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1. INTRODUCTION 

The existence of bound states of gluons ca11ed. gluonia or 
g l ueba Ll.s is a c1ear prediction /1/ of QCD but predictions of 
their properties are 1ess definite. Whi1e 1attice QCD ca1cu1a­
t ons of, e.g., the mass ma o f the scalar gluoniuma (gg)í "2 

may now be with some reservation approaching approximate1y the 
va1ue ma :::; 1.3 GeV /2.1 in a reasonab1e agreement wi th the in­
dependent estimates based on bags / 3 

/ , QCD sum ru1es./4a , b l 

(see, however, ~c/ where a possibi1ity of a 1ight and narrow 
sca1ar gluonium is advocated) and others 15 /, the decay pro­
perties of a are more puzz1ing. In particular, it is not c1e­
ar whether its decay widths in to ordinary hadrons shou1d be 
sma11 or 1arge /6 1 compared to its mas s ma . Within a 1arge 
N co10ur counting nl the widths of gluonia are O(I/N;) andc 
thus are expected to be sma11 of an orde~ of ten MeV ~ How-I. 

. . /8 1 . f h 1/ 1ever, ln a prevlous paper an exceptlon rom t e N -ru ec 
has been demoos t r a t ed exp1icitly for the sca1ar gluonium a de­
caying into •TT 17 

In fact, ana1ysing the coup1ing of a to TTTT on the basis 
of Low'-eue r gy theorems ,9: of broken chira1 symrnetry and sca­
1e invariance through the anoma10us trace of the hadronic 
energy-momentum tensor /10 limp1emented by using phenomenologi­
cal Lagrangians 111/ , the fo110wing partia1 width has been 
found /8 .' 

fu5
3r(a -+ TTTT _a ( 1) 

16 TTb 0 0 

where 0o=<OI(as/TT )0;1I0~~1I lO> is a familiar gluon con­
densate 112 / o f : QCD, C ~ are the gluonic fie1d strength t eri ­
sors and b == (l1N c - with N and NF being the numbers2NF)/3 c 
of co~ours and f1avours, respective1y. A1though being of 
O( I /Nc ) - order, (I) gives a 1arge va1ue of r ( a -+ 17Tf ) for 

4 112'1 .Nc = NF = 3 and the ITEP va1ue of Go = 0.012 GeV lf ma 
were around or above I GeV. Such a conclusion has a1so been 
independent1y supported recent1y by Gounaris et a1./ 13/ who 
have fou~d that a 0++ gluonium cannot be narrow if it exists 
a~ a~1./4~/reover , this a~r~~:!......:~~.::vith QCP sum ru1e ana1y­
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The result (I) has been found/ 8 / under the assumption that 
only a scalar gluonium u dominates the following low-energy 
theQrems)9/ 

Ir d 4x < o l 'I' ( H (x ) H (O) ) I O> = ~Go' (2)
2 

etc., where the scalqr gluonic current H(x) is given by the 
anomalous trace of the hadronic energy-momentum tensor of 
QCD/tO/ 

H == _ ( eIL) = ~ 2 Ga G IlV • (3) 
1J. an 8 17 /lV a 

Other states like scalar qq, etc., mesons and eventual mixing 
of o with them were ignored and the effective Lagrang i an used 
for coupl i ng of a to pseudbscalar mesons /8/ was constructed 
so as to satisfy (2) and A3). 

Although an inclusion 4/ of mixing with the quarkonium me­
sons alone does n/t seem to change the above conclusion, it 
has been noted/15 that if in addition a derivative coupling 
term is introduced into the usual type of the linear sigma mo­
deI Lagrangian/ 11b/ , then the problem of large widths of the 
ordinary scalar qq mesons as well as a heavy physical state I 
(called here G and resulting after mixing between the pure t" 
gluonium a and a flavour SU(3) F -singlet (u , d, s ) quarkonium 
So -0/3) Y2 (uu+ dd~ss)) can be solved. Since t h í s looks li­

I 

ke a possible contrast with the result (I), we want to inves­
tigate these effects in more detail here. Using phenomenologi­
cal Lagrangians/11! for broken chiral and scale invariance we 
shall show in section 2 that, in fact, while such effects can 
suppress the couplings of theheavier state G to the octet of 
the pseudoscalar Goldstone mesons ~i , the decay of the light­
er scalar particle ( still remains in agreement with (1) for 
a smaTl ratio of the squared masses M(2 /M~ «I. 

On the basis of the large - Ne counting/7 / we sh~ll find 
that just t h í s state e having a large e -to 1717 decay wí d t h of the 
order O(I/N~) in agreement with (I) shauld play the role of 
an effective physical gluonium while the narrow state G plays 
the role of an effective SU(3)F singlet qua{konium because 
i ts coupl ing Gcp cp has the same behaviour in 1/N e expans ion /7/ 

as the couplings Si cp cp for the nonet of the scalar qq mesons 
S,(i = O, 1, ... ,8) and so no contrast with (I) appears. 

