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IN'lIRODUCTION 
, , 

1 Functional integration first applied in quantum mechanics by 
R.Feynman/1/ is now one of the most powerful mathematical techniques 
in the contemporary quantum phYSics/2/. The method of functional in
tegration lies at the foundation of quantum.lattice gauge theory/3/. 
The introduction of space-time lattice ~urns functional integraIs 
into ordinary ones of high multiplicity. Thi~ approach causes the se
rious problems: how do lattice calculatiqns concern the continuum li 
mit; how does the result depend on the lattice spacing, etc. Besides 
that, the basic method of lattice cOlIlputations is Monte-Carlo one.. that 
guarantees the convergence of approximations only in probabilistic 
sence and needs toa much computer time and memory. Thus the develop
ment of effective numerical methods different fromlattice Monte-Carlo 
ones for the evaluation of functional integraIs is of great importance. 
In the latter sence the approach based on the mathematically rigorous 
study of functional integraIs with Gaussian measure/2/ appears to be 
promising. The important results in this area have been obtained in 
works/4- 7/ . I~ th~ framework of the mentioned approach we derived/8 , 9/ 
for the functional integraIs with Gaussian measure in separable 
Fréchet space~ some new approximate formulae exact on a class of po
lynomial f'unc t Lóne.La of a given, degree. 

Feynman path integraIs in Euclidean quantum mechanics can be re
presented in the form of functional integral with conditional Wiener 
measure/ 10/ that is the special case of GaussiliLn ones. The search of 
continuum quantum mechanics models is of interest because it provides 
the better understanding of some problems in quantum "field theory, 
e.g. ones concerned the topologicalstructure of vacuum/11/. The va
lues of topological susceptibility computed in various works by lattice 
Monte-Carlo simulations differ each from other and from the phenomeno
logical estimate by 1-2 orders/12/. The reason of su~h a discrepancy 
can consist e.g. (see ret./12/) in the difference of lattice topologi
cal charge definitions and also in the presence of specific finite-size 
effects. Some authors are engaged now in more consistent study of these 
problems on the models of quantum mechanics/13-16/. 

In the present paper we consider the computation of functional 
integraIs using the derived approximate formulae irl the case of condi
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tional Wiener measure in Euclidean quantum mechanics. The non-pertur

bative characteristics concerned the topological effects in double 

well potential and in quantum pendulum model are investigated. The
 
computations allowed us ~o aearch the validity bounds of the dilute
 
instanton gas approximation in these models. The use of the derived.
 
formulae instead of Monte-Carlo method for the evaluation of .path in

tegraIs yields thê mathematically well-grounded results with greater ,,ry
 
accuracy and the significant economy of computer time and memory.
 

1. APPROXIMATE FORMULAE FOR FUNCTIONAL INTEGRALS 

We consider the functional integral 

SF[3:] djJ-(X)., (1)
X 

where F[~) is a real functional defined on a separable Fréchet space 
X /6/, P(~) is a Gaussian measure on X. Some experience in the 

development of methods for numerical evaluation of integral (1) has 
already been accumulated/?/. One of the approaches that is being mo~t 
intensively developed now ia the creation of approximate formulae 
exact on a given class of functionals. The example of such a formula 
in a special caª~ of nQ~lized conditional Wiener measure JW*~ 

(X=C={C[O,f],:t'(O)=:r(i)cO}) \can De presented by the following relation/6 / 

SF[X]dw.r = ;,t", t.S F[8",(v,·J]dv.; ... d1Tm (2) 
C -4 -4 

exact on a class of polynomial functionals of degree $ 21n+1 • Here 

. 'm (m) {-t Sl9~ ltT, t tE /IAT/
 
9m(v;.)=~ Cj 8 (1Ij,.) ; 9 (W; '1.) = (4-t) $l9n61, -t) lufl
 

Ctn)] 2	 Q ~ K m-lel,( Cj are the roota of po Lynomí.aã tn (t) =~ (-1) t / K!. Formulas 

of the type (2) give the good approximation of the exact reault when 
F[~] ia "closed" to the polynomial functional of degree ~ 21r1+-f, i.e. 

to the functional 
2m."
 

p C:c] = L PK [:x:]

