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I. Introduction

The interaction processes at high energies and large transfer
momenta are very important in studying the strong interaction dynamics
and elementary particle structure. At present, a regular method for
desoribing these processes 1s perturbation theory that 1is applicable
owing to the property of asymptotic freedom of quantum chromodynamics
/1,27 . However, the inclusion of a composite structure of hadrons
renultsin a representation in which only a part cdorresponding to the
soattering of escaped constituents from a bound state is calculated
by perturbation theory 3 « In the total expression for the cross
section, thils part is integrated in the product with the wave
functions of a bound state, the determination of which is beyond the
scope of perturbation theory. In quantum field theory, those functions
describing transformation of a physical particle into constituents
imply the dependence on the total momentum variable defined by the
interaction dynamics. In general, this dependence can be taken into
account by the pefIyrhation theory method in the coupling constant
proposed in ref. . However, in the case of deep inelastic pro-
cesses the problem is solved by choosing a reference frame. ¥For
this yg}pose, the system of "infinite momentum" Ea—a ©0 13 ugually
used « In such an approach all physical quantities are expressed
through the wave functions of a composite particle moving with
infinite momentum.

In the present paper, a deep inelastic process is studied when
a composite particle is at rest; as a result, the corresponding
cross section 1s expressed through usual, from the point of view of
nonrelativistic quantum mechanics, wave functilons. A new version of
expanding structure functions over a series in the coupling constant, .
each term in 1t possessing a spectral property due to a correct
inclusion of a conservation law of energy in any order of perturbation
theory, 18 suggested. Thq*performed analysls shows that in the rest
frame of a bound state (P =0 ) an impulse approximation is in-
sufficient for a correct description of the elastic limit 3Cg;-?1
in contrast with the system Fi-+ oo , To obtain leading terms in the
asymptotic region Igé-» A , one should take into account the
interaction of components in the final state. The relevant diagrams

are pointed out, whose calculations in the QCD model are in agreement
with the earlier obtained results, e.g. 5
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2. Perturbation Theory

Let us consider the deep inelastic scattering of an electron on
a hadron. The cross section of such a process is defined by the
tensor

Wy = _4_\"@ eap i) 01 o T 10 @

29

where |P>  1s the etgenstate of the total Bamiltonian H
ponding to a hadron with four-nomentum, normalized by the condition
<Pl =nP2p° s (F-q) *) jh(x) 15 the electromagnetio ourrent
in the Heisenberg representation. For definiteness we assume that at
the zero moment of time the Heisenberg pictures and interactions
coincide

s COrres—

Jhx) = Jpuloe) 12 %°=0

If the dressed current IRAu;) 1s expanded over the interaotion
constant

t + t
— - i ] =y . ] ] ( )
J&p)= {TQ:LP'LS)O\{ H U0} ] ﬂ(:r.,t){Teacpm Edt H, )} , 2

we obtain one of the possible versions of perturbation theory for
structure functions of deep inelastic scattering. Ip the gero order
we have the known expression with free ourrents

: &)
\,szz”igqj”m emp(mq-x)<PlL(x)3;(o)lP> )

which expounds the main drawback of perturbation theory (2) ~ it

lost such an important property of structure functions as speoctrality
connected with a correct inclusion of the energy conservation law in
constructing the deep inelastic scattering cross seotion, Indeed,

one may verify that in the zero approximation (3) \va %0

below the reaction threshold (P*q)z‘-Ml, Apy = -qZ/QPAq >4 .

It 1s clear that no total set of states |N) between ocurrents in
(3) will lead to the d-function with respect to emergy in the
expression

x) In what follows, to denote momenta of elgenvectors of the
total and free Hamiltonlan, we shall use capital and small letters,
regpectively.

— i mm .

