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1. In describing the elementary particle dynamics in the
framework of field theory, singular or degenerated Lagran-
gians 714/ are mainly used. Usually, the singularity of a La-
grangian is caused by the invariance of the action with res-
pect to the transformations of field functions which depend
on an arbitrary function of the coordinates and time. Such
transformations determined in the phase space of the coordi-
nates and velocities (tangent bundle) are often called the
gauge transformations; and the corresponding theories, gauge
theories.

The general description, as on a classical and on a quan-
tum level, of the systems with singular Lagrangians was pro-
posed by Dirac/!/ on the basis of the extended Hamilton for-
malism. In the framework of the functional integral the quan-
tization method in phase space of the models with singular
Lagrangians was given in papers/88/ | the detailed presenta-
tion of those approaches can be found in/3.4.7.8/,

But the problem of finding the gaige transformations for
a given Lagrangian is studied insufficiently. A consistent
scheme which might give a possibility of determining the gauge
transformations, assuming the Lagrangian to be known, was
not constructed yet. In paper/9/, on the basis of the second
Noether theorem in the framework of the Lagrangian formalism,
infinitesimal gauge transformations in the tangent bundle are
constructed by the iteration method. As mentioned by the
authors, the method proposed by them is not extended to La-
grangians with higher derivatives.

But the gauge degrees of -freedom more naturally arise when
using the generalized Hamilton formalism in phase space /1.2/
Therefore in the given paper, we first find the changes of
dynamical variables which do not change the physical state of
a system, in phase space, and then construct corresponding
gauge transformations in the tangetnt bundle. The method pro-
posed by us, is easily generalized to Lagrangians with higher
derivations.

We mark that for a definite class of Lagrangians, not con-
taining higher derivatives, the question of construction of

the gauge trasnformation generators was con51dered in pa-
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The paper is organized as follows: in the next section,
main formulae of the extended Hamilton formalism for Lagran-
gians without higher derivatives are given and infinitesimal
transformations of dynamical variables preserving the action
invariance are constructed. In the 3rd section the method 1is
generalized to Lagrangians with higher derivatives. In section
4 examples are analysed.

2, For simplicity first let us congider a gystem with
a finite number of degrees of freedom; assume, the system is
described by Lagragian £(q, §) , where q“(ql'qe""'qn) are

generalized coordinates and Ql--ﬁ*di arc corrasponding velo-

cities. Also we assume that therc oxist transformations of
the coordinates which depend on arbitrary functions of the
time and their derivatives preserving the action § invariance

S=fatf(qq) = [al(q+8q q+8a), (2.1)
k (k) . a
Sqi 23'11 Aj (t): Sql = qui' j - 1r--'m. (2.2)

Here'%%n denotes a k-th order derivative of an arbitrary
function A(t) and coefficients a§ are, in genoral, functions
of dynamical variables and time. Over the recpoated indices in
(2) and throughout the paper we assume summation.

From (2.1) and (2.2) it follows that for the symmetric
matrix (Hessian)

) )

Wy (0 ) 2@ 5y 19,0 (2.3)
dq 94

there exists m eigenvectors nf(Q-d) with a zero eigenvalue:

1@ W, @D =W, @) 22@d =0, s=l..,m

Define in a standard way the canonical momentum:
b @a) = (2.4)
aq .
As the rank of matrix W(q,q) is less than n in that case
not all momenta are independent and in the thoery there arise,
in the Dirac terminology/1/, m primary constraints

¢;(qnp) = 0 k=1r---ym’ (2.5)

2

where =~ denotes a weak equality. Note that (2.5) is fulfilled
identically for 9 and p.
We also assume that

3 (a, P)
api

Rang |{| [| =m.

This condition rules out the possibility of appearance of un-
important constraints in the theory.

In what follows, we shall be interested in such transfor-
mations of the dynamical variables which do not change the
physical state of the system, therefore we assume that there
are no second-order constraints. In other words, for any con-
straint, which arises in the theory, its Poisson bracket with
all other constraints and the canonical Hamiltonian

H, =p,q, -8, ) (2.6)
equals in a weak sense zero.
In the framework of the extended Hamilton formalism the

equation of motion for an arbitrary dynamical variable has
the from /1-4/ :

g=1g HTI, (2.7
T 1 .