2t71"'f K-O 

where PK(:C] ia a continuoua on X homogene'oua form of arder te • 
We have obtained/8 , 9/ for integral (1) the "composite approxiII!8.te 

formulae" of arbitrary degree of accuracy. These formulae can be used 
for the wide aet of functionala. In the case of conditional Wiener 

the derived formula/9/'iawritten as follows:measure 

SFf:r]d ,,:c • (21")f rexp{-í t u;} ~r"F[9",("'·)-8;(~-)+cr,.(U,.)Jd"Ja +t'(F), (J)
w J k.4 c;. J...} WI
 

C R" -f -1
 

2 

•.
 

where 
n ri. m em)


8 (lf, t ) = 2L L. K~sln K1rt- Ci. SL9n v[ cosrxir.
m
""'-1 i="
 

n.t (UI t) ;: li ~ :". scnKri:· q/: 
k::"" 

Approximate formula (3) i8 exact for every polynomial functional of 
degree ~ 2m+1. In the works/8 , 9/ we investigated the convergence to

1?; (F)zero of the remainder and i ts estimate in dependence' on m 
and n . Particularly we have found that under certain conditions 
on F the order of convergence 1?; n::::: O is equal to O(n-(ml-1). 
Note that the convergence of lattice approximatio~s has the order1/~ 
that indicates the advantage ~f the considered formulas over the lat 
tice Monte-Carlo method. 

In the work/17/ we derived and investigated some approximate 
formulas for conditional Wiener integraIs with the weight. This result 
extends the class of functionals where the formulas are exact. In par
ticular, we have proved ~he following 

Theorem 1. 

Let K(5) be the solution of the differential equation 

(-t- 5) K'(s) - (1-5)2 K 2(S) - 3 K(s) - 2>'p(S) =O I SE [O(f] 

K(-I)::-fAP{1) ; 

À E R; P(t), 9 (t). € C[o, IJ , 
V(f.) = e)(p { ~ (1-5) K(s) ds } ;
 

to o ~ S
 

a (i) =JL (5) eis - H- fa»V(s)[ jl (u)clu] ds ; 
o V(t) o o 
t ., 1-5 

L (t) = J[K(S) V(s)fI{s) - 9(5)]ds i: c; H(-1:):: 1~(S)V(S) ~s 
o	 i ., 

and the constant C is determined by the condi tion	 Jl (5) ás :: o.
 
o
Then the approximate formula 

5exp{ .
-4

i [>\p(t)~2{t)+- 9(f)~{t)]cH} 
• 

F[r] cJw,,:tJ = 
C o 4
 

1 " 4
 =[V(.f)]-í e><.p{i !L2(t)dt} 
2i.m \ ... { F[~(tT,·)+a(-)]cil!i-..d~ +~r/F)., (4 ) 

o -1 -1 

where m (I

8 
IV 

(rr, -) :: L ct<tn) 8(J.JK,-)

m K='f
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Practical computations based on the use of the approximate for
,., ti	 {SiO#1, 'W' i ~ f'túf 

mulae (2) - (5) have been performed in /19/. The comparison of nume6(W;·):: r(W;·)-;(w,-); p(w,-t)= Od ' 
i> IuFI rical results confirms the higher efficiency of these formulae versus 

lattice Monte-Carlo computation. 
mLn{lufJ, t}	 , 

f(w; -t) = Si9n w- .±.!-. [-1 + ( K(s) V(s)dSJ I 

V(t) J 
t m., 2. FUNCTlüNAL INTEGRALS IN EUCLIDEAN QUANTill~ ~EECHANICSis exact for every polynomial functional of degree ~ 21T1+ 1 • 

The proof of Theorem 1 ia baaed on the employment of special li 
·7 

Let us consider the quantum-mechanical system characterized by 
near transformation ::c(t) l-+ ~·(t) that we have found and investi 

the Ho.miltonian 
gated in /18/. This transformation mapa the space C=[C[o,1JJX(O);:~(1J=O} 

H=-í::2 + v(X) , X€(-oo,oo). n=C=1. (6)onto	 itself in one-to-one correspondence. 
Particularly, if P(t) == 1; 9(tJ: 9=const ; À < ~ the formula (4) 