Te= W explqn)<e1T, (IN> | W

since \P)» 1s the eigenstate of the total Hamiltonian H  and the
time translations of current JQ(x) are defined by the free Hamilto-
nian. Since the violatlion of the speotral property is known to imply
distortion of the behaviour of structure functions in the vicinity
Of:IBj-+ 4 , representation (3) vecomes useless for studying this
region., To restore the spectral property, in (3) one uses the parton
plcture in which the following two moments are impor%ant: transition
to the system F%~q oo and assumption of a limited transverse motion
of quarks in g hadron, In this case, of importance are the projection
properties of the wave function of a bound state with respect to a
longitudinal fraction of the momentum of composites which occur only
in the system Fi-%cn . Since our consideration proceeds in the
rest frame of a composite, one should have a perturbation theory in
which the spectral property is conserved 1n each expansion term.

We rewrite the temsor Wy, 1n the form

W= 2 A2 NI T @05 (% M OIP> . @

A symbolic notation of the § - function with the operator
argument is interpreted by the change in (5)

§(z-0) = L 8- WM, = Piqe,

where |ND> 1s the total set of eigenstates of the Hamiltonian Q .
Since both the currents in (5) are free, the construction of pertur—
bation theory 1s reduced to the expansion of the 5'-function in the
coupling constant. For this purpose we use the representation

2913 (2 W)= [2 H-ieTh -0 vig]™!

the definition of the T matrix operator
A AL a-A A S Ao -
[2-H+ie] =[2-Horie] + {2 -Horiel T@)[Z - Ho+i€]

[z-f4~»£ Q"= [%—flo-iej" + {Z‘ao‘{é]-h—?’?%)[z’ﬁo'iél-‘



x)

and the unitarity condition
N

A 4 A~ N A
T) ~ Te) = 29 T(Z)E(z—Ho)sz). (8)
Then, after simple calculations we get

1A
Wyy = (2 exp(42) <PIT 20| 1+ T2 -Hy+ie] TR} +
€7)

e B(a-ti) | T+ La-torie T @Y T, (0) 15> -

Using the total set of bare states IN> ( i.e. elgenstates of
the Hamiltonian H,) and integrating over i, we have

) +
Wy :@snfzhjg‘ (Pra-pe) T T (8)
where
T = <BVT 0 T+ T2-fosied " T @}
and Py 1s the total 4-momentum of states |N> .

We propose a perturbation theory for the funotions WMV that
is based on the expansion in the coupling constant of the operator
T(z) 1in relations (7) and (8). Then, the prosence in (8) of the
four-dimensional § ~function in any order of the suggested ver-
sion of perturbation theory provides the adbove méntioned speoctral
property. '

3. Impulse approximation and threshold behaviour

Represent ? bound state \|P> as the Fock oolumn with the
n
components ¢’ (p ..p. ) to be called below the n-particle wave
P ‘' Py
functions

x)Prmrided that bound states exist in the theory, the right-hand
side of the unitarity condition (6) has an additional term 29 ZP(E-HO)%
1> (2-Ep)p) (2-Ho) . Moreover, in one of the schemes of
quark confinement just this becomes essential. These problems will be
discussed elsewhere.
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<P4»Pn‘P> = Slb)(P_?Z‘;Pe)CPE'(Pk“Pn)-

Let us write down (8) in the impulse approximation corresponding to
T(z)=0

_ TR A R ) N o1 (9
e E%;P— Q! () e TG T0 Ry (2re),

where

BaPaq, d=RAP QR R=m pr=preps.

The guantity ?F;G.“d') defined by the formula )
N YY) I 45 nog P n Cbm)
O =)@ \T23a-EpNIE-IR)| BG6n)| . a0
p o Happt Y% ' I
n v

makes i1t probable that the 1-th component of mdron P has momentum
in the interval TD:; ,ﬁa,d(_)l whereas the square of the effective
mass of all the constituents is in the interval o, d« ol

the following normalization condition being fulfilled

(s o, Q)= 1.
We rewrite formula (9) in a more compact form

Wy= T \QE ()3 ((Prgepy=m?) Wy, dp )

where the Q;? (p) function of the four-dimensional argument p= (pm’ﬁ)
1s related with the distribution (10) as follows,

