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INTRODUCTION

Punctional integration first applied in quantum mechanics by
R.Feynman/1/ is now one of the most powerful mathematical techniques
in the contemporary quantum physics/z/. The method of functional in-
tegration lies at the foundation of quantum. lattice gauge theory/B/.
The introduction of space-time lattice turns functional integrals
into ordinary ones of high multiplicity. This approach causes the se-
rious problems: how do lattice calculations concern the continuum li-
mit; how does the result depend on the lattice spacing, etc. Besides
that, the basic method of lattice computations is Monte-Carlo one--that
guarantees the convergence of approximations only in probabilistic
sence and needs too much computer time and memory. Thus the develop-
ment of effective numerical methods different from -lattice Monte-Carlo
ones for the evaluation of functional integrals is of great importance.
In the latter gsence the approach baged on the mathematically rigorous

study of functional integrals with Gaussian measure/z/

appears to be
promising. The important results in this area have been obtained in
works/l‘—7 » In the framework of the mentioned approach we derived/a’g/
for the functional integrals with Gaussian measure in separable
Fréchet spaces some new approximate formulae exact on a class of po-
lynomial functidnals of a given degree.

Feynman path integrals in Euclidean quantum mechanics can be re-
presented in the form of functional integral with conditional Wiener
measure/10/ that is the special case of Gaussian ones. The search of
continuum quantum mechanics models is of interest because it provides
the better understanding of some problems in quantum field theory,
e.gs onesg concerned the topological structure of vacuum/11/. The va-
lues of topological susceptibility computed in various works by lattice
Monte-Carlo gimulationsg differ each from other and from the phenomeno~
logical estimate by 1-2 orders/12/. The reason of such a discrepancy
can consist e.g. (see ref./12/) in the difference of lattice topologi-
cal charge definitions and also in the presence of gpecific finite-size
effects. Some authors are engaged now in more consistent study of these
problems on the models of quantum mechanics/13-16/

In the present paper we consider the computation of functional
integrals using the derived approximate formulae in the case of condi-
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tional Wiener measgure in Euclidean quantum mechanics. The non-pertur-
bative characteristics concerned the topological effects in double -
well potential and in quantum pendulum model are investigated. The
computations allowed us to search the validity bounds of the dilute
instanton ges epproximation in these models. The uge of the dexived
formulae instead of Monte-Carlo method for the evaluation of path in-
tegrals yields the mathematically well-grounded results with greater
accuracy and the gignificant economy of computer time and memory.

1. APPROXIMATE FORMULAE FOR FUNCTIONAL INTEGRALS

We consider the functional integral

é Flldu(@) , "
where F{*] is a real functional defined on a separable Fréchet space
x ’ /“(1) is a Gaussian measure on X. Some experience in the

development of methods for numerical evaluation of integral (1) has
already been accumulated/7/. One of the apprbaches that is being mogt
intensively developed now is the creation of approximate formulae
exact on a given class of functionalg. The example of guch a formula
in a gpecial cage of normalized conditional Wiener measure dng
(X=c={C[o4],x(0)=x(1)=0}) \ca}n be presented by the following relation/®’
SFr=ld, AT = 2§ SFrg,mazdy (2)
(4 2 -4 <1
exact on a class of polynomial functionals of degree € 2m+{ ., Here .
o ~tsign w, te€fw]| x
O (%)= ch 6(%) ; O 05t)=1 yt)signw, +>Iwl

(m) & K, mk :
[cj ] are the roots of polynomial Qm(f)"é("') "7/ . Formulas

of the type (2) give the good approximation of the exact result when
F[:'Q] is "closed" to the polynomial functional of degree £2m+4, i.e.
to the functional

2m+1
P, =l = :Zo P[]

where p,([:n] is a continuous on X homogeneous form of order K .

