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I, INTRODUCTION

The problem of the choice of conditlons fixing the gauge seems
from the first glance to be quite & techmical problem connected with
the cholce of the most optimal methods of calculation of a physical
process but when passing to the non-Abelian theory to be connected
with other problems of the principal importence (Gribov's ambiguiti+
es, the proof of the S-matrix unitarity and so on). In this connec-
tion, the problems arising in the class of noncovariant ("exial™)
gauges /2“¢€p = 0 widely used in QCD should be mentioned, an inten-
olve diocussion of which has emerged again/ from the recently fouhd
dioagroomont of the results of calculation of the gauge-invariant
objeot, Wilnmon loop performed in this class of gauges, with the re-
gsulto obtained ip the Coylomb arnd Feynman gauges 2/.

On tho othor hand it is known that the problem of quantization:
of oonoirained oyntoms io fightly oonneocted with the definition of |
the asymptotio bhehaviour of quantised fields. Thus, it has been
shown in that the standard proocodure of gauge-field quantization
by the funotional integral method ocontradicts the physical boundary
aonditions of vanishing of fields fastor than 7 //Z/
intinity.

The montionad Aiffiouliies lead Yo the nooossity to modify the
standard. gaugo-riold quantimation. The presant papor is devoted to
tho oolution of this problem, llore, we shall rostriot our considera+
tion to tho lovel of the olassloal Lheory of Yang=Milla fiolda, Firdi
ly, we shall considor, uaing Qi) as an oxample, the oonnesotion bot-
ween the cholce of gauge oonditions wiih btho physlonl boundary oons
dition that the field ghould oboy., The rosult will be formulated in
the form of a "Criterion of Uniquée Atdalnability of bdhe gauge oondi+

tion", that will be formulated in the form of a thoorem. Then, a go+
neral theorem would be proved olaiming thabl the imposing on sloodro+
magnetic field of a gauge condition that satisfies the "Oritverion of
Unique Attainability", leads, with oquations of moblon, bto thal bthe

.anme_poteni1als_oboy—$he—aocondnﬁy-saugo oondivion appoaring hero ad

&

an snalog of the secondary constraint* and having the form of the Lo-
rentz gauge condition,

% %4 //)=f-secondary gauge condition (1.

An asnalogous consideration will be performed also in a non-Abelian
case. We shall introduce a new class of path-dependent generalized
non-Abelian fields that under a particular choice of & path do coin-
cide with the ordinary Yang-Mills fields. It will be shown that all
the relations of QED (i.e. the equations of motion, the formulae of
the connection of the field potential with the strength tensor, etc.)
take piace also for these non-Abelian fields with the only substitu-
tion of the ordinary derivatives in these relations by the Mandelstam
path-derivatives., Correspondingly, the secondary gauge condition for
these fields (and as a particuler case also for the ordinary Yang-
Mills fields in the corresponding gauges) has the form like (1) with
the substitution of the ordinary derivatives by Mendelstam path-de-
rivatives.

2., THE SECONDARY CONSTRAINT IN THE FORM OF THE LORENTZ CONDITION

Let us congider the case of free electrodynamics for which the

. kkE
Jactlon

S = —-;qu/Z’{l'/‘7””5222)/5;; (z), (2)
%s invariant under the gauge transformations
A . .
/ézu (x) “‘*’/4lu (x) = Aulx)+ ZE;I,J (z). )

The gauge parameter A in a general case is a functional of the
field /9 , taken in an arbitrary gauge

A —_-/\_//4;1), (4)

The gecondary constraints follow from the primary ones with the
use of equations of motion /[4-6/.

In what follows we shall be interested in developing & pertur-

bation theory, i.e. we shall work in the interaction representation

in which the free fields are just quantized.
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Choosing the concrete form of functional (4) we obtain in this cagne

in the left-hand side of (3) the field that obeys the gauge condition
(GC) corresponding to this choice

@ any )
Ap (2 = A 020 = 2 7005 2). )

0 . ¢ -
The symbol % signifies that the field Au oveys the ac*

'90/24) z) =0. (6)

All of the most widely used in the theory GC can be presented in the

P98iz) =g, )

. A
where different forms of the operator 527’N correspond to the follow-
ing GC:

HM
Z? ~Lorentz GC:

M (<)
7 /4‘// ‘/J'}: 0 ’ (8a)
M n)
/2 -the class of the non- 2 {;7// (Cz;) :_67’ > (8v)

covariant gauges
B M /6/ . Hn (FF.

