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INTRODUCTION. Koba, Nielsen and Olesen have formulated the
statement of independence of the multiplicity distribution shape of
the energy of primary particles [11]. This statement was formulated
for very high energies, i.e. very large multiplicities, when one can
operate with multiplicity distribution as with continuous function.
Figure 1a depicts a possible picture of these fu?ctions for various
primary energies. The area under each curve is equal to uaity since
it is the sum of all the probabilities. The average multiplicity
increases with energy. Each curve can be compressed along the
horizontal axis proportionally to any of its horizontal dimensions,
e.g. <n> as in fig.1b, and stretched along the vertical axis by the
same factor in order to make the areas equal again (fig.1lc). The
statement of KNO scaling consists in that the curves coincide at
each point [2]. Figure 1lc can be written in the form

P =17¢<n> \|I(n/<n>), (1)
where qﬂz) is an energy-independent function normalized by the
conditions

f\i/(z)dz=1, (2)

which follows from the equality of the sum of all probabilities to

)
unity and

f 2Y(z)dz=1, (3)
because we compressed the functions P, until the average value of
each ‘function reached unity. Fotmula (1) puts no restraints, except
(2) and (3), in the shape of the function qﬂz). 1t is mérely a
definition of the concept of similarity for continuous functions.

The multiplicity distributions of all charged particles are
commonly studied. However, some problems arise in this case - the

consideration of protons and =n-mesons together seems to be

incorrect; it is unclear whether leading particles should be included
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in the distributions; there appears a trivial ponuniformity in the
distribution due to the charge conservation: all odd probabilities
are equal to zero. In arder not to solve these problems, let us
consider the multiplicity distributions of negative hadrons (in
fact, 'S -mesons) for PP and e+é— interactions. They are one-to-one
related to the distribuéicns of charged particles

Nep=2 “neg*2 (4)

: - + — ;
for PP interactions and ”ch=2 "neg for e e interactions. Further

the multiplicity of negative particles is designated as n.

Fig.1. Definition of the concept of similarity far continuous
functions (KNO scaling). The normalized functions (a) are similar if
after 1linear compression of each function along the horizontal axis
in proportion to any of its horizontal dimensions, e.g. <n> ¢b), and

linear stretching along the vertical axis by the same factor (cl,

they coincide at each point.
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Fig.2. Obtaining of the discrete multiplicity distribution
from the continuous normalized universal function

“ﬂz).
i
(a)]- according to the commonly used recipe P“=1/<n>'qﬂn/<n>), then

EFh#l. t (b) - according to the correct recipe.
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CONTRAPICTION. For present-day accelerator energies the
function P, is essentially discrete: the condition <n> >>1 (<nch>
>>2) is not fulfilled. For example, <n>=2 at Fh8-=100 GeV/c and
<n>x=5 at 2000 GeV/c. In this case, irrespective of any physical
considerations, formula (1) becomes mathematically incorrect because
it contradicts the condition ZP, =1 as shown in fig.2a. To obtain
some multiplicity distribution having a given value of <n> from the
continuous universal function “ﬂz) in fig.Z2a, 'the inverse operation
to that in fig.l‘should be done, i.e. the scale z2g=1/<n> should be
chosen on the z axis. Then the probability P, is equal to the area
of the rectangle which touches the curve qﬂz) by its lett vertex at
the point 2=nzgo=n/<n>. The height of the rectangle is 'k*l'(‘h/(n>)=<n>F‘n
and its base 1/<n>. For very small values of z, the sum of the areas
of the rectangles (total probability) eguals the area under the
curve, i.e. it is equal to unity. However, with increasing z, these
areas cannot remain equal at each value of 2z, . Our "Aumerical
integration®™ becomes too rough. Figure 2a approximately corresponds
to the multiplicity distribution in PP interactions at qu5f1oo GeV/c

Thus, in order to test the hypothesis of similarity of
multiplicity distributions, the concept of similarity for discrete
functions is first to be defined.