We have obtained for integral (1) the "composite approximate
formulae" of arbitrary degree of accuracy. These formulae can be used
for the wide set of functionals. In the case of conditional Wiener
measure the derived formula/ o/ 1s written as follows:

g Fixldye = (252 Sexp{ ifui}zmj e, -4 R0 ldvdu+ 510, ()

S|

2 |

where

8,Gt) = 2ZZ L sin kmt- c s;gmr cos kx v;

k=4 (=1
Bun=2 5 4
K=4

Approximate formula (3) is exact for every polynomial functional of
degree < 2m+1 . In the works’ 829/
zero of the remainder R,;(F) and its estimate in dependence on M.
and M . Particularly we have found that under certain conditions
on F the order of convergence 7?,”7,:‘;; 0  is equal to O(n~(M*1),
Note that the convergence of lattice approximations has the order ‘//./—
that indicates the advantage -of the considered formulas over the lat-
tice Monte-Carlo method,.
In the work‘/17/ we derived and investigated some approximate
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we invegtigated the convergence to

formulas for conditional Wiener integrals with the weight. This result
extends the clags of functionals where the formulas are exact. In par-
ticular, we have proved the following

Theorem 1.
Let K($) be the solution of the differential equation

(1-5)K'(s) - (1-5)2 K3(s) - 3K(s)-2Ap(s) =0 , Se[od]
K()=-2apM) ;

A€ R; P(t), g(f)e Clo1] ;
V() = exp{ ;(4 s)x(s)ds}
a(t) = y(s)ds - (/f) [K(s)ws)[ jz,(u)olu]

(4]

L(t)= j[K(S)V(S)H(s) g@)ds+e ;

"~

1-S
Hit)= Sg(s)v(;;ds

and the constant C is determined by the condition IL(S)dS 0.
Then the appronmate formula

Sexp{ S[)\p(t):c (t)+g(t):r(t)]o(f}F[r] Ay 2

L{t)dt} g [F[G W,)+af)]dye dy + R, (F)s (4

=[ve] 2 exp{

where

Ms °
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Sigh. W, t<jwl

§(w;e)= P(s;e) - p(W-); P(Mf)={ 0 £> Il

min{flurl, t}
P(u5t)= signus- _—-— [“S’“" Vs)ds],

is exact for every polynomial functional of degree £2m+1 .

The proof of Theorem 1 is based on the employment of special 1li-
near transformation m(t)»—»g(t) that we have found and investi-
gated in /18/. This transformation maps the space (= {C[of] x(0)=2(1)= 0}
onto itself in one-to-one corresgpondence.

- . N —_ . =0 = ¢ 51'2

Particularly, if pP(t)&1; g(ﬁ-g—co"’s 5 A< ™% the formule (4)

acquires the form

Se'xp{ f [x )+ 3x{t)Jdt} Flz]d,® =
o

{4 '
V § () Ry (F), (5)
smn exP{(ms/z[ng_ \/— }zm i,,\f‘Ffsm(tr,)»«a()]dq dy,+ R ‘

In this case .
4 . - (X .
. Sm‘/—[t -Sm’/—(l_t) H
Neosfk T'2 2

aft)=
K() = 1 [V2X ctgfax(i-¢) - =1.

The estimate of the remainder Rpy(F) in (5) is given by the fol-

lowing
Theorem 2/9'/.

Suppose thg functional F[-’X-‘] can be expressed in the form
Flx]= szﬂ[l‘] + ’szﬁ.[:r] ,
where sz“[:n] is a polynomial functional of degree € 2m+1;
2 .
[ty € Clm-exp{ G fa2erle}

¢ (m), C(m) 30 ; 05 A+ tym) < X*

Then

|2, (F)] < ¢ty (Exm Mig ) [§ exp(3Lem)] s M(ga+m)

where ; \/_
& (m) = exp{2¢,(m) }az(t)d'l‘}-. exp{%(_'"’%x_(zwos.[_ 55V'"_ )},

A2 e0s?
M(gh) = §exp{ f[A:r.' (t)+3ae(+-)]dt} ‘/sur_fz:x XP{@%!;Z[@@-@]} .
) ¢ o
od=2[1+ 53 pR (£+1)%]; p= 5%
4

Practical computations based on the use of the approximale for-
mulae (2) - (5) have been performed in /19/. The comparison of nume-
rical results confirms the higher efficiency of these formulae versus
lattice Monte-Carlo computation.

2, TFUNCTIONAL INTEGRALS IN EUCLIDEAN QUANTUM MECHANICS

Let us consider the quantum-mechanical system characterized by
the Hamiltonian

H"’a_’xﬂ“/(") X€ (-e0,%0), h=¢=1. (6)

The investigation of some important phenomena such as the instanton
effectsyconcerned the topological structure of the ground state,is to
be performed in Fuclidean metrics (i,e. in imaginary time). In this
case the ﬁchradinger equation is written in the form

AYE(x .