1> 1 The exact, not dependent on M:/M~expansion results will 
be pnesented in section 3. These results, however, are based 
on some more sophisticated but reasonable assumptions on the 
bare gluonium a and quarkonium So masses and Moa , res­Maa 
pectively. In particular, we assume and discuss the attractive í • :'\ po§sibility that these masses are equal 'to each other, i.e.2 ., 

.­

M~a = M;o = M2, with the value of M around 1.3 GeV as may be 
suggested bJ, the quark model and by the recent QCD lattice 
estimates/27 taken seriously despite of the existin~ res~r­

theJlstandard '1 values of Gova t í.ons . Using, moreover, 12.161 we 
shall find consistently ~ith the results of the previous sec­
tion that the heavi€r meson G has the predicted_mass Mo = 
= (3/2)lh M and suppr e ss ed de cays into 1717 and KK while its 
gluonium companion l i~ predicted to be the ~ide_state lyin~ 
probably below 1 GeV w1th the mass M(= (1/2) - M. The effect1­
ve SU(3)F singlet quarkonium G/171is in agreement with the 
GA}IS f oj1590) meson (the old name G(1590) discovered at the 
IHEP /ts and the meson e may not be inconsistent/t4a/ with the 
broad, not easily observable/t9/ (see also /ro/ and references 
therein) state (900) below I GeV seen próbably again recent­
ly by analyzing /21/ the AFS data 122/ obtained at the CERN' s 
ISR. 

On the basis of these results we suggest in conclusion, 
section 4, that a mixing pattern for the scalar q~ nonet i5 
far from the ideal one and could instead be analogous to that 
for the pseudoscalar mesons 17, K ,7J and 71' with probably neg­
ligible mixing between the octet and SU(3)F singlet scalar 
states. A picture that arises consists of the I = I, I = 1/2 
and I = O scalar qq octet members correspondin~ to the experi­
mental candidates/19/ a o(980) and/or a o(1400)? 23/ K~(1350) 
and (old names 8(980) and/or 8'(1400)?/23/, K(1350)f o(1300)
and (1300)), respectively, and of other two SU(3)F singleks 
G and ( represent.ing by themselves lagre, approximately half-' 
and-half mixture of the pure gluonic and quark degrees of 
freedom qud corresponding probably to the experimental states 
f 0(1590)/18,19/ and (900)/21/. 

The present scenario of the scalar mesons does not expiain 
the S* (975)-state /19/ (o r even more states? /21/) and thus we 
encourage e f fo r t s for still ot-her suppositions 24-,25,26/ made 
to understand better the effects near the KK threshold. 

2. THE ANALYSIS OF DERIVATIVE COUPLINGS 

Let us recaI 1 that a convenient and original way to inves­
tigate interactions of the qq scalar and pseudoscalar mesons 
is to use a linear sigma model (LSM)/11b/ with the 3x3 field 
matrix U(x): ' 

U(x) = Àj(S/X) + i<pj(x», (4) 

.""\ 3 



where SJ (x) and ~J (x) (j = 0, 1, ... , 8) are the qq nonet 
scalar and pseudoscalar fields, respeçtively and Àj are the 
Gell-Mann matrices À normalized to Tr(ÀiÀ j) = 20ij . Neglec­
ting the qqark mass term, this model is described by the fol­
lowing Lagrangian 

1- Tr-(à U àIlU+) - Ví L SM ,
= 

4' 11 ' 
(5) 

where the potential V is an arbitrary chiral invari..ant func­
tion of the fields under consideration. We assume that chiral 
symmetry is spontaneously broken and reparametrize the fields 
SisO as to have Si (x ) = < OI '8 i I O > + Si (x ) , where Si (x) , s 
are already correct fields and <O 18 i lo> = C,I~3/v'2-) foo io with 
f o =-frr , = 93 ~eV being the pion decay constant as onef rr 
can easily see from the usual definition of f~ through the 
axial current. At a tree leveI, Lagrangian (5) gives the 
couplings between the scalars and pseudoscalar pairs as fol­
10ws/11 b/ 

M2 

nonder 1 Sk ­
í s~cP = - 2": -f- dkij 8k ( x ) cP i (x ) ~ j ( x ) , (6 ) 

O 

where dkij = (l/4)Tr(IÀ i ,À j I Àk) are fully symmetrical and 
M~ 's are the squared masses of the decaying scalars, so their

k 

widths are much larger than the experimental ones. A possible 
way out of thÍs discrepancy has been suggested by Gomm et aI. 
in /154 where they have noted that an introduction of chiral 
invariant derivative terms like, e.g. 

, 11 + +
Tr(efll,Uef U UU ), etc. (7) 

into (5) can add a derivative interaction term of the type 

A. 11-r- d kij 8 k (x )( ef cP r( x » (a cP j (x )) , '(8-) 
o ll 

(A being an arbitrary number) to (6) and this again yields 
amplitudes proportional to the squared masses of the decaying
 

~ scalar mesons. They have concluded/15/ that the general ampli­

tude for the decay S -+ cP cP as based on chira I synnnetry s pro­
í 

portional 'to the sqllared mass of the decaying meson S, or 
equivalently, the Aeneral S cP~ coupling is supposed to be of 

~'a derivative type 15/ : 
;,

4 

11; 

i I; 

der y ­
-f-d kíJ 8 k (X )(cf cP i (x ) co" cp j (X), (9)í scP cP= 

llo 

where y = l + A is the only (numericai) parameter to be speci­
fied from the scalar qq meson decays. 

