
Y'­
I 

21 KOIT. 

Penarcrop 9. B.I1BaIIIKeBHtI. MaKeT P . .o. <1>OMHHOH. 

Ilonrnrcano B netlaTb' 16.06.87. 
<1>opMaT 60x90/16. Orpcernaa nesars. YtI.-H3AJJHCTOB 1,,42. 

THpax<: 490. 3aKa3 39218. 
Ii3~nTenbCl(HH ornen Oõsenaaemror-o HHCTHTYTa R.IlepHbIX nccrreno B3I-HU1. 

Jly6Ha MOCKOBcKOi-í oõrracra. 

Dfi beAMHeHHbl M 
MHCTMTYT 
Rle pHbl X 

MccneADBaHMM 

AYfiHa 

-$66 
E2·87·368 

N.B.Sknchkov, O.Yu.Shevchenko 

Sf:(:()NDARY GAUGE CONDITIONS 

IN FIELD THEORY 

, 
Subm i t t cd to "T(,op(~T\f1\.lCC/{('F1 \f1 M,neMaTVll..lec/{aR
I 

l l
 
'!JVl3V1 t<tl"

1987 
'( 



I. IJlTRODUCTIOJl 

The problem of the choice of conditions fix1ng the gauge seems 
from the first glance to be quite a technical problem connected with 
the choice of the moai optimal methods of calculation of a physical 
process but when passing to the non-Abelian theory to be connected 
with other problema of the principal importance íGribov's ambiguiti~ 

es, the proof of the S-matrix llDitarity and so on). In this connec­
tion, the problema arising in the class of noncovariant ("axial") 
go.ugea 111'1.1' "" O widely used in QCD should be mentioned, an inten­
o1vo d1oouaaion af which has emerged again/1/ !rom the recently foubd 
d1oagroomont of the reaulta of calculation of the gauge-invariant 
objoot, W11aon loap porformed in this class of gàugea, with the re­
aulba obtn1nod 1~ ~q~.Cpq~o~b arid ~eynman gauges/2/ . 

On tho ottor hnnd 1t 10 known that the problem of quantization' 
of oonatrGiuod ayatomo ia t1ghtly oanneoted with the definition of , 
tho naympbob10 bohAviour of qunnt1zod fiolda. Thus, it haa been 
ahown inl J/ 'hn~ tho atandnrd prooodure af gauge-!ield quantization 
by tho tunab10nAl 1nboar~1 mctho~ aontrnd1ota th~ fhysical boundary 
o0f1~1U,of1a af vAJU"h1na of f:l.old.a fnotor tho.n f//.zj 
int1n1\,y. 

Tha mantionad d:l.111oulL:l.oa leGd Uo tho noooao1ty to madify t~ 

atnndnrd·gnuso-t1ald qUGnb11AL10n. ThQ proaant papor 10 devoted to 
tho ao1ution ot llh1a problom. Jloro, .0 ahall roollr101l our ooneidoro.+" 
tion to tho lovol 01 'no 01AaallJAl bhaorr 01 Yans-Milla f101da. F1r$ 
ly, we ohnll oono1dol', ua1na QlDD Aa Ali D1llmpla, 1Jho oonnoot1on bot­
ween the ah01co of gaugo oon~1~1ona wl~h bho ph~aloAl' boundQrY oon~ 

di tion that the 1"io14 ohould obo,y. '~hl2 roaulb wJ 11 bD tormula1lad in 
the form of a "Criter1on of Un1quo AttllJ.UllbJ.1HI Df bho aa.Uso oond1+ 
tion", that will bo formu1nted in ~bo torm of Q 'hooram. Thon, A 80+ 

an analog of the secondary constraint* and having the forro of the Lo­

rentz gauge condition, 

fl ~/ (.:z:)=tJ-secondary gauge condi t í.on (1 ). 

An analogous consideration will be performed also in a non-Abelian 
case. We shall introduce a new class of path-dependent generalized 
non-Abelian fields that under a particular choice of a path do coin­
cide with the ordinary Yang-Mills fields. It will be shown that all 
the relations of QED (i.e. the equations of motion, the formulae of 
the conneçtion of the field potential with the strength tensor, etc.) 
take place also for these non-Abelian fields with the only substitu­
tion of the ordinary derivatives in these relations by the Mandelstam 
path-derivatives. Correspondingly, the secondary gauge condition for 
these fields (and as a particular case also for the ordinary Yang­
Mills fields in the corresponding gauges) has the form like (1) with 
the substitution of the ordinary derivatives by Mandelstam path-de­

rivatives. 

2.	 THE SECONDARY CONSTRAINT IN THE FOR» op THE,LORENTZ CONDITION 

lo 
Let	 us coneider the case of free e~ectrodynamics for which the 

~' 

** 
~rion 

(Y / ~ ,ft'?' L .• ) 
o == - f J tI~"r F (~) r.ft? (tZ/ / (2) 

I
ia invariant under the gauge tranaformations 

ft/ (.z) ~A) /a:) ~ /l,/l (X),t. i9~~ /a: ): (J) 

The gauge parameter ~ in a general case is a functional of the 
field;9 , taken in an arbitrary gauge 

(4),A =A (AJ x) , 

•The aecondary conatraints follow from the primary ones with the
 
use 01' equations of motion 14-6/.
 

neral theorem would be proved ola1m1ns bhGb tho lmpoalns on olaotro+	 **In what followa we ahall be interested in developing a pertur­
bation theory, i.e. we shall work in the interaction repreaentation"­magnetic f1eld of a gauge oondit1on thA' aat1at:l.oa 'ho "Ori'orloo o; in which the free fields are just quantized. 

