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1. INTRODUCTION

As is well known,more or less theoretically motivated nonrelati-
vistic quarkonia potentials fit flavour invariantly charmonium end
bottonium data with surprising accuracy (see review articles [1,2]).
The potential acting between a quark and entiquark is usually assum-
ed to be local, ceqtral and velocity independent in the nonrelativis-;
tio limit, We oonsider the class of potentiale obeying the QCD moti-
vated 1limiting constraints

V) — coust
V[t ——== consl. (n

The more exact small distance behaviour due to perturbative loop cor-
rections is beyond our discussion, Between the limiting structure (1)
the potentials V('r) are initially arbitrary containing one or more

open parameters to be fitted to the ¢€ and bp date in the inter-
mediate region 0.1 < T 5 1.0 fm. The atatic quark masses mc end mé
appear as additional fit parameters in the egquation '

E(m) + 2mg = M, (5) (7=8¢) ' @

relating the Schroedinger eneérgy levels Eh to the quarkonia masses

M,., . Different potentimls reproduce the data optimally if their
quark masses deviate from one another by energies up to asn order of
0.1 GeV.

We proceed ns follows: Fine deviations between data fits of dif-
ferent potentials will be interpreted as "perturbative" effecta. Thua
choosing two arbitrary potentiels V(") and \/(f) , We state .the
pimple relation

V)= V) + W () (3)
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Pig. 1. Correlation between the Cornell fit parameters @ eand K
ag prescribed by Richardson's potential for. three values
of its parameter A . Comparison with three Cornell fits
of Eichten.et al. ([3] ,A ), Hagiwara et al. ( [8] , (0 )
and Miller and Olsson ( [9] , O ).

where MB appears as perturbative potential., At first sight such
a gimple additive relation between two potentials of rather different
structure is not obvious. We arrive at eq.(3) using a method in which
the simplest successful potential of the class, the two-parameter Cor-
nell potential [3]

V) = ar-of )

appearing as a superposition of the limiting constraints (1), plays

a special role. Considering a potential V,(v) = ,{'A(f)/‘f" we extract
the structure (4) and a constant term by Taylor expansion of ,f;, (4')

at a nonzero point 1 which is not fixed initially but should be
restricted to the physically relevant region between 0.1 and 1.0 fm.
Because of their common dependence on 7Y; the extracted terms are
correlated with one another and with the rest of the series and can

be tuned to such a degree that for a special value of Y, one gets
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P 4 g 2. PFlavour-invariant correlation between the Cornell fit pa~
remeter K and the quark maas difference myR)— mf
from Richardson's potential, Comparison with the Cornell
fits of refs. [8,9 (The third f£it of Fig.1 is elimi-
nated here because of its extreme masa Me =w 1,84 GeV).
Uncertainties of the mass fits are indicated.

v

Vo= V. + W, . Subtracting & second arbitrary potential
VB=\/“—+WBC we obtain V~V+MC M/BC \é'fW and

have reproduced eg.(3).

Because of our combined study of two potentials we get correla-
tions between the parameters of different potentials. As a special
example, we have calculated how the one-paerameter Richardson poten~
tial [4] prescribes the correlation between the coulombic term and the
string tension of eq.(4) and between K and the quark mass differen-
ce m;m——.' m:c) containing the quark masses of the Richardson and
the Cornell potential (Figs. 1,2). AB a more general application,we
study the relation between the constant term extracted by Taylor ex-
pansion and mass differences m;s) (A) from arbitrary potentials.
Charlh-bottom flavour invariance of the potentials entails stability
of my—m_ againat change of the potentials. This confirms indica-~

tions by earlier work of other authors[5-7] . )

2. CORRELATIONS

Coming to the details we start with the ansatz

Vi) =~g0)/7 (5)

where V(7) represents some potential obeying eq.(1) and Af(* ig ’
assumed to be regular for 7 >0 , Using the decomposition

4{() = ﬁ(ﬂﬁ) + /f;(f,ﬂ) (6)
4,(em) = fG)+ F b)) + 7{(?7:)(%33) )

we obtain by reordering the terms according to powers of 7

Vir)= 1 (nr) + W)

(8)

V) = ube)r + T 4 ()
! v (9)

2)
um) = %xf( ) (10)

vy= @) f to) 2574 1)

(1)

@)
W) = %mn) - %4 () (12)

Wirs) = 4, (T—To,%)/f\

(13)