Ef ao (980) is a qq s tate, then the wid th r (a 0(980) -+ "l rr) = 
= 54 MeV/19/ implies 

0.24 - 180 

y = 0.27 for e"l"l'= - 10° ( 10a){ {
0.34 0° 

where e"l"l ~ is t he "l"l' mixing angle. Knowing y, (9) predicts 
a I I o t her decay widths, e.g., for the K*o(1350) -+ Krr decay we 
Qbtain 

210 MeV 0.24 
r (K ~ ( 1350) -+ K tt ) 260 MeV for y 0.27 ( 10b) { {

420 MeV 0.34 

in a good agreement with otherwise not' yery precise experimen­
tal resultsI19!~ In fact, if the partial decay width 
r (K6( 1350 ) -+ Krr ) is experimentally knoWil more preciselYt 
then (10b) would he more convenient for the determination of 
y s ince (1Oh) depends nei ther on e "l"l' '/ nor on a par t í cul ar 
interpretation of as, e.g. qq 21,27,28< q2q2 / 26; a o(980)
etc./~/ state. Howeveri the agreement between (10a) ahd (1Gb), 
if not accidental, seerns rather to uphold the qq assignrnent 
of the state.a o(980)

When apure scalar gluoniurn field o(x) pararnetrized as!11a,c/ 

ã(x) 
CI ( x) = CIo exp (-- ), (I 1) 

CIO 

wi th a o = < O f CI Io> is added to the qq scalar Si (x) and pseudo­
scalar cP i (x) fields, then this systern is described by the 
foJlowing Lagràngian 

í = ~ (cf
ll 

a ) 2 + ~ Tr (cf11 U cf 11 U +) - V + í ' , (12) 

where the chiral symmetric potential V containing also a is 
assumed/8,15/ to obey the trace anornaly equation 

I, 

J ." 5 
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/l b ( ar X \ 4 av(O) =--0 ~,) = 4V-:a-- sfl ,I" av , (13)
/l	 a n 8 o a aa i as-:- 'fIi aepío	 1 

to guarantee the realization of (2) in the present modelo f' 
labels derivative terms like (7)h5/ and with a conventional 
assignment of dimension I to U and a these terms in f' should 
be the following, e.g., 

/l +K 1 = 23 ( Tr( UU)+ 1-1Tr ( a/l U a U +U U i. 

2 
a fl + t-

K 2 =	 --2T Tr (a,LU a U U U i. (14)
2f a o 

\/3f aoK3 122;0 [ Tr (DU +)11

in	 order ~.' to be o f dimension 4 in agreement with (3) and 
(13) . In fact, there is an infinite number of possible deri ­
vative terms of dimension 4 from which K1 , ~2 and K are the

3 
simplest ones (for more d i.s cu s s i.ons , see/15/). The t e rms (14) 
are normalized ~Q as to contain a "kinetic" term just in the 

- 2 2
f o rm [ (a,~ s í )t- (a IL cp i ) I. , 

The guide criterion that we shall use in the construction 
of í '. from K i is the requirement that ~' must give, first o f 
alI, the term (8) needed to solve the problem of large widths 
of the nonet of the ordinary scalar ~q mesons Si (i == 0, 1, .•. , 
8). Moreover, we demand such a~ f' that does not change the 
correct kinetic term of the fields Si and ~i in (12) obtained 

IL already from (1/4)Tr(aflUa U+) before add i ng f' . These requi­
rements together with the demand to use as simplest K i from· 
(14)	 as possible lead to the followine f' : 

(;),	 _ A [ K 1 + K2
aL -. -- - K ]

2 2 3 ( I S) 

We	 easily see that, in fact, this simple form of f' gives the 
~	 needed suppression term (8) and so (15) is sufficient for our 

purpo~es, i.e. to cure the large widths of Si' Thus, having 
introducetl the suppression effects through f'(IS) we deduce 
their consequences also for the gluonium coupling to the pseu­
doscalar mesons in what follows. Besides (8) we get: 

~ 
\7 

6 

J
 
der A _ 2 

2. a rl..,I"	 == -:~. a ( X )(-a ep' (X )) (16 )'fI'fI a fl 1 
o 

from (15) with A =Y- 1 from (8) and (9). 
The potential V s ac í s fy í ng (13) gives the f oI l owi ng squared 

mass sum rules 

a 2 M 2 _ ~f2 M2 b
-0	 , (17a)o	 oo 2 o 00 02 

and 

3 2 ao	 M2 
+'/--fM =0a o v 2 o 00 '	 (17b) 

wher~ MTj are entries in the squared mass matrix for the a 
and 50 f i elds . 'I'he nonderivative couplings 5cPepare given as 
before in (6) while the nonderivative coupling aePep is pro­
portional to M;~ . In particular~ from (12) and (13) we get: 

2nonder 
1	 -2" Moo - ,I" 2 ( )~ S cPc/> --y­ -- 8 o ( x ) 'fi i .X o 2 3 f o'	 ( I-Ba) 

in	 agreement with (6), and 

2nonder 
122.aep<fJ = - --y- Ma e ã (X) <1>; ( X) •
2 3-	 (18b)f-o 

In the following we shall concentrate on the couplings (18) 
and th~ir derivative counterparts (8) and (16). We shall re­
write th~m in more reliable forros in terms of tne SU(3)F sing­
let physical mass eigenstates G, and ( defined as follows 

G := ã sin e + 8
0 

cose , e == ;. cos O ­ 8
0 

sin O , (19) 

where the mixing angle () is given by e 

2 
2M 

tan 20 
2Maa 

2 - Moo 

ao 
(20) 

Using (19) 
the forros 

and (20) the couplings (18) can be rewritten in 

nonder 

2.(ep$ 1 2 -- y­
2 3 

M(
2 

sin O 

f o 

2 
'( (X )ep, (X). 

