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I. Introduction 

The interaction processes at high energies and large transfer 
momenta are very important in studying the strong interaction dynamics 
and elementary psrticle structure. At pr~sent, a regular method for 
desoribing these processes is perturbation theory that ia applicable 
owing to the property of asymptotic freedom of"quantum chromodynamica 
11,2/ • However, the inclusion of a composite atructure of hadrons 
rel!1ults in a representation in which only a part coz-re spond í.ng to t he 
scattering of escaped constituents from a bound state i5 calculated 
by perturbation theory /3/ • In the total expression for the cross 
aection, th1s part is integrated in the product with the wave 
funotions ,of a bound state, the determination of which is beyond the 
scope of perturbation theory. In quantum field theory, those functions 
describing transformation of a phyaical particle into constituents 
imply the dependence on the total momentum variable defined by the 
interaction dynamica. In general, this dependence can be taken into 
account by the pejtjrbation theory method in the coupling constant 
proposed in ref. 4 • However, in the case of deep inelastio pro­
oesses the problem ia solved by choosing a referenoe frame. lor 
this lurpose, thesystem of "infinita momentum" P1~ co is u~uaIly 
used 5/ • In suoh an approach alI physical quantities are expressed 
through the wave functions of a composite partiole moVing with 
infinite momentum. 

In the present paper, a deep inelastic pro~ess 1a studied when 
a oomposite partiole 1s at rest; as a result, the corresponding 
oroas seotion 15 expreased through usual, from the point of view of 
nonrelativistic quantum meohani~s, wave functions. A ne~ version of 
expanding struoture functions over a series in the ooupling oonatant" 
eaoh term in it possessing a speotral property due to a oorreot 
inclusion of a oonservation law of energy in any order of perturbation 
theory, ia suggested. The~performed analysis shows that in the rest 
frame of a bound state (p:::: O ) an impulse approximation is in­
suffioient for a correct desoription of the elast1c limit :X:SJ. ~ 1 
in contrast with the system ~~OO • To obtain leading terms in the 
asymptotic region ~Q,j. ~ 1 , one should take into aocount the 
interaotion o~ oomponents in the final state. The relevant diagrama 
are pointed out, whose caloulations in the QCD model are in agreeme~t 

with the earlier obtained resulta, e.g. 6 
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2. Perturbation Theory 

Let us consider the de~p inelastic scattering of an electron on
 
a hadron. The croas section of such a process is defined by the
 
tensor
 

ü)
'Wt'1V :: _4_C!~ e'Lf<i-q-:x)<PI] (:x:')J(O) IP> )

2m. ) ti v 

where IP> is the e±genstate of the t ot al, Hamil tonian H ,corres­
ponding to a hadron with four~nomentum, normalized by the condition 

)~ o (3) ~ -=t ,\ x) Ií
<,p!Q)=lZ1L 2,P d (P -)a ; .JJt1(xj Ls the electromagnetio ourrent 
in the Heisenberg representation. For definiteness we assume that at 
the zero moment ot time the Heisenberg pictures and 1nteractlona 
coincide 

§t1(X) :::: }~(~c.) if ~o= O . 

If the dressed current ]tl (x ) is expanded over the intoraotio,n 
constant 

t + t} (2)]~(~,t)={TQXjJ'~dti H1l\')} J)i' ,t){r~x.p' ~dt' Ht(tl) , 

we obtain one of the possible versions of perturbation theory for 
structure functions of deep inelastic soattoring. In the zero order 
we have the known expreasion with free ourrenta 

W~'J = ~ (d~~ ex,p(tq':x:)<PI I (~)J(O) lP> (J) 

• 25"L J tt v 

whioh expounds the main drawback of perturbation theory (2) - it 
lost such ao important property of structure funot10no as opeotrality 
connected with a correct inclusion of the energy oonaervation law in 
cons t ruct í.ng the deep inelastic scat t er í.ng cross seotion, Indeed, 
one may verify that in the zero approximat1on (J) \Nf'\V ~ O 
below the reaction threshold ('p~~)'l~M'2.. I ~B} == _q1./~P.~ > 1. . 
It is clear that no total set of stat es \ N) between ourrents in 
(J) wi11 lead to the Ó·functlon wi th respect to energy in the 
expression 

x) In what follows, to denote momenta of e1genvectors of the 
total and free Bamiltonian, we shall use capital and small letters, 
re~pect1vely. 
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Ttt =- ç~~:x. ~~ (iq·xj<P1J~J~) IN> ) (4) 

since \P> is the eigenstate of the total Hamiltonian H and the 
time translations of current J~l~) are defined by the free Hamilto­
nian. Since the violation of the speotral property is known to imply 
distortion ~f the behaviour ~f structure functions in th~ vicinity

1 of ~Bj ~ ~ ,representation (J) becomes us el.e s s for studying this 
region. To restore the spectral property, in (J) one uses the parton

I picture in whioh the following two moments are importaot: transition 
to the system Pt~ 00 and assumption of a 11mited transverse motion 
of quarks in ahadron. In this case, of importance are the projection 
properties of the wave function of a bound state with respect to a 
longitudinal fraction of the momentum of composttes which occur only 
in the sy..stem P'l. -=. 00 • Since our consãder-a.t í.on proceeds in the

i rest frame of a composite, one should have a perturbation theory inI 
which the spectral property i~ conserved in each expansion term.I. 