(Z-£)" Pock ac/®/, /.17‘),4‘/, (2)=0.""" (8c)
Thus, the functional_/lw in (5) plays the role of a projector on a
definite gauge .

;n what follows we shall essentially use the boundary conditions
(BC) imposed on gauge flelds., They have the form/7/:

Con J2] Aulx) =), Jz)- Vai-T7 (g,

/2> oo

*.
As it is mentioned before, we shall call this GC as primar
ones., The meaning of this terminology will be clear from what fo{lows.

’

*ok . . .

. _Here /2 is an arbitrary vector independent of 2 , The
special choices of the vector /2 in (8b) correspond to such widely
used gauges as, for instance, /2 =(1,0,0,0) ~Hamiltonian (temporal)
giﬁgi Ao = 0, /2.=(0,0,10) -axial Az = 0 gauge; 2= 0 -light-1ike

ok .
point ngEe,}‘ is :p arb;;rary, one and the same for all 2, fixed
oint o e space-~time, is gauge was rediscovered later by Schwin-
ger/13/ and & number of authors. o by Beln

Let us note that these BC are the only possible in the perturbation
theory*., It is edsy to see from relation (3) that the B¢ (9a) can
be rewritten for the parameter of the gauge transformation /4 in the
following way

. —7
L Nlx)=0, Jx)=pai-Z*. (9b)
/,2’/——)&’()
Thus, in the theory only such projectors ~/1_ (/4 s X ) are admissible
that do not contradict the boundery conditions (9a). It is not dif-
ficult to check that the projectors on the GC(8)

/lm/ﬁ’) x) = —//"J&’f@“‘/z-y)ﬁ’p/y); (10a)
(27 L, JrrVREIPY)

en)
(10b)

N A, 2) == [ 275 (2rar2);

Bhadyd ‘ (10¢)
/Lm/ ;&) = -/o’oé /1"})7/4;/}f06/x-;))

o
do satisfy condition (9b).

The role of the BC(9) in gauge-field quantization is very im-
portant. The existence of the BC allows us to draw a conclusion
about the projector (4) to be the only admissible in the chosen ga-
uge (6), i.e. that the equation ?7 ( /4A} Z ) = 0 at fixed values
of .2 and /4 ‘has a unique solution for the functional 44_ .

Let us emphasize that the requirement of the uniqueness 'of this
solution is one of the most important requirements imposed on the
GC admissible in field quentization’/%'2+8/, It is just this require-
ment that can be -interpreted as one-to-one correspondence between the
choice of .the GC 99 and the projector_/lp (/q s L) corresﬁonding
to it: _/]j’ (/4 y L) 4-)97 (/4 s XL ), what allows the application
of the PFadeev-Popov procedure of the. introduction of unity into
the naive integral over trajectories.

The above~said will be formulated as the following criterion
for the choice of the gauge condition (GC) - gj/A, ,:C) = 0

*Only with +this choice of BC it becomes possgible to combine
the requirement of finitness of action (2) with the possibility of
intégrating by parts, which is necesgsary for the construction 'of
perturbation theory.



"Criterion of unique attainability of the gaugo conddtion":

"The primary GG 90 (A 32 ) = 0 can be admiasible in olectro-
dynamics if there exists under GC(9) a unique functionnl_/1¢?c4) ai)
with which these GC can be attained by the gauge transformation (5)v,

It is obvious that the fulfilment of the criterion of unique at-
tainability for GC 18 equivalent to the absence for it of the re-
maining gauge arbitrariness when‘the GC (9) are valid.

For the goaupge conditions of the form of (7) and (8) the fulfil-
ment of the criterion of unique attainability means that under the
GC(Y) there existy a unlque fuuctional_/1q7(/q , X ) that satisfies
tue equation

gg'ﬂﬂ,ﬂﬂw//ﬂ x) = - Q)AJ/Z]/ (x), an

where /4// is the electromagnetic field taken in an arbitrary gauge.