Q;‘Lp) = ?;@'—F, (po B Famt ) ).

v .
The quantity Qpip) is the probability for the total four-
-momentum of all the constituents but the i-th one to be in the inters
val P, p+dp in a hadron with momentum P

n
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To avoid a complex dependence of the wave functions on the hadron
momentum P y arising due to the interactj_.gn dynamics, we shall
consider only the speclial reference frames P=0 and Pz—a co ., We
make rough estimates of expression (14) that lead to a standard par-
ton picture of interaction. In the system P o , without loss of
generality one can direct the 2 axis along the vector q (qz_]q l)
then the S —function in (11) becomes

B(@ra-f-ml) = 5 (WP i Mgy geonit) =
=185 (- Mg + %%szumé—f*b ,
where WZ: (‘P.‘,q)z R M% = M-‘\)-‘-l(_)”: M*V— d\)l—ql .

The neglect of the third term in the § -function argument corres—

ponds to the parton model. Since the rejected texrm ME(Mgp*sm]-p2)Ay?

has the order of smallness {M’>/y , the parton model means taking
the 1imit V » oo and the structure tensor acquires the form

T

Integration in (13) over the angular variables of vector f)',
on yhich 9 (P) does not depend, leads to the following expression

WMV-%ME L gdp &dpo Q' (P, YWy - (14)
¢ O FlaMg+ M2
Analogous calculations for the system Py > oo (at<o, OIJ_—O>
lead to the known parton distribution over the longitudinal
fractions of momenta

4 (15)
Wy = aMﬁ@@wu—gwm )
-T-ij—blote that 1- %‘: 2% /7/'

is the Nachtman variable
1-\"\’4 + AMixe)
-q2

9

N

=

T

where

RN AL CA AT Gs)
° o

It is to be noted that according to the representation (12) Ss (»

is the function of two arguments P°, |F| and in the system Py- o0
depends on three arguments p*, P>  and p* imvariant with respect
to rotations in the plane perpendicular to the % axis. Approximate
representations (13) and (15) corresponding to the well-known picture,
have been obtained by neglecting small components (of an order ofW /V )
in the ¥ ~function apgument (11). To elucidate how good is the
approximation, a more accurate analysls is necessary with the conser-
vation of the integration limits over the variables P.* and P2
following from the exact §-— function in (11) /758/

Using the representation (13) one can investigate the behaviour
of the structure functions near the exclusive threshold ¢- O . It
is easily seen that 1t is defined by the asymptotic behaviour of the
wave functions of a hadron at rest in the region of large momenta of
all constituents ( P < Mg ). Analogously, in the system P, oo
the elastic limit of the structure functions is defined, according
to (16), by the behaviour of the wave functions of the light front
at x- 4 .

The asymptotic analysis of equations for n-particle wave

functions of bound states in the QCD
n) - — - -
¢ (P“‘-AP,,) — \prw“”*% B~ 1By I~ ~B, I~ [P~ oo

(2n-3) +jar]

9

(m
P, (it B = (- ;o xod

( AN 1is the difference between helicity of a bound state and that

of an active quark) shows that the impulse approximation provides
different results depending on a reference frame. Indeed, the forma-—
lism with hadrons at rest gives a fall at 2¢-~0 vW, = g5"—6
sharper than the generally accepted one vw, ~ §2n—'3+2\A?\|

that 1s in agreement with the consequence of the impulse approximation
in the reference frame P2 400 , It 1s the case when the zero order in
perturbation theory does not provide a correct desoription of the
regularity under consideration; thehrefore, one should take into account
the subsequent terms of expansion .’T' (2) in (8). Note that a similar
situation takes place while analysing the asymptotic behaviour of the
elastlc form factor of the composite system



F,= <Q1J,01P> -

The amplitude of the deep inelastic process (8) has the same field-
theoretical axpression as the form factor F'M s thus being its
inelastic analog. The variable W = (P+qY= G plays the role of a
final state mass. An essential difference from the elastic form
factor is in that the final state expands in a standard way in powers
of the coupling constant