I We rewrite the tensor Wt'l v in the form 
i 

'W~v:. ~f.p~~~(-~q.:x')<p\Jt1ri:IO)8(P04qO-H)J)O)IP> . (5) 

A symbolic notation of the Ó - function with the operator 
argument ia interpreted by the change in (5) 

8 (1- ~ ') ::;> L ~('l- ErJ) iN'>(I'J1 ~:::. po~ qO t .: 

~ 

where \N) 15 the total set of eigenstates of the Hamiltonian H • 
Since both the currents in (5) are free, tbe construction of ~ertur­
bation theory i8 reduced to the expansion of the O-function in the 
coupling constant. For this purpose we use the representation 

J\ ) ...' -i I\. -1
2m,tO\~-H =- [~-~-itJ - r~-\vf+tfJ 

the definition of the T matrix operator 
J\ • -1 ", _~ 1\. _, A ".-1

['l-H-+tE] =[l-Ho-t\.f-] +[l-l1 o-tt t ] T(~)[t-~o"tf;·] 

,. _-\ ". -1 1\. _, 1\ + 1\. _ 1 
Le-H-if-] -= [l-H o- 1. E-] + [~-Ho-1.G] rr(~)[t-Ho-l.f] 
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-------

and the	 unitarity cond±tion x) 
,,+ ~ ~ ~ ~t
 

rr~~) - fh) ~ '2<JL~ rr('t)O('2-~oJT(1). 
(6)
 

Tnen, after simple calculations we get 

( -1A
W~V ~ Jd3~ ~~(-t,q.~) <P IJt1 \:t:,O){r- Ir -Ho4-itJrr(~) } • 

(7) 

A r 1 1+
• o{~-~o) 1 I + [t--~o'tü·T· 'T'(l)J Jvto) \P>, 

Using the total set of bare statcs In> (1.e. eigenstates of 
the Hamiltonian f'\o) and integrating over rJ:;', we ho.ve 

3 1 \LI) rT'1 m -t	 (8)
W~v-=l21l) L& (P+q-P(n)) I"; Iv 

h. 

where 

í " 1"'}'T't" : <P ~J~(O)I I + t~-l--Io-tiG]- T(.) Ih> 

and P(n) s the total 4-momentum of states In).ã 

We propose a perturbation theory for the funot1onB Wf-IV that 
is based on the expansion in the ooupling oonatant of tho operator 
~(l) in relations (7) and (8). Then, the prosenoo in (e) of the 

fo~r-d1me~sional o -function in any order of the suggested ver­
aion of perturbation theory providas the above'mdnt1oned apeotral 
property. 

). Impulse approximation and threshold behav10ur 

Represent a bound state \ P> as the Fock oolwnn Wi th the 
rt-.(n) 

components '+'p (P1)'" p",) to be called below tbe n-partiole wave 
functions 

X)PrOVided that bound states exist in the theory, the right-hand 
side of the unitarity condition (6) ha s an add1tional terro 2m.i L(3(t-Uo)~ 
\~'> & (t: -Eç.)<(ô \ (<t - \v\o ) • Moreover, in one of the scheme e of 

quark confinement just tbis becomes essential. These problems will be 
discussed elsewhere. 

4· 

.. 

l~) - h... th{")

<P.".··PhIP>: O- (P-[p(. }'Y...{P-1",PII)·


l=~ P 
Let us write down (8) in the impulse approximation corresponding to 

rr(e):: O 

\J"v = ~\~~ Ç;~l~ .o ú, \J~\o)\pr><p(l I,lo) Ir) ('2p(r " 
(9) 

\ 

where 
'2. 1.-I ~ -4 p'2. p~(a- - _I)	 p0!.p~.p~ =. p~ 4- q , d.: -+ -I ..,. PL - p~ ) P
L

::: 11\ p~ = 

The qua.n.t1tl ~p (fi Id..) defined by the formula 
(n)\	 L _)(11'4) \nl'l -t 1\ (3)-\ ... cp (~) ... ,P.)q (~,do.) =- (2m.) JP: O" (J. - (rpef) O- (p- I ~) (10) 

~	 \2p?p-+ hi. 2p~ 1 1
 
n \.
 

p 

maltes it probable that the i-th component oflRdron.P bas momentum 
d­---4

p~) ....... 
p~ whereas the square of the effective
in the interval p~ l'
 

mass of all the oonstituents is in the interval d. I d.-\' cAd...
 
the following normalization condition being fu1filled 

~<i<l\clfi ~~(r:,~):: 1. 