Unique Attainability", leads, w1th oqunt1ona 01 mo'luu, .0 'hClb Lho ~ 
.aame-potential~ oboy the-aQ40n4~Y·8a~80 oon4i'1oA Appo-.1ne ha'o Od 9~},CÂh jl~l'iijihii~ RHCTZlTyT7-l[ -­ =e.]an'.JJ.miltt ~CC.~~llCl3aHBí1 
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Choosing the concrete forro of functional (4) we obtain in th~B ceDe 

in the left-hand side of (3) the field that obeys the gauge cond1t10n 
(GC) corresponding to this choice 

~ afiY .
/J,/I (.2)= /1// (J (2') -/ ~ A ífJ(A all~ :1:). (5) 

The symbol fJ sign1fies that the field IJfi9J 
obeys the GC* 

.tfJ(/l" a:) = O , 
(6) 

AlI of the most widely used in the theory GC can be presented in the 
form 

/1.1' 9J
tfJ /ltl' (X) = ()" 

(7 ) 
...., 

where different forms of the operator 1J'// correspond to the follow­
ing GC: 

jI .JI (.i,)
() -Lorentz GC: ;J r;4.J1 (;1') = () , (Sa) 

a,}/ **,)I (/2)-the class of the non­ /2 /i,jl (.2).= O, (Bb)covariant gauges 

(.z _j).J' -Fock GC/6/ : . .fi (FJ. *** (.':l' -J) 'A.}I (.1.') =o. (Sc) 

~Thus, the functional J1 in (5) plays the role of a projector on a
 
definite gauge.
 

In what follows we ahall essentially use the boundary conditions 
(BC) ímposed on gauge fields. They have the form/ 7/ : 

tim IX/ AcI' (eZ') = ().; /.1,,):::: JÇ;.i - F. (9a) 
/~'/-oo 

*As it is mentioned before, we shall call this GC as primary
ones. The meaning of thia terminology will be clear from what follows. 

, 
**Here /2. is an arbí'trary vector independent of ::c • The 

special choices of tpe vector /.C in (8b) correspond to such widely 
used gauges as, for 1nstance, /2 =(1,0,0,0) -HamiItonian (temporal) 
gauge 110 = 0, /l. =(0,0,10) -axial A = ° gauge; 122 = O -light-likegauge , 3 

***Here~ is an arbitrary, one and the sarne for alI ~, fixed 
point of the space-time. This gauge was rediscovered later by Schwin­
ger/13/ and a number of authors. 

4 

Let us note that these BC are the only possible in the perturpation 
theory*. It ia eàsy to see from relation (3) that the BC (9a) can 
be rewritten for the parameter of the gauge transformation ~ in the 
following way 

?Í?f A /a:) =- 0-7 J,2,' I .= y;,/- .:x7. 
(9b)

/:z'/ ~ C"'O 

Thus, in the theory only such projectors A (A ,.x ) are admissible 
that do not contradict the boundary conditions (9a). It is not dif ­
ficult to check that the projectors on the GC(S) 

A (.1-)/ . _ t )l .


( IJ.; « ) = -j tlí,!y (},l' ciJ S(x -.!J)11r (Y); (10a)
 

/JJS(eZ):/- .JtI'IjJVfl(J/ f~}(o<. (271)' 
li 

~ 
o 

(/1) til') (1 Ob)A (A/ x ) .:::: - J cid 12 /I; (X,..dl2 y' 

- 00 / (10e) 
A(F)(A.; x) ~ - j;;d (i'-J)~?(j~~(X-JJ) 

do satisfy cbnditi~n (9b). 

The role of the BC(9) in gauge-f~eld quantization ,is very im­
portanto The existence of the BC allows us tó draw a conclusion 
about the projector (4) to be the only adrndssible in the chosen ga­
uge (6), i. e. that the equation tjJ (/lÃ., a: ) = ° at fixed values 
of.~ and;4 'has a unique solution for the functional -IL~. 

Let us emphasize that the requi~ement of the uniqueness 'of this 
solution ia one of the most important requirements imposed on the 
GC admissible in field quantization/4 •S ,S/ . It is just this requir~­
ment that can be 'interpreted as one-to-one correspondence between the 
choice of ,the GC CfJ and the projector A?J (A •X ) cor-respondf.ng 
to i t: A9' (A , a: ) 4:-~ tfJ (A •X ), what allows the application 
of the Fade~v-Popov procedure/S/ of the, introduction of unity into 
the naive integral over trajectories. 

The above-said will be formulated as the following criterion
 
for the choice of the gauge condition (GC) - 9?~J4,~) =: O,
 

*Only with this choice of BC it becomes possible to combine
 
the requirement ot finitness of action (2) with the possibility of
 
integrating by parts, which is necessary for the construction 'of
 
perturbation theory.
 

;) 



"Criterion of uniaue attainllbilit 

"The pr Lmar-y GO 'f/ (/I ;..x. ) = ° 
dynnrru cs if t here exista under GC(9) 

with which thoso GC can be attained 

It i8 obv Lous that the fulfilment of the crí be r ou of unique o.t ­í 

tainability for G(; io equivalent to the absence for it of the re­

mu.i nLrlg E;étLlEC u r bL t rur í nes s when : t he GC (c.n are valido
 

Por t he L~nulSe ccnd t Lons of t ho form of (7) und (8) the fulfil ­í 

rne n t of the c ri t r r Lo n of unique attainubility means t ha t unde.r the 
GC( c.J) there o x í s to a unique f uuc t í orra.I A tp ( A , a: ) that satlsfies 
t u e e qua t í on 

/1 cp /\.fi
9J~drJIA (/-1/ ,x) ~ - 9J /!IjI (X).) ( 11 ) 

wher e AJI i3 t he e Lec t z-omagne t o field t ak s n in an ar b trary gauge.í í 