Only the three-term structure (7) of 4,, (’/T'G) guarantees that, on
one hand, the Cornell terms can be extracted and, on the other hand,

A r7,) = xfz(f-v;,i) (14)

provides sengitivity of W asa function of 7, in the region
0.1 < 7% £ 1,0 fm which is needed to minimize its effect on data
Féproduction. Including the mass shift 2m;  of eq.(2) in order to
get thfa quarkonia masses M.., as eigénvalues, we .obtain



Vi) + im, = a(ﬁ,)-r-;—?:(r'i-)+[W(n)+2,m7]+.W(ﬁva) (15)

having extracted the limiting structure and a constant term from V(”). !'
These three terms are correlated by their common dependence on Np oVe ]
remark that inclusion of a constant term into Cornell fits was discus-

‘ded already by Hagiwara et al-[BJ « It means that a slight variation f
of one fit parameter requires a corresponding variation of the other

ones including the quark mass l’)')7 .

If &« , ¥ and %W are monotone functions of 7, , elimination
of 7% yields unique correlations

w [%07)] vfr(r)] (16)

wl% (]

which are more suitable for application. Now we compare eq.(15) with
the Cornell potential (4) including the corresponding mass shift

() _ k () (4a)
VC{-r);f- Im" = ar-—+2m .
Wwriting, according to eq.(3)
«©)
Vir) = V() + Wi 17) *(17)

we obtain from eqs. (15), (4a) and (17) the conditions

w9 = a o) = -k (18)

W(€) = 2(m-m),
) (" 7) (19)

where 7% now is fixed at 7 = ﬁ(c) minimizing the perturbation W.
If one Cornell fit parameter is given, V(+) provides the other ones
via eqs. (10)—~(12), (18) and (19). We illustrate this in section (4)
by a special example.

3. THE STABILITY OF THE DIFFERENCE 11,~ M ) )
», () {
Eq.(19) conteining the Cormell £it quark mass myg and the \' ‘

quark mass #, of some other potential can be generalized to quark 2

7

8
masses m‘(f) and mg) of two arbitrary potentials \(4 and \/B .

Instead of eq.(19) now we have two equations

A
(1) = 2(mS- mP) (190)
©) _ © @)y .
15, (7 )= ‘Z(ma My ) (19b)
- where the points 7:;(0) and TB(C) correspond to %'(C) « Subtraction
leads to
A}
(8 A © «)
g = my" = %[z& () - 1% (7 )] (20)

This more general equation has. a relevant consequence., Provided, the
potentials of the clasa (1) are charm-bottom flavour invariant, the
righi-hand side of eq.(20) depending on the shape of the potentials
alone appears as a flavour-invarient quantity entailing

(8) (A) ¢/
M- = m -m /7,4,,6) (21)
or (A\
(8 7
(mb -m ) = (mb'*"c) (22)

Bg.(22) exhibits the difference my—m,. &8s a potentiaml-independent
quantity. This result appears as a consequence of the charm-bottom
flavour invariance of the potentials. It explains the well-known ob-
servation that m,,—mc shows much smaller dependence on the choice

of the potential than the fit masses M, and m. themselves. Table

1 containing four examples of potentials clearly indicates this ef-
‘fect. The conjecture of relative stability of My — M is not new,
As early as in 1980 Bertimann and Martin[5] obtained a relatively
small interval 3.36< My-M. < 3.69 GeV for 1,1< M. < 1.7 GeV by a
more direct evaluation of the data. Also the results of Quigg, Rosner
and Thacker [6] » mb'- m, = 3.455 GeV, obtained by the inverse scat-
tering method and of the ITEF group[7] , My-m_ = 3.4 GeV obtained
by sum rules from Q2% duality, fall into these limits. All these in-
vestigations a priori more or less avold potential model assumptions.
On the other hand the above approach correlates different potentigls
which are subjected only to rather general conditions.