H =H +v, ¢, . (2.8)

Here HT is the total Hamiltonian, v, are arbitrary multi-

pliers, and ¢i are primary constraints of the first-class,
whereas the Poisson brackets are defined by

it, g} = ?f g dg of

al i ' opt
From (2.7) and (2.8), taking into account the arbitrariness
of coefficients V., one may obtain the variance Ag of the dy-

manical variable g, which is not connected with the change of
the phasical state /1"3/, 1t is given by the formula:

1
Ag=€al8,¢>al,

where ¢} =8t(va -v’),

The fequirement for primary constraints being stationary
in time may give new limitations on dynamical variables q and
p . Those limitations are called secondary constraints/1/,

"



Denote then by ¢§. If a secondary -constraint arises in the
theory it should be required that it will also remain sta-
tionary in time. This process will continue unless the requi-
rement of stationarity will turn into identity. Secondary
constraints of first order also may generate infinitesimal
transformations of Hamilton variables not connected with the

change of the physical. state, but this statement is in pene- .

ral incorrect /3.10/ | The group properties for transformation
(2.9) in a general case are fulfilled only in a weak sense’3’
which makes it difficult to construct the generators of gauge
transformations.

Let us rewrite (2.9) in the following form:

Ag=—‘¢(.e;¢;)g, (2.9 )

where operator "P(Géfﬁi) is given by the formula

- . 1,1 . a2 1,1 .
Betgl) = 2laba) O egda) 6 (2.10)

In analogy with (10) we construct another operator

. m )
T, - Nea'dad) o _ Xea%a® (2.10")
a a aqi api 3pi aqi

Ole

Here a=1,...,m and mg = 1,...,M;, where M, is a maximal num-
ber of secondary constraints obtained from the requirement
of stationarity of ¢! . The difference between (2.10) and
(2.10') consists in that the latter includes both the primary
and secondary constraints. For arbitrary values of efa the
operator (2.10') does not keep the action (2.1) invariant,
in the general case.

Let us- proceed in the following way: Assume that

@’ (® =[1+ (e, %3 Na®
(2.11)
Py =[1+ '¢(e;na¢fa)]p(t)

further, require that under such transformations the action
remains invariant:

T

8 = a5 £ = [dtd(d,p, ~-H") (2.12)

and find the limitations on the coefficients c:“, which in
general are functions of q,p and t.

From the assumption that all constraints are first-class
constraints, there follow the equations:

i [ ifm ¢ m
té, ¢/ fkjnqsn’

(2.13)
Mo by b =g d).

Here the coefficeints f and g may be functions of ¢ and p.
Inserting (2.11) and (2.10"') into (2.12) we find:

8 = [at[ddp -poa + ——(pBa) 8, = BV 4} -V,0d,] =

-m m m m (2-14)
= fatle g% g Cmeq Mo, G, 00— @18V, —v e Cld )8, M+
¢ Mo
+—(l(pic:a 42 -—:';naqS;na)].
dat . ap

Up to this step our consideration was of a general character.
Now we make one suggestion, namely, we require that the Pois-
son bracket of primary constraints with the first order con-

straints be equal to a linear combination of the primary con-
straints *

1 u, .:flm 11 (2.15)
(65, 6,81 =19 ¢g
The requirement 88 =0 means that the sum of the coefficients
in front of the primary and secondary constraints separately
turns into zero in a strong sence. Collecting the coefficients
of secondary constraints and taking into account (2.15), from

(2.14) we get
M _ B g Bma_g m_ >1. (2.16)
a a’“a’a a

From this equation it is seen that because of the presence

a

. m, - .
ofg;ﬁT“ in it, in the general case €~ 1is also a function of
a’a

*As is easily seen, the requirement is a sufficient condi-
tion for constructing gauge transformations in the tangent
bundle. i



q and p. The relation (2.16) gives sufficient limitations on
the function e¢Ma in order that the operators (2.10) give such
changes of coordinates and momenta, at which the physical
state of the system is not changed. For each value of a in
(2.16) we choose a maximum value M, =nnx{ma} and consider -

fzaas an arbitrary function of time A(t). Then all other ("a
will depend on A(t),q and p . The form of this dependence 4s
determined by formula (2.16).

In the phase space of coordinates and velocities we find*

m, m '
8 =¥, "¢ ,Ma, (2.17)
5 = -3 5q
dt

(into (2.17) and (2.18) the determination (2.5) is inserted).