For illustration, let us consider an example of the primary 4G
/40 = 0 (temporal or Hamiltoninn gauge). wWe want to show that this
GC does obey the criterion of unique attainability. Firstly, the pro-
Jector onto Lhis GC that sutisfies equation (11) and the GC(Yb) exigts
and has form (10b) with the choice of /2 = (1,0,0,0): _7/4, x)=
__V//1 kz/bé/4b,/fzi +uC,.iZ)*. Secondly, it is easy to prove the

abgence B??the gauge arbitrariness under the BC (Yb). Really, let us
assume foij/ the moment that besides the field /4; (A, x) =ﬂ(/, (x)#
~ 6;7”% //],.Z‘)there exlsts another field g% :/]H ~ 21/,/]

must gatisfy the equatiecn 9/5’-1‘0/]/1')-: O.uiénce J‘/J(.J,‘) does not ,
depend on time, i.e. A ) =C‘(j?). rbthe other hand, the BC (9a)
for spatial components of the fleég /%V mean:

fzm A (2) # ﬁi‘m 07 /,)06 Ao (@0 rot, Z) ﬁiﬂmg. J(x)=0

* .
The first two terms here turn out to be equal to zero due, to
(Ya). Therefore, lim A (z) = 0, and as a result, (.:—f) = O.

Toroc
Let us formulate the following mein theorem.

Theorenmn Te .
"The gauge condition 4) (/4,1) is uniquely attainable if first,
there exisgts for it a projector_/lqj(ﬂ , L ) that satisfies the bo-

. :

It igs easy to check by the substitution 27 = Zeiol thgt the
functional /* does satisfy equation (11) with the choice of gpdv in
form (8b), where 2 = (1,0,0,0): 2/22°A%A, x)=“/70’/1')

.
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undary conditions (9), and second, this projector satisfies the

relations

G N4 20, 2) = B NFA 2)= - d(x), o)

where /i,(zr) is a field taken in an arbitrary gauge,/J (&) is
the parameter of the gauge transformations (3)

-/]—W/Alpz x) =0, (13)

®
where /Zﬁ’ is the field defined with an accuracy up to the remaining
gauge arbitrariness and satisfying the GC (6)".

Let us prove this theorem.

1. First, we shall prove the fact that the existence and uni-
queness of the projector onto the GC leads to the fulfilment of
relations (12) and (13) of theorem 1 for this projector. For thisg
aim we shall show that the eopposite statement is wrong. Let us sup-
pose that the criterion of the unique attainability takes place for
GC (7). It means that, first, there exists the projector_/]_¢ (A s L)
that satisfies equation (11) for each fixed gauge of the field A:

BN N ) 2 PR ) =
= 21T NTA 2)+ #49E(2) - 0,

where /4 % and /4 v are fields taken in two different gauges }f/ and
kf , respecfively, and, second, there does not exist the second

functional J4 ;{/190 with the same property. Let us suppose for

a moment that relation (12) of theorem 1 does not hold. It is easy

to see that this supposition is equivalent to the inequality

///5?’;é )P
/Zﬂ /{p ’ (15)

)@ 7, Y @) p 1% P/ p¥,
where the fields A4 = fu -,Lﬂ/j%/and i =,4,,L57/,/1ﬂ/7
are obtained by projecting the fields given in different gauges k? :
ang ¢}§ ,_ris%gctively. On the other %ﬁnd, due tg (14) both fields

7) 2) g . H NP MNP
/4 and /4/ do obey the GC (7): 90 ﬂ/ ___p/%u z (). Further,
dde to the fact that the electromagnetic fields can differ only in
the gradient transformation (4), we, with accoupt of inequality (15),

easily get A//’Zm: A/ij" 2ud?, were 77Pu AF =0 and

(14)



J%};‘—' const. Herefrom it becomes obvious thet the functional
_/L/p=_/[_fo+/{ # as well as the functional _/L do obey relation
( 4), &ndA’géA?’ *. Thus, we have arrived at the contradiction
with the requirement of the uniqueness of the projector and have shown
at the same time that the fulfilment of relation (12) serves as the
necessary condition for fulfilment of the criterion of the unique
attainability. )

Let us suppose now that relation (13) of /theorem 1 does not
20ld. It means that there exists the field that
GC (7) and £ i 2P o /4‘// ot does satisfy

)2 £or which NA”, .2)#0_11:?13 obvious that the field

could not be equal to the fi = # '

) % 5)-/%9’(/)eq _o e field /4/ ._/]/,,/- Q/,_ﬂ //9,.1),
ecause o g x)~0 (the field s’k‘wuld concide with itself).
Therefore, /4/ =/4;+2”/l? where ;’ﬂ%/l 7 Jend we errive at
the same contradiction with the attainability of the GC: _A/w#_/]_qj
but do satisfy (14).

