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I. INTRODUCTION

Nonlinear D = 2 sigma models with Wess-Zumino (WZ) terms/1’3/
have a wide range of uses in string theories. One of the most impor-
tant applications concerns the strings on group manifolds (see,
e.g./4 and references therein), where WZ sigma models provide a con-
sistent description of group coordinates, ensuring D = 2 conformal
symmetry at the full quantum level. Conformal invariance 1s achieved
with a fixed ratio of the overall sigma model coupling constant and
the coefficient of WZ termlz/. A characteristic feature of conformal-
ly invariant WZ sigma models,is the presence of new symmetry under
two commuting Kac-Moody gauge groups which are realized as left and
right multiplications of the basic group element/z'S/ g:

g’(m‘.‘,L‘\:g‘_(x')ca(m’,.x/)gaCJ‘-*) A %(Tf' =2’y (1.1)

Promoting the group-manifol& string action to a world-sheet super-
symmetric one involves a proper supersymmetrization of conformally
invariant bosonic WZ action.

Superextensions of the group space WZ sigma models explored so
/5=1/ possess N = 1 D = 2 supersymmetry. Internal symmetry of
corresponding actions commutes with supersymmetry, both the bosonic
and fermionic fields are assigned to adjoint representation of inter-
nal symmetry group. At the points of conformal invariance, rigid
D = 2 supersymmetry and internal symmetry are enlarged, respectively,
to infinite~dimensional N = 1, D = 2 superconformal symmetry and two

far

commuting gauﬁe symmetries which are a superextension of bosonic¢ sym-
metries (1.1) . At these points the physical component action is
reduced to a sum of conventional bosonic WZ action and free fermionic
actions/7'5/. Again, internal symmetry enters in a trivial combina-
tion with supersymmetry (now as a semi-direct product). With making
use of general construction of Gates, Hall and Rogek/Bl, WZ sigma
models possessing other types of D = 2 superaymmetry become possible.
However, the bosonic manifolds of these models cannot be immediately
identified with any homogeneous group space and reveal a more complie
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present paper is to introduce a
gsupersymmetric WZ sig-

Their crucial distinctions

Our purpose in the

new wide class of conformally invariant

manifolds. from

the models known previously consist, first, in that they possess in
general N-extended D = 2 supersymmetry and, second, that the bosonic
WZ sigma model one starts with is defined on the automorphism group
S0_(N) x SO+(N) of above supersymmetry (indices + refer to two inde-
pendent light-cone directions in D = 2 Minkowski space). So, internal
symmetry and supersymmetry do not commute even at the rigid level.
When combined with D = 2 conformal symmetry, those close to give in-
finite-dimensional N-extended superconformal symmetry (of the type
(N,N)). The latter is complete symmetry of the model in question for
a given N. The bosonic sector of the model, apart from filelds pa-
rametrizing the symmetric space SO_(N) x SO+(N)/SO(N), necessarily
incorporates the dilaton W(x) (it may possess either free of Liou-
ville actions) and & number of further bosonic fields (for N324). Bo-
sonic and fermionic fields are assigned to different representations
of diagonal SO(N) and constitute an irreducible supermultiplet of N-
extended superconformal symmetry. The fieélds on group space automati-
cally enter with the correct conformally inveriant WZ action because
N-extended superconformal symmetry includes SO_(N) Kac-Moody symmet-
ries/ 9,10/ which prove to be realized on the * elements of coset

SO (W) x Squvy/sow) just by transformations (1.1).

