a' time axi~: X o and 

X T = X o +- X" • As haa been mentioned above, this is the only 
ambiguity in our quantization procedure. 

The chod.c e ·i:: X D leads to the conatraint 

.) Throughout thia papel' the followfng matrix convention is 
adopt~ã 

1to : (~ b) ; t4: (~ -~) . (-i O)ts ~ to t~ = o -t ; . t; :: "i (-I i ~) 
and 

~OO;:-dH={ ~L.(1l) ~ !?-(I) l..p. 

I" 5 
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4­8':3 -=- o ( . ( * Ao =ô~ a~ 00 A't -+ e Jo) • (10 )ô'Ao 4 

where 

J; ~ ~r+tt' lf ~ ±(ifN +ist) ;(Jo+=- 'J,,+ = WL+lJIt. = lJI+r: lf') 

is just the Noether current in the theory. Lagrangian (9) on the 
solution of (10) becomes 

- e2. + ~ + + -1 "'1 +Ai:: i lJI~rf-ÔtlJ}.f T Jo. 0:- 'Jo + e~1J Ô-1 uoA, -(}Vf 1 

and for the Hamiltonian we find 

- e2. + 1 + 'J +Ade:: i"4Jr+/40~tp - 1: 'Je -:I. Jo + e f .,'e, 
It is easily seen that neither a vector nor a (left) chiral 

gauge invariance takes place here 

'aoJ 'o(x) ~ i f 1-1 ) a'o (l<)] -:. ô/;// + ~ 
:lo 

e; f:J/
2Ji 

(11a)r ' - . e2.. ~.1 -+ 
~ (7 Ôr- :: - 01 '";J" +:J.]I Ôf ,)0 

and 
ao 'JO+(K):: 1"[ f-I) "JQ~ (x)]:: O, ~,+()().,. ~ õ,~~ ';7/

.z,:?" 

:lo 
(11b)~ õ" J,u-+ :: ~ 01/-'::10+" 

I :l.X 

In theae calculations t~e anomalous commutators have been taken 
into account (see Appendix) 

['J:Cx), Jo+('(1 )] :' ['Jt(){),J/(d)] 7.2.~~ âxÕ()(~~) (12a) 

(12b)['J:Cx) ~t(d)]:: Z~i O~Õ(X~if) 

[Ho.'j~()()J::-[Ho,j:()()]:: te 0-1A1(X). (12c), :LJ( 

There are different ways to compute them. We have followed the BJL­
-meth~d (see, for example,/11/). 

Since just the current that ia coupled to the gauge field, is 
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anomalouB,one cannot expect that transition to transverse variables 
will make the model content more transparent on the Ramiltonian 
leveI. Indeed, one finds 

T - T ~ (.tT ex + { + 
l'-{P _ 1~ r+f1 (11'1' - - 'Jo - ';lo (13 )
(J\t ­ "o/­

with the sarne expression for the chiral-current divergence ·(11b). 
Relations (13), (11b) are v~ry similar to (4), (6). Nevertheless, 

an analogous interpretation in terms of a bose field is impossible 
due to eq. (11a). It d~stroys the canonical structure of the pair 
{ lf I J(:: Ôo 'fJ ., defined through the relation 

J;(X): :v,7Jtt lf' (X ) 

since conunutators[\.fJ(,('),~(~)J ande ;17/'IC) , l!r(:/)] do no t varrísh, 
The other possibility ~or 1: is t = X+. The Lagrangian takes 

the form 

/; -= f (»- A~ - -0+ -A _) + i tJ;/ ()4- 4{. f e 'f/ ~ A+ ' (14 ) 

Instead of (10) we have the constraint 

õt5 := O Á ~ ;_, (U+,( +4eJ-:) (15 )~ o 
õA~ 

and the Lagrangian on i ts solution becomes 

1.Ir -= i 4'Li-Ô+ (j{ +.le'l. ';1+ ~_2.J4- + e 'J+ ô_- Doi- A_ . ( 16a) 

The corresponding Hamiltonian is 

êIe:: - 2 e2. ';J+ L ;J+ (16b)
't2. 

Sínce the only anomalous commutator in the cone frame is (see 
Appendix) 

[ 'J+ ( X-) "J+( ~() ] :: -' ,Z~ i '0_ Õ( X - - d-) 

the Heisenberg equat í.on wi th X + aI! a phYI!i<:al time and Hamí.Lt~ni.n 
(16b) determine the following time evolution of J+ 

. e2. -.f 
8.;J+ :: ~ [ 1-1) », (x-)] :: - tJr Ô_ ~+(x-). 