Por .í.L'Lu a t r n t Lon , let ua eonsldcr an example of the primary "J.C 

Ao = ° (temporal OI' Harní.I t on í.un gauge). vie v.arrt to show t ha t this 
GC .lo es o bey t he criterion of unique attainability. Firstly, the pro­

jector o n t o UtÜJ GC t hat s a t Laf'Ls s equa t on (11) anel the GC(;Jb) e xí.s t aí 

and hua forr:t (10b) with the choice of /l -= (1,0,0,0): AJI(A~x)=
I' (J / • _ * 

= - J-o..-.o tlo/..,/1v (.:lI<J +oG"X) • Secondly, it La easy to prove the 
abDenee of the gnuL;e urbitrariness uIlder the BC (\)b). Really, let us 

assume for: the rnoment that besides the field A; (A) x) = /JJ" (x) f 
/J 11/ } .r ) IH H I

-I- ~.J L (/ ~ X/ there exist s ano ~her field 1/.1' = 11 -I- éJJ'./I 

must satisfy the equution ()/82';') (:<.).= O.Hence ~J"( X) does not. 

depend on time. Le. ~ (,2') =C(x). o» the o t her harid , the BC (9a) 
11/

for sputial components of the fie1d /J.)" mean: 

jj~ /7,,' (.z:) .;- Il~ ~. /dd /l o (~'v ,t-d/ 7) J- IM ~.) (x)= O 
.l'''~oc> ...l'''-oo J (. ..,t·"-oo 

- 00 

The fi~st two terms here turn out to be equal to zero due, to 

('3a). Therefore t l~m .A (.x) = 0, and as a resul t t C (X) = o. 
,r.oc. 

1et us formulate the following main theorem. 

Theorem 1. 

"The gauge condition tjJ (A ,X) La uniquely a t t a i.nabLe if first, 

there exists for i t a proj eetor A <P (!l ,x ) that na t í sf'Lea t he bo­

*It ia eas.y to cheek by the substi tution 'Z'" = .xc + o(, th~t the 
functional AI{ does satisfy equntion (11) wi th the choiee of tJJ.fI in 
forrn (tib), '"here /l = (1,0,0,0): if/'J,2,oAH( /I " X)= -A" (x). 

(l 

undary conditions (~), and second, this projector satisfies the 

relations 

~ A cp(A-I- éJ~/ x)'> (}~A qJ(A/ x) = - ti.JI ~ (.z), ( 12) 

where ~ (.x) ia a field taken in an arbi~rary gauge,.) (X) is 

the parameter of the gauge transformations (3) 

A9J(A~ X) = 0/ ( 13) 

rp 
where J7JV is the field defined with an accuracy up to the remaining 
gauge arbitrariness and satisfyipg the GC (6)". 

Let us prove this theorem. 

1. First, we shall prove the fact that the existence and uni­
queness of the projector onto the GC leads to the fulfilment of 

relations (12) and (13) of theorem 1 for this projector. For this 

aim we shall show that the opposite statement is 'wrong. Let us sup­
pose that the criterion of the unique attainability takes place for 

GC (7). It means that, first, there exists the projectorA 91 (A ,X) 

that satisfies equation (11) for each fixed gauge of the field A: 

8v"iA9'(A~ X).;- {JJlI1: f.z) "= 
( 14) 

= óJ.fI~ A ~(A Y'z/ ») ~ ~.I'jJ)(.x) = O~ 
where A ~ and A sPz are fields taken in two different gauges }'} and 

~ , respectively, and, aecond, there does not exist the second 

functional A 191 rfA tp wi th the same property. Let us suppose for 

a moment that relation (12) of theorem 1 does not hold. It is easy 
to see that this supposition is equivalent to the inequality 

/J (.I) P=1= A ('zJ'I' 
/7,)' j' f (15) 

r.f);;V ~ I)J~ ~} li (,I) ?J ~ tp/, ~) 
where the fields /1.)1 = 4.;U -I- ~A. (A }and /1tf1 = 1/,)' I- ~A /A / 
are obtained by projecting the fields given in different gauges ~ • 

and ~ ,.respectively. On the other hand, due to (14} both fields 

Il f
.l) ?'J and A;:}~do obey the GC (7): 9JtIIAJ}tJ;. rjJl/lj/)t/~ O. Further, 

d~ to the fact that the el~ctromagnetic fielda can differ only in 

the gradient transformation (4), we, with acco~t of inequality (15), 

A (Z)?J 11 (f)fJJ -:::J J tJJ .,Nm I fjJ O
eaaily get ~= 'c)I .,t- v,// A ,where í1 T,;I A = and 

7 



~~J?);é const. Herefrom it becomes obv1ous that the functional 
Ji/~=J1~+~ ~ as well as the funct10nal Ji~ do obey relation 

( 4), andJ1/~r6J1~ *. Thus, we have arrivod ut the contrndiction 
with the requirement of the uniqueness of the projector and have shown 
at the sarne time that the fulfilment of relation (12) serves as the 
necessary condition for fulfilment of the criterion of the unique 
attainability. 

Letus suppose now that relation (1)) of /~heorem 1 does not 
~old. It means that there exis}s the field;4J1 that does satisfy 
GC (7) and for which A fJ(A ~ .:x) ~ o. It is obvious that the field 
A;~ could not be equal to the field 11; =/1.)1 -/- éJ./IA7V(,I}~x~ 

because é} rIJ1 9J / A,.) eX) :::: O(the field should concide with i t self) •(I .#..., 
Therefore ,/);P' = /I; -I- ~) f where ; ~) 97= tland we arr~ve at 
the same contradiction with the attainability of the GC: A 'J1 rfA 'P 
but do satisfy (14). 