S0, we have proved that the fulfilment of relations (12) and (13)
of theorem 1 gerves as the necessary condition of the absence of the
remeining gauge arbitrariness,i.e. of the uniqueness of the projector.

2. We shall prove now that, inversely, the absence of the gauge
arbitrariness is the necessary condition for fulfilment of relations
(12) and (13) of theorem 1.

P @
Let us suppose that apart from the field /4// =A/+ 6/‘7,//_/]_ //]) 1’)
(where the pro,jector_/L;"7 satigfies relations (12) and (13)) there
exists another, different from , field i also satisfying

A

oo (D A= 48 £ 7,07 whiare 57/’@,,}9’50 ana |7 4
# const, ?hen, due to (12) we shall have: Ajf/;x) -——/4///0/,1')%
,4;/_4 //4 ﬁ’x),tyﬂ/l?Tak/ing into a(/:count relation (13) we finally
obt;éiin the equality /4(// ﬁ/x) =/4/9’AZ') 3 ﬁ‘/,/ W/Zﬂ&nd therefore,
.l‘)p: const;WSo, we gee that the supposition about the difference
of /4/ end 4,” leads to the contradiction of the type const. ‘#
;é- const., and therefore, it was wrong.

At the first glance it may seem that this proof does not use
- BC (9). But it is not so. We have used relation (13) that seems to be
obvious from the explicit form of projectors (10). But the fulfilment
?f (13) implies the fulfilment of BC, Thus, for example, the projec-
tor onto the class of noncovariant gauges (8b) has in the momentum

P

*

. The nontrivial 1nequality_/l (A,x )-.‘/1.90 (A,x )# const is im-

ﬂélgg.aThe d%fffrgnce of tklle param:ters of gauge transformation (4)
conatant is equivalent to Yheir coincide b i

does not change in both cases. nioe because the field

representation the form _/I_/”)(A’,/D) == (A )/ (2L ) (it is easy
to verify that the field AS(P)=fulP) + £ P NT(A, P
obeys GC (1)). The requirement _/Lf’l)/,q”ﬁ)x =7, if /4(”') is an

arbitrary field satisfying (8b) (it is the requirement of relation
(13) of theorem (1)), is equivalent to the requirement /27//02/’/10)_/
/(/2/0) — p , where (/2/0 )/\(/D) = 0, It is obvious that
if the way of going around the pole (/2 P )_1 is not defined, then

a nontrivial solution of the last equation/{ (/D/) = J‘(//Z,P)/!mls pos-
sible. With this solution requirement (13) is nol valid and so the
possibility of the nontrivial remaining gauge arbitreriness is left:
‘///(ﬂ)/p) :ﬂ/ﬁ’/p); /ﬂ/of‘/ﬂ/@/)J//D/]But the existence of the Fou-
rier-transform of the projector A(’U(/] ,/7) requires the prescrip-
tion of going around the pole, for example, (/2/ )'_‘I — [( np )+2EJ_1.

In this case relation (13) is valid for all solutions of the equ-
ation (/2/9)) (P) = 0. The requirement of the existence of the Fou-
rier-transform of the projector is just an account of the BC. Really,
it is not difficult to verify that projector (10b) do satisfies
BC. (9b) with the condition of fulfilment of BC (9a) for the fields,
taken in all other gauges different from (8b).

It is easy to check that relations (12) and (13) take place for
all of the projectors of form (10) and therefore the corresponding
to them GC (8) are uniquely attainable.

Let us mention that after the gauge transformation (3) with the
functional (4) that depends on the electromagnetic field ﬂ‘/, in an
arbitrary gauge, we can consider the field A]} as the functional of
these primary fields /4.‘ /4;) :/4;,7//4]. The relation (12) leads to the
gauge~-invariance of this functional under the gauge transformations
over the primery fields /4 : /4.;0[/4ny) ‘1]—_—/4;//4).1']
This looks like a paradox: the electromagnetic field in a fixed gauge
seems to be a gauge invariant itself. But there is no any paradox in
reality. This property of the "gauge invariance" means only that the
fields » given in different gauges by (3) and (4), are projected
onto one and the seme field A @ , satisfying the GC (6). For examp-
le,. it is not difficult to check that the functional relation ’

22 24) ) __ (A

A (P) = AulP)~ Fu Gl /ﬂ_ (A F)==t"F53
is the Fourier transform of the projector (10a))defining the field
in the Lorentz gauge /0‘}//7/5‘)//0)=0 is invariant under the gauge

tra.nsformiations: /4/1 7 =AulP)+ /’P,/a/‘ //0)