16y = {1 + [Qf-HorieT T} In>

and has the zero free limit as the Fock state. In the formalism

the leading asymptotics of the structure functions with respect to
4—3{:3; end of the form factor with respect to transfer momentum

is defined in the impulse approximation, i.e. in the zero order in
perturbation theory. However, in our approach B: 0 s as it will be
seen from a further consideration, the leading asymptotics with res-
pect to /\—3‘.5; manifests itself in the next to zero order of
perturbation theory. 4n analogous situation is observed in analysing
the representation for the elastic form factor written with the help
of the wave functions of hadrons at rest. In this case, one shou}d al-
so take account of the subsequent orders of perturbation theory

in the coupling constant for the boost operator defining the final
state |Q) with arbitrary momentum (3 through the state of the
composite system |O » at rest.

We shall show that the leading asymptotics at % -0 4n the
system P O corresponds to diagrams of the type of Fig.l
and the results of calculations are in agreement with the impulse
approximation in the system PZ > OO . For a quelitative explanation

q 4 Ljvlﬂk B
NS ” P B,

Y P2 T .
P=0\_/ __ N

"z
1
s
§°'

of the afore-said we should like to note that part of any
diagram (of the type of Fig.2) to the left from the photon vertex
correspords to the scattering of constituents with total mopentum
E{' o In the limit \rﬂ o0 (this is the region under investigation)
the nuclel corresponding to these diagrams are defined by perturba-
tion theory in the system of ™infinite momentum” with the 2 axis
directed along the vector ﬁ' « This 1is the reason for cross sections
at ¢ 0 to deorease more slowly due to a specific in PZ - co
cancellation of large terms in the energy denominators.

In the reference frame B:O one should also allow for the
diagrams describing the photon production of pairs from vacuum
(Fig.2). The calculations show that they give the same contributien
as the diagrams of Fig, I, Since the calculation of diagrams in Fig.z
encounters no additional difficulties, we shall investigate only the
diagrams -of Fig.l.

Let us consider the case of a meson with two valent constitu-
ents. Using the second order expansion in coupling constant of 'N?)
from representation (8) we have

Th = Sbs (Ei)@é’)zahhwh(o){tz-nouel"Hﬁz\P. Py an
K, - v Koy 2 = ~
@) (@), = SUZE) [Td0 207 | 2= Meqe, Hy= BV Y G,

In the QCD the conneoted dlagrams corresponding to (17) are shown in

Fig.B. @
1 ge ! ' ?
P1 i :k 1 P[ " K4 i 91
7K [ /] I X 1
fr | w0 i i g FO
D4 .DZ Fig,3 D'J DZ
g

Using the representation (8) one can formulate the diagram
technigue 9y according to which each dashed line between the
interaction vertices 1s assoclated with the energy denominator

D= M+q°—§‘l§;’+m: ,
(18)

-
where Kg is momentum ascribed to the line intersected by the



dahsed line, In the region under investigation Ial - ©o
due to an explicit form of (18) ome becomes aware of the above

cancellation of large terms as it occurs in the diagram technique %*’w.

M+q® ~1q1 + WZ/Q\(T| ,
Zy%tmy ~ (d1+ T "“;K*;“‘) Motk

Identioal change of the energy denominators (18) owing to the
condition q= T.KC
D= M+ q— - ZK[‘ b)

- \J?ﬁ I
where Ko = YKy +hy —K(Q/[Q\,takes automatically into account the can~
cellation of large terms ~ lq'l . In this notation it 1s easy to
compare the contributions to j) of different momenta: momenta with
large constituents in the direction of q‘ R‘ga'/ 19 » oo give
contribution KC—»Q ; and the small (kqbl ~m correspond to
Ke m . For large momenta in the opposite to q
direction ¥, G/10|2-00 » we have K — 0.