1 (21a) 

.... 
7 



and 

2 
Ma cosenonder _ ..L V- 2_ 2

G(X ) cP i (x ), (2Ib)~ acPcP - - 2 3 f o 

whe.re we have used the physical squared masses M(2 and M ~
 
given as follpws
 

2 2 2 2 2 2 
M( == Maacos (J + Moosin e - 2Ma ocos(J sin(J , 

(22) 
2M == M2 -sin2 e + M2 cos 2() + 2M 2 cose sín é' • a aa 00 a 0 

The amplitudes for the e -. cp cp and G .... cPcP decays as obtained 
from (21) can equivalently be obtained from the f6110wing de­
rivative couplings 

-: , Z -- 2 
-V~ sine (x )(a cPi (x ) and V~ cos eG (x ).( a11 cP i ( x j) , (23)

ll 3 f3 f oo 

or, adding them together and using (19) we get (23) in the
 
following compact form:
 

2 1 - 2V-: --..S (x)( a cp. ( x j) (24)
3 f o 11. 1 

e ' 

o 

We see 
~ 

that the nonderivative couplings (18) are equivalent 
to the derivative one (24) in such a sense that both (18) and 
(24) g í.ve the s ame correct amplitudes for the decays (-'cP1! and 
G -. cp cP of the physícal states e and G (19). Sunnning up (24) 
and (8) we obtain the complete SocPCP derivative coupling as 
follows 

der 2 - 2 
.t.z: LS (x)(a, cP.(x» ,~S o cPcP V 3 f o 11 1 (25) 

o 

which is in agreement with (9) regardless of the presence of
 
a~ Without going into details it ís worth to note here that
 
~the results (9) and (16) can also be índependently obtained 
from (12)-(15) within the general nonlinear sigma model ap­
proach!lla / i when instead of (4) U is parametrized nonlinearly, 
i.e., U = n~n where n= exp(iÀj cPj /2f 1T' ) and L =ÀjS j are 
the field matrices of the pseudoscalar Goldstone mesons cPj 

~and the scalars SJ' ,respectively.
" . ;, 

8 

;. 

With the use of (17b) the coupling a-cPcP (18b) becomes equal 
to M~o /2ao and so , the corresponding decay a .... efjcp ampI i tu­
de obtained from (18b) is expected to be reduced by the ampli­
tude obtained from (16) if the masses of a and So are compa­
rable and if y is small, y« I, i. e. A== -I, (10). In contrast 
to such an expectation, (9) and (16) may suggest that while 
the Si .... cPcP decays are suppressed when y« I (10), at the sa­
me time the pure gluonium (J - cPc/> coupl ing (16) can be large for 
a heavy a. We conclude that because of a probably nonneglie i b­
le mixing between -; and So (20) the amp l í.tudes for t he decays 
(J· .... cPcP and S o-'cPeP are not well defined quantities and any 
claims concerning them may not be reliable. Instead, we should 
investigate the correct couplings (cPcP and GcPcP of the physi­
cal s t a t e s e and G. 

Using (16), (19) and (25) we ge t the complete (cPcP and G cPeP 
derivative couplings as follows 

f (cPcP == g (c/></J ( (x )( t cf> i ( x »2 , (26a) 

and 

~acPeP == g acPcP G( x ) (all. cP i (x » 2 • (26b) 

where 

l-· y 2
g(cPCP = ------- cos e - V- .L sin e (27a)

a o 3 f o ' 

and 

_l-r. 2 y
gaepcP - --sme + V- - cos é (27b)ao 3 f o

• 

To make clear the connection of the present picture with 
our previous results (eq. (I» on the gIuonium decay, we shall 
analyze (27) in the limit of large squared mass M;o' Labelling 

t = V~ -~ (28)2 (Te 

for given values of f o and ao we get 

2t 
tan zo (29) 

Gt 2 _ 1 b o 1+-----­2 M 22 a o 00 

4"1 

9 



from (17) and (20). Solving (29) for tanO we obtain two so­
21utions written as expansions in G IM 2 a o 00 o 

o 
o 1 0

2 
tan0 =-t[1	 +. _1_ b ~__ + 0( 0 )], (30)1 t 2+1 2" a 2 M 2 a 4 M 4 

o 00 o 00 

I
and tan02 = -(tane1)-1 ,i . i.e., sin8 2 = ± casel"and cose2=-sine1' If 
We see that use of 82 instead o f 81 in (22) and (27) does+not 
change the squared masses and decay widths of ( and G if they r
are interchanged simu1taneous1y, L.e , e +-+G and thus we can li 

pu t the ang1e e=6J 1 ( 30 ) without 10ss genera1ity.. W.ith the 
va1ue o f (J (30) the squared masses M(20f and MÕ (22) as weLl, 

as the couplings (cP1: and GcPcP (27) c an easi1y be eva Lua t ed 
within the 0o/M;o a0

2 expansion. We get 

M2 = __1 _ .z, 0 0 _ [1 + O( 0 0 )], (3Ia) 
e t 2 + 1 2 a ~ a 2M2 

o	 00 

and 

22 2	 2 t b Oo °0 )1MG= (t + 1)Moo +	 -2-- 9 -2-[1 + O(-~ . (3Ib) 
t + 1 '.. ao a o M 00 

The coup1ings (27) then become 

2 4 
M M 

g (cPcP =	 ====1 { 1'+ [y(t 2 +1) _t 2 ] _ f _ + 0(_(_). } , (32a)
2 M2 M4 

a yt + 1	 G G 
o 

2 4 
i' { 2 ' 22M M }- [y(t + l)-t l-t -(~ + O(-() • (32b)goc/>c/>	 2 4 

,tltt 2 
+ 1	 MG Mao	 G 

We see that the coup1ing (cPc/> (32a) of the 1ighter partic1e 
E does not depend on y in the 1eading 0(1) order of the ex­
pansion in 00 / a 2 M0