The investigation of some important phenomena. sucli as the instanton 
acquires the form 

effects,concerned the topological structure of the ground statc,is toSexp{ íp·x2
(t ) .+ gX(i)]dt} F[:e]dw*:tJ = be performed in Euclide~n metrics (i.e. in imaginary time). In this 

C o case	 the ~chrodinger equation is written in the form 
-I .f ' 

t):~(X,t) = _ H IfYx 
1
t ) t ~ o.	 ('O_Im. :.e'i.p{L rta rx - fI]}.i

tn 
( rF[Bm(V;->+ tl (.>] dUi,,,dVm+1tg), (5) 

- •	 .r;;t (2).)3/l LI d Vi V"i 2 j ...) .
Sc.l1v21\ _i -i
 

The genero.l solution of (7) with arbitrary initial conditions
 
In this case f E(X,o) = 'toE (X) is 

00ali) = ~ ~slf' ;inlft .Sin{f(I-t) 
Y(E(x,tJ = Jté~() l (Xo,X, t) s«; I 

-00 

K(i) = .i: [121 C.t912X(-f-t ) - 1~-t ] • where,~(Xo,X,-t) ia a fundamental solution of e-qua t Lon (7). The main 
1-t 

problem is to find the evolution, matrix elements Z(Xo,x,tJ=<x/e-I'f'ttxo )
The estimate of the remainder q(m(F) in (5) is given by the fol

that	 satisfy the equation
lowing 

Theorem 2/9/ . Õ~ =.i ~2~ _ V(X) ~ 
'lJt 2 ê)x 2 

Suppose the functional F[x] can be expressed in the form (8) 

Z(Xo, X, O) = S (X - Xo) .F[x] = Jim+1[X] + 'l2mH[X] , 
Analogously with the well-known result of R.Feynman the solutionwhere P2.m+1[~] is a polynomiai functional of degree ~ 2m+1 ; 
of (8) is represented in the form of the conditional Wiener integ

1'l.2h'Hi[~J I~ c., (m)-eX'p{ Cim) f~2(t)dt} ral/4,2/: 
T 

• () 1('2c., (m)J c2 (m) ~ c , O~ Á+ (!2(m) < T Z(Xl,X"T) = ~ e,)(p{-IV[x(t}]dt}dwX • (9)"
C oThen o,K"T'Xf 

Integration in (9) is performed over the space of contin~ous on[~T]r1?m(F) I ~ c.,(m).{~(m).M(~,'\}{ ~ eXp'(]-cl'C;/m})]~ M(9','\+ c~(m») J' 
functions X(t) wi th b.o;undary condi tions 

where <{ 2 . {ij 
X(O) = Xi • ~(mJ = e~p{2e2(m) lo! (i )clf } =exp{{:~:;~ (2+cos,Jif-5 5~2A)} I 
X(T):: X., . 

i '}' {fÃ' {~h FrfIJ'l Note	 that in d~stinction from the conventional Feynman path integralM(~J) = ~ exp{HÁ~2(i)+ S~(i)JoIt dw*~ =- 5in{V. -exf (2.)..)3I2L
t9VI -Vr J J. 

the exponent argument in (9) contains not the action functional but, C o . 
the integral of the potential energy. The kinetic term is included

'f 22(/3 )2J A'- .m.oi= 2[.,+"3 pÀ 3"+1; r - Si.t1{2j. • into dw~. The exten~ion of (6)-(9) to the systems with lnally degrees 
of freeâom is obvious (see ref. /4/). 
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Suppose the Hamil tonian H has the discrete spectrum 

H'f" (x) =EH'fn(X). 

Then there halds the following expansion/4/: 

-E T ). ZrXilX" T) := r e n 'f", (Xi) yt,fx, . (10) 
n 

Hence the ground state energy E can be calculated as follows:oIli 
E" = eim [_.1. en z (T)],

T... oO T ( 11)
where 00 

= L e-EnT ~(T) = Jstx,x, r)olx. 
It -co 

After the appropriate change of variables in functional integral/19/ 

the expression for Z (x, X, T) is wri tten in the. forro of the follo
wing integral " 