According to the afore—saild, the energy denominators of

dlagram A have the form

D =Myp k-4 , Dy =Me- k-4
The four—dimensional & ~function in (8) at §:O can glso be

represented in variables pt , p- and Fl
L]

S“)(Eirq_;“pt\) = 8(%@)8(%;— ??p[')&(ng— 1ﬁp;). (19)

Hence, it 18 seen that at lﬁ‘[ =% t-ao0 , P, '<‘~o(g)

and k.~ ~0(MAG1) ylee.

Dyx-t7 , Dyx-t (20)

Anglogously, for diagram B we have

T DE M-k KT —pT = Mg- -t

10

However, in contrast with diagram A the energy denominator
])1':—5:~O(‘/§) » since E:-E « Therefore, the contridbution of
diagram B to the asymptotics of structure functions as ‘gqo is
suppressed. Each inner line denoting the propagation of a particle
with mass W and three-dimensional momentum K is associated
with the f@ctor (7_\1 Ktam® )—1 « Then, for the wavy line corresponding
to a massless gluon with momentum K this factor in the asymptotic
region g—ao can be changed by the following expression:

Wv? =elp-hl =D ' "“”"“ 1)

where we have taken into account the limitedness of momentum ez
(which 1s conmected with a rapid decrease of the wave function (Nﬂfz)
at |l ~o ) and the condition

Pl + Pz = Mi :
The inclusion of a spin results in the appearance in each inner
line of additional factors W+W and dgolk) for partioles with spin

1/2 and 1, respectively. The gluon projection operator SPK) depends
on the gauge condition fixed in a covariant way

dse(‘\() = -%59 .

The external legs and vertices are taken into account in a
standard way as, for instance, in the Feymman diagram technique.
Thus, with (20) and (21) included, My can be written as
follows?

-A '__ N « . - A
Th=eg G E) Tl &@t)z "bsl”#z)@a M,:l} Ve, (22)

where

ﬂ“:{wl)@t”)u{)x,%x? Weleg |, = LEE

hocording to the representation (8) and (19), for the tensor \"/Mv
we have

Wiy = 2 drdP, T T §( p.lwu)g(pﬁp,__- )5(peps - Hg) (23)
Gmf 200 ¢
with f‘ ‘ + Due to the presence of the suppression factor (P,*)

in (22), 1n the scale imvariant limit (1eaa§ng asymptotios 1n V™' )
the & _functions in (23) are changed by

*/Betaining the exact § — functions we could obtain an
expression in whioh the dependence on w2 violating scaling would
be taken into aoccount.

11
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§lp— %g).&'(&‘— Mg)8(m,+1 ) = Ah R 28)

The corresponding approximation for ‘I‘}\M gives
M =% 7000 DY, ¥,
Then, (23) becomes
) 2 ¥ aa A 4
W, =) g@-g)z B Pkl Ah)dsto:tT) dsCend). o,
3 @;) Q(z_)z (p¥)? QPfVEP—zo ’
where J‘S is moving coupling constant and
Viw = T80 B (Bem) X357, UL) @ Trlny) ¥y (B-m )WV (e,).

After integrating over J\E O\P; in (25) in the leading in V order,
we get

(25)

W, e el (G BBy vty i) Stz
o O sy

Thus,; from (26) using the standard definition of the structure
functions, we have

ot 2t 0"‘12 Tt - S,
T‘;—Wz-getpgét_@lgp(f‘%j P?f_ll_f), (27)

where

- (gii')l Ul (b()‘ (7|ﬂz)[)}(71)_ as(q; p;f‘\‘ mzl _
(M) Mg

The asymptotic expression (27) obtained is in agreement with the
caloulation of impulse approximation in the field theory on the null
plane with an acouracy up to the constant coefficient 6/ ., Now we
shall consider the case of a baryon with three valence constituents.
Though the ocalculation is performed by analogy with the two-particle
case, this example exposes some specific features typical of only
many-particle composite systems, Consider the diagrams of Fig.4
corresponding to the fourth order terms of expansion 1'(Z)
For Hy=pWI"Vep T, this 13 a minimal order in which oonnected
diagrams arlise that describe the three-quark interaction in the
final state. (Three- and four-gluon vertices are net considered here).