me  models on group

The models we consider have a natural geometric description as
nonlinear sigma models for infinite-dimensional N-extended supercon-
formal groups  Cy, with the quotient spaces C,/50(1.1)x50(N) as tar-
get manifolds ‘(here SO(1.,1) is D = 2 Lorentz group). These manifolds
are parametrized by cébrdinates of N-extended D = 2
by infinite sets of Nambu-Goldstone superfields. The nonlinear reali-
zation techniques combined with the covariant reduction methodlla/
leave us with the finite number of 1+ HLngL essential superfields.
They turn out to be subjected to the universal irreducibility condi-
tions which generalize the similar ones defining "twisted chiral®
miltiplets in N =2 and N =4 D=2 supersymetries’13713+8/,
The physical fields are leading compqneﬁts of these superfields. The
superfield equations of motion also have a universal simple form for

superspace and

any N. They possess a zero-curvature representation on superalgebras

other line of extending cénventional D=2 geometric structures
to an infinite-dimensional case, the construction of gauge theories
for conformal supergroups, is worked out now by van Holten /11/.
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osP@u@, thus indicating that the proposed models are classically in-
tegrable.

Our main incentives are to give a general cheracterization of
the proposed class of sigma models and to study a number of simple
instructive examples. We confine our analysis to the classical level,
A complete quantum consideration will be given elsewhere.

The matter is orgauized as follows. In Sect.2 we construct non-
linear realizations of general N-extended D=2 superconformal symmet-
ry,deduce the superfield irreducibility conditions and equations of
motion,find the transformation laws both of superspace coordinates
and the basic Nambu-Goldstone superfields.In Sect.3,4 specific examples
are considered,fhe new models with N=3 and N=4. These are the first
examples of D=2 superconformal Legrangian field models enjoying sym-
metries with noncanonical generators.We find the relevant component
actions and superconformal transformations leaving these actions in-
variant.In Sect.4 we also discuss the reduction to a special version
of N=4 model constructed earlier by two of us/14’15/. As the new re-
sult, the invariant action for this theory is found.The examples il-
lustrate the most of basic features of new superconformal WZ. sigma

. models.These features are summarized in Sect.5,where we also specu-

late upon a possible contact with string theories and indicate a gene~-
ralization to the case of D=2 heterotic supersymmetry. In Appendix A
we quote the structure relations of general N-extended D=2 supercon-
formal algebra and of its N=3 and N=4 subalgebras.Appendix B treais
the physical on-shell field content of the WZ supermultiplet for ar-
bitrary N.

2. NONLINEAR REALIZATIONS OF D = 2 SUPERCONFORMAL SYMMETRIES

To _construct a nonlinear gigma model for N-extended D=2 supercon-
formal group CN,we take advantage of standard nonlinear realization
techniques augmented by the covariant reduction method/12/.This method
allows one to define the group action in infinite-dimensional coset
spaces doing with a finite number of essential parameters - (super)
fields.The scheme we apply has already been used in/13'15/
N=2 and N=4 superextensions of the D=2 Liouville equation, .

So,let us consider a nonlinear realization of infinite-dimensio-
nal conformal supergroup CN with the superalgebra %—‘K_HIN‘)@I]Q(”” )
(sée Appendix ) in the coset space CufHy, Hv= SO 43 x SOCw). Here,50(1. 1)
and SO(N) are gemerated,respectively,by U=L, l..and T='9, + 9.
(this choice of the stability subgroup will be substantisted later on).
We take for the coset the following perametrization:

to deduce
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(the indexing is explained in Appendix A). Note that we limit oursel-~
ves to a subgroup of complete D = 2 superconformal group corres-
ponding to n> -1, R> - 1/2 (cf./11/). The transformation laws
given below immediately extend to the '‘whole group.

The coset element (2 1) is parametrized by superspace coordina-
tes 2= {x* 27,0 970}, (L] 1.2, #) and an infinite mumber of
Nambu-Goldstone superfields uEy, ‘?U(i) § (2) a, (z)p...Fortu~
nately, by the general theorem of re:f./1 all those can be expres-
sed in terms of a finite set of essential superfields by imposing
proper constraints on relevant Cartan's 1-forms. An inspection of the
structure relations of superalgebra Jﬁﬂr (see Appendix A) from the
stendpoint of aforementioned theorem shows that our choice for the
stability subgroup guarantees a minimal set of unremovable parameters.
These are superdilaton (L(z) and superfields Gfi) which paremet-
rize the coset SO (B) x 80_(N)/SO(N). For further convenience' we
combine them into a single N x N matrix superfield q;J(z)