Thus the theorem is proved. It is important to note that condition
(18) holds for the simultenious account of the gauge condition im-

Now we shall show that the unique attainability of GC has a

,very important consequence, to be formulnted as a theorem.
posed onto the field and the equations of motion (Mexwell equations

Theorem 2. in QED)*. Here one can see a complete analogy with the division of
"The electromagnetic field (with action (2)) that satisfies the the cc/>1317traints into the primary and secondary ones (se‘e’ for ins-
criterion of unique attainability with the conditior that the func- tance’ 7). Foﬂ.‘ow’ing this analogy we shall call condition (18) the
tional AW (A,x) does satisfy the relation secondary GC . i
\
7 x) =N (OA, 2)+f(37 (16)
A //}) ) A ( /4; ) /y A«//’ .1')) A 3. THE SECONDARY GAUGE CONDITION IN NON-ABELIAN THEORY
where f‘ (0, ) = 0, and on which the primary gauge condition (6) is Let us consider the non-Abelian Yang-Mills theory with the Lag-
imposed by the gauge transformation (5), satisfies, on the equations rangian oi’/l’/='1f/2i’//§a(x)that is invariant under the gauge
of motion, the condition ﬁ""%/ /.r)= ﬂthat appears as the sgecon- transformations. 7
dary gauge condition". ) -
.y 7/ Zz
/4/’ ’/4/ =A)/4/l(7 %‘ﬂ/wh) (19a)
Proof: /
= « =/
Due to theorem 1, the unique attainability of the GC g?@,at)w S —> /C/,, = W Fup o’ (19)

means that relations (12) and (13) take place for the projector

_A_¢7 (/},,1'). Let us take in (12) A =_/La)(/],;c), where/]_(“[A,,Z‘) )

is the projector (10a) on the primery Lorentz GC. Then relation (12)

In what follows we shall need some formulae obtained in/11’12/. Thus,
in the paper/m/, where the Mandelstam formulation of QED without
potentials was generalized to the non-Abellan case, the gauge-invari-

can be rewritten in the form ant (under transformations (19)) field strength tensor

PNTAY 2)- 2N A, 2) = - 3NYA, 2. ! P (2/C) = WA, Z[C) Fui (%)
- WA x][C)

(20)

Here the field A,/I is defined in an arbitrary gauge, therefore we
can take it asg given in gauge (6), i.e, we shall put in the last for-

mila 4, = A¥. Then due to (13) we have Here  frup = Gy Ao~ 9y Au # (9 /A, A»] 18 the usual geuge-
H M invariant tensqQr that transforms according to (19b), and the opera-

yf’AW/A {Af x)= B 9.}‘4/}-(&)//}9; JC), (17) . tor ////])x/c) has the foj'm

*Relation (18) was obtained in a particular case of gauges (8b)
and (Bc) in/9/ on the basis of the so-called inversion formulae that

was introduced.

- b : : express the fields in gauges (8b) and (8c) through the tension tensor
Taking the 4 divergen;/e o(f) othﬂsides of t?bs equality with account /9/. By the same method it was shown Qz},ﬂ 10/ that in the ngp-Abelian
of the fact that ) /4/, =2 /4‘,., %ﬂ_/l //])_I). we obtain the re- case an analog of (18) has the form 37 (x)=0 , where ZX is the
Jation Mandelstam path derivative., Now we see thé; relation (17) for gauges

(8b) and (8c) eappears as a particular case of theorem 2.

//A @ ¥4 (%)

4 =-0 x). ’ X
o A //] 4 **Let us note that the secondary GC takes the form of the Lorentz
condition only in the case of a free electromagnetic field. In the

s {th e case of interaction of the electrom etic and spinor fields, for examp-
o wit a};he use of this relation and (16) and the Maxwell equations . le, in the Fock gauge, instead of (18), we shall have Bhe fol],.owing con—
HA‘// :ﬂwe get that dition 2 /Zv’ﬂ\’/}5= a”;/dg(,ﬁ‘-}f]}/}”‘ﬂj‘)j'; where J” 1is a spinor

: Wy P ‘ current, But here we ghall be interested in the perturbation theory in
9 /4 (x) — 0 (18) the framework of which free fields are quantized, thus we shall use
M > the secondary GC in form (18).