We rewrite formula (9) in a more compact form 

(11)\Jt',," t;- \~~ lI')õ\t\(P+q_p)~- mi) wl1'oI~p 

"hera the q~ (~) function of the four-dimensional argument p-= C!:~}) 
i5 related with the distribution (10) as follows, 

~~etp) = ~~ (p--p) (po-t~(p-pt-+mt ')) 

The quantity Ç>~\t» i8 the probability for the total four­
-momentum of all the constituents but the i-th one to ba in the inter~ 

val p) P -t dp in a hadron with momentum 1? 
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~ _ -3(l'ltl) h ~p{ l~) l'1 \~) -\ " ..... In)I ~2.
~(p)-I('l~) n-oÔ(p-Z)€)O (P-~Pt) <:Pp (P4)" 'lPi_11 t ..\, .. ·p) . (12) 

p rt \ P:\ 2Pt "lh 1_4­

To avoid a complex dependence of the wave functions on the hadron 
1 

momentum J? , arising due to the interaction dynamics, we shall i I; 
consider only the special reference frames "V= O and P1 -4 00 • We 
make rough estimates of expression (14) that lead to a standard par­
ton picture of interaction. In the system P=O ,without loss of 
generality one can direct the ~ axis along the vector Cf (g~~lql), 
then the ~ -function in (11) becomes 

8((P-+~-l')'L-mt) = O(W2.- ~~P-_ M~'p-t-t p2._m~)::. 

:: M~ó(p-- M~ + M~ (M~p-++h1~-P1.)\
W~ W1. I} 

I 

where t ( Z M _~W =. P"tq)) ~::. M~v-.lq\= M... V- 'IV2_q1.. 

The neglect of the third term in the '&' -funotion argument corres­
ponds to the par t on modele Since the rejeoted term M~ (M~ P+-t m~ -p"l.)/W 2 

has the order of smallnes s ..( M1>/ V , the parton model means taking 
the l1mit V~ 00 and the structure tensor aoquires the form 

(13)vJ~\I= M~ [(~~(P)~(p--M5)W~vd~p, 
W2. " J O 

lntegration in (13) over the angular variables of veotor ~, 
on J'hich 9~ (p) does not depend, leads to the following expression 

O ó<::l 00 

'Wt"v= SL~ [ Çclp'L \dpo 9i(pO)"~)W~v. (14) 

'W 
2 

i o pl.h.M% -t Msh 
Analogous cal culations for the system Pt -4' 00 ( q-t (O J õil -.=. O) 
lead to the known parton distribution over the longitudinal 
fractions of momenta 

(15)
\.J :::.m.M~L()'\,(~-%)Wr-tv

t"v '\t-J2. -i. '500 

2OCS' / /--"XYNot e that ~- q:::: J- z I is the Nachtman variable 7. 
'\ ') 1 -t 11 + 411 :x: ~j 