GENERALIZATION. An obvious generalization of the recipe of
obtaining all multiplicity distributions from one universal function
\y(z) is shown in fig.2b. It is seen that the sum of probabilities is
always equal to unity, and for z-»0 the figures a and b coincide.
This can be expressed as [3]

(n+l1)z,
Pp= [ Yzrdz. (5)
nzy
If one introduces a continuous parameter m=z/2, which fills up gaps
on the discrete axis n in fig.la, formula (5) can be rewritten in
the form

n+1 *

= 6
Pr }EF‘(m)dm, (&)
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where

P(m)=1/<m>'qﬁm/<m>), . (7)
with

(m>=J‘mP(m)-dm=1/zo . ‘ : (8)
Thus, the discrete multiplicity distribution is presented as a
histogram. from the continuous function having KNO-invariant

properties. One can say that the definition of the concept of
similarity remained the definition for continuous functions. Only
the recipe of obtaining the discrete distribution from the
continuous function was changed. Instead of the inconsistent recipe

actually used in (1): Pn=P(m) s we déal now with the correct

recipe (b). Almost the same mZizod of obtaining multiplicity
distributions from the continuous normalized functions, which was
not yet KNO-invariant, was used in papers [4].

COMPARISON WITH EXPERIMENT. Multiplicity distributions ié
inelastic PP interactions at ﬁa$.=1'5%2000 GeV/c ([5,6] and
references in [6,7])) and in e+e_ annihilation at Is=3335 GeV ([8]
and references there) are used for comparison in this paper.
A detailed comparison is also made in {71.

As seen from fig.2b, if we have an experimental multiplicity
distribution at some energy, we can obtain a distribution for a
lower energy corresponding to Zo which is twice as much.In this case
Py =Py +Py 3 P“=P2_.+P3 ;v P2'=P51+P$ and so on. The same can be repeated for

2,=324: P =Py +P3n*‘ *P3pn,2 and so on. A comparison of the points
obtained by such a method from ISR data with those at lower energies
is made in figs.3 and 4. One can see that they coincide down to the
lowest energies. Figure 4 also shows the lower limits of values of
Dq: Dq is minimum for a given value of <n> when only two
neighbouring probabilities Pn are not equal to zero [9].

The data of fig.4 from <n>21 are well described by a linear
deperdence quc((n>+0 .:5). This dependence for all charged particles

ch
looks like [10)] Dq o (<n¢p>—1)  taking (4) into account. It is easy

4
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e
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to show that the central moments of the continuous KNO invariant
1/q q 1/q
function P{m) obey similar relations (uq) —(I(m <m>) P(m)dm) ocXm>.

And  from formula (&), for not too small values of <n>, one can get

the following approximate equalities [7]
n+1 n+1l

<m>=JHP(m)dm=z [ mP(m)dm=zE(n+o.5) f P(m)dm=2(n+0.5)F, =
n n n n n
=<n>+0.5; ()
and also
q n+l q
Hq=f(m—(m>) P(m)dm=% j (m=<m3) P(m)dm=
n ‘N
q n+l q
RE((n+0.5)-(<n>+0.5}) I P(m)dn=E(n- n3) Pp=Dq - (10)
n q q

Therefore, contrary to the commonly used quantities C1=<n >/<n>,
the ratios (<n>+0.5)/Daand Dq /Dy go fastly to the ﬁlateau with
increasing the «collision energy if the multiplicity scaling (S5) is

valid as seen in figs.5 and 6. The presented errors are calculated |

Fig.3. Comparison of the experimental multiplicity
distributions with the multiplicity distributions calculated from
those obtained for higher energies according to the recipe

" __ . . “— -
Pn"Pzn+P2n+1' Pn_P3n+P3V\+L+P3n+Z and so on {see fig.2b).
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Fig.4. Dq=(2(n <n>) P ) versus <n¥.
The calculated poxnts are obtained * * L *
: = 0 1 2
as in fig.3. | n)
5 .
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Fig.5. The quantities which should go fastly to the plateau

with increasing energy if the accurate multiplicity scaling is valid.
in the

The curves are obtained by formula (5) with Y(z) presented

figure. The coefficients a and b calculated from the conditions (2)

and (3) are equal to 1.251, and 0.618, respectively.
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Fig.6. The interactions. For 2z<0.17 ﬂﬂz)=0. The