So, we have proved that the fulfilment of relations (12) and (1)) 
of theorem 1 serves as the necessary condition of the absence of the 
remaining gauge arbi trariness ,i. e. or' the uniqueness of .the p:r:ojector. 

2. We shall prove now that, inversely, the absence of the gauge
 
arbitrariness is the necessary condition for fulfilment of relations
 
(12)	 and (13) of theorem 1. 

Let us IJ':: = /J.JI -r é?J'A "tí!J x)suppose that apart from the ;field
 
(where the proj ector A 9J aatisfies relat,iona (12) and (13)) there
 

exists another, different from ;4~ ,field 19~ also satisfying
 

GC (7) A;fIJ=IlJ..,i- J.I",A9J, where ó7.J1~~?,= O and ~9' I­

I cona t , Then, due to (12) we shall have: ,AJ;fIJ(,:;;:) = .IJ;~(X)-+
 

.,t. ~A (A/~ .z).,t~~ ~ Tak/ng into a~~ount relation (13) we finally • 
obtain the equality /lei' flJ(Z) = 1/,)1 (eZ) -I- éJ!,P) f'(;z)and therefore, 
~ ~~~,) = const. So, we see that the supposition about the difference 
of Il~ and.J9~~ leads to the contradiction of the type const.'1
I, const., and therefore, it was wrong. 

At the first glance it may seem that this proof does not use 
. BC (9). But it is not so. We have used relation (1)) that seems to be 

obvious from the explicit form of projectors.(10). ~ut the fulfilment 
of (13) implies the fulfilment of BC. Thus, for example, the projec­
tor onto the class of noncovariant gauges (8b) has in the momentum 

.AIfJ tp 
*The nontrivial inequality (A ,.x )-A (A ,,1:)1 const ia im­

plied. The difference of the parameters of gauge transformation (4)
 
up to a constant is equivalent to \heir coincidence because the field
 
does	 not change in both cases. 

I1I fi 

12ill,P)

representation the form A( = - (121/ )/(/Z.P) (it is easy 
to verify that the field IIj/lJ(p) = 1Ief/(fJ) I- /1} A (IZ)(A , P) 
obeys GC (1)). The requirement Jl!1lJ(11(!»X) =0 , if A (/l.) is an 
arbitrary field satisfying (8b) (it is the requirement of relation 
(13)	 of theórem (1)), is equivalent to the requirement I2 Y/ 'py / /(;9}J 
/ (/tI) = () , where ( 12? )~ (p) = o. It is obvious that
 

if the way of goin~ around the pole ()2;O )-1 is not define~ then
 
a nontrivial solution of the last equation ~ (p) = f'(IlP))(f)is po s ­

sible. With this solution requirement (13) is not valid and so the 
possibility of the nontrivial remaining gauge arbitrariness i8 left:A;(fi?,?) =1l;I2(fJ)f II;p[J'(I2.?~)) (f)j.But the existence of the Fou­
rier-transform of the proj ector A (fi) (IJ ,P) requires the prescrip­
tion	 of going around the pole, for examp.Le,: (/2'p)-1 ~L(I2P)+LEJ.-1. 

In this case relation (13) is valid for alI solutions of the equ­
ation (fi;»,,\ (P) = O. The requirement of the existence of the Fou­
rier-transform of the projector is just an account of the BC. Really, 
it is not difficult to verify that projector (1Gb) do satisfies 
BC, (9b) with the condition of fulfilment of BC (9a) for the fields, 
taken in alI other gauges different from (8b). 

It is easy to' check that relations (12)and (13) t ake place for
 
alI of the projectors of forro (10) and therefore the corresponding
 
to them GC (8) are uniquely attainable.
 

Let us mention that after the gauge transformation (3) with the 
functional (4) that depends on the electromagnetic field;1jV in an 
arbitrary gauge, we can consider the field 19~ as the functional of 
these primary fields 11: 11; -= IJ]:IAJ. The relation (12) leads to the 
gauge-invariance of this functional under the gauge transformations 

over	 the primary fields A : IlJ[II..;-é!)/:tJ ==IJJ/A"xj. 
This looks like a paradox: the electromagnetic field in a fixed gauge 
seems to be a gauge invariant itself. But there is no any paradox in 
reality. This property of the "gauge invariance" means only that the 
fields ,given in different gauges by (3) and (4), are projected 
onto one and the sarne field 19~ ,satisfying the GC (6). For examp­
le,- it is not difficult to check that the functional relution 

/J:~~?) = !l/(P) - ~ (?~) (;L (-'t'/l}?)=-/(~9 
is the Fourier tranaform of the projector ~oa])defining the field
 

in the Lorentz gauge fJ.JIjJ;:ljJ):;: O Ls invariant under the gauge
 

transformations: Il; (.p) = /l.JI(p) -I- /?.;,,,-J (P).
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Thus the theorem is proved. It is important to note that conditionNow we shall show that the unique atta1nability of GC has a 
(18) holds tor the simultanious account of the gauge condition im­.very 1mportant consequ€nce, to be formulnted as a theorem. 
posed onto the field and the equations of motion (Maxwell equations 

T h e o r e m 2. in QED)*. Here one can see a complete analogy with the division of 
the constraints into the primary and secondary onea (see, for ins­"The electromagnetic field (with action (2» that satisfieE! the 
tance/)/). Following this analogy we shall call condition (18) thecriterion of unique attainability with the conditiori that the func­

1
secondary GC**.tional A tp (,A , z ) does satisfy the relation 

DA (11 / x) = A (DI/~ X)I-/(~~f/ cc), (16) 
3. THE SECONDARY GAUGE CONDITION IN NON-ABELIAN THEORY 

where ! (O,X) = O, and on which the primary gauge condition (6) is 
imposed by the gauge transformation (5), satisfies, on the equations 

of motion, the condition fJ..I'JJ,JI (X) = Othat appears as the secon­
dary gauge cond1t Lon", 

P r o o f : 

Due to theorem 1, the unique attainability of the GC 97(,4,X)=O 
means that relations (12) and (13) take place for the projector
A 9J (A ,x). Let us take in (12) .A = A("<') (A ,x), where Afi,)(A"x) 
is the projector (10a) on the primary Lorentz GC. Then relation (12) 
can be rewritten in the form 

ti.!Ji9J(A(t,; x)- ~"Atp(A) X) = ~ 8~(-<'1A" X). 