-cf 

6 

where 
O<> ()'O 

~~~~) = Sdp'L ~~~?- ç> i (p+) pJ.2, p2). (16) 
o O 00 

It t s to be noted that aocording to the repre5entation (12) ~ô (p) 
is the function of two arguments p o ) IpI and in the system p~ .... oo 

--t '2. 2 .depends on three arguments p~)p~ and p invariant with respect 
to rotations in the plane perpendicular to the ~ axis. Approximate 
representations (13) and (15) corresponding to the well-known picture, 
have been obtained by neglecting small component~ (of an ordermM~ Iv ) 
in the '8 -function argument (11). To eLucf.dat e- how good is the 
approximation, a more accurate analysis is necessary with the conser­
vation of the integration limits over the variables Ps:2. and p'2. 
following from the exact Q- function in (11) /7,8/. 

Using the representation (lJ) one can investigate the behaviour 
of the structure functions near the exclusive threshold ~ --" O • It 
is easily seen that it is defined by the asymptotic behaviour of the 
wave functions of a hadron at rest in the region of large momenta of 
alI constituents ( p~- <. M~ ). Analogously, in the system Pé ~ (X:I 

the elastic limit of the structure funotions i8 defined, according 
to (16), by the behaviour of the wave functions of the light front 
at )(~ .0\ 

The asymptotic analysis of equations for n-particle wave 
functions of bound states in the QCD /4,6/ 

~I'\)( __ 't~ 1) n .......... ........, 
~ P tl) ~ \p\-" - -t-2. lP\rvjp21"- ... -/p I",IPI'" 00O 1)'" f"n ) 1 11 

(11) -t --l -4 1- . ~ (2n-3)-tj.A).\ --t

<P<>O(~11:r\l... Pn~'.~h) (:(,) ) Xi 1 

( b." is the difference between helic1ty of a bound state and that 
of ~ active quark) shows that the impulse approximation provides 
different results depending on a referenoe frame. Indeed, the forma­
Lãsm with hadrons at rest gives a falI at ~ ...... O v'v.h ~ ~ Sh- 6 
sharper than the genera1ly aocepted one vW2.:::: ~2n-·3+21ll.?1 

that i8 in agreement with the consequenoe of the impulse approximation 
in the reference frame P2 -4 00 • It Ls the case when the zero crder in 
perturbation theory does not provida a correct desoription of the 
regularity under oonsideration; therefore, one should take into account 
the subsequent terms of expansion.rr (r) in (8). Note that a similar 
situation takes place while analysing the asyrnptotic behaviour of the 
elastic forro faotor of the composite system 

7 



}:~::: <Q\JtI(O)\P). 

The amplitude of the deep 1nelast10 process (8) has the same field­
theoret1cal axpression as the form factor F tA , thus being its 
1nelast1c analog. The variable \rJ2= (P""qY-::. G: plays the role of a 
final state mass. An essential difference from the elast1c form r 
faotor is in that the final state expanda in a standard way in powers 
of the coupling constant 

f
, 

\&) =- \1 + I QO-l1o" 1- E-T~ ~(Gt') 11 t) l ' 

and has the zero free 11m1t as the Fook stat~. In the formalism 
the leading asymptotios of the structure functions with respect to 
1<CB} and of the form factor with reapect to trt:msfer momentum 

i5 defined in the impulse approximation, i.e. in the zero order in 
perturbation theory. However, in our approach P= O ,as 1t wil1 be 
seen from a further consideration, the leading asymptotios with res­
pect to 1\ - ::(. B~ manifests itself in the next to zero order of 

perturbation theory. An analogouB situation is observed in analys1ng 
the representation for the elastio forro factor written with the help 
of the wave functions of hadrons at resto In this oase, one sho~d al­
so take aocount·of the subsequent orders of perturbation theory 4/ 
in the ooupling oonstant for the boost operator defining the final 
s tate \Q.') wi'tll arbitrary momentmn 8.- through the state of the 