+ -
same for e e

coefficients a and b are equal to 13.16 and 2.565. Calculating the

curves, P, was assumed to be equal to zero since it was not measured

experimentally. The Poisson distribution is denoted by the dashed
lines.
under the assumption of normality and independence of the published

errors of the cross sections Op - The curves are obtained according

to formula (5) by using the functions qﬂz) presented in the figures.

The curves of fig.3 are obtained in the same manner. A few different
functions ﬂﬂz), which describe the data well too, have been found.
The presented

]
However, §ll of them contain 22 in the exponent [111].

functions differ from those [12] only in a shift along the z axis.
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Fig.7. (Cq ) =<ncp > /<n¢p > versus <n¢p?.  The quantities

Cq are raised to the 1/q power for stretching the scale at small q.

The curves are obtained from the scaling for negative particles as

in fig.5 when passing to all charged particles according to (4).

Using the UAS data on the ratio between inelastic and nondiiffractive
interactions [14], we obtain that the Cocllider points rise approxi-

mately by 1.5 errors when passing to inelastic interactions.
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Fig.8. Percentage of events having Nch >2<nch> (or 2.5(nch>)
versus <"ch>' The curves are obtained as in fig.7. Jumps of the

function occurs when 2<”ch> (2.5<nch>)' becomes equal to an even

integer. 1In this case the next probability P"ch does not already

enter into the sum.

Unfortunately, for the present there are no Collider data on

all inelastic interactions. Therefore, nondiffractive Collider data
[13] are presented in figs.7 and 8 for comparison. These points are

likelf to rise to some extent. as one passes to inelastic



interactions. The curves are obtained using the scaling for negative

particles and formula (4).
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Tl'onoxsacTos A.H.
To4HBEIl CKEMJIMHI' IO MHOXEeCTBEHHOCTH
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IllokazaHo, 4To mcnoib3syeMas ObeuHO ¢opMmyna KNO ckeiinuHra
<n>Pn =W(n/<n>) IIP¥ KOHeYHbX <n> IPOTHBOPEYHUT VYCJIOBHI0O HOP—
MHDPOBKH ZPn = ], IlpuBemeHO HenpoTHBOpedYmHBOe OBobmeHHE Io-
HATHA NOOoGHA pacnpefelleHHl 10 MHOXeCTBEHHOCTH. AHAJIH3
3KCIIepHMEHTAaJIbHLIX OAaHHLIX O PP-u e+e'-BsaHMOHeﬁCTBHHM no-
KasplBaeT, 4YTO paclpefel/iIeHHs IO MHOXECTBEeHHOCTH OTpHLATEeIb—
HHIX 4YacCTHl NOJoO6HE BO BCeM 3KCIepPHMEeHTAIbHO HMCCIIeJOBaHHOM
HMHTepBaJle 2Hepruii.

-

Pa6ora BhnoJIHeHa B JlaBopaTopuH BbBICOKHMX 3Hepruii OWAU.

Ipenpunt OGpeIMHEHHOr0 MHCTHTYTA ANEPHBIX HecolefoBanmi. [ly6na 1987

Golokhvastov A.I.
Accurate Multiplicity Scaling

E2-87-484

The commonly used formula of KNO scaling <n>P,=¥(n/<n>)
at finite <n> is shown to contradict the normalization
condition LPy = 1. A consistent generalization of the con-
cept of similarity for multiplicity distribution is pre-
sented. Analysis of the experimental data on PP and e'e~
interactions shows that the multiplicity distributions of
negative particles are similar over the whole experimen-—
tally studied energy range.

The investigation has been performed at the Laboratory
of High Energies, JINR.
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