Here the field J9~ is defined in an arbitrary gauge, therefore we 
can take it as given in gauge (6), i.e. we shall put in the last for­

mula li,)' =IJ;. Then due to (13) we have 

(J -A- tp(li ": x ) = - êI.~ ("<'tA ~ X) . (17 ) 

Taking the 4-d1vergence of both sides of this equality with account 

of the fact that éJ 1'1/;)= él fiJI.I" I- DAf"t'IJ).z.), we obtain the re­
lation 

8~: =- - DA~(A(~; :x). 

Let us consider the non-Abeliah Yang-Mills theory with the Lag­

rangian !t(X) -= -~ r/f,X)&.J (X)that is 1nvar1ant under the gauge 
transformations. f 

-.1 I -.//I/ -+AcJ' 
w 

= w /I,)' w 7'-J"" éJ,/' tiJ tU (19a) 

&? -- 0': =- w F;? 13.1. (19b) 

In what follows we shall need some formulae ob~a1nêd 1n/11,12/. Thus, 

in the paper/ 12/, where the Mandelstam formulation of QED without 
potentials was generalized to the non-Abelian case, the gauge-invari­
ant (under transformations (19» field strength tensor 

~?(z'/c):= UI-(A)x/CJ!;tiJ(X), (20) 

I tI(fI/x/C) 
was introduced. 

Here 0? = f1"J1//Y - dJ1A,II;I- tjfA.I'Jllil] is the usual gauge­
invariant tensQr that transforms according to (19b), and the opera­

tor ti(A) a:IC) has the form 

*Relation (18) was obtained in a particular case of gauges ·(8b) 
and (8c) in/9/ on the basis of the so-called inversion formulae that 
express the fields in gaugea (8b) and (8c) through the tension tensor 
/9/. By the sarne methed it waB shown th~;f10/ that in the ~-Abelian 
case an analog of (18) has the form ff A; (~) =:.O , where íJ"JI is the 
Mandelstam path derivative. Now we see that relation (17) for gauges
(8b) and (8c) àppears as a particular case of theórem 2. 

**Let us note that the secondary GC takes the form of the Lorentz 
condition only in the case of a free electromagnetic field. In the 

I 
càse of interaction of the electromagnetic and spinor fields, for examp­So with the use of this relat10n and (16) and the Maxwell equations 

(',t,) la, in t~A~9ck .&augefinstead~of (18), :f!e shall have ~he following con-
D Ar!' =()we get that dition '/l /lJlF'(xI.J,) = 7;, u'drl.J.x-j;'.T;Ii,."I.~j"J), where,T is a spinor 

current. BUt here wt~ shall be intereated in the perturbation theory in
ílJt;;; (x) = O, (18) the framework of which free fields are quantized, thus we shall use 

the secondary GC in form (18). 

))lO 



.x 
ti (I/;J xlc) = t?,xp f t) flJdZ'iJ yft)J. 

(21) 

- O<:> 

The integration in the exponent is performed along the unclosed 

path C of an arbitrary form that goes from -00. up to X • The sym­
boI jO means the ordering .along the path. In/ 12! it has been shown 

that the tensor (20) obeya the next equation of motion 

8.J1Jl;; (a:/c) = {} (22) 

and the equality 

/V /V /V 

;9.jJ ;z;.,? -I- éJ,I' YP.l -I- 8 jJ y:;,jI O, (23) 

/V 
Here ó!J' is the Mandelstam pat h derivative/11 ,12/ : 

~ / I 
~~a (A~,x/C)= tin [IL(II/cZ-I-LlX/C) - (24) 

LJ.x~-tJ _ ti (A, x/C)J/L1:C~ 
where two paths C and C dif'fer f'rom each other only by L1.x .JI • 

We would like to note that in the present article, in contrast 

with papers/11 ,12/ when authors have refused from the use of the po­

tentials and have chosen instead of them the· strength tensor as' the 

main object for quantization, we develop an alternative approach~ In 

our formalizm the field potentials would appear as the main object 
for quantization and the strength tensor as the auxiliary object. 

For simplicity .we shall restrict our consideration to two par­
ticu~ar cases of two primary gauge conditions (8b) and (Se) imposed 

on the field Il;w . 
Let us consider firstly the case when the primary gauge condi­

tion (Sb) is imposed on A.fI wi th the help of the gauge transformation 

(19~): 12"uAj/2.1:z)= O.It is obvious that the field •A;12.) can equi­
valently be rewritten in the forro 

(/2.) (IZ,) I tJ 
i? (iz)

1/,)1 (:r) = 11ti' (.x) - IJe/I J tid 12 A jJ (X,t- d a ) I­
tJ -00 

-I- ~.[cld a?i AfIZ: 11 ;/2.7. 