oomposite system \0) at resto 

.. We shall show tllat the leading asymptotics at ~ ---'> O in the 
--'l 

s;ystem p::. O corresponds to d1agrams of the type of Fig.l 
and the results of oaloulations are in agreement with the impulse 
approximation in the system Pt ~ 00 • For a qualitat1Te explanation 

' 

f 

Pf 

P-i P.zP2 
:P'H 

\l~ Pn- i 

Pt"Ph 

\7 
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of the afore-said we should like to note that part of any 

diagram (of the type of Fig.2) to the left from the photon vertex 
corresponds to the scattering of constituents with total mOmantum 
C\ • In the limit \"(1\...,. O<J (this Ls the region under investigation) 
the nuclei corresponding to these diagrams are defined by perturba­
t Lon theory in the system of "infinite momentum" with the ~ axí.s 
directed along the vector Cf • This i5 the reason for cross sections 
at ~ -? O to deorease more slowly õue to a spec1f1c in P~ -l co 
cancellation of large terma in the energy denominators. 

In the reference frame P:O one should also allow for the 
diagrama desoribing the photon ~roduction of pairs from vacuum 
(Fig.2). The cal'culations show that they give the same contribution 
as the diagrama of Fig.I. Since the calculat10n of diagrama in Fig.2 
encounters no add1tional difficulties, we shall invest1gate only the 
diagrams -of Fig.l. 

Let U8 oonsider the case of a meson with two valent oonstitu­
ents. Using the second order expansion in coupling conatant of Tlr) 
from representation (8) we have 

fT1 c':- -4~).., { -1 r2­
"1t1 :: .),+,ô(Q1 f2 ~e,)/t~)ell:r~(}) [l-Ho-ti.,ÇJ HI ) Ip. p;.l , (17) 

?K.... I}) " .... ) nk.· ... } o - ~ " 
(6'1,) (Q\t)k:=' o O:. e.i " (Aei, 22; > 2::; Mt~o) HJ.:: s\}' (f""Lp ~ cr~ " 

~ ~I . ~ 

In the QCD the oonneoted diagrama corresponding to (17) are shown in 

Fig.). ~ 

P, ~ t' fe, P, 

P }; ~ ( ~o p I' I , ,
L 

1 l.tl. 2- e.2I I
D"Dz D" 'Dl.

Fig,J 

Us1ng the representation (8) one can formulate the diagram
/97techn1que , accord1ng to which each dashed line between the 

1nteraotion vertices 18 associated with the· energy denominator 

j) = M*~o - f ik/+M~j ) 
(la) 

Fig.l Fig.2 ~ 

where \<f. i8 momentum ascribed to the line intersected by the 

8 9 



dahsed l1ne. In the reg10n under 1nvest1gat1on Iql~ 00
 

due to an exp11cit form of (la) one becomea aware of the above
 
canoellat1on of large terma as it occurs in the diagram techn1que ~~OO,
 

M-tqO ~Iq\ -+ 'vl/2 lifI ) 
_'2. 'l.. 

I ~ Kt 
1 +mf ( Iql -. I. Ke~~1:Wtt ) necKel!) 

Ident10al change of the energy denom1nators (la) ow1ng to the
 
condi t í.on Cf=. T.. ~
 

J):::: M+ q- - L-K(- )
 

,~~-.l/..., 
where KZ =. ~\(t- +»1; - Ke'q lq I)takes automat1oally 1nto acoount t he can­
oellat1on of large tems lqI • In th1s notat1on 1t1s easy tot'\, 

oompare the contr1but1ons t~ 1) of d1fferent momenta: momenta with 
large const1tuents 1n the dã re ot ãon o'f q Ke.:(fJ \"-q"[ ~ 00 g1ve 

contr1but1on Ke7 4 O, and the sm,!lll ,Ike, I "'" ~ correspond to 
- ~ Kt - m. • For large momenta 1n the oppos1te to q 

d1reot1on. Kt'Ci/lql~-oo, we have K(.- ~ 00· 

Accord1ng to the afore-sa1d, the energy denom1nators of 
d1agram A bave the fom 

j)1 =. M~ - P1- -IC- ~2.- ) 1)2::: M~ - 1<1- - ti: . 

The four-dimens1onal b -funct1on in (a) at P::. O can also be 
represented 1n var1ables p+ , p- and p: 

lli) 1'\ ~ """ 1. 1\ ~ 

~ (P+q- ~Pt) = Ú(fpt .) Ó(~s - ~P/)d(MS - ~p~-). (19) 

Hence, 1t 1s seen that at \q'!-?oO I ~ o ) P1-) I(-"'o(g)-f 

and K,- "'-O l tl1 A<f I) ) 1. e. 

'Di ~ - e2..- ) 1)2 -;:::. - €2- . 
(20) 

'~ 

Analogously, for d1agram B we have 

1\= M~ - 1<.-- !S- -P2.- , '"02. -= M~- k,--e;. " 

