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~ 1. In describing the elementary particle dynamics in the 

framework of field theory', singular or degenerated Lagran­
gians 11-41 are mainly used , Usually, the singularity of a La­
grangian is caused by the invariance of the action with res­
pect to the transformations of field functions which depend 
on an arbitr~ry function of the coordinates and time. Such 
transformations determined in the ~hase space of the coordi­
nates and velocities (tangent bundle) are often called the 
gauge transformations; a~d the corresponding theories, gauge 
theories. 

The general description, as on a classical and on ~ quan­
~\ 

\" tum leveI, of the systems with singular Lagrangians was pro­
posed by Dirac / 1/ on the basis of the extended Hamilton for­
malism. In the framework of the functional integral the quan­
tization method in phase. space of the models with s í.ngu l ar 
Lagrangians was given in papers / 6 ,81 , the detailed presenta­
tion of those approaches can be found in / 3 ,4 ,7,S! . 

But the ,problem of finding the gaige transformations for 
a given Lagrangian is studied insufficiently. A consistent 
scheme which might give a possibility of determining the gaug~ 

transformations, assuming the Lagrangian to be known, was 
~\ ~,

---l
.. 

.. not constructed yet. In paper / 9 / , on the basis of the second 
Noether theorem in the framework of the Lagrangian formalism,

~ 
I 

infinitesimal gauge transformations in the tangent bundle are 
constructed by the iteration method. As mentioned by the 
authors, the method proposed by them is not extended to La­
grangians with higher derivatives. 

But the gauge degrees of ·freedom more naturally arise when 
using the generalized Hamilton f ormal í sm in phase space 11,21 • 

Therefore in the given paper, we first find the changes of 
dynamical variables 'which do not change the physical state of 
a system, in phas~ space, and then construct corresponding 
gauge t~ansformations in the tangetnt bundle. The method pro­
posed by us, is easily generalized to Lagrangians with higher

~ 
derivations. 

We mark that for a definite class of Lagrangians, not con­I 
,: taining highe~ derivatives, the question of construction of 
~ 

the gauge trasnformation generators was considered in pa­
pers 111,12/._J 

, 
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The paper is organized as follows: in the next section, 
main formulae of the extended Hamilton formalism for Lagran­
gians without higher derivatives are given and infinitesimal 
transformations of dynamical variables preserving the action 
invariance are constructed. In the 3rd section the method is 
generalized to Lagrangians wi~h higher derivatives. In section 
4 examples are analysed. 

2. For simplicity first let us consider a system with 
a finite number of degrees of freedom; assume, the system is 
described by Lagragian f(q, 4) , where q .. (q l' q 2' •••, q n) are 

generalized coordinates and q • ~ql ara corrosponding velo­
1 dt 

cities. AIso we assume that therc oxi.st tranaformations of 
the coordinates which depand on arbitrory functiona of the 
time and their derivativas preserving tha nction S ínvariance 

S == (dtf(q,iI) = [dtf(q+8q, q+8q) , 

k (k) . d
 
ÔQt =·a tj À j (t) ; 8qt :3 -8ql' j .. 1 ,... , m,
 

dt 

(k) d . i fHere À(~ denotes a k-th order erlvat vo o nn OI' 

.function À(t) and coefficients a~J are, in Rcnornl, 
of dynamical variables and time. Over thc rcpontcd 
(2) and throughout the paper we assume aummatLon, 

(2.1) 

(2.2) 

b íltrary 
functions 

índices in 

From (2.1) and (2.2) it follows that for thc symrnetric 
matrix (Hessian) 

. 2 • 
. a f (q, q) . (2 3)Wtj (q, q) = i. ' 1, j = I, 2, lO., m •i. 

aqt aq j 

there exists m eigenvectors T/~(q. q) with a zero e í genvaIue : 

B· • '. s " 
TI t (q, q) Wtj (q, q) = W tj (q, q) TI j (q, q) ::% O , s = 1,. .. , m. 

Define in a standard way 

. af 
P t (q. q) ,..~. 

aq t 
As the rank of matrix Wí 

not alI momenta are indepen~ent and ín the thoery there arise, 
in the Dirac terminology 111,. in pr imary constraints 

4J 1 (q, p ) ... O' k=l, ... ,m, (2.5)
k 

the canonical momentum: 

(2.4) 
. 