2
o (o r , due to (31), in M2/ MG2). The wid th 

Io (.r«( -+ 1T1T) ca1cu1ated in this approximation (Le., neg1ecting 
0(H 2/M6) corrections) on the basis o f (26a), (31) and (32a) )'o

'Q' 
is g~ven just by (1) with ma rep1aced by M(. Tpe difference 
between (1) and r«( -+ 1T1T') occurs at the O(M;(2/M6) 1eve1 where J

(
a1so a dependence on y appear s , Thus, our previousresul t I 

(eq . (1)) is a good approximation for the decay width r«( "'1T1T') 

~ of the relative1y 1ight partic1e ( (when compared to its hea­
;'I' 

10 

;,. 

vier companion 1)' Le., if M;« M2, and as expected on gene­
becomesGexact1yral grounds}l1a r(f -+1T1T ) (1) in the 1imit 

2MÕ -+ 0<1 (or M0 0 -+	 0<1). , 
For given va1ues of ao and f o (ànd t~ see (28)) the coup1­

i ng g(cPCP (32a) depends on Y beginning from the next - to ­
1eading order O(M2/M~) whi1e the coup1ing gGcpcP (32b) is y:.... 
dependent a1readyf in the 1eading order 0(1) of the M(2/MÕ.ex­
pansion. Remarkab1y, the coefficients of these deperidences

2)._t2]. Thus,are equa1 to each other, i.e. to the factor [y(1 + t 

the suppression of the GcP<P coup1ing by requiring y to obey 
the fo110wing equation 

y (t 2 + 1) - t 2 ==	 O , (33) 

imp1ies independence of gECPcP of y up to the order O(M;/M~ 
and vice versa. I I IA 

Since in the 1arge Nc coun t í ng 7 f o - O(N/) and ao-O(N ) ' c 
Le. t - O(I/N~) (see (28))~ we have y - O(1/N c ) from (33) 
and thus we expect sma11 y, which is, in fact, in agreement 
with the fit (10). Then the Si -+cPcP.and G -+cPcP decay amplitudes 
ca1cu1ated from (9), (26b) and (32b) have anoma10us behaviour 
O(I/N c y'N ) i n s t ead of 0(1/y"Ff\/61 as expected on generalc	 cof
grounds l 7! for the amp1itude the OZI a l l owed decay of a_ 
quarkonium meson intó two qq mesons. The conventiona1 O(I/vN c)
behaviour of (9) and (32b) wou1d be rea1ized if Y = 1 (or Á ~ 
= O), i.e., 'no f' term (15) is présent in (12). However, the. 
presence of f' in (12) (i.e. A, O and y, 1 as given by 
(33)) provides thé cance11atton of the terms of the conven­
tiona1 order O(I/vN~) in (9)~nd (32b), and resu1ts in the 
unusua1, anómaLous 0(1/ NeY N ) behaviotir of, t he amp1i t ude sc 
for decays Si -+ cPcP and G ~ <PcP , whi 1e the coup l ing E cPcP (32a) 
sti11 re~ainsof the order O(I/N ) as it shou1d be for a gluo­c 
nic state / 6•71 . We mention here that a gluonium interpretat­
ion of the 1ighter state ( is a1so supported by the fact that 
just this partic1e a1most dominates (2), and the neg1ected 
contribution again is O(M;/M~). Thus, this suggests that the 
roles of the eff~ctive, physica1 SU(3)F sing1et gluonium and 
quarkonium are p1ayed by the 1ighter f and heavier G states, 
respective1y. 

3.	 HALF- AND~ HALF MIXTURE OF THE PURE GLUONIUM AND
 
QUARKONIUM?
 

One may question the app1icabi1ity of the M:/M~expansion 
especia11y if difference between M~o and M~a.is neg1igib1e, 
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.. 

where we have chosen the positive sign for t and, correspon­and so, we shal1 here analyze such a case separately, without 
dingly, we choose e = -450 in orde~ to label again the li~hi­using this expansion. In particular, we shall disçuss the ca­
er	 state as f (compare with (30)).se	 based on the following assumption 

It is here worth mentioning a possible reJiabílity of tbe 
M2 

= M2 M2 present treatment. Fírst of alI, we have based our considera­
aa 00	 (34) tions on a particle dominance of, e.g., H in (2) and (3), but 

with M lying around 1.3 GeV in the interval 1.2 - 1.4 GeV. 
This assumption is interesting not only theoretically to ve­
rify the results of the previous section when mixing is large 
(e	 = +45

0 
) but it rnight turn out to be approximately realized 

in	 the hadronic world. 
Ou the one hand, (34) may be suggested by the quark model 

(2M 2(I=I/2) + M2(I=I))/3 [ or , providing M~o= in a linear ver­
sion, ~oo= (2M(I=I/2) + M(I=I))/3] wit~ M(I=}/2) and M(I=I) 
being the masses of the 1=1/2 and 1=1 qq scalars, respective­
ly (see also 12~/ ). When these states are K*00350) and a 0(980) 
the quadratic 
one gives Moo= 
a o(980) is not 
a Q(I400)/23/ , 
value, namely, 

formula predicts Moo = 1.24 GeV while the linear 
1.23 GeV, bnth in agreement with (34). If 
a qq state a~d the 1=1 qq scalar state is e.g. 