12 

I· 

From here we get that 
o 

//;/Z)(x) = 12i?};d ~jJ(,x+-da).? (25) 

-00 

(IZ) (IZ)· (/1.) - LI (/l) IJ (/Z) 7 
where ~j) = él,)ll/y - ;;;?/I.)I -;.jL/7~ ~ y J ia 
the strength tensor of the Yang-J~lls field~~ the gauge (8b). Fur­
ther, with the help of the equality /2.JfAc!" = O we can rewrite 

the relation (25) in the next way 

(12-) o _ O 

1l.Jf (:1:) = - /Z;;JtI(j; f!/.ZjJ [- 'Í :?fjfl 12 i?liiJ(L"/3/2». 
(. ) -00 () .-(>0 (26) 

. Fj;yIZ (z. (~J) f#jJ[ '/:?jjj3 12 ~ jlZri! ~j3 /2)J. 
-= 

Here, in accordance with the notation (21) 

11-1-(11(; z / C (IZJ);;;IZ/Z ) !1(IJ(~) z / C {/lJj~ (27) 

The integration is performed along the unclosed path {'(/Z)of the form 

C) (/Z): t (fi) := Z -I-fi f2..J - c>O <)3 ~ 0/' (28) 

Z(d-)=(X+d íl _ 
and jO is the symbol of the ordering (;O is antiordering) along 

the parameter fi . Tl1e expression (27) is nothing more but the gau­
ge-invariant strength tensor (20) with the particular choice of the 
path C=C(n~ Using the gauge invariance of the e4pression (20) we 

easily get 

ti f (/7 (12)/C (/lJ), F:;)(z) li (A /n ) / C(1lJ) = 

=:J;?(fi)(2/C(IZV = Yj;?(z/C{/Z)) = éL-.I(A~ z/c.(/2,>j. 
. }5t;(z) tt(A~ z /c (fi)), 

where ;ti is the field in an arbitrary gauge.11 
So, we have obtained that the Yang-Mills f'ield obeying the pri­L 

mary gauge condition (8b) can be expressed through the gauge-inva­
riant strength tensor (22) with the help of the next formula (the 

I :~ 



"inversion formula") 

oI/;Il f.z/c(4!J =- /2. J)d ;;:;il (Úd)/c (/2lj. (29) 

--00 

It is easy to see that there exists a possibility to generali ­

ze formula (29) by refusing from the strict fixation C: e (a) and 

keeping the possibility of arbitrariness in the choice of the path
C . Let us introduce the new fields 

O 
(IZ) '} /'.

8~ (.:c/C)=: -fZ~~~:7;j)(z{d)/C)~ (JO) 
-00 

where C ia a path of an arbi trary formo It is elear that due to 
the antisymmetrJ of the tensor ~Y those new gauge-dependent fields 

8(/2) as well as the fields A(n.) obey the primary gauge condition 

(8br: But in the general case th~fields (JO) with an arbitrary 

choice of the path do not coincide with the ordinary Yang-Mills fields 
and only with the choice of the path ~ =Céfl)in the form of a straight 

line, parallel to the 4-vector )2JV. we would obtain instead of 
(JO) an ordinary field ;1~a) in an auxiliary gauge. 

, (fi) 
Let ns consider the properties of the fields L1~ . With the(fl) 

help of equality (2J) it can be shown from (JO) that the fieldsL5~ 
introduced by this formula, can be related with the tensor (20) also 
by 

cr ~ I·) /V ta)/" 'c) /\"'B(lz-r: [c) (31)
c//iJ(X/C/ =. 8/1 BiJ (x /C - dy ~ (x 

that inverts formula (JO). The relation (J1) was previously given iR 
12/paper/ but without explicit definition of the form of the fields 

that can fulfil the relation (3j) •. 

So, we see that the connection of the gauge-invariant tensor 

h;J(x/C) with the fields 8.,v (.x/C) introduced here is ane.Logo­
us ~ the well-known relation that holds in the Abelian case up to 
the substitution of ordinary derivatives by the Mand~lstam path deri ­
vatives. 

It is easy to find with the help of the inversion formula (JO) 
that on the equations of motion (22) the next relation takes p Lac e , 

/V.JI (/2)

() 'BrJ' (X/c) =: O-' (J2) 

I· 

i8 the strength tensor in the Fock gauge, and secondly,the expression 

.I 
(ç)~ .1: y. /t . / (,c)Atft (X) =.-jtl~et (J,'jJ'Y;iJUrd (.:z')"J/{j :), {J4) 

O 

where :J;;; (z /Cf) is th~ gauge-invariant strength tensor 

2 

:J;;(z/St) = i7.x!E-t;:?Pt~j)tíJJ fjj)(Z)' (J5) 

. l''''llíj:?';; ZJ c/j' ~r (t)J . 
where the particular choice of the path in the form of the straight 
line t ha t connects the points) and Z is chosen 

CO 

(J6):J = (J
,(F) 

: t =J ~j3 (z -,1) J tJ ~ j3 c ./. 

The d.lf'f'e r-en ce between the t enaor-s (J5) and (20) consista in 

I the fnct that the integration in the exponents (35) 1S performed not 
aLoug the infiui tely long path but along the path 00f the fini te 
length and arbi trary f'orm, Due to this, the tensor (J5) transforms 
when the local gauge transformations (12) of the fiel"ds A.)I(Z)are 
performed; but those transformations have the global form:)1
 

1 7;;7 (2/0) ~ w()),7j;iJ (Z/Cj)tJf;) ~ (J7)
 

that appears here as the generalization of the secondary gauge con­

dition (18) for the non-Abelian case and has the sense of the secon­
ary constraint as well. 

The formulae (J1) and (J2) are valid for any choice of the pnth 
and in particular for the choice C = C ("/1..) • Thus, they are. 
a180 vulid for the ordinary Yan8-Mills fields taken in the gauge 
(8b). A.s in the previous case we shall obtain in an analogous way 
firstly the relntion 

.f 
(F) r ;; (F) .