lO 

However, 1n contrast w1th d1agram A the energy denom1nator 
l\~-~-","O(t/~) , s1nce E=-k . Therefore, the contr1but1on of 
d1agram B to the asymptot1cs of structure funct10ns as ~ ~ O 15 
suppressed. Eaeh 1nner 11ne denot1ng the propagat1on of a part1ele 
w1th mass W\ and three-dimens1onal momentum k Ls associated 
w1th the f'lctor (2. ~ it1. -+ rn~l ri. The,n, for the wavy l1ne corresponding 
to a massless gluon w1th momentum K th1s factor 1n the asymptotie 
region ç~O can be changed by the tollow1ng express1on: 

- 'l. 1. 
~ ()I-""""f I -I\. D-+ P21 " m22\j k - ::. c pz- 2. -v r2. = .... _ (21)1 

---+ 
where we bave taken 1nto aceount the lim1tedness of momentum f l ~~ 

(wh1~h 1s connected w1th a rap1d decrease of the wave funct1on' ~(~~) 
at le 2\ ~ t=>O ) and the oondit10n 

p~ t lr:= MS· 
The 1nclus1on of a sp1n resulta 1n the appearance 1n eaoh 1nner 

l1ne of add1t1onal faotors ~ -\- Wt- and d5~li'..) for par-t í ct.e s wi th sp1n 
1/2 and 1, respeot1vely. The gluon projeot1on operator o\s('t~) depends 
on the gauge cond1t1on f1xed in a covar1ant way 

et!'.~ tI<.) =. - CãSE> • 

The externaI lega and vert10es are taken 1nto aocount 1n a 
standard way as, for 1nstance, 1n the Feynman d1agram teebnique. 

Thus, w1th (20) anel (21) 1ncluded, fll", can be written as 

follows: . \ I t' 1 
(22)'l'~ = e.-'à""'" lP;) "G-(P')L~t)2 ~õl~,r,.)(t;:) ~\,} V(r,) , 

where ~ 
t>. vR l) U- )Ylú-t~~y -\ ~ ~ [-'\.I\r\}4= <rV ~2. @ lti l)~~Oç ) \(1::t(~q ) ~ -= q-llI.c:r~ 

Aocord1ng to the representat10n (8) and (19), for the tensor 'W..... V 
we baTe 

...., cf" -toW...v::-~- dp~ P2 'T't'1Tv5(~.L-+~)ô(P1t+P2+-W2.)Hpr+p;-M~)) (23)
l2-m,:j> \ 2.f.ti 2.'P1o M~ • 

~ ~ )-1w1th Pt:: nt\ • Due to the presenoe of the suppre s aãon f aotor (r/ 
1n (22), 1n the seate 1nvar1ant' l1m1t (leadtng asymptot1os U V-I ) 

!~ 1) -=!!!aillons in (23) are ohanged bl :li 

V Ret aJ.n1 ng the exaot Õ - funot1ons we could obta1n an 
express10n 1n wh10h the dependence on W 2.. v1olat1ng sca11ng would 
be taken 1nto aooount. 

11 



--

õ(p\+_ ~;).ó (pt- - M~) Ó{P:1-+ r;1) ~ ~ (Pi ,pJ. (24) 

" The correspond1ng approximation for M~ gives 

M~ -7 -i õ(>lj(ft ) ~ l)((i) O~1 0- 0e 

Then, (23) becomes 
. '2. ..... oi li _" (25)

W'" :: le,CF) \~e) ct>q(t.fJ V ct>ol'{,l~)~~) Ô(~IP1)d.s(-(Pz-f1f) dS(-(Pl-'f2-)1.} <APíd~ 
y 2~ S .2 (e)-f f\4y ("11,-)2' 2 lp:/.+)'l. 2Pt" 2Pz-0 ' 

where J S 1s moving coupling constant and 

V,",V:; O(ttY~ foi 0- DE' (~+1111) Qb'6- O.., Ul11) e 11[12) t~ (p) -»11) lI'E' tr(~ 2) . 

After integrat1ng over <Ar. dP2.- in (25) in the I eading in V order, 
"e get -fi 

'vi ~i&' C~)1. dP;j, ~ê) <PÔ(~~\:Í(f1)~ -rO V('(i)~1?(12) ~-Ir(ll,) <Ptt(~;fJ(d~)2' (26)
t4\' '2~ -1 ....20)'2. 2. 1~-)2. t4" ("1-)1. • 

Plj, "'''1: ~2. \... 1­

T,hus, from (26) using the standard defin1tion of the structure 
funct1ons, we have 

~w :; S'2.f(~r:; (cAp~: s?(r+o1'o-ro-Õ~) (27) 
M 2. ~~~tll1;)' -2 2..' 

where r=. CJ1)lU(11) <Pô h, Itf1.) TI (1(2.). ás ( tl,i" fJ;f+ m}).
'f l'12-Y' M~ 

Th~ asymptotic expression (27) obtained ia in agreement with the 
oaloulat1on of impulse approximation in the field theor1. on the null 

76/plane ~~th an aoouracy up to the oonstant ooefficient r Now we 
shall conaider the oase of a baryon w1th three valence conatituents. 
ThoUgh the oalculation Ls perfomed b;y analog,y with the two-part1cle 
oase, this example exposes some speo1fic featurea typical of only 
many-part1cle oomposite systema. Consider the d1agrams~of Fig.4 
oorrespond1ng to 'the fourth order terms of expansion if'(1) 

- 0\ '" 
For 1-\1-::' ~ 'l\'(f '" '4-' ~t" ~o.. th1s 15 a min1Jllal order in wh10h oonneoted 