4nalogously to (24) the four~dimensional & - function 1n (8)
in the scale invariant limit y -~ oo 1s substituted by

» §(P|+" %)J(P{+ Pa" Mg)d-( R1.+ EL"EL) = A(f;upz,PJ) . (28)

12

Among the energy denominators De of diagrams A and B in Fig.4,
only fD; and ])3‘3 differ from each other

Fig.4

D)= M+gopl-kf- &= M-~ 7l

:Df = Mxg°- P K- Ky - RO Kky- 2;: M+ q‘—h'-\(,_'—’bf;—g_’—i(.f‘(; N

which, by virtue of (28), in the limit V-co and ¢{~0 transform
into

A

Dy = -ty , Df’"“([’;*[’f)t o m[gM).

Note that Z — diagram (Fig.4 )is suppressed by the energy denomina-
tor only as g - O since in the regime P; =<0 apart from l‘-ﬂ-'w

an additionsl condition (P+p+p)7/18) + o should be satisfied.
All the rest of D¢ in the limit _3 =0 like ’D_;‘N turn out to be
finite quantities dependent only on momenta of the wave funotion .of

a hadron at rest. There:ore,one may think that the contribution from
diagram of Fig, 4B is suppressed in comparison with 4A; however, in
the case of spinor quarks the decreasing contribution of # -diagram
owing to the energy denominator D; is compensated by the increasing
as ?ao projection operator \21,+M + Horeover, in our case just
this diagram corresponds to the leading asymptotics of structure
functions., Such a cancellation takes place in the field theory of null
plane and the contribution from a fermlon moving backward is taken
into account by an instanteneous propagator part % /'53* usually

13 v



denoted by the vertical spinor line /2,10/ « In the leading in

order for the tensor W\uy the contribution from diagrams of
Fig.4A and B has the following form .

W A (3(1—3- @l&) (b (b i;)vA Ct)* (Ttay) @%) ﬂdp ds (G [Mg) A (e AN
Hv an& [es (I (;)]1 Ela (11*,(3_)] J‘ 42‘,0 H‘——_EQ’* +) P; ]1
\/\)a \'.’scb) &@a)g (Qltz_ 5) \/B Cbo r‘\r‘lq})/dl "—ldpl ﬁds(&/”ﬁ)A(ﬂ P PJ
TR N ki PR (e )it
V -P \)L )X K KSD/ K?a’ 6\’ 1 )@U(QQKSQS*MJ)U (P*Wl\)ﬁ _31"_3)59(/(11)@

2;(3

@U(Y;)K (PmeﬁsU(‘ls)dss ?el déb!dGSI ,
\/ VMR SR AT Uu)aumxsm _st (B my) T e m) Ul
2%
g U)5® (5+n5)3 Urb)dss d?e'dﬁa dear X3

O\gs is the gluon projection operator.
Note that the first denominator in WMAV corresponds to the
product DD, D; Dy and the last denominator originates from the
multipliers (KZ K., )_‘ corresponding to the gluon lines. The

last multiplier WMV has the Square energy denominator DS apart
from (¥ k$Y Y In VW f’\fm, ~pty and kf*m1 ~ KT are taken
into account, It follows from (28) that p," ) Py < M

therefore, in the leading in % order we have

\:}M#: :(%)“'mf BRY) O(h)b’ﬂ'b’slf'b'%'?fv Ulty) ® U(fl)b’slb" 656"?{%'59'0‘6)@
o U)W T UML) dyy dpprdgdser |

V=)' @3 ) TORTE T80 Y, U @ T3 5 80 15 1 U)o
B TEDYS 37U S U dsy door dggrdlsg

In VMV we have taken into account that Ky =-Kj and therefore

b~m ~ \<$ Y= K3 ¥' .« In the diagonal gauge ohw 2-Quv by virtueof
@)= (¥*)=0 we have va’O » 1.ec a3 ¢+ 0 the leading
contribution is from diagram of Fig.4B,