:It ) - -HY%xt) , t»o. (7

The general solution of (7) with arbitrary initial conditions

YE(x,0)= YE(X) is
YEx L) = H’ (%0) Z (X0, X, £) dXo,

where, X(X,,X,t) is a fundemental solution of equation (7). The main
problem is to find the evolution, matrix elements Z(X,X,t)= <x]e“ 1Xo >
that satisfy the equation

oz 4 %2
2t =2 ¢ Y2

2(X0,X,0) = &(X-Xo)

(8)

Analogously with the well-known result of R.Feynman the solution
of (8) is represented in the form of the conditional Wiener integ-
ra1/%? T
Z(x;, X, T) = § exp{- {V[z(®)]dt} d,x .
CoxTxg
Integration in (9) is performed over the gpace of continuous on [0T7]
functions &(¢) with boundary conditions
x(0)=X; -
2(T)=Xe . o
Note that in distinction from the conventional Feynman path integral
the exponent argument in (9) contains not the action functional but
the integral of the potential energy. The kinetic term is included
into dgX . The extension of (6)-(9) to the systems with many degrees
of freedom is obvious (see ref. /4/),

(9)
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Suppose the Hamiltonian H has the discrete spectrum

HY 00 = E, %00,

Then there holds the following expansion/4/:
~E,T '
EO X T) = 3T e 0 K bp). (10)
Hence the ground state energy E;o can be calculated as follows:

= & _4
Eo= tim [-F en 2(1)], 1) {

where

Z(T)= Ze‘EnT fz(xxr)dx

After the approprlate change of varigbles in functional 1ntegral/19/
the expression for Z(X,X,T) is written in the form of the follo-
wing integral

(12)

1
Z(X,XT)= _2{% §exp{-T i V[T + X]dt}d e

with respect to normalized conditional Wiener measure in the space
Cc={C[o1], x(0)=2()=0}. 1the energy gap between the ground and the

first excited states is defined as
AE = E,-Eo =-8tim 4 tnG(r) (13)
w00 d¥

where the propagator

G(z) = <olx(o) m(t)]o> =
= 1 1 n
=tm o A de Jexpf- TjV[fr‘r(mXJd Fm(E)ex]d, o

Using the values of (9) one can calculate also the ground state wave
function squared:

1Y, 00 =T£-£-ml° [eE"T- Z(x,x,T)] . (15)

In the next sectiong we will consider the computation of functional
integrals using the derived approximate formulae. We investigate the
tdpological structure of the ground state in some quantum-mechanical
models.

(14)

3+ DOUBLE-WELL POTENTIAL

Due to existence of tunneling the wave function of the ground

state of the system characterized by the Hamiltonian (6) with the &
potential .
1 2 2 .

. V) = £ (x2-£%) (16) :

is an even superposition of wave functions at each of the wells. The
basic effect caused by instantons ig the splitting of the energy le-
vels. (Assuming absence of instantons the levels are doubly degenera-
ted). In the approximation of dilute instanton gas 20

Eo=#F-d; (17)

d= 4{,,2#3 §F
[%(28)]2= 4 22 ‘ (18)

Our results. for £, and aF computed using approximate formula (3)
with n=m=1 are given in Pigures 1 and 2 by the dots. CPU time of
the CDC-6500 computer was about 10 s per point fz.
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Fig.1 Fig.2

The solid lines represent "exact" fesults/21/, the dashed lines cor-
regpond to (17). For comparison, the circles show the results/13/ of

lattice Monte~Carlo computations. The squares repregent the results
of /14/, obtained evaluating N-fold integral via averaging over 10
lionte-Carlo iterations on lattice with N=303 points and spacingaﬁa25.

The information on CPU time and a type of computer in 713,14/ is mig-

_9ing, the results are given in diagram form. Figures 1 and 2 show that

the values of considered quantities can be obtained using (3) with
accuracy equal to, and in some cases with even a greater accuracy,
than in Monte-Carlo method on lattice, but with the multiplicity of
the evaluated integrals smaller by two orders.