diagrama ar1s8 that desor1be the three-quark interaotion in the 
final state. (Three- and four-gluon vertices are not oons1dered here). 

.Ana.:togously to (24) the four-dimensional ~ - funotion in (8) 
in the soale im-ar1ant l1m1t v- 00 is subst1tuted by 

J'[p+ - W1.) d(p~-+ PJ- - Mg )ó( t1J. -t ~J. "'~J == h(PlIPlIPJ) • ( 
4 Mi 28) 

Among the energy denominators D of diagrama A and B in Fig.4,t
 
only 1)3"" and J>l' differ from each other
 

0) f 
p~ I ~ I .\ j p 
p. I . I KZ.: i 

r: "0: f ED: ~ r~ I \II I .. 
1 I , I1 I I I
 

'])~ 1)3 1)2 D., DLj 'D3 1)2 D1

Fig.4 

DA M o o o 0° M - - - (J­3 = + q - P
i 

- k 3 - \3 -= +q - p, - K3 - '3 

'í\ la lA o o o ~ o o (J o ~J - I) - \/ - - o - l/ - r r:
-v,3 = I"I-tq -~ - \(2 -)$:!. -P. - K't-lJ = ''1-t~ -li -"1. -~~ -12. -"''1-\~ ) 

wh1ch, by virtue of (28), in the limit V4 co and ~ O transform4 

into 

A- 0- GD3 ~ -l3 I 'DJ ~ - (r2...... P:t) ~ O ( 'it',2-(g M). 

Note that I - diagram (Fig.4 )15 5uppressed by the energy denomina­
tor only as 1 -+ O since in the- regime Pt -loo apart from lln .... 00 

an additional condition (p,1'rz-tpJ)2/ICf \ .... should be sàtisfied.00 

.AlI the rest of 1)é. in' the l1mit .S -lO like 1)J" turn out to be 
finite quantities dep-endent only on momenta of the wave f~otion ,of 
a hadron at reste Tbere~ore)one may think that the contribution from 
diagram of Fig" 4B 1s suppres s ed in compariaon with 4A.; however, in 
the case of spinor quarks tbe deoreas:1.~g contribution o'! r -diagram. 
owing to the energy denominator~: i8 oompensated by the increasing 

1\ as 'i -I' O projeotion operator ~ -4- WI • J4oreover, in our case just 
this diagram corresponds to the leading asymptotics of structure 
funotions. Suoh a cancellation takes place in the field theory of null 
plane and the oontribution from a fermion moving backward i8 taken 
into aocount by an instanteneous propagator part õ+ / 'f-/ usually 

II 
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denoted by the vertical spinor line /2,10/ • In the leading in 
order for the tensor vJ~v the contribution from diagrama oí 
Fig.4A and B has	 the -following fom : 

1\ I*"'" ~~ .. A. _ ... ~ ~ Lt
 
W :(5 Cf) ( ~t) <1:>0 (tll ' l h) v. A cPê l'l\l'h~3) fd~) ndi>'- nd.5(rdM~) li. (p P P)


!'Iv 21)1. ':: 3 _ _ _ '2. ~v _ _ F ~ J _ ~ ~ I 
'2. te?(f1..~f3)] 5~('l2.~"ti)j 4:12Pt i : i [~1~P3-+)P3-+]1. 

We J±Cj~) (~r) <$0 lê.fJ~) ~ & ~~ h, "1rt3) ~i) rl di>:- nd-s (ei /Hg) ACp. Pl. P3)
 
~v \~:n2. 1 3 r(t-~r)'l ~v 1-(7-~1-\'2.. 3j-;12PiO i;;1 Cp;-", p+)14

Ú
+)L
 

where '. 3 2. ?:. 3 1- s ) 2. J pb 
1

V~ ,:::. p+ Ü(R1) ~ õ- ~s Q ~ o~ ir-Õy U(1,)@U(~s~s.
/
(K,) ttYl;) aS 

(I\+tvll.) ~6"(J(;-tmJ)o~ U(11)~ 
f-!'~	 I .., < 2K,o 2K"

,"	 ~ J 

o U(~3) 06/(~ t Y7l:>)"('U(1:l,}ctSS' <Â\,('I ~~&' ~6"6' , 

VI.A~ pt 0(~I)Õt-t õ-os 0- üQ0--õvU( 1) 0 U(fl)«;'~ ~\~+ ml)"66"(~~Hl1J)õP~(7l)~-c:. 

r: t	 2\{l 2)(0 
- 'b'(" 6 ' .... ~J 

@UCt3) õ' PJ-tm»)Õ Ub))d ss ' cl(l(l' cÀb~' QCS6 1 " 

cÁ PS 15 the	 gluon projection operator.
A 

Note that the first denominator in 'Wp.v corresponda to the
 
product 1)11).2 '1>3 'D~ and the last denom1nator originates from the
 
multip'.iers (K 2 ° "\.(~ r 1 corresponding to the gluon 1ines. Tb.e
 
1ast mul tlplier W~y has the square energ,y denominator 'Dó

8 apart
 
from (1<7,.0" k.fY' • In Vf-'o.v ~"n'Kl '" r. t ~ - and kl + m1 I(l-r ~ - are taken
Ao 

into account , It. follows from (28) that p}.-, p~- <:: f'.1~
 

therefore, in the 1eading in ~ order we have
 
" li - - 1 ~ 6" ~'
 
Yf'l~ ::(t) (p\1" P2.~ p/) U(fl)OtiÕ-OS ~- 6fl~- ~v V(11) 0 V(P2.H'5 õ- O ira o-õ" UI12.)® 

S' 6' 
o ÜU.!»Õ õ'-õ" U{1~)d.S5'&fl(l,tin'~6õ' ) 

V~=(±)\P:ti p;) O' lfl ) ~~ r o'> õ- ~(' <f Oy Uhi) @ -O (f1) õ'S' o'" ~~ ~- 06'"õ+ Qt>'Uh1-)~ 