10 ’ 11




U (A, x/c)=exp[;}i¢o[;z'jgp(z)]_ (21)

The integration in the exponent is performed along the unclosed
path C: of an arbitrary form that goes from === up to X . The sym~
bol JZ7 means the ordering .elong the path. In 12/ it has been shown
that the tensor (20) obeys the next equation of motion

é"/{?‘;,;/x/c)=§ (22)

and the equality

~A P P
ZpFwr + uap + Ty Fap = 0. (23)

N

Here é&, is the Mendelstam path derivative/11'12/;

[UA, zr0x[C7) - (24)
- U(A, x/c’)j/Ax“'i

/
where two paths  and (& differ from each other only by 4.7

9//%//4,,@/4’) /m

4x%0
Iﬂ.

We would like to note that in the present erticle, in contrast

with papers/11’12/ when authors have refused from the use of the po-

tentials and have chosen instead of them the strength tensor as the
main object for quantization, we develop an alternative approach, In
our formalizm the field potentials would appear as the mgin object
for quantization and the strength tensor as the auxiliary object.

For gimplicity we shall restrict our consideration to two par-
ticular cases of two primary gauge conditions (8b) and (8c) imposed
on the tield A u .

Let us consider firstly the case when the primary gauge condi-
tion (8b) is imposed on /4// with the help of the gauge transformat:on

(19a): 244, Vx)= ).1t is obvious that the field /4/,
valently be rewritten in the form

%
/‘7/ /»2") = /4/4 /xj 5’//4/06 Z A’, /,1”%06/2)%
-////oé 22/ A (”’ 457,

can equi-

12

From here we get that

(%)

a
v () = - /Z’yzl/oé Fup(x+d/2), (25)

) @) () (/2)
where /";/,7 = 0”/,/4,7 - [7;/4/, 7‘/ _/ is
the strength tensor of the Yang-Mills f133d }g,the gauge (8b). Fur-

ther, with the help of the equality /2
the relation (25) in the next way

we can rewrite

//z)

/z)— - /z;/a/ao %'/0[ %7’///5 2 A (74 872)]
(26)
/Z(wym/a[/fﬁ//ﬁ/z’%’p (z+p2)].

Here, in accordance with the notation (21)

V4 77/4 e Z/C (ﬂ))&;/z)/z)%(/} m;)Z /5 /a)); (27)

gl /Z)
The integration is performed along the unclosed path é'/ of the form

c ///J’) Z+PBR, —eo< B (28)
F(R) =X+
and 190 is the symbol of the ordering (jp is antiordering) along
the parameter JB . Tne expression (27) is nothing more but the gau-
ge-invariant strength tensor (20) with the particuler choice of the
path C?::C’OQ{ Using the gauge invariance of the expression (20) we
easily get

//7‘//4(’2)/6‘ /”))‘/C/(j)/z)///ﬂm)/fm)) =

= Fb (2)C®) = Fap (2/CD = LA, 2)0).
S (Z)U (A 2/,
where /4

So, we have obtained that the Yang-Mills field obeying the pri-
mary gauge condition (8b) can be expressed through the gauge-inva-
riant strength tensor (22) with the help of the next formula (the

is the field in an arbitrary gauge.

13




" "inversion formula")

1
z) .
A e f ™= - 27 o Fan (2 fe ). 9

It is easy to see that there exists a possibility to generali-
ze formula (29) by refusing from the strict fixation ( = Cfﬁe) and
keeping the possibility of arbitrariness in the choice of the path
(f . Let us introduce the new fields

19;”/1/6‘) ==~/ ;’/f/oc T (ZD/C),  (30)

where C? ig a path of an arbitrary form. It is clear that due to
the antisymmetry of the tensortjf those new gauge-dependent fields

é?(h) as well as the fields (ﬂ)obey the primary gauge condition
(abe But in the general case thgufields (30) with an arbitrary
choice of the path do not coincide with the ordinary Yang-Mills fields
and only with the choice of the path ’ ==Cf””in the form of a straight
line, parallel to the 4-vector AZ”” , we would obtain instead of
(30) an ordinary field /4z# in an auxiliary gauge.

. 72
Let us consider the properties of the fields Z§>:.). With the

help of equality (23) it can be shown from (30) that the fields Z?
introduced by this formula, can be related with the tensor (20) also

by

)

T (T JC) = ﬁﬂﬁpfa)ﬁ/c) 2.8 ('Z),z/c) 1)

that inverts formula (30). The relation (31) was previously given in
paper/12/ but without explicit definition of the form of the fields

that can fulfil the relation (31)..