Z(X,X, T) =_1_ ~exp{-TJV[.ff:cft)+Xldt}clw*:r (12 )
Y2~T C o 

with respect to norroalized conditional Wiener measure in the space 
C={C{O,"l. :J:(O)=.r(1J=O}. The energy gap between the ground and the 

first excited states is defined/ 19/ as 

L1 E = E., - Eo =- eim .i...fn G('t') (1 J) 
t'-ao át' 

where the propagator 

6(7:) = <o ts:(o) ~(t')/ O) = 
00" (14) 

= fim -" -L. id~. X )exp{-rSV[li'x(tfrX1Jf}[Jf.:t(t)+X]d",lC3J.. 
r.oo ~(r) "2~T -00 C o 

Using the values of (9) one can calculate also the ground state wave 
function squared: 

l'f'o(x>/ 2 
:: fim [eE,,~ Z(x,X,T)] .. (15) 

T-«a 

In the next sections we will co~sider the computation of functional 
integraIs using the derived approximate {ormulae. We investigate the 
topological structure of the ground state in some quantum-mechanical 
models. 

J. DOUBLE-WELL POTENTIAL 

Due to existence ~f tunneling the wave function of the ground 
state of the system characterized by the Hamiltonian (6) with the 
potential 

V(x) =i (x 2_ (2) (16 )i' 
l.1' 
~ 

t 
t 6 

'11i 

is an even superposition qf wave functions at each of the wells. The 
basic effect caused by instantons is the splitting of the energy le
veIs. (Assuming absence of instantons the leveIs are doubly degenera
ted). In the approximation of dilute instanton gas/20/: 

Eo = f - d ; A E =2 oi (17 ) 

d = qf f~3 e-lf3 

1'fo(ff)f2= .i/li (18 )·iI 2 .r . 

Our resul ts. for E" and AE comput ed ,using approximate formula {J) 

wi th It == m=-I are given in Figures 1 and 2 by the dots. cru time of 

the CDc-6500 computer was about 10 s per point '2 .. 

2' Eoef1') 6EI(J 

1t5 

lt2 

-L 
0.' 

0.05 
3d 

() f i 
3 F2 

Fig.1 Fig.2 

The solid lines represent "exact" results/21/, the dashed lines cor
respond to (17). For comparison, the circles show the results/1J/ of 
lattice Monte-Carlo computations. The squares represent the results 
of /14/, obtuined evaluating N-fold integral via averaging over 10 

Monte-Carlo iterations on lattice with N=JOJ points and spacinga=~25. 

The informatio,n on CPU time and a type of computer in /1J,14/ is mis

sing, the results are given in diagram forro. Figures 1 and 2 show that 
the values of considered quantities can be obtained using (3) with 
accuracy equal to, and in some cases with even a ~reater accuracy, 
than in Monte-Carlo method on ~attice, but with the multiplicity of 
the evaluated integraIs smàller by two orders. 

:, The ground state wave function squared, computed according 
to (15) using (J) with n.'=mz:1; T-4.5; ,2=2 is shown in 
Fig.3 by crosses. The dots represent the results of the paper /14/ 

1,1, that have been obtained via averaging over 100 Monte-Carlo iterations 

7 



" * on lattice with N=200, a =0.25; 

the stars correspond to (18). 

The solid and the dashed lines 
unite the points for easier com
prehension. 

I"ig.3 

4. QUANTill~ PENDULill~ 

1et us consider now thG quantum system with the Hamiltonian 

H = i À p2+ v, (19) 

where 2 
V(x)= ~ (f-COSX),	 (20 ) 

'" is a frequency af small oscillations, À is a coupling cons tarrt , 
In the case of bounded periodic V(x) , x~ (-00,00) the analysis of 
Hamiltonian (19) is reduced/22/ to the study of 

2 
" Id )	 (21)H (9) = -"2\áx'- (} + V(x). 

2 

Here (Jxti 2 
) (} is the operator d2 on L2 [o,21r:] with boundary conditions 

c/x2 

'f(2'Jl:) = eU)'f(o); 'f'(2X) = e i9y;(O). 