-u.mI -2: 'f"‘e&) ol i U2y~
q,“*(?-) ) = e gy (2.2)

kL]
where (T )ﬂ)are SO(N) generators in vector representation. The
transformation properties of q?(z) and ¥ can be found by resorting
to the fact that CN is realized in the space cN/HN by left shifts

’ . / 4 -
g 9=9"h";9.€Cu; g,9 ¢ Caly ; W € Hu,\. (2.3)

As follows from the structure relations of fZL (A.5), it suffices to
know the supersymmetric transformations with generators G?i, all
the remaining ones are recovered by commuting those among themselves.
Infinitesimally, they are

ey
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Here r‘ (i 3 are anticommuting parameters-functions and D1 are
covariant spinor derivatives

Lo L iett it pi1e2:892  (3f pil-0.  (2.5)
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General superconformal variation of qi‘.j is of the same form as in
eq. (2.4). Corresponding functions Wid involve as the leading
terms the parameters of induced Weyl transformations and of two Kac-
Moody SO(N) ~symmetries
T

=0
Extension to the whole D = 2 superconformal group having in addition
en infinite set of generators with negative dimensions goes simply by
allowing arbitrary 1nverse powers of x%¥ in the x -decompositions
of group parameters j“ ( h“%x ), etc. Note that the left
end right indices of q?d are rotated by independent groups SO_(N)
and SO+(N). We denote these indices by the same letters with the hope
this will not lead to any misunderstanding.

So far, qij(Z) was not subject to any constraints besides the
purely algebraic ones Eij- q . 31 ”d Si (orthogonality con-
ditions) following from the definition (2.2). To get the dynamical
equations for q we have to carry out the covariant reduction of
coset gpace CN/HN to its subapace OSP(NIZ)/HN. Here , OSB(NlZ) is
generated by diagonal combinations of generators of the left and
right finite-dimensional conformal superalgebras osfa (N12) C K (1[N)

Re =L _(w +m Lz G,-Gi*tméé:

)
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This reduction goes as follows. (iven Cartan's 1-forms defined from
the beginning over infinite~dimensional superalgebra <.

Q=gldg=wtly * G+ (2.7)
one imposes on them the covariant constraint ‘
A
_gl=_gf° € osp(MI2) (2.8)

which means that all the components of L) except for those entering
with the generators of subalgebra (2.6) are equated to zero. Covari-
ance of the condition (2.8) is seen by the following simple'reason—
ing. The only 1-forms among (2.7) that transform inhomogeneously are
those before the generators of Hy=50(1,1)x50(N) . These forms remain
non-zero since Hy'¢ 0Sp(N{2).

From the geometric point of view, the constraint (2.8) reduces
GN/HN to its fully geodesic hypersurface OSP(NI2)/HN. Indeed, any
motions of Cartan's moving frame along the directions orthogonal to
that subspace are covariantly forbidden by eq. (2.8). Note that the
parameter m has the meaning of inverse "“radius" of pseudosphere
50(1,2)/50(1,1) contained as a subspace in 0Sp(N(2)/50(1,1) x SO(N)

« Setting m = 0 in eq.(2.8) gives rise to an alternative reduc-
tion to the flat superspace P(sz)/HN, where P(N|2) , is N-extended
D = 2 Poincaré supergroup with generators { I 4, G:it v, Tidlfol_
lowing from OSP(NlZ) by contraction m -» 0. Covariant reductions
to other subspaces of CN/Hﬁ are as well possiblef However, in all
these cases the number of essential superfields increases. We limit
our consideration to the consfraint (2.8) and its flat m = O version.

Without entering into detailes, we mention that the practical ro-
le of eq.(2.8) is to express all the superfield parameters in terms
of qij(z) and its spinor and ordinary derivatives. PFurthermore, it
imposes the following covariant differential constraints on qij(z):

.