ó' 6"' 

o vl~?»õ ~-o v(l;\)cA H , ~p~' J&&/cJf~/. 
~u	 ~ ~ 

In Vp.v we haYe	 taken into aooount that ~~ =- 1(3 and therefore 
&-n\,... \(~-~t='~3+~+ • In the diagonal gauge ~l"v=-3f'1vbY virtueof 
'Ji'-) 1.= l ~-+ )'2.= O we hav,e v,fv ~ O , 1. e. as ~ -t o. the lead1ng 
oontribution is from diagram of F1g.4B. 

I\. B	 __ 

Vtio" ~	 (P1+ p~t ~J+) lj(t1)~t1 -0- O\' U(1,)@ Ulfa) O50-01'U('h.) @ Ul~3) o~ Õ- Op Vh~) . 

1'hus, for the tensor WLO v, ~. 

W
14 

'i = ~~M(:fcl=)2.	 r~e) 
J 3 

we get 
~ 

J )<bô(~Íz-t;~ WftV ePô ('t/ 71. '1 (di) 
1- Ul-+i~-i' '13- (trI.-"7J-Y}, 3)3 

14 

;..•. 

where 
y 

JU:::	 SoIPz_- d. PJ-ci~ldfLl Ó(P2--f~--~((Pil nd.:(~/l1j) 
2P~ 2f)- (~l-l-m},)2[ p.J.l~m~?- ~ h;.+rr1J2]'t

and 
P"J, PJ -

w,.. V Ü(tt) 'OlA 0- Ov U[71 ) ~ U{f2 ! '(5 0-fP U{12 ) @U(RJ ) Os 0- i, (/(13) .z; 

The version of perturbat10n theory for the structure functions 
of deep inelastio prooess (1) suggested in this paper can succeS8­
fully be appl1ed in the case of an arbitrary number of constituents. 
As a result, the investigated physical characteris~1cs are written in 
terms of the wave functions of a bound state at rest that have a 
olearer physical meaning than in the system P ~ 00 • Of specialr 
interest such a formalism should be for studying composite systems 
(for 1nstance, of nuolei) whose wave funotions in the rest system 
have already been studied 1n other prooesses. 

Acknowledgements. Tne autbora are deeply indebted to V.A.Matveev 
and A.N.Tavkhel 1dze for interest 1n th1s work and valuab1e remarks • 
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XaeAenHA3e A.M., KaHHHXHA3e A.H., CHcaK~H A.H. 
fny6oKOHeynpyroe pacce~H~e a ~OPManH3Me c aonHoa~MH 
~YHK~H~MH nOKO~~HXC~ COCTaaH~X CHCTeM 

E2-87-543 

fny6oKOHeynpyrMH npo~ecc nenToH-aAPOHHoro pacce~HH~ H3y4aeTc~ a cMcTeMe 
nOKO~ ca~38HHOro COCTO~HM~. npeAnaraeTc~ HOa~H aapHaHT paanomeHH~ CTPYKTyp­
H~X ~YHK~HH no KOHCTaHTe a3aHMOAeHCTaH~, KamAWH 4neH KOTOporo o6naAaeT CaOK­
CTaOM CneKTpanbHOCTH. noKa3aHO, 4TO a CHCTeMe noKO~ COCTaaHOH 4aCTH~W HM­
nynbCHOe npH6nHmeHHe HeAOCTaT04HO An~ KOppeKTHOrO OnHCaHH~ ynpyroro npeAena 
XB• + J, a OTnH4He OT CHCTeMW Pz + ~. ~n~ nony4eHH~ aeAy~eH aCHMnTOTHKH 
CT~YKTYPHWX ~YHK~HH npH XBj + J Heo6XOAHM y4eT aaaHMOAeHCTaH~ COCTaan~~HX 
a KOHe4HOM COCTO~HHH. Ha npHMepe Ca~3aHHOrO COCTO~HH~ ABYX H Tpex 4aCTH~ 
yKa3aHw COOTaeTCTB~He AHarpaMMW, pac4eT KOTo~x a MOAenH KXA HaXOAHTC~ 

a cornaCHH c peaynbT~TaMH,nony4eHH~MH a ~opManH3Me Pz - ~. 

Pa6oTa awnonHeHa a fla6opaTOPHH TeopeTH4eCKOH ~H3HKH OHRH. 

npenpiDIT 061oeAiDieHHoro HHcnnyra RA8pHldX uccneAOBaHHli. ,lly6ua 1987 

Khvedelldze A.M., Kvlnlkhldze A.N., Sissakian A.N. 
Deep Inelastic Scattering In the Formalism with 
the Wave Functions of Composite Systems at Rest 

E2-87-543 

A deep inelastic process of·lepton-hadron scattering is studied in the 
bound-state rest frame. A new version of expansion of structure functions 
over an interaction constant is proposed, each term in It having spectral 
properties. It is shown that the impulse approximation is insufficient for 
a correct description of the elastic limit in the composite particle rest 
frame In contrast with the system Pz - ~. The leading asymptotics of the 
structure functions as xBj - 1 can be obtained by allowing for the interac­
tion of constituents In a final state. Using as an example a bound state 
of two and three particles it is shown that the results of calculations of 
the relevant diagrams in the QCD model are in agreement with those obtained 
In the formalism Pz- ~. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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