then both the formulae suggest for M a higheroo 
Moo= 1.37 GeV still, however,. in coincidence 

with (34). Thus, regardless of the interpretation of a o(980)
tne ~alue of Moo probably lies in the interval 1.2 - r.4 ~eV 
(34). On the other hand, recent lattice QCD calculations 2/ 
when taken (despite the existing reservations) seriously pre­
dict Ma a to lie also around 1.3 GeV in,the interval 1.2 _ 
1.4 GeV. The other independint estimates of the gluonium (J 

mass as 'ased on the bags/3 , QCD sum rules /43., 4b7 , andf5 
others are reasonably consistent with (34), too. On this 
basis we believe that the assumption (34) is not only plau­
si&le but may also be successful phenomenologically. Combin­
ing (17a), (28) and (34) we get 

2
_1_ 2	 ~.2-. 1 + 3 ao 
t 2 3 (2 M 2f2	 (35) 

o o 

where we have put b = 9 for Nc = NF = 3. Having taken H = 1.2 ._ 
1~4 GeV (34) we obtain M2f~= 0.012-0.017 GeV 4 which coincides 
wi t.h t he interval o f the "known standard" v á Lues h 2,1&/ of G ' 

,	 o9.e., we have approximately Co= M2f~. Then (35) gives 

, . the assumption (34) that masses of scalars are 0(1) GeV can .( make the relevance ,of the low-energy theore~s. ltke (2) for H 
much less certa~n. However, we are encouraged by the general 
success of analogous predictions based on vector meson domi­
nance/ 29/ even though vector mesons have also masses 0(1) GeV. 
Thus, our results may be successful as well since another ap­
proximation that we have used, namely, the neglect of pseudo­
scalar meson masses is generally well controlled, too. More­
over, the reliability of our in~estigàtions depends on the 
validity of (34) as well as on the knowledge of the value of 
the gluon condensate Go' We have argued above 
"knowledge" of M , and Go also. suggestsaa Moo 
be succes s fu l ;: 

From (I7b), (22), (34) and (36) we get 
. -

M 
r 

c 

= .~~ M and M G = 
-,j2' 

Y 23 M 
, 

that the present 
our resul ts may 

(37) 

in a good agreement with t31). Using in (37) M from the inter­
vaI (1.2-1.4) GeV (34) one obtains the values of M( and M G 
lying in the intervals (850-990) MeV and (1470-1710) MeV, res-. 
pectively, the average values being M( = 920 MeV and MG 

1590 MeV for the average M = 1300 Me,! (34). Hith (36) and 
e = -450 the couplings (27) become 

(38a)g ft/Jt/J 
1 ~ 
y2- ao 

and 

g - 1 l.L:l 
G t/Jt/J - ---	 (38b)

y2 ao 

For t = 1/2 (36) and y = 0.2-0.4 (10) the difference b e twe en 
the exact result (38) and the approximate one (32) is small 
and this again testifies to the applicability of the M~/M~ 
expansion with the reasonable value of expansion parameter 
M(2/M~ = 1/3 ,(37). Moreover, (32b) sugge s t s that for Y > 0.2 
and t = 1/2 (36) the coupling gG~~ can even be more suppres­

t = y-.!.. fo~ 1 sed since small (due to the approximate validity of (33) in 
'2 (36) ! I 

this case) leading order contr í but í on [y (t 2 + 1) - t 2] is expec­ao 2 
ted to cancel the next-to-Ieading order in M:/M~contributions 

~. 
\' 
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les, but as is seen from Tab le VI of ref. /21/ such a resul t 1S 
(see (32b)). Thls also a.grees with (38b) showing the complete Lnconc Lus i ve . For example, the solution Kí in /21/ suggests 
suppression -of the GeprP coupling, i.e. ga~rP= O, if y = 1/3 that these coupl ings are approximately equal to e'ach other 
while gérPrP (38a) is still large and unsuppressed giving the thus upholding a gluonium assignment for é (900). So, the wide 
width P«( (920) .... 1717 ) = 380 HeV for the lighter state e with é (900) meson/ 21/ may not be inconsistent wíth the predicted 
the mass around 920 HeV. gluonium é , but any definite ~laims need a more precise expe­

Thus, cons istently wí.th (ID), for y ~ 1/3 the decays G --+ rimental determination of its parameters . 
.... tttt and G .... KK are strongly suppressed and this property of ,1G together with the predicted mass Ma ~ 1.59 GeV forces us to 
identify G with the GAMS fo(159D) meson, recently discovered 
at the IHEP/18/ . Although the state G is an approximate half­
an~-half mixture of the pure quarkonium So and gluonium a sta­
tes, pevertheless, G plays the role of the effective physical 
quarkonium SU(3) F singlet state, as we have shown on the ba­
sis of the large N counting in the previous section. In thisc 
sense the scalar C is analogous to the approximately SU(3)F 
singlet pseudos~alar quarkonium ry'. It is amusing to note 
that in both the cases the difference between the actual phy­
sical squared masses and the squared masses of the correspond­
ing pure qq SU(3)F singlets as predicted by the quark model 
are large and approximately equal, i. e. H ~ - H~o ~ 0.85 GeV 2 

and m~' - (2m ~+ m;)/3 0.75' GeV 2. The domi.nance of the G --+;::j 

--+ ryry and -c; .... n ' ry decays h 8/ can then na tura l l y be exp lained 
as an enhanc~ment/17.301 of couplings between the scalar and 
pseudosc~lar SU(3)F singlets due to the unsuppresse~ trartsi ­ 4' 

~ions between the quark and gluon degrees of freedom in 0+ 
and 0- channels/9/ . We also note here that the present in­
terpretatio~ of f o(1590) ~ G may offer us a possibility to 
have t he decay J/'I' .... yfo,(1590) suppressed several times i..n 
comparison with the case/ 31 / when f o(1590) is either apure 
gluonium/ 30b/ or apure quarkonium /17 !. Thus, we might get 
BR(J/'I' y G) = O( 10-4 ) as the experimental results .'32/ . about 
the J/'I' Y71ry and J/'I' .... Y71'ry decays seem to i.nd.ica t e . 