So, we see that the connection of the gauge-invariant tensor

Fup (Z/C) with the fields A, (/) introduced here is analogo-
us to the well-known relation that holds in the Abelian case up to

the substitution of ordinary derivatives by the Mandelstam path deri-
vatives,

It is easy to find with the help of the inversion formula (30)
that on the equations of motion (22) the next relation takes place.

5Bt/ =0,

O e e o —— ¥

that appears here as the generalization of the secondary gmruge con-
dition (18) for the non-Abelian case and has the sense of the secon-
ary constraint as well.

Tne formulae (31) and (32) are valid for any choicé of the path
and in particular for the choice C=C" . Thus, they are
also valid for the ordinary Yang-Mills fields taken in the gauge

(8b), As in the previous case we shaell obtain in an analogous way
firgtly the relation

/// /x)——fo’oéo(//l’ ;)F é"‘d/x 4D+ (33

/6/ ;F); 2/, AD(F)— ?}7 A ;F) j /- /4 (F) (Ff/

is the strength tensor in the Fock gauge, and sSecondly, the expression
) 7 7
— . _ s e ’/Ic) ( 4
/{// (gz)'—' 06604(3 /ﬁ)gf;pcgffi[&;;)/égé /)) 34)
2]

is the gauge-invariant strength tensor

where f//ﬂ é/c’;)

2(2/C;)= ezpl- ‘/7’/0’2/%7/32] Fop(2). o9
m/sv/;f/ 2 02)] .

where the particular ch01ce of the path in the form of the straight
line that connects the polnts’)g and Z is chosen

4B zp), ospes Y

The difference between the tensdrs (35) and (20) consists in
the fact that the integration in the exponents (35) ‘is performe& not
along the infinitely long path but amlong the path C, of the finite
length and arbitrary form. Due to this, the tensor (35) transforms
when the local gauge transformations (12) of the fields /6Ly(cz)are
performed; but those transformations have the global form

7/—/(2/5})/—*&7/})}‘;9/2/6})&]—4&) (37)
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That is why we shall consider the tensor (35) as a gauge-invariant

one only up to this reservgtion.

By analogy with the previous case let us introduce new fielgs :

4 ¥
Bu(Z/0:) =~ el o (- 535 (512 2J2), 0

0
where J§;>(Cé/4;£’) is the tensor (35) with the arbitrary path é}
that connects the points )f and Z . As in the case of the geauge-
conditions (8b), these new fields that obey the gauge condition (8c)
they do coincide with the ordinary Yeng-Mills fields in tgayFock ga—~

. . - 2 6)
uges only at the particular choice of the path CZ; -Caf (36).

With the help of integration by parts and making use of the
antisymmetry of the tensor f,u;/‘ /Z/C}) and of the equation of
motion (22) that is also valid for the tensor (35) we easily find

T (2)C) = 50 By (2/C)- 55 B (x/6;) 9

5/‘/8/@/())=0 (40)

The relation (40) sappears here as a secondary gauge condition. It is
not difficult to see that formulae é?9) and (40) are valid also for
the ordinary Yang-Mills fields /q obeying the primary gauge con-
dition (86) as a particular case corresponding to the choice é} :=€}
in (38)-(40).

In the conclusion of this section let us remind that in our ap-
proach in the non-Abelian case there appears just the same
formalism as in QED, i.e. formulae (29) and (33) do express
the fields in the fixed gauges (8b) and (8c) through a ga-
uge invariant (up to the reservation mentioned before for the Fock
gauge) strength tensor. Thus, those fields defined in the gauges (8b)
and (8c) by formulae (29) and (33) through the strepgth tensor being
considered as the functionals of the primary fields /4 in arbitrary

‘*It is obvious that in the Abelian case the tensors (20) and
(35) would transform into the tensor ) = {,ﬂ; - &2/ the rela-
tion (3§47wou1d trﬁysform intoig well-¥nown inversion for?gli .
; - m
/.Z‘):-/ /&w(x—;gf,},&,‘oc(z}) and (30) wou ransfor

into refﬁtion (Y P sols2)ythat has previously been
derived in /10/. /4,9 ==/ /d&f/l?(x 2)
- 00
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)

gauges are gauge-invariant quantities in the non-Abelion us woell au
in Abelian case. (Here, it should be mentioned that, as 1t iu seen
from (33) and (36), the field in the Fock gauge, in contrast with
the field defined in the gauge (8b), transforms in a global way