In other words, J+ satisfies the Kle í.n-Oor-don equation 
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'( o + m~/~ ) J~ = o	 i :: -i d"fAv:t fW + i trI?-[o~ '- i' ~ 'I.! A~ ] Cf :: 

o::: Ô+ V m'2.·:; tt. 
- )	 (18 )Jr	 1 <t"" '- • '1,4- Ô " t t» + ~' li" +(J, A= ""i..r0 1 + t r« _(jJ/1.. + '1 'f'L. U-f CJ.{. + e TL. 'f'L -:Recalling the one-:oparameter formula for the mass spectrum of the 

modeJ/12 / . 
Though only left current is coupled to the gauge field, the1 0.2­

2._~. __ (17)	 presence of R-fermian term in (18) changes significantly the situa­
111 - Jr a.-~ 

tion	 if compared to the one of the previous section. 
Let u s begin wi th the case t:= X 0. The conu t r a.írrt equation isone easily sees that we have just singled out the vaLue a. = 2. 

the sarne as (10) and on its solution (18) becomesFig.	 1 gives some evidence for the physical motivation of the :1
 
ehoice of X + as a time axis. The only physical field lfJL L:::	 e'- ';j / ..!...'J.. J / + i ~I f' ()J-I r + e ":1/ ô,- 1 iJo 41 - e ':l/A 1 t ( 19 ) propagates just along this axis and . XO L ~ /	 ,J

the only interaction that is present x­

.	 ~ where the notation of section 2 i8 used. So, for the Hoether cur­in the mo'del has a Coulomb s t r-uc t ur-e . '>, y/x+

rent	 in the model we finda) wi th respect to the f'r-ame (x. o} X1) -, 
4xwhen	 i ':. X o , "'" 

-----~i~(----_ ..-	 sr r - - ~ Ô ,+ ~ () -. Uo 
-I- (20)J"u- - /l,:Ji ",A, J.j 1b) with respect to the cone frame	 / -,
 

when t := X + • /
 -, For the left and right current we find, respectively,/ <,So, it is not surprising that 
-,/ Ofc r;j + _ ~2... Ô-4 ~ -fthe choice of case (b) eusures in­

I" -	 :1.Jr cli	 (21)ternaI consistency of our further
 
considerations. Fig. 1 s" ~- ::-~ 81 A"
 

:L;r-
In such a \~ay, the minimal quantization method Leads to a 

Eq. (21) reflects the presence of the R-fermion term in the 
consistent unitary theory with mass generation. The mas~ive mode 

free	 Harniltonian. Though this current is not coupled to the gauge
representa a fermion bound state and the value of the mass is fixed 

field, its anomaly can be removed in a suitable gau~e. This 
uniquely. point i8 new as compared to the case in the above section as well 

In the functional integral language the situation looks out 
as to the nonanomalous theories (for example, the situation with 

much	 more complicated. The transition into the transverse space is 
the axial current in the ordinary Schwinger modelJ. 

connected with a nontrivial Jacobian factor. Here we mean considera­
'I'he fermion asymmetry suggests two types of "transverse" 

tion	 of quantum fermions in an externaI field which haa to be consis­
variables 

tently quantized. If we start from a classical system and try to
 
quantize it as a whole, these treublesome transformations can be o ®
f 

performed on a classical level without any influence on the fermionic	 A"T:: 1.7(Â + t ÔA)tJ- and A
1 
T ;: zJ- (Á 

1+ ei ô)
1/ ir-~ 

1
 
measure; which is constructed directly as 18 Cji T JJ <.pT ,thus simpli­


lf /..i = 1J- <fL
fying the problem. However, the latter treatment in fact ignores '} t.t/ :: 7J- lfL 

the anomalous nature of the modele 
lf

/J.
T ::: lJ- tR.	 1fp,7 -= crR ' 

3. The chiral Schwinger model 

where 1J-:: ~ {-ie ô1--1 A.., j ., 
~he chiral version of two-dimensional QED is determined by the 

following Lagrangián: SO, WO obtain two different Hamiltonians 

8 9 



f'lp(T, AJ -. ;itr/A) ~ Cl/~") e~ "1 7- { "-J -I- "1-A 
(11/ :: '1 'f 11/ fi" ' - 9: 1/0 U: -Vo - e " 1 

(22) 
"if.(T, M_ . - (T,8) Ô. <f' (T,8) _ e2. + f + 
(/ v - '1 1.f !II 1/ ~ J o i,'- '10 ' 

"-d (T,.4-)
Note that in ifV a new interaction term' is present which 

points the difference between the transverse projection and t-he 
gaug~ fixing in this anomalous model, Of course, the same relations 
(20), (21) for current divergences take place. 