The existence of the state G implies, however, the existen­
ce of the lighter and very wide state ( with the mass M( be­
low 1 GeV playing the role of th~ effective gluonium. The wi­
de meson é is not probably so easy to observe and, in ~act, 

there are no such scalar meSOjs listed in recent issues of 
the particle dat~ listings/19 . Howeve!, very re~ently Au 
et a l . /21./ have analyzed the AFS data 22/ obtained a t the 
CERN ISR "gluonium - search experiment" and they have claim-

f'	 ed /21/ to see a sta te é (900) (bes ides other three states 
~,(99l), and f (1.43)) with the mass and width aro­8 2(988), 
~nd 910 HeV and 350 MeV, respectively, in a good agreement 
with the pred i c t ed gluonium é. If the (900),1111 coup~ing w/ere 
de f í.n t-e Ly by a factor of 2 larger than the (900)KK one : 21 / ,í 

~.	 th-ey the g l uon i um interpretati,on of é (900) may be in t roub-: 

We would also like to mention that there were already sug-. 
gestions to interpret the old broad 1717 s-wave state below 
1 GeV as a gluonium. On the basis of the analysis in/20/, Hen­
nessier et al./1~/ have concluded, too, that such, a state cou­
pIes almost universally to 1717 and KK as required for the 
gluonium. Novikov et al./ 31/ have suggested to search for a 
gluonium lying below 1 GeV in the radiative decay J/'I' .... ,Y1717 

but we are not very optimistic about the possibility of ob­
serving J/'I' .... Yé for a wide e even if BR(J/'P .... Yé )=0(10-3)/31/. 

On the o t her hand, Au etal./21/ have announced the nar row 
state SI (991) with the width of 21 MeV to be a gluonium can­
didate while other two states e (900) and S2(988) are inter­
pr e t e d by these authors as the 1=0 scalar (1/2) 12 (u~+ dd) and 
s~ quarkonia, respectively, the interpretation being not trou­
ble - free in the quark modelo Moreover, unlike the case of 
a very ~ide scalar giuonium, the decay J/'I' .... YSl (991) could be 
rather r~strictive for a narrow gluonium candidate SI(991) 
and the lack of such a decay may represent a serious problem 
for this state. 

4. CONCLUSION 

In the previous sections a picture of two ~U(3)F singlet 
scalar states Gano ( has been presented and compared with 
experimento These states are half-and-half mixtures of the 
pure gluonium a and pure quarkonium Soe AIso, we have shown 
that the heavier state G playing the role of the effective 
physical q~ar:konium is in good agreement with the GAMS [0(1590) 
meson/l 8 / while the lighter ( being an effective gluonium is 
not probably inconsistent with otherwise inconclusive data 
on a broad 1717 s-wave state e (900) below 1 GeV /t 4a .21/ 

This suggests that the singlet-octet mixing for the qq s~a­
lar mesons is probably negligible, too, and the unmixed qq 
scalar octet members Si(i = 1, ... ,8) are approximately reaLi­
zed in the real world. Choosing the 1=1/2 and 1=1 members of 
this octet as K~(I350) and (o r ao (1400)/23/ i fa o(980)	 a o(980)
is	 not a qq state); and using the Gell-Hann-Okubo mass formu­
la	 we eas i Ly f i nd the mass Ha of the state S8 -i (1/6.) Yz (uii + 
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+ dd - 2 S8). The GMO mass formula used in both versions, 
quadra t i c and linear, predicts the mas s e s (MS)quad and (Ms)un-' 
respectively, as fo-Ilows 

(M a) quad = 1.45 GeV. (M 8 )lin = 1.,47 GeV. (39) 

when is a qq state, or we havea o(980) 

(40){Ms)qUad = (Ms )lin 1.33 QeV, 

is	 not a qq state, but instead, a qq state is, e.g.if	 a o(980) 
The predictions (39) (ar (40» can be compareda o(1400)/23/'. 

to the mass of the meson fo(1300)/19/which~ unfortunately, is 
not known very precísely. The mass and width of f o(1300) vary 
from experiment to experiment and lie / 19 / in intervals (1.25­
1.45) GeV and (150-400) MeV, respectively, and so we see a 
reasonable agreement with both (39) and (40)~ but we cannot 
conclude reliably whíchof the predictions (39) and (40) ís 
satisfied better. It is amusing to note that the results 0:­
Au et al./ 21/ being in a better agreement with (39) may mild­

. ly uphold a qq assignment of The effective couplinga o(980). 
(9) gives the dominan t decay r at e of 8s == f o ( 1300 ) j us t into 
~ and for y from (10) the estimated values of the decay 
widths are also in a reasonable agreement with otherwise in­
conclusive experimental datá /19/ on the decays of f o (1300). 
For example, using y = 1/3 as in the previous sectio~ and ~1s= 
= 1.3 GeV, we estimate r(Ss(1.3) -'1111) = 275 MeV andr(Ss(l.3)-. 
-. K1I) =; 60 MeV from (9). The decay 5 s -. 71''1 is even more sup-: 
pressed than the decay 8s -. KK if the '17'1] mixing is taken in­
to account. 