The ground gtate wave function squared, computed according
to (15) using (3) with R=m=1; T= 4.5; £2=2 is shown in
Mige3 by crosses. The dots represent the results of the paper /14/
that have been obtained via averaging over 100 Monte-Carlo iterationg




on lattice with N=200, a=0.25; We obtain for XF(T) the following expression:

N X oo 2 ~-Fo? oo ~aw2 ) n2
the stars correspond to (18). Z(D= SE(X,X,T)dX = 2e . _,!_.Zcoson.e TR (T) (23)
The golid and the dashed lines “%0 o Ve 1T 95
unite the points for easier com- ) where
prehension. ¢ Z (r)= j[’In(x T) + I (-x, T)]dX ;1-—;:- an ,
e b
) +X|dt o .2 -
Fig. 3 I, 067)= Sexp{ TScos[\/—':n(iHMnt 1 ol
The dependence on p T of the topological susceptibility
70 <q?>,
4. QUANTUM PENDULUM
3 i |
Let us consider now the quantum system with the Hamiltonian <Q >"';F)‘ %—%‘-— nf_:ocas 6n-n’. e - Zn(T); =T, (24)
=5 AP +V. (19) computed using approximate formula (2) with Mm=1, =7, 6=0, =1
where , ‘ is given in Flg.4 by the dots.
V(x) = _ﬁ\’- (1-cos x), (20) RN The calculations have shown that

the accuracy in the form of 3 cor-

‘\W\‘W\ rect signs can be reached taking

into account only two or three

W is a frequency of small oscillations, A is a coupling constant.
In the case of bounded periodic Y(X), X€(~c0,00) the analysig of
Hamiltonien (19) is reduced’??/ to the study of

terms in the series (24), i.e.

-

2 )
H(6) = ‘é‘(ﬁj) + V(x) . (21) ' the main contribution give the
d? . d29 Lz . L I configurations with R<5 . The CPU
Here (d_'xf)a is the operator ) on [0,23'6] with boundary conditions 7 — =5 timé on CDC-6500 has been within
'/'(251')=e"8W(0); V"{,?ﬂ[’): e‘ayf’(o). _— the range of 10 s per point f .
18

Therefore in this case we have
Z (X, x+2nN,T) = e“¥2(x,%,T). (22)

The crosges represent the F - dependence of the value

5 <e®
Performing the transformation (see re " 15/
that has been obtained in by the Monte-Carlo method on lattice

.« X

-‘___a
Yoo —e "o ” ¥ix) with M =100, €=wa=1 (N is the number of points, i.e. the multi-
plicity of integrals, @ is the lattice spacing). The solid line at

that removes the phase factor, we find that the expression (9) is 715/
js >0.5 denotes the dilute instanton gas epproximation :

valid for the new action functional (" & -action'):

. 1_.2 8 -8 ¥ a1 :
ssas-taq, ’«f—;(Q )=v—ﬁ_“-JP—e P["‘ap ..,] . (25)
where @ is a topological charge, |8l <% . The definition of the to- The curve at B <05 represents the high-temperature expansion/15/ in
pological charge follows from (22): the continuum limit ( &+~0 , N>o00 , €N fixed):
T 4
-__L v [_X_] 0)=X: Xx(T)=X, e 1 2 =_:'—.
Q= -5 [aat =[3% (20=X; E(D=Xpnoq 22 )1 ; % <@ = 7735

In order to compare <Q?> more precisely to the theoretical expec-
tations we congider the quantity '

where'[] denotes the integer part of the value.

e mm




=1 o2y g5 5P
In the continuum limit (in this case S =& ) and for sufficiently
large B (semiclassical region) there holds

kY

D=% v 451, (26)

Our results are shown in FPig.5 by the dots. The vglues agree well

with (26). The results obtained with &€=1, N=100, S= S, = 7.8%

(5, is an instanton action for this lattice) are denoted by the
crogses. The deviation of these
results from the theoretical

5 predictions (26) cannot be ex-
plained by the presence of the

two=loop correction factor in (25).

To make the situation clear the

X computations in were perfor-
2 med algo with & =06 (at B=07F).
a8 g9 1 i 12 13 B . .
In this case they have obtained
Fig.5 the value D =3.3y i.e. greater

than the results with € =1 but
8till too smaller than theoretical estimate. The further decrease of
€ in 5/ has not been performed because of the arising difficulties
connected with the growth of instanton size on the lattice and there-
fore with the serious metastabilities. It is clear that we have no
these problems: the calculations are performed in the continuum,&=0.
+ By the minimizing of Xa according to the relation

. 4 o] = -
' ln[£<0®>] = thD-Sp+plnp
in ref./ 19/ they have obtained with S = %87 the values of parameters

D=298; PpP=046.
Taking into account that in continuum limit S=8 we have got'from
our data represented in Fig.5:

D=4.25; P=0493.

that is in a good agreement with theoreticel continuum predictions
D=451; p=0.5.