Theref9re in this case we hav.e 

~(X, X+21rN, T) = e lf9Nst« 'X, T). (22) 

Performing the transformation (see ref. /15/) 
• x (} 

'f(x) - e-'iif rto 
that removes the phase factor, we find that the expression (9) is 
valid for the new action functional (n 9 -action ll

) : 

Se ::: 5 - it9 Q, 

whe~e Q is a topological charge, 181~~ • The definition of the to
pological charge follows from (22): 

T 

Q(X)=_..L JXdt =[.K.] (X(o)'=X; X(T)=Xmo"2~)'
2Jr 2.~ 

o 

where í] denotes the integer part of the va Lue , 

We obta1n for E(r) the following expression: 
00 -feu2 co -2",2.!..n2. 

E(T) z:: JZ(X,X,T)dX = ~·{f:.LCO$8n.e T. ZI1(T)l (23) 
-00 m í h=O 

where !X 

En(r) = i [Ih(X,T) + I 
t1 

(-x)r>]dx ;;:;::- 21r ,r 
o -f 

I ()()T)= çe){p{-~ JCOS[#31(i) + 21tnt +X]dt}dw*?r . 
11 C o 

The dependence on p= -X- of the topological susceptibili ty 
'1' 

s.To <Q2) 
I 

-tw 2 rr 00 2 _21C"2..}-n2 .
 
<Q2) =..L;.. 2 e v-}. L eos s». n . e "Zn(T); 1;,=wT, (24)
u» V23f T ",-o 

computed using approximate formula (2) wi th m= f, 'To =;r, f)z O, Jt=-( 

is given in Fig.4 by the dots. 

1.<Q2) The calculations have shown that 
7;; 

\	 the accuracy in the form of j cor
rect signs can be reached taking 

~ into account only two or three 
lÕ~ 

terms in the series (24), i.e. 

lÕ3~ the main contribution give the 

16f~!~~

I: con:figurations wi th nc 5 • The CPU 
1~ • timé on CDc-6500 has been withino 0;5 1.0 fi 

the range of 10 s per paint fi . 
Fig.4 

The crosses represent the p - d.ep eride nce of the value 

s. <Q2)
EN 

that has been obtained i~ /15/ by the Monte-Carlo method on lattice 
With /1/=100, ê:6)a~1 (N is the number of points, i.e. the multi 
plicity of integrals, a is the lattice spacing). The solid line at 

fi > 0.5 denotes the dilute instanton gas approximation/15/ : 

~ (Q2)=Jclje- SP[1-:' ~-i_ .. ,J . (25) 

j
The curve at fd < o.S z-epr-esenj s the high-temperature expansion/15/ in 
the continuum limi t (e.. o , N" 00 , € /11 fixed): 

1 -t_<Q2>= __ . 
7õ 4x1.p 

In order to compare (Q2> more precisely to the theoretical expec
tations we consider the quantity

1 
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• • 

'1 -~ S/3]) = _ <Q2 >. B 2 e . . To r r Ctn 
p·uIn	 the corrtí.nuum limit (in this case S. 8 ) and for sufficiently 

large P	 (semiclassical region) there holds (lU 
~ 

L..-__---•]) = L "";·51V1i ..., '1. •	 (26 ) 
•tOur results are shown in Fig.5 by the dots. The v~lues agree well	 (1.46 

I 
3with (26). The results/15/ obtained vdth ê= 1. N=100. S = So =1.81 

(So is an instanton action for this lattice) are de not ed .by the r 
crosses. The deviation of these 

using the approximate formula (2) 
wi th m= 1 accordihg to (11), 6)=-1, 
f3 = 9", are ahown in Fig.6 for J3 =1 
and J3 =1.2 • 

Fig.6 
B 

results from the theoretical	 The aolid linéa represent the theoretical eatimate obtained within 
D 

prediC:tions (26) cannot be ex the dilute instanton gaa approximation/15/: 

• • plained by the presence of the i ., -1 ., -2 8 -í -8~ [ "'1 -f ] 
• • •	 E(9)=(-i-N P -m6P -...)-cos8't/if~ e -f- 6" P -... 

two~loop correction factor in (25).
 
To nmke the situation clear the The characteriatic COS-behaviour of our results is well seen in Fig.6.