(q,q) is less than n in that case 

where ~ denotes a weak equality. Note that (2.5) is fulfilled 
identically for q and p. 

We also assume that 
. 1 

Rang 1I a(,6~ (q, p) II =m.
 
apt
 

This condition rules out the possibility of appearance of un­
important constraints in the theory-. 

In what follows, we shall be interested in such transfor­
mations of the dynamical variables which do not change the 
physical state of the system, therefore we assume that there 
are no second-order constraints. In other words, for any con­
straint, which arises in the theory, its Poisson bracket with 
ali other constraints and the canonical Hamiltonian 

H =ptqt -f(q, q) (2.6)
c 

equals in a weak sense zero. 
In the framework of the extended Hamilton formalism the 

equation of motion for an arbitrary dynamical variable has 
the from 11-41 

g {g, H T} , (2.7) 

T 1
H = Hc + V k (,6k (2.8) 

Here HT is the total Hamiltonian, vk are arbitrary multi ­
pliers, and ~i are primary constraints of the first-class, 
whereas the Poisson braçkets are defined by 

ag ar{f, g} = ~ .1L
 
âql àp i ~-;t.
 

From (2.7) and (2.8), taking into account the arbitrariness 
of coefficients v k ' one may obtain the variance ~g of the dy­
manical variable g, which is not connected with the change of 
the phasical state /1-.'8/. It is given by the formula: 

~g = e 
1

{g, 4J l , 

I 
a a 

where e 1 = 8t(v. - V~ ). 

The ~equire:ent ~or primary constrâints being stationary 
in time may give new limitations on dynamical variables q and 
p • Those limitations are called secondary constraints/1~. 

3 
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Denote then by ~~. lf a second~ry·constraint arises in the 
theory it should be required that it will also remain sta­
tionary in time. This process will continue unless the requi­
rement of stationarity will turn into identity. Secondary 
constraints of first order also may generate infinitesimal 
transformations of Hamilton variables not connected with the 
change of the physical. state, but t h i s. statement is in eene- , 
ral incorrect /3,10/ • The group pr oper t í.e s for transformation 
(2.9) in a general case are fulfilled only in a weak sense/3~ 

which makes it difficult to construct the gener a to'r s of gauge 
transformatiohs. 

Let us rewrite (2.9) in the followirig form: 

~g = -'~ C( 1 cP 1 ) g , (2.9 )a a 

where operator '~«(~ cP ~) is given by the formula 

, 1 1) . 1 1)a«( a<Pa a a«( aÇJa a
'~«( 1<1> 1) (2.10)

a -- -" -.a àql dpl c1pl c1ql 

In analogy with (10) we construct another operator 

, ma lTl • m m 
'<I>«(ma'cPma) = 8«(a <Pa ~ _a__a<.laa<f;a 

G 
) _a_. (2. la') 

a a c1qí <1p1 ap1 deI 1 

Here a = 1, ... ,m and ma = 1, ... ,Ma' where Ma is a maximal num­
ber of secondary constraints obtained from the requirement 
of stationarity of cP 1 • The difference between (2.10) and 
(2.10') consists in fhat the latter includes both the prfmary 
and secondáry constraints. For arbitrary ~alues of f:a Xhe 
operator (2.10') does not keep the action (2.1) invariant, 
in the general case. 

Let uso proceed in the following way: Assume that 

, ma ma 
q , (t) =[ 1 + '4l «( a ~ a )] q (t) , 

m m (2. 11 )
P, (t) = [ 1 + '4l «( a cP a)] p (t)

a a 

further, require that under such transformations the action 
remains invariant: 

8S = .r dt ~ f .r dt B(q1P 1 _ HT) (2. 12)z:: 

and find the limitations on the coefficients (ma, which in 
general are functions of q,p and t. a 

From the assumption that alI constraints are first-class 
constraints, there follow the equations: 

t iim q, mlcP~, ef>f} kJn n' 
(2. J3) 

g iJ cP J • IH c ' cP~ } kn n 

Here the coefficeints t and g may be functions of q and p. 
lnserting '(2.11) and (2.10') into (2.12) we find: 

. . d 1 1
SS = Jdt[ qBp -pôq + -(pBq) -BH - ôV <f; -v Bc/J ]­dt c a a a a 

(2.14)• ma ma. ma ma 1 ma i 1 maI 
= f dt {( a cP a - ea {H c·, <P a } - 4J a8va - V a ( a t cP (J. ,t/J a + 

ma 
d ma à<f;a m m 

+ - (p 1 e -,- - e a4> a)].
dt. a OI> 1 a a 

Up to this step our consideration was of a general character. 
Now we make one suggestion, namely, we require that the Pois­
son bracket Df primary constraints with the first order con­
straints be equal to a linear combi~ation of the primary con­
straints ... 