Let us find mow the value of the vacuum energy. Due to instanton
effects the ground state energy £ is washed away into a zone and is
characterized by the CP-violating angle & . The values of Ef8) obtained

10

uging the epproximate formula (2)

£ with m=1 accordihg to (11), =1,
p2 . . p= 1\ are shown in Fig.6 for p=1
o . . v and p=1.2 .
.
. L ]
as Pig.6
0 1 2 3 0

The solid lines represent the theoretical estimate obtained within
the dilute ingtanton gas ;approximation/w/:

< - -1 -8 -1
0= (455 8 s $7n) - cosOF RV L]

The characteristic COS-behaviour of our results ig well seen in Fig.6.

5. CONCLUSIOXNS

The results of the above computationg demonstrate the advantages
of the considered method of evaluation of path integrals versus lat-
tice Monte-Carlo method.’ The uge of the conditional Wiener measure
and the derived approximate formulee yields the more precise results
while requiring essentially lesser-dimengional ordinary integrals to
evaluate. The amall multiplicity of integrals allowed us to use the
determinigtic methods (Gaussian quadrature, Tchebyshev, etc.) provi-
ding the regsults with guaranteed (not probabilistic) error estimate
Fand the gignificant economy of computer time and memory. Due to the
abgence of lattice discretization in this method the problems concer-
ned the finiteness of lattice spacing do not-appear. All: these consgi=~
derations make the "deterministic approach" an attractive method for
the computation of path integrals.
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JIoGasnos 10.10., Xunkos E.II. E2.87-507
BhlunciieHNe KOHTHHYAJIBHBIX HHTErPajIOB KBAHTOBOM MeXaHHKH

C IIOMOLIBI0 NPHUOIMIKEHHBIX (DOPMYJI, TOUYHBIX Ha Kjlacce
GYHKIUMOHAIBHBIX MHOTOWIEHOB

Paspaborad MeTOn NpPHUOIMIKEHHOrO BBIMHCIEHHA MHTErpalioB IO
TpaeKTOPHAM B €BKIHOOBOH KBaHTOBOH MexaHHKe 0e3 pellleTOYHOH
IucKpeTu3auud. Meron, OCHOBaH Ha IpeACTAaBIEHHUU 3THX UHTErpaJioB
B BHIe KOHTHHYaJIbHBIX HMHTErpAlIOB IO YCJIOBHOH Mepe BuHepa
M HCIOJIb30BaHMM ITOCTPOEHHBLIX NMpUOMMKEHHBIX GOPMYJI, TOUHBIX Ha
Knacce PyHKIMOHANBHBIX MHOTOWIEHOB 3aiaHHOM crerneHd. Ha npume-
pe pacueTa HelepTypOaTHBHBIX XapaKTEPHUCTHK, CBA3AHHBIX C TOIOJIO-
rHYeCKol CTPYKTypo# BaKyyMa, HEeMOHCTPHUPYIOTCA TPEeHMYyIllecTBa
MeTOJIa IT0 cpaBHeHuIo ¢ MeTonoM MoHTe-Kapiio pacueToB Ha peliieTke.

Pa6ora BbinosnHeHa B JIaGOpATOpHMH BBIUHCIHTENIBHON TEXHHKH

¥ asromarusaunn OUAN.
Mpenpimit O6bonMHEHHOTO HHCTHTYTA ANEPHAIX MccnenoBanuii. lyoHa 1987

Lobanov Yu.Yu., Zhidkov E.P.
Evaluation of Quantum Mechanics Path Integrals
by the Approximations Exact on a Class of Polynomial Functionals

E2-87-507

The method for numerical evaluation of path integrals in Euclidean
quantum mechanics without lattice discretization is elaborated. The
method is based on the representation of these integrals in the.form of
functional integrals with respect to the conditional Wiener measure and
on the use of the derived approximate formulae exact on a class of po-
lynomial functionals of a given degree. By the computations of non-
perturbative characteristics, concerned the topological structure of va-
cuum, the advantages: of this method versus lattice Monte-Carlo calcula-
tions are demonstrated. ,

The investigation has been performed at the Laboratory of Compu-
ting Techniques and Automation, JINR.
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