Thus, we are faced with a situation that is analogous to the 

one in the "1eft-handed" QED 1+1• 
XOIn fact, 4'".."5 and LJlQ./S 

propagate separately along X + x X/ 
and X-, respectively. Right ".~ferrnions do not interact and Y' 

+ 

-, Xi 
currents is ofa Coulomb type 
the interaction between left 

-,/with respect to the frame -,/()(~, X., ) {case "a"). So, a -,/
suit~ble rotation of the coor­
dinate frame seems natural with 
X +- as a time axí,s (case "b"). 

The Lagrangian then takes the Pig. 2 
forrn 

i ~ .!.... j_'" -I l' <k.~ O-f l../JL 4- l' lf; ()- c.pR. + e J~A+ 
f +	 (23) 

and the .equations for nondynamical va.r.iables A~ and <P" are 

'õ_2. A -I-	 :: l> _ d-l- A_ + 4e J~ 

'iL!fIA. z: O, 

On their solutions Lngrangian (23) coincides with the corre~­

ponding expression (16a ) in left-handed QED'+1. So, a massive 
scalar mode wi th m2. =4eY.:t Ls f'ound , 

The R-fermions which propagate freely along the X-- axis 

g1vE\ r-Ls e to an addi tional massles mode , 
There is one more possible choice: f=-){- (cuse "c"), that 

lO 

I:	 ;" 

,­

means A_ and lJtt; are the nondynamical variables wi th the f'o Ll ovi­

ing equations of motion : 

o+A_:= o_4-1­ ~ :r =O--I- ­

::P-I-l.fL.::' O (or 'õ ; l/'l. T := O) ljJ(.T::: V lfl..) 
Lagrangian (23) takes on their solutions the form 

i -= /f.' <f/o- Cf!IZ • 

So, we are dealing with a free fermion theory, which is equivalent,r. 
as is known, to a free massless scalar field one. 

tt 
l. Conclusions 
I,, 

We have used the ideas of the minimal quantization method 
in the case of anomalous gauge models in two-dimensional space-time. 
The fermion asymmetry in the models ~der consideration puts the 
problem of a correct choice of the time axis of the system we are 
going to quantize in. This step is essential since it determines 
the structure af the constraints in the theory (the equations of 
motion for ~ts nondynamical variables). Remind that it is just the 

Gauss law (the constraint that is connected with the nondynamical 
component of the gauge field) that causes troubles in the anomalous 
theories. 

We have shown that'the natural and physically motivated choice 
is the lightcone frame. In this frame the Coulomb interaction (the 
only one that is present in these models) is consistent with the 

fermion propagation direction. 
Quantization then leads to the mass spectrum containing 
- a massive scalar particle (fermions bound state) with 

rn ~ :: .4 e 2./.:t" in "left-handed ll QED 1+1; 
- a massive (m2. =. ~ e'J./ X ) and a massless scalar modes in 

the chiral Schwinger modelo 
We have obtained consistent, unitary theories with uniquely 

determined masa spectra. The value a = 2 of the regulariz~t~on parame~ 

ter in the mass formula is singled out (see, also/ 13/) due to the 
requirement for self-consistence of the minimal quantization 

e I	 method. So, this requirement plays an analogous role with the
 

gauge-invariance principIe which fixes the value of the parameter
 
a.. (a. = O) in the case of anomaly free theory.
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this problem and for holpful auggee t Iona , I would a Lao like. to thank 

Profs ..n.M.Barbaahov and A.V.Efromov for v.lu.blo diecueeione and A.V. 
Radyuehkin and E.A.Ivanov for fruitful convereatlone. 
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Appendix Calculations in tertnB of cone variablea wi th X tas a physicel 

To calculate the anmmaloua commutators in the modela under con­ time can be performed in a similar way with the following differences 

aideration we uae the method of ref./11/. We conaider currenta ;~ taken ínto account: 

~ 

and the free Hamiltorl~an ~o aa local limita of the following func­
tionals after their regularization 

J( F) -= SJ,(dlj lft(x) f=: ()('d) 'fJ(d) r 

H(F1)~ SJ(~ ~t()() ~1(Y'~)~(~) r ; r:1(X,:; ) ;: ô ~()("I~)' 
ifwhere	 !'k	 X,1 \-j. • ( ) 

( -1. 17 -tq" )(i~d-1 "-' 

F()(~/d~)~ (:ur:ZJdK1d1fe e f:(k 1 ,11) (! 
~ for J o (J:) ~ ao (A.1 ) r

) 

r -:: { /s for J" (~) ~ a'i
1s for H (J:.,) ~ ~o • 

Por ourrents J) this r -matrix aoquires additional proje~tion 
factors r:!: • The change of the fermion Green function under vector 
and axial gauge tranaformations is taken into account 