Table 1. Exemples of quark masses m, , #, and their dif-

ferences M, -, from four potentials indicating

the relative stability of w,-m, (masses in GeV)
Potential m, m, My~ 1,
Cornell f3,8] 1.35 4.717 3.42
Richardson [4,8] | 1.50 4.9% 3.41
Hagiware et al. [11] 1.46 4.87 3441
Miller, Olsson [9] 1.36+0.17 4.77+0,15 3.41+0.02

4.‘CORRELATIONS BRTWEEN THE CORNELL AND THE RICHARDSON POTENTIAL

To illustrate the general mechanism of section 2 by & special
example, we study the correlations (16) using as V(r) the Richard-
son potential [4] which is obtained after Fourier transformation
from the momentum space and Wick rotation in the complex P plane
in the form

‘1:
vm-—iﬁfﬁ Lt ”A{‘f A ’*Jp qu T}‘z”

where ¢ = AT . Its deviation from the considered class (1) by a
logarithmic factor [€n Av]™* for 4 —=( 18 not relevant here.
Using eqs.(10)-(12) we have calculated the functions « , 2 and
49 in a region 0.1 < 7, < 1.0 fm. The integrals coming from (23)
must be evaluated numerically. « , 2 and 44 appear as monoto-
ne functions of 1, with Y(1;)< 0 as required by the coulombic
term., The first of the relations (16) W(¥)=alk) is drawn in Fig.1
for three values of Richardson's fit parameter A . The A fit of
the present data requires a value near 0,375 GeV¥[8] . Comparison .
with three Cormell fits[3,8,9] shows that the curve with A s
= 0,375 GeV goes through the center of the fit region as required by
the mechanism of section 2. The third of the correlations (16) re-
lates the Cormell fit perameter K with the mass difference
m{F-m: ute) = k(M- mP) . It is drawn in
Fig. 2 for /\ = 0,375 GeV and again the curve goes through the

[P

fit region. Its flavour-invariant prediction for a given K clearly
remaing within the limits of error of the mass fits. Taking, for ins-
tance the fit of Miller and Olsson[9] with K = 0.494, the mass fits
vield mBLm® = 0.14 + 0.02 and MLy’ = 0.13 & 0.02. Our fla-
vour-invaria.nt prediction is m;“_’ m;" = 0,137 GeV (7=b,c).

5. SUMMARY

Congidering a class of charm-bottom flavour-invariant nonrelati-
vistic potentials which obey conditions (1) we have obtained additive
relations of the tyﬁ% (3) between two arbitrary potentials of the
class. Thus, small differences between data fits by different poten-
tials in principle can be calculated perturbatively. Such a procedu-
re should be useful to isolate common features of potentisls which
at first sight are rather different in structure. In addition, it can
help to recognize invariance properties against change of the poten-
tial, as shown by the example of section 3. We have described analy=
tically correlations between fit paremeters of different potentials
but also of the same potential, especially between the string tension
a and the coefficient of the coulombic term K in the Cornell po-
tential (Fig. 1). Such relations should be of interest also for po-~
tentials with more complicated limiting behaviour at small interquark
distances.
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JleBun K., Mon I'.5. E2-87-506
Koppensiuu MeXAy CTATHCTHYECKHMH KBapKOBBIMH
Maccamu

HepenaTuBuCcTCKHE NOTEHIHAaNbl TSKeJILIX KBAPKOHMEB, Orpa—
HHUEHHble KYJIOHOBCKHM H JIHHEHHO pacTYMHM IIOBeJeHHeM, aia—
OUTHBHO CBsI3HIBAWTCs pasjioxeHueMm Teimopa, NpPH 3TOM H3BIe— -
KaeTcs HNOCTOSHHbIH 4YJIeH H IpegenbHas cTpykKrypa.llomyuawrcs
COOTHOmMEeHHUsT MexOy napaMeTpaMH pAasIUYHbIX ITOTeHUHAaliOB,B TOM
ypclie Mexagy MaccaMu KBapkoB My H Mg, M3BecTHas cTabuib-—
HOCTH DA3HOCTH Mp—M, ABJIAETCHA NPAMBM CllefCTBHEM HE3aBHCH-
MOCTH TNOTEHIHAaJIOB OT KBAapKOBHIX apoMaToOB.

PaGora BrmonHeHa B JlaGopaTopHH TeopeTHUECKON GH3UKH
OHsIH.

TlpenpuHT O6BEAMHEHHOTO MHCTATYTA ANEPHBIX NccnenoBaHmi. Jyoua 1987

Lewin K., Motz G.B. E2-87-506
Correlations Among Static Quark Masses

Nonrelativistic heavy quarkonia potentials with coulom-
bic and linearly rising limiting behaviour are correlated
additively by Taylor expansion extracting the limiting
structure and a constant term. Relations between fit para-
meters of different potentials including the quark masses
m, and m,, are obtained. The known stability of the diffe-

rence my-mc appears as direct consequence of flavour inva-|
riance of the potentials.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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