'/"' 1 ,/.., U a 1 tlm,l~l
{ (2. 15)'fJ ,'fJ , I IC ,lJ,. 'fJ (.J • 

a a aa P tJ 

The requirement as:c: O means that the sum of the coefficients 
in front of the primary and secondary constraints separately 
turns into zero in a strong sence. Collecting the coefficients 
of secondary constraints and taking into account (2.15), from 
(2.14) we get 

'm Ci ./3 fjma_o (2. 16)m > 1.f -(a,ga'a­a a 

From this equation it is seen that because of the presence 

of g f3~a in t., in the general case {ma is also a function ofí 

a a a 

*As is easily seen, the requirement is a sufficient condi­
tion for cons~ructing gauge transformations in the tangent 
bundle. ~ 
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q and p .. The relation (2.16) gives sufficient limitations on	 or, which is the same, rank IIÀ tj II = n - m , whére the matrix 
the function (ma in order that the operator-s (2.10) give such 
changes of coo~dinates and momenta, at which the physical 
state of the system is not changed. For each value of a in 
(2.16) we choose a maximum value M max lm } and consider a. ao a(:a as an arbitrary function of time À(t). Then alI o ther !ID a 
will depend on À(t), q and p. The form of this dependence <ts 
determined by formula (2.16). 

In the phase space of coordinates and velocities we find* 
ma ma 

8q = ~ «( a rP a ) q ,	 ( 2. 17) 

• d· 
8q = -Sq (2.18)
 

dt
 

(into (2.17) and (2.18) the determination (2.5) is inserted). 

3. In this section, we consider a physical system descri ­
bed by Lagraneians with higher derivatives. For simplicity 
we restrict ourselves to the case when the Lagrangian con­
sists only of second-order derivatives 

... • dx(t)

f(x,x. x), x -- ­ x .. (x I' ••• , x n) • (3.1)
 

dt
 

Canonical variables for such Lagrangians are determined 
as follows: 

qu=x i , q2i = x i , 
(3.2)

af d af. af 
Pli ... -- - - --, P 21 - --. . dt..	 .. 

éJx i ax i dx i 

The Lagrangian (3.1) is called singular if canonical va-' 
riables satisfy the relations/ 1S/ 

rP k
1 

(q l' q 2 ' P I' P 2) ... O, k .. 1 ,.•. , m	 (3.3) 

*Note that the momentum-transformation rule formula (2.11)" 
in the phase space may not coincide with the momentum p(q,q) 
transformation rule in the tangent bundle obtained by (2.17) 
and (2.18). 

Ài j is deterrnined by 

à2f 
À ij = (3.4)

ai· i ax'j 
The canonical Hamiltonian of the theory is constructed by 

the Ostrogradsky/l·/method

1 H O = Pl~ + p 2~ - f(x,~', ~.) , (3.5) 
I 

, ~ 

-,	 which will be a function only of canonical variables. Poisson 
brackets are determined in 'the standard way: 

ar	 ag ar ag 
--- __ oIr, g}= ----- (3.6) 

õq ik ap ik apik àq ik 

Then the equation of motion for dynamical variables will take 
a form completely similar to (2.7) and (2.8) with the ,cano­
nical Hamiltonian. (3.5) and primary constraints (3.3). 

As before, secondary constraints are 'obtained by the Dirac 
iteration method. As far as we demand that alI constraints 
~re of the first order, the relations (2.13) hold valid. 