We see that the scenario for the qq scalar mesons present­
ed here is reasonably consistent with experíment and these 
states are analogous to the pseudoscalar mesons with negligib­
1e singlet-octet mixings. The scalar q~ octet mesons areao(98m 
and/or ao (1400), K~ (1350-) and f o(t 300), and are analogous to 
the pseudoscalars 11 , K and 1J while an analogue of 1]' is the 
scalar meson f o(1590). Although on the basis of the large Nc 
counting (section 2) the state G ~ f o(J590)/lS) is interpreted 
as an effective 8U(3)F singlet quarkorri.ura/J 7/ nevertheless, 
being approximately a half-and-half mixture of pure gluonium 

~and quarkonium degrees of freedom its actual nature is rather 
exotic deviation from the quark-model predictíon for

1lproviaing
G. In par~icular, there is a considerable difference between 
M~ and M~o like between m~' and (2mi + m;) 13. Another exo­
t i c s-t a t e of our s cenar i o Is the effectíve scalar gluonium ( 

A identified here with a rather hardly observable wíde state 
"'. f. (901l) below J GeV. 

16 

Although reasonable both theoretically and experimentally, 
the present picture does not explain the S*(975) state (or mo­
re states?/21/) near the KK threshold as being made o f qq or 
two gluons /141 .15,21,27.33~ and thus we "hcr e support still other 
exotic, e.g. qqqq /25/, KK-molecule /26/, e t c ; , explanations of 
the KK-threshold effeet. So, to have more complete description 
of the scalar mesons the 'introduction of such exotic states 
seems to be necessary~ However, quite reasonable and rather 
successful description of gluonium and qq states presented 
here suggests that mixing with' scalar q2q2, etc., states is 
probably negligible. 
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flaHHK A. [2-87-483 
WHpOKHH CKanApH~H rnOOHHH H KBapK-aHTHKBapKOB~H CKanApH~H HOHeT 

06CY*Aa~TCfl CBA3H CKanApHOrO rnOOHHA H KBapK-aHTHKBapKOB~X CKanApH~X 
COCTOAHHH HOHeTa C nceBAOCKanApH~MH Me30HaMH Ha OCHOBe HH3K03HepreTH4eCKHX 
TeOpeM HapyweHHOH KHpanbHOH CHMMeTpHH H MacwTa6HOH HHBapHaHTHOCTH C HCnonb4 
aoaaHHeM ~HoMeHonorH4eCKHX narpaH*HaHoa. PaccMaTpHaaeTcA CMewHBaHHe Me*AY 
4HCTWM rnoOHHeM a H SU(3)r-cHHrneTHWM KsapKOHHeM S0 • 6epfl AnA Mace S0 H o 
3Ha4eHHA, nony4~~HeCA H3 O~eHOK COOTBeTCTBeHHO KBapKOBOH MOAenH H HeAaBHHX 
KXA pac4eToa Ha peweTKe H Hcnonb3YA 11cTaHAapTH~e" 3Ha4eHHA rnOOHHoro KOHAeH­
caTa, M~ npeACKa3~BaeM, 4TO 3TO CMeWHBaHHe B ~H3H4eCKHX COCTOAHHAX £ H G 
npH6nH3HTenbHO COCTaBnAeT nOnOBHHa Ha nOnOBHHy, npeACKa3~saeTCA, 4TO G CBOH­
MH CBOHCTBaMH COOTBeTCTByeT rAMC f 0 (1590) - Me30Hy, a 3~~eKTHBH~H rnOOHHH 
ABnAeTCA WHpOKHM COCTOAHHeM ne*a~HM HH*e 1 raB. npeAnaraeTCA 803MO*HOCTb 
nocneAOBaTenbHOro onHcaHHA acero cKanA£Horo qq-HOHeTa. MeaoH s*(975) He 
BXOAHT B npeAOO*eHHYO KapTHHY HH KaK qq-, HH KaK gg-cOCTOAHHe, 4TO AaeT 
B03MO*HOCTb AnA ero e~e 6onee 3K30TH4eCKOH HHTepnpeTa~HH. 

Pa6oTa B~nonHeHa B na6opaTOPHH TeopeTH4eCKOH ~H3HKH OHRH. 
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Lanik J. 
Wide Scalar Gluonium and the Quark-Antiquark Scalar Nonet 

E2-87-483 

The coup! ings of scalar gluonium as well as quark-antlquark scalar nonet 
states to the pseudoscalar mesons are discussed on the basis of the low­
energy theorems of broken chlral symmetry and scale lnv'lriance Implemented 
using phenomenological Lagrangians. Mixing between pu ·. "luonlum o and the 
SU(3)F singlet quarkonlum S0 Is considered. Taking fot the masses of S

0 
an~ 

o the values based on estimates of the quark model and of recent QCO lattice 
calculations, respectively, and using the "standard" values of the gluon 
condensate, the mixture of S0 and a In the physical states G and £ Is pre­
dicted to be approximately half-and -half. We predict G to have properties 
consistent with the GAMS f0 (1590) meson, while E is predicted to be the wide 
effective gluonlum state below 1 GeV. On this basis we suggest a possible 
consistent description of the whole scalar qq nonet. The picture contains 
S*(975) neither as qq nor as gg state and we support thus still more exotic 
Interpretation of the s*(975) effect. 

The Investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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