AS1AS 2) = k) AL o k)
(19a) over the primary ficlds . Due to the physical boundary
conditions 4//>2)=+ 1 this residual gauge arbitrariness disappear on-
ly in the limit oo . Let us note that in this limit the truno-
letion invariance of the field 4,72 /r=C}) restores; so, this li-
mit can be interpreted as a physical one).

under the transformutions

The property of the gauge iuvariance of the fields in the fixed
gauges is nothing more but the manifestation of the property of the
unique atteinability of the gauge conditions (8b) and (8c) that for
this gauges tuke place for the Abelian as well as for non-Abclian
cases.

In view of this property let us especially stress the next im-
portant feature, If we would like to repeat for the field /%HL (de-
fined in the gauge (8a)) the seme procedure that was used for the
derivation of the inversion formulae (29) and (33) for the fields in
the gauges (8b) and (8c), then due to the fact theot
;&iZQZJ?ZgZ'/féiquZL§Me would not come to the inversion formula.
Thus, we gee that in the non-Abelian case there does not cxisi for-~
mula expressing the field in the Lorentz gauge (8a) through the gau-
ge-invariant strength tensor. So, the gauge condition (8a) in the
non-hAbelien case is not a unique attainable condition in contrast
with the gauge conditions (8b) and (8c). This fact is directly cou-
.tecled with the fact of existence of Gribov's ambiguities that, us
it is well known, exist for the guuge (8a) and from which the gau-
ges (8b) and (8c) arc frece,

CONCLUSIOKR

Tlus, it 1s shown in the present paper that i1 pgauge theouries
the fields (ALelian and non-Avelian ones) after imposing on them guu-
ge condition do satisf; the secondary gauge condiiion. This condition
has the secuse of the secondary constraint because it fulfils the equ-
ulions of :wtion. ‘

lu the following peper we shull whow how this condition cun be
included iuto the system of constiruints at the quantization of Tields




(partly the results were presented in /13/) and to what physical

consrquences it can lead.

The authors express their gratitude to E.E. Kapuscick and
V.V. Sanadze for the interest in the work and valuable discussions.
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Cxauykos H.B., lWeBuenko 0.1.

E2-87-368
BropuuHile KamuBpOBOUHbIE YCJIOBHSI B TEODHH NOJISA

fokasaHo, 4YTO MNOCJEe HAaNOXeHUS Ha KaluBpOBOUHLIE MOJISA
OOHOTO KanMuGpPOBOYHOI'O YCJIOBHA OHH INOOUYHHAKWTCS TakKke BTO—
PUUYHOMY KaJJTHOpOBOYHOMY ycCilIOBHIO, uMewmeMy B K3 dopmy ycmo-—
BHUA JlopeHua. B HeabesneBOM cnyuyae BBeOeH HOBHI KJjacc Kanub—
POBOYHO-HHBApPHWAHTHLIX U KOHTYpPHO-3aBHCuMbIX mojie#i. [lokasaHo,
4YTO HOJIA HUX HMeloT cuny Bce coortHomeHus K3II, T.e. ypaBHeHus
OBWkeHUA, GOpPMyJIbl CBA3M C TEH30POM HAMNDSTIKEHHOCTH H BTO™
PHUYHOE KaJHBpOoBOUHOEe YCIIOBHE H T.O., C 3aMeHOH OOBIYHLIX
NPOM3BOOHLIX Ha NpOHU3BOOHbe MaHpmesnbcTama.

Pabora BrmomiHeHa B JlaGopaTOopuu TeopeTHUeCKOH GH3HKH
Ousn. .

Ipenpunt O6benMHeHHOro MHCTUTYTa ANEPHBIX UccnenoBanuil. Jy6ua 1987

Secondary Gauge Conditions in Field: Theory

Skachkov N.B., Shevchenko 0.Yu. E2-87-368

It is shown that upon imposing one gauge condition on
the gauge fields the latter turn out to obey the secondary
gauge condition that in QED is in form a Lorentz gauge cony
dition. A new class of gauge-invariant and part-dependent
non-Abelian fields is introduced. It is shown that all of
the QED relations, i.e. the equations of motion, the for-
mulae of.the connection with the strength tensor, the se-
condary gauge condition etc., take place for these new
fields with the only substitution of the ordinary deriva-
tives by the Mandelstam ones.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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