~ (x) -7 g 1.c/v(x) (jJ ()C) 

~ (;) -7'c((~) 5 r. ) 1',,(('Lt)
Uo 'X-ti --;;. E? ()(-~ e ~. (A. 2)o 

The anoIDalous terro in commutator ['J(1=) I J (G)] is -calculated as 

OC (F,G) :: - h {F, G] fY! ;) iH{('K-if) / ~; «. f I: . 
t 1)'0.. ";: od o ~ ~ 

80, the following commutation relations are otta1ned 

['"J +(x)I 'Jo~('J)] ":. [ J,;~ ()(), J/('(J)] ~ .2k 'OK" Õ'(y-~)o

[ "J o'" ()() I ~/ ( 'a)] ~ - [ J / (x) I 'J oi ( ~ ) ] 

I I ':j 4.. ()C)] '" - ,i ()4 J / -+- -i 'O/- dv (~ )
[ t1 o) o	 ;lilr 

[ Ho, 'J./ ()()1: -fl' Ô" "J0+ ( x) 

wb1ch bave to be uaed wben gauge transformation8 are performed on tbe 
bperator level. 
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'
Note, that in terms of the transverse variable8 y there are no 
anomaloUB terme in commutators w1th Ho• Tbe reaeon 1a in the inTari­

'lI,T
~Uloe of 'f" under gauge transformatlont!!J of \.f 'a, henc e , in tbe absenoe 
oi relatil>n (A. 2). 

i)	 instead of (A.1) we have . X --I '1- (.--1
1IC--{j- 11-'x -d/A.­

F(x~t)-:. (J,rrr3.Jdk_d~_e j. e J:(~-/9-J 

ii) the equal-time Green function haB the form 
,. l.'1p X­

$ ex) -:. - t±- \ e(p_) 'º 3- - dp­
x-4-:-40 "11" J 

So, we find the only anomalouB commutator 

[ ~+ ( [) , J~ (d -)1:: -:J.: i 3.- Õ (x-- d) 

which hBS to be used in solving the corresponding Heisenberg equation 

0+ () :: .l 
~ 

[H 
) 

0-] 
that folloWB from the representation of the wave function as 

ar \ d r- ( \ -1'l ( p- X - ·f p, X ~ ) 
1:	 ~ J p r- p-) Q • 

The Klein - Gordon equation in tb1a case reads 

( 'à +~_ + ~ rn1.)0f :: O . 
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HnHena H. E2-87-588 
MHHHManbHoe KnSJJTOnamm AnYMcplIblX MOAenCt\ 
C KHpanbllblMH aHOManHHMH 

B paMKax MeTo~a MHHHManbHoro KBaHToBaHHH paccMoTpeHbl 
~BYMepHble xonerra C KHpanbHOt\ aaoxarraeã - "neaaa" K3g H 
KHpanbHaH MO~enb WBHHrepa. O~OCHOBaH BW~OP KOHYCHOrO Bpe­
MeHH KaK ~H9HqeCKOrO BpeMeHH CHCTeMW KBaHTOBaH~H. nonyqeH 
xoponro H9BeCTHblÜ MaCCOBbIÜ cnex-rp , HO C ~HKCHpOBaHHbIM 9Ha­
qeHHeM perynHPH9a~HOHHoro napaMeTpa a = 2. TaKaH 0~H09Haq­
HOCTb HBnHeTCH pesynbTaToM ~eCTKoro Tpe~oBaHHH cornaCOBaH­
HOCTH B MeTo~e MHHHManbHoro KBaHToBaHHH. oTp~aro~erocH B 
~H9HqeCKH O~OCHOBaHHOM Bw~ope OCH BpeMeHH. 

PaOoTa BNnonHeHa B na~opaTopHH TeOpeTHQeCKOÜ ~H9HKH 

omUI. 
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Ilieva N. E2-87-588 
Minimal Quantization of Two-Dimenaíona1 
Modela with Chiral Anomaliea 

Two-dimenaional gauge modela with chiral anomaliea ­
"left-handed" QED and the chiral Schwinger model. are 
quantized consistently in the frames of the minima1 quantil- " 
zation method. The choice of the cone time as a physical 
time for ayatem of quantization ia motivated. The well ­
known mass spectrum ia found but with a fixed value of the 
regularization parameter a-2. Such a unique s01ution ia 
obtained due to the strong requirement of consistency of 
the mínimal quantization that reflect~ in the phyaical1y 
motivated choi~e of the time axial 

The inv~stigátion has been performed at the Laboratory 
of Theoretical Physics. JINR. 
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