The action for Lagrangians with second derivatives is 
written in the forrn: 

•	 .. TS ... f dt [ p 1X + P 2 x - H ] .	 (3.7) 

Then	 following the considerations analogous to section 3 for 

(:a ~oefficients entering into the definition of the operator 

,~«(:acP:a) (2.10') we again obtain relation (2.16). 
Thus, our method of the construction of infinitesimal ga4­

ge transformations can be applied to the Lagrangians depen­
ding on coordinates and velocities, as well as to the Lagran­
gians with higher derivatives. 

4. As a first example, we consider the Yang-Mills Lagran­
gianri

,

1 f Â,. F a F P.1I
S I:: -	 "4' a-x P.1I a 'JJ (4.1)
.
F a_à. Aa _ aA a _ g C a A f3 A ,y
 

p.v IJ. v v P. f3y IJ. v	 6~ 
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As an example with higher derivatives we may choose the foI lo­..I We construct canonical momenta and find primary constraints	 wing model Lagrangian 

d . d -+ 2a a 
" li:: -- = - F o 

af f =	 [(- - yT) (- - yT) x] , 
Il ' • a f.L ' dt dt
 

aAp. (4.2)
 
where
 

,I,. la= "Oa ... O	 • I 
~ 

~ 1 .	 ; O, -1 ); = ( Xl )J X ' 
T=-ir2 = ( 1, O .	 (4.9)The canonical Hamiltonian has the form: 

2 

H rd S -+( 1 a a a a' a 1 F a a a a a	 Using the definition (3.2) we can introduce the canonical(4 -e 3)c =. X 2"1 171 -AO 1"i +"4 1jF1j +gC$l'AOAi"i)· variables q and p1\ 
For the calculation of coefficients g~~a we have the foI lo­ -+ -+... a a	 I q.l = y. ql = x •w1ng P01sson brackets \ (4.10)!	 -+ .:. 
{ ...l. le:{ H I ~ a C Y f3 1 ,I.. 2a O	 q2 = Y. Q2"" X •~ l' c = ui "1T i - g a{3A i "'V ~ 'f-' 1 OI , 

(4.4) 
Therefore we get the following expression for canonical Hamil­

{ ,I,. 2a H T } = gC'Y Af3,1,. 2a 
'P 1 ' 'a{3 O 'P 1	 tonian 

The constraints </>~a and </>;f3 are constraints of the first ­ H _ 1 -+2 -+ -+ -+ -+ -+... 2-+'" 
class. C - 4" p 2 + P 1 q 2 + P 1q 2 + 2q 1 P 2 T q 2 + q2 P2 Tq 1 + q 1P 2q 11.. ( 4 . I I ) 

Formula (2.11) in field theory is generalized in the stan-
We obtain one primary constraint </> 

1
1 and two secondary con-:dard way 

straints ~i and </>~. AlI of them are of first-class. For the 
ma 

coefficients gf3~a we obtain 
n 

: -(X ) __8A (; ' ,t) =.r d3 ; €_ m . -+ • t., ,.I 8</> a s	 a a 
a	 a , .. ­ 12 23
 

m
 8 8A~ (X, t) ô"Il(X. t) (4.5) gl1=l. gl1=1
 
8</>a a
 

~--]A (-+, and alI others vanish. In this case the equations (4.6) areU X , t) •&rP- (x, t) 8AIl CX•t) 
of the form 

• 3 2Inserting the constraints </> 1t and </>~f3 into (4.5) we obtain	 ;2_ f1 =0, 
1 1 (l-fl =0.	 (4. 12) 

a la 
ôAo = f 1 '	 After the parametrization of f~ due to the arbitrary function 

(4.6) À(t) we derive 
~ a 2a 2f3 Ca A'VuA i = -

a' 
1 f 1 - (1 g f3v 1 • 

ôy = À(t) • 
From (2.16) we find 

ôy = À(t) • 
• 2a la . a 2{3·v
 
f 1 + f 1 + g Cf3.v f 1 A O =-: O. (4.7) ô; = À(t) T(X).
 

, ~ ~. ~ ~ 

Pa~ametrizing (~ by an arbitrary function cuaCX.t) from (4.6) iI 
ôx = À(t) T "x. + À(t) T x • 

and (4.7) we finally obtain the well'-known transformations 
} these transformations leave the action invariante 
II The authors are pleased to thank A.N.Tavkhelidze for fruit ­ôAa ..., -à (AJa (x. t) - g(AJ f3 (x. t) C~	 (4.8) l!
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