)( )(Jj x xx 
x	 computations in /15/ were perfor


rned a.I ao wi th E;: 0.6 (at J3 =0.1). 5. CONCLUSIONS
 
/la lU' 1.0	 v t2 tJ J3 I:
In	 this case they have obtained 

The results of the above computations demonstrate the advantagesthe value	 J) = 3•.3, i. e. greaterFig.5 of	 the conaidered method of evaluation of path integraIs versus lat than t,he resul ts wi th E. = -{ but 
tice Monte-Carlo method.· The use of the conditional Wiener measurestill too	 smaller than theoretical estimate. The fUrther decrease of 
and the derived approxirnate formulae yields the more preciae reaultaê	 in /15/ has not been performed because of the arising difficulties 
while requiring assentially lesser-dimensional ordinary integraIs toconnected	 with the growth of instanton size on the lattice and there
evaluate.	 The amall rnultiplicity of integrala allowed us to use thefore with	 the serious metastabilities. It is clear that we have no 
;deterministic methoda (Gaussian quadratura, Tchebyshev, etc.) provithese problems: the calculations are performed in the continuum,ê=O. i 
,ding the results with guaranteed (not probabilistic) error eatimate• By the minimizing of )[2 according to the relation 
!and the significant economy of computar time and memory. Due to the

tn[+o<Q2>] = en])-~f3 .,.pflt/3 I absence of lattice discretization in this method the problems concer
in ref./15/ they have obtained with 3: 1.81- the val.uo s of parameters I ned the finiteness of lattice spacing do not·appear. All· these consi

D:;: 2.98; p:. 0.46 . derations make the "deterministic approach" an attractive method for 
the computation of path integraIs.I
Taking into ac courrt that in continuum limi t S= 8 V/e have got from
 

óur data represented in Fig.5: !
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i
Jloõaaoa 10.10., )KH,D;KOB E.n. E2-87-507 
BbItlHCJleHHe KOHTHHYaJIbHbIX aarerpanoa KBaHTOBOH MeXaHHKH 
Cnoraoursro npH6nH)I(eHHbIX <popMyn, TOtIHbIX aa KJI8:cce 
<PYHKUHOHaJIbHhIX MHOrOtIJIeHOB 

( Pa3pa60TaH MeTOn npH6J1H)I(eHHOrO BbItIHCneHHH anrerpanoa no 
TpaeKTopHHM B eBKJIHnOBOH KBaHTOBOH MeXaHHKe 6e3 pemeTOtIHOH 
,D;HCKpeTH3aUHH. Meron OCHOBaH aa npencraaneaaa 3THX aarerpanoa~ B BH,D;e xonranyansasrx HHTerpaJIOB no YCJlOBHOH Mepe Baaepa 
H HcnOnb30BaHHH nOCTpoeHHbIX npH6nH)I(eHHbIX <popMyn, roxasrx aa 
rcracce <PYHKUHOHaJIbHbIX MHOrOtIJIeHOB 3a,z::J;aHHOH CTeneHH. Ha npasre
pe pacxera HenepTyp6aTHBHbIX xapaKTepHCTHK, CBH3aHHbIX c ronono
rH1lecI<oA CTPYKTypOH BaKYYMa, neMOHCTpHPYIOTCH npeasrymecraa 
MeTOna no CpaBHeHHIO c MeTO,D;OM Moare-Kapno pacseroa aa pemerrce. 

Pa60Ta BbInOJlHeHa B Jlaõoparopaa BbIqHCJlHTeJlbHOH TeXHHKH 
H aBTOMaTH39.UHH OHHH. . 

llpcnpHHT 06'bCJlUHeHHOrO HHCTHTyrB mxepH&IX accnenoaaaaã, Jly6Ha 1987 

Lobanov Yu.Yu., Zhidkov E.P. E2-87-507 
Evaluation of Quantum Mechanics Path Integrals 
by the Approximations Exact on a Class of Polynomial Functionals 

The method for numerical eva1uation of path integrals in Euclidean 
quantum mechanics without lattice discretization is elaborated. The 
method is based on the representation of these integrals in the.form of 
functional integrals with respect to the conditional Wiener measure and 
on the use of the derived approximate formulae exact on a class of po'.~ lynomial functionals of a given degree. By the computatiôns of non
perturbatíve characteristics, concerned the.. topological structure of va
cuum, the advantagesi of this method versus lattice Monte-Carlo calcula
tions are demonstrated. . 

The investigation has been performed at the Laboratory of Compu
ting Techniques and Automation, JIN~. 
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