N

8 - — —_
Vv Grer ) T8, 75, U008 U ¥ S ¥ ¥ Ula) 8 Ul K, ¥ ¥, Uwy) |
Th‘us, for the tensor \A/m, we get

W :_3\/% e @le} Q)O(Qf;h) w Cbé‘['l,h’lj) a7
o= MG § e Oy (LD

14

where

M= Sosz d B g _Bles M) [Jus (i)
2ph" 2P‘ ﬁz 7-) IP“J”h . P34+m1]£/

Wy vt Sud” ¥, Uly) @ U(Fz} XSJ—@’P(/(’E)@(//%)% akfe U(t).

The version of perturbation theory for the structure functions
of deep inelastic process 6D) suggested in this paper can success~
fully be applied in the case of an arbitrary number of constituents.
As a result, the investigated physical characteristics are written in
terms of the wave functions of a bound state at rest that have a
clearer physical meaning than in the system Pz — oo « 0f special
interest such a formalism should be for studying composite systeums
(for instance, of nuclei) whose wave functions in the rest system
have already been studied in other processes.

Acknowledgements. The authors are deeply indebted to V.A.Matveev
and A.¥.Tavkhelidze for interest in this work and valuable remarks .
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Xsegenuaae A.M., Keuuuxugae A.H., Cucakan A.H. E2-87-543
Tny6okoHeynpyroe pacceaHue B QOPManM3Me C BONHOBHMM
OYHKUMAMM NOKOAUMXCA COCTABHBX CUCTEM

ny6okoHeynpyruid nNpoyecc NenTOH-agpoOHHOrO PacCEAHWA M3IYUAETCA B CUCTEMe
NOKOA CBA3AHHOIO COCTOAHMA. lpegnaraeTcA HOBWM BapMaHT Pa3NOMEHUA CTPYKTYp-
HbiX QYHKUMIA NO KOHCTAHTE B3aMMOAEMCTBMA, KamAwi uneH KoToporo obnagaeT cBoM-
CTBOM CnexTpanbHocTW. [okasaHo, UTO B CUCTEME NOKOA COCTAIBHOM YACTULN WUM=-
nynscHoe npubnuxeHue HeRQOCTATOMHO [NA KOPPEKTHOFO ONMCAaHWA yNpyroro npegena
Xgs: =~ 1, B OTAMYME OT cCUCTeMm Pz ~ =, InA nonyyeHua BEAYWEH aCHUMNTOTHKH
crﬁynrypuux dyHKuMA npu xgi =~ 1 HeoOxoauM yueT B3aMMOAEGHCTBMA COCTaBNAKWMX
8 KOHeuwHOM COCTOAHMM. Ha npuMepe CBA3aHHOFO COCTOAHMA ABYX M TPex vacTwy
YyKa3aHb COOTBETCTBYWUME AMArpamMmbl, PacyeT KOTOpuX B MmoAaenu KX/l Haxogutca
8 COrNAacuM C peayfNbTaTaMmu,NONyUYEHHHMN B QopManname P, - =,

Paborta swnonHeHa 8 fNlabopaTopuu TeopeTHueckon Gnauxu OUAH.

Tip ._ T O6% >FO HHCTHTYTa ALEPHLIX . NyGua 1987

Khvedelidze A.M., Kvinikhidze A.N., Sissakian A.N. E2-87-543
Deep Inelastic Scattering in the Formalism with
the Wave Functions of Composite Systems at Rest

A deep inelastic process of -lepton-hadron scattering is studied in the
bound-state rest frame. A new version of expansion of structure functions
over an interaction constant is proposed, each term in it having spectral
properties. It is shown that the impulse approximation is insufficient for
a correct description of the elastic limit in the composite particle rest
frame in contrast with the system P, = =, The leading asymptotics of the
structure functions as xgj - 1 can be obtained by allowing for the interac-
tion of constituents in a final state. Using as an example a bound state
of two and three particles it is shown that the results of calculations of
the relevant diagrams in the QCD model are in agreement with those obtained
In the formalism P, + =,

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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