A.)' (X) = - J cid, ~ (.z - J) '1;;; (Jl-d(Z -)>> I (JJ) 

o 
where is 

(/-/ (F) (j:) (,c) (F)

~? == [l.!' Aj) - ~r Il~ -I- j [A,)' ~ Ilj) ~ 

15
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That is why we shall consider the tensor (35) as a gauge-invariant 

one only up to tbis reservation. 

By analogy with the previous case let us introduce new fields 

.I 

8,/1 (.:c/0) =: - pc/., eX- f.x-f/t7;i> fJ-IeX- (;r -j)/C))~ (8) 

where J!;?(Z/0) is 
O 

the (35) with the arbitrary path C)tensor 
that connects the points J and Z. As in the case of the gauge­

conditions (8b), tpese new fields that obey the gauge condition (8c), 
they do coincide with the ordinary Yang-Mills fields in th? Fock ga­/' (F,J 
uges only at the particular choice of the path c~ = ~jf (36). 

With the help of integration by parts and making use of the 

antisymmetry of the tensor eY;p (~/0) and of the e quat í.on of 

motion (22) that is also valid for the tensor (35) we easily find 

:7;9(:r/~)= 8;By (x /CJ } - ~~ (Z/0) ()9) 

and 

~jIB~(.z/0)~ O, (40) 

The relation (40) appears here as a secondary gauge condition. It is 

not difficult to see that formulae (39) and (40) are valid also for 
the ordinary Yang-Mills fields 19):) obeying the primary gauge con­

dition (86) as a particular case corresponding to the choice ~ =~F) 
in (38)-(40). 

In the conclusion of this section let us remind that in our ap­
proach in the non-Abelian case there appe2.rs just the sarne 
formalism as in QED, i.e. formulae (29) and (33) do express 

the fields in the fixed gauges (8b) and (8c) thro~gh a ga­
uge invariant (up to the reservation mentioned before for the Fock 

gauge) strength tensor. Thus, those fields defined in the gauges (8b) 

and (8c) by formulae (29) and (33) through the strePBth tensor being 
considered as the functionals of the primary fields /I in arbitrary 

'*It is obvious that in the Abelian case the tensors (20) and 
(35) would transform into the tensor '7..; =~/ly - ~yA.J' the rela­
tion (381-~would transform into a well~own inversion formula 
. ;4~"F. (;;r).=-lftlot~(X-j)'l,/l9Ó+~(:r-;))and ()o) wO';lld transform 
Lnt o relation "/I ('/1.) r/f o l' ·/:r."l~IZ'that has pr-eví.ous Ly been 
derived in /.10/. /1,)' -= - Il J. tio(, 7;;''1 ( ... "/ 

'-00 
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gauges are gouge-invariant quantities in the'non-Abeliwl UD wu11 nu 

in AlJelian case. (Her e , i t should be mentioned that, as i t iu t,llDII 

from (33) and (36), the field in the Fock gauge, in c on t rnat wJ UI 

tlw fi old defined in tlle gauge (8b), transforms in a g LobaI WCl:/ 

A (r)/ IJ ) t',.e) - ..I " 
jJ (/l ) a' '== ~~()),.4./' ü/ O) under t he t r-anaror-mut ã ons 

('9a) over' t h e p:rirnary fields • Due to the physical boundnr.y 

condi tions tJ/~-:+ 1 this residual gauge arbi t r ar-í.no as disap11enr on­

ly in the limi t J "--.00. Let us note that in this limi t thc tJ"UllU­

lation invariance of the field 1J.(.'-('::z.../(,) =é;') restores; so , th1u 1i­

mit eo.n be interpreted as a physical one). 

The property of the gauge illvari~ce of the ficlds in the fixcd 
gauges is nothing more but the mwdfestation of' the proporty of thc 

unique atta.iuabili ty of the gauge condi tions (8b) and (8c) t huí, for 

this gauges thke plnce for the Abelian as well as for non-Abclian 

cases. 

In view of this property Lot us especially stress t h e ncx t im­
/I (.i)

portant feature. If we would like to repeat for tha field 17~1 (dc­
fined in the gauge (Ba ) the same procedure that was u s e d for the 

de.r í vrrt Lon of the inversion f orrnu Lae (29) and (33) for the fields in 

the gauges (8b) wld (8c), then due to the fact thot 
.J'í (.0 /J (.<) »7

~,//J,/' ;:X)/ /7;7 (.zu~t/we would not come to the Lnver-e í on formula. 
Thus, we see t ha t in the nori-AbeLaan case there does not c:~isi for­

mula expressing the field in the Lorentz gauge (8a) thl'üu[.;h 'lhe gau­

[.;c-invariant strengtl1 tensor. 30, the gauge condi tion (Da) in the 

uo n-AbeLa an case is no t a un i que attainable condi t í on in corit r aat 

wí t h t h o cauGe conditions (8b) aud (8c). This fact ia dí.r-ec t Ly C011­

.re ct cd wí t h the fact of exi.stence of Gribo'J's arnui gu i t í e s t ha t , (;10 

i t is woI 1 known , exist for thC' gúuge (Ba ) and f r-om whi ch. 't he gau­

ges (8b) and (8c) are f r-oe , 

CONCLUSION 

']'Lus, i t. Ls SlJOW1J in t h e pr e s errt paper that ilJ cauge t.hcur ã es 

UH- f LeLds (Abe Lí.an an d llon-Aoelian orie s ) 'af t er iIIJPODillL; OI! t h cni é:liU­

CC' c ond i t í.on do aa t í s f'y t he e e c ondar-y gauge co nd í t r ou , '1'\1io \;\,llldiUon 

he s t hc SllIS\! of UH s e corid ar-y con at r-e í n t becuuae i t fulfillJ t h o equ­
u t on s of :.:c:tion.í 

111 1l .. follow:i,ng pap er wc; ahu Ll, whow how this t.:()lJdi t ou cun UGí 

LncLudr-d illt0 t h e sy s t em 01' con s t r-u í.n t a a t the quanUzo.Uol1 nf fjeldu 

li 



I ­

(partly the resulta were presented in /13/) and to what physieal 

eonsrquenees it ean lead. 