(2.18)

3. In this section, we consider a physical system descri-
bed by Lagrangians with higher derivatives. For simplicity
we restrict ourselves to the case when the Lagrangian con-
sists only of second-order derivatives

dx (t)
dt

£, x, X), X =

, x-:(xl.....xn). S (3.1)

Canonical variables for such Lagrangians are determined
as follows:

Qg =Xy, Qo =Xy,
1=t 217 % | (3.2)
_ o8 d oL oL
Pu ="~ "% .’ Pm T
3x1 Bxi 6x1

The Lagrangian (3.1) is called singular if canonical va-
riables satisfy the relations/1%/

1
¢k(q1'q2tp1'p2)'0’ k"’lv"')m (3.3)

*Note that the momentum—-transformation rule formula (2.11)
in the phase space may not coincide with the momentum p(q, q)
transformation rule in the tangent bundle obtained by (2.17)
and (2.18).

or, which is the same, rank [[A |l =n-m, whére the matrix
Ay is determined by
9%¢
Ay = (3.4)
oKy 0%,

The canonical Hamiltonian of the theory is constructed by
the Ostrogradsky/l‘/method
HO =p1;‘ + pz;‘. - g(xv }zl);.) ’ (3.5)
which will be a function only of canonical variables. Poisson
brackets are determined in ‘the standard way:

at ég of dg
{fl g‘ = - °
dy Iy Py My

(3.6)

Then the equation of motion for dynamical variables will take
a form completely similar to (2.7) and (2.8) with the cano-
nical Hamiltonian (3.5) and primary constraints (3.3).

As before, secondary constraints are obtained by the Dirac
iteration method. As far as we demand that all constraints
are of the first order, the relations (2.13) hold wvalid.

The action for Lagrangians with second derivatives is
written in the form:

S=fdtlpx + ppx ~HTIL (3.7)

Then following the considerations analogous to section 3 for

Eﬁa coefficients entering into the definition of the operator

‘@(e:aqS:a) (2.10') we again obtain relation (2.16).

Thus, our method of the construction of infinitesimal gay-
ge transformations can be applied to the Lagrangians depen-—
ding on coordinates and velocities, as well as to the Lagran-
gians with higher derivatives.

4. As a first example, we consider the Yang-Mills Lagran-
gian

1 .4 Q v .
S =.._.f¢fx F2 p W
4 e (4.1)
a _ ., a _ . a_ a B .y
F“V a“AV BVA# gCB)'A# Av . )



We construct canonical momenta and find primary constraints

a_ 92 a
= a =~ Fou-
oA (4.2)

(ﬁi“= n0as 0,

The canonical Hamiltonian has the form:
l ana a a_a

TFU Fij +gCByA0 Ai ™y ). (4.3)
Bmg

a
aa

82,1 a4 a a . a
He = [a7%(znin " -Aqd,m, +

For the calculation of coefficients g we have the follo-

wing Poisson brackets

y B_1 a
aﬁAi"ry=¢l 0,

2a wuTi _ oY aB 2
(o2, BT} - g0l Al ]
The constraints ¢ia and ¢%§ are constraints of the first-
class.

Formula (2.11) in field theory is generalized in the stan-—
dard way

{¢1%H,} =8, n2- gC
(4.4)

8¢>m“
SA, (X7 ,t) = [ a3% e O(x,t) [ = 8, -
o m) % sA, (D Bk, 1) (4.5)
8 a
__%a & 1A, (1) .
ort (X, 1) &A1)

Inserting the constraints ¢1f and ¢§B into (4.5) we obtain

SA‘(I] =€Iia ’ ’
) o 28 (4.6)
a a vy
8Ai = —aifl —€1 8CByAi
From (2.16) we find
< 2a 2
€ +e:a+gC§yclﬁA);=0. 4.7

Pafametrizing R by an arbitrary function w?®@,t) from (4.6)
and (4.7) we finally obtain the well-known transformations

5 ARy _onBE a Ay (4.8)
8A‘L=—aum (x,-t) gw (x't)CBYAu .

e T g VY e

As an example with higher derivatives we may choose the follo-
wing model Lagrangian

g~ L oy & —ymxl?
dt dt

where

-»

X{ 0
X = ( X, ) T=-1ir, =( 1. 0 ). (4.9)

Using the definition (3.2) we can introduce the canonical
variables q and p

a, =y =%

Ly =0 = ’

! (4.10)

=y

B -
Qg=y' q2‘=

Therefore we get the following expression for canonical Hamil-
tonian

-

1 9 > + o d bod 2
H, = —.4..p2 P A+ p1q2+2q1p2Tq2+q2p2Tq1+q1D2qn- (4.11)

We obtain one primary constraint ¢i and two secondary con-
straints ¢% and ¢f. All of them are of first-class. For the

coefficients gﬁ?a we obtain
a’‘a

12
11~

28 X
g 19 g11=1

and all others vanish. In this case the equations (4.6) are
of the form

(4.12)

After the parametrization of ‘i due to the arbitrary function
A(t) we derive

ay = A-(t) ’
S8y = A(t),
8% = AV T,
8% = A T'X +AM®TX,
these transformations leave the action invariant.
The authors are pleased to thank A.N.Tavkhelidze for fruit-
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