The	 authors express their gratitude to E.E. Kapuseiek and 
V.V. Sanadze for the interest in the work and valuable diseussions. 

REFERENCES 

1.	 Steiner F. - CERN - TH 438]/86; CERN, Geneva, 1986. 
Landshoff P.V. - DAl~T 85/36: Cambridge Univ., 1985. 
Slavnov A.A., Frolov S.A. - SOVe .Journ. Theor. and Math. Phys. 

v.	 68,. p. 360, 1986. 

2.	 Muller V.F., Ruhl W. - Ann.Phys. v.113, p. 240, 1981. 
Caraeeiolo S., Curei G., Menotty P. - Phys.Lett., v. 113B, p.311, 

1982. 

3.	 Singer 1.1'1. - Comm.Math.Phys. v. 60, p.7, 1978. 

4.	 Dirae P.A.M. - "Leetures on Quantum Meehaniea", Yeshiva Univ., 

New York (1964). 
5.	 Hanson A.J., Regge T., Teitelboim C. - Constrained hamiltonian 

systems. Preprint Prineeton University, 1974, Contrib. centro Lin­

eeo interdise di seienze mato No. 22, 1976. 

6.	 Sundermeyer K. - Constrained Dynamies. Leeture Notes in Physies, 

v.	 169, Berlin: Springer-Verlag, 1982. 

7.	 Seiuto S. - Phys.Rev. v. 49, p. 181, 1979. 

8.	 Faddeev L.D., Slavnov A.A. - Introduetion in the quantum theory of 

the gauge fielda, Moseow "Nauka", 1978.
 
Popov V.N. - Funetional integraIs in quantum field theory and st~­


tistieal physies, Moseow: Atomizdat, 1976.
 

9.•	 Gribov V.N. - Nuel.Phys., B139, p. 1, 1978. 

10.	 Skaehkov N.B., Solovtaov I.L., Shevehenko O.Yu •. - JnJR Rapid Com­

munieations. No. 8-85, p.42, 1985; No. 9-85, p.39, 1985.
 

11.	 Mandelstam S. - Ann.Phys. v.19, 'p. 1, 1962. . 
12.	 Bialynieki-Birula. - BulI. Aead. Polon. Sei. v. 11, p. 135, 1963. 

13.	 Skaehkov N.B., Shevehenko O.Yu. - A talk presented at VIII Intern.
 
Sem. on High Energy Phys. Probl. Dubna 1986, JINR. D1,2-~6-668,
 

Dubna, 1986; JINR Rapid Communieations No. 3(23)-87, p.17, 1987.
 

Received by Publishing Department 
on May 26, 1987. 

18 \ 
I 
" 

CKaqKOB H.E., Illea-renrco O.IO.	 E2-87-368 
B'ropavnue KaJlHÕpOBOqHble YCJlOBIUI B TeopHH nOJlH 

IToKa3aHo, qTO nocrre HaJIOJKeHHH na KaJIHÕpOBOqHble rrOJIH 
ogHqro KaJIHÕpOBOqHOrO YCJIOBHH OHH rrogqHHHIDTCH TaKJKe BTO­
PHqHONY KaJIHÕpOBOtIHOMY YCJIOBHID, HMeID~eMY B K3~ ~OPMY YCJlO­
BHH Jlopenua, B HeaÕeJleBOM c.nyuae aaerren HOBbIH KJIaCC xarraõ­
POBOtIHO-HHBapHaHTHbIX H KOHTypHO-3aBHCHMbIX rrOJIeH. I1oKa3aHO, i 
qTO rma HHX HMeIOT CHJlY ace COOTHomeHHH K3,U, T. e. ypaBHeHHH 
gBIDKeHHH, ~OPMYJIbI CBH3H c TeH30pOM HarrpHJKeHHOCTH H BTO­
pHqHOe KaJIHÕpOBOqHOe YCJIOBHe H T.,IJ;., c 3aMeHOH OÕblqHbIX 
rrpOH3BO,IJ;HbIX Ha rrpOH3BO,IJ;HWe MaH,IJ;eJIbCTaMa. 

PaÕOTa BbmOJIHeHa B J1aõopaTopHH TeOpeTHt.IeCKoI1 ~H3HKH
 

OIDII1.
 

Ilpenpaar Ü6'he,nHHeHHOrO HHCTHTyra H,nepHhIX HCCJIe,nOBaHHH • .uy6Ha 1987 

Skachkov N.B., Shevchenko O.Yu. E2-87-368 
Secondary Gauge Conditions in Field, Theory 

It is shown that upon imposing one gauge'condition on 
the gauge fields the latter turn out to obey the secondary 
gauge condition that in QED is in forro a Lorentz gauge con 
dition. A new class of gauge-invariant and part-dependent 
non-Abelian fields is introduced. It is shown that alI of 
the QED relations, i.e. the equations of motion, the for­
mulae of.the connection with the strength tensor, the se­
condary gauge condition etc., take place for these new 
fields with the only substitution of the ordinary deriva­
tives by the Mandelstam ones. 
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of Thooretical Physics, JINR. 
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