Dig™ gt = 2 sUalqrt

T jm . j Lm _ 2 P e ,em (2.9)
dD.9q D9, = 2 g9 D9
and .
. . ‘-_‘ 3 4 .
g DE ) im0 8T s ). (2.10)

For completeness, we have written down also the nonlinear orthogona-
lity condition for q: ‘

. . ey e im ) ¢ L gim -2
cﬁJf*J =q/J"q,J”'—.‘; $ (q,ke‘{,k y=8"e . (2.11)

It leaves in g9 just 1 + LA=T

nents in agreement with eq.(2.2).

independent superfield compo-

The superfield system (2.9)~(2.11) defines the sought nonlinear
sigma model for N-extended D=2 superconformal group CN‘ Dynamics' is
concentrated just in eq.(2.10) which incorporates correct equations
of motion for physical component fields (see below). Constraints (2.9)
are the kinematical irreducibility conditions.It is a éimple exercise
to check their compatibility with eqs.(2.10). For m # O,they can be
independently derived by applying spinor derivatives on both sides of
eq. (2.10). Remarkably, they do not imply this equation, i.e. are ful-

- filled off-shell and in fact irrespective of specific value of m .

This leaves a room for constructing more general sigma models on the
basis of qij (with, &8 well as without, conformal invariance). These
constraints directly generalize the Grassmann analyticity conditions
of N=2 and N = 4 cases/13'15’8/, which single out there the rele-~
vant analytic representations ("twisted chiral" by terminology’ of
ref.ls/).

Exposing an irreducible off-shell field content of - for ar-
bitrary N is technically hard problem. Here we explicitly solve it
only for N { 4. On the other hand; onrshgll and with m = O0.this ana-
lysis becomes much simpler and can be brpught to the end for any N.
By continuity in m, the result equally applies to general situation
with m # 0. ‘

oo f

Equation (2.10) for m = O can be easily solved®:

. ; (2.12)
i@ = gt g e, |

PR ¢ . 1
where the left- and right-moving superfields qi‘ and qﬁe comprise the
multipiets of two independept light-cone components of supergroup CN,
Inserting this general solution in the system (2.9), one split§ the
latter into a pair of unrelated equations:

#®Superfield solution (2.12) encompasses familiar classical solu-

tions for the free field u(x) = w(2) and for the WZ field .
qOMJ(x)E ‘Lw‘“‘z‘)‘9=o : / )

~t ~ml 3l /2
UEY=U (=) s+ Up(E") ,q,o-’ ) =‘LVC° &) Y. @=*)
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Both equations are identical by form, so it sufficies to study one of
them, say for i (Z"). As is shown in Appendix B, qie(z ) con-
tains in general (2]\H ZN") independent components. Their array
starts from a SO_(N) -singlet W (x") and further includes the com-
ponents with the following type of symmetry:

fB + L. 1—%\”, (2.14)

where the even and odd numbers of cells correspond, respectively, to
bosons and fermions (in the special N = 4 case a further reduction
is possible, see Sect.4). In general, only 1.+ gﬁg:ll - bosonic and
N + 3¥%N:3TT fermionic components entering q J as coefficients of
zero and first degrees of Grassmenn variables have from the beginning
a correct physical dimension (cm® for bosons and cm-1/2 for fermi-
ons). Starting from N = 4, physical fields appear also with higher
degrees of 6 . So,to achieve physical dimensions one is led to take
appropriate degrees of derivatives 9— off these fields (respectively,

D4 off the right movers), that is to pass to "potentials". The ne-
cessity of passing to potentials roots already in the off-shell con-
ditions (2.9) which for N =24 eéntail the notoph type differential
constraints on the higher dimension components., For N = 4 such a
constrained is easily solved in terms of potentiel of physical dimen-
sion(Sect.Q} However for N>4 solving them may be a matter of serious
difficulty (due to the explicit presence of the WZ field

e = Qv
‘iv.l (xy=9 (Z)l«;::n these constraints).

Before turning to the examples we mention an important property
of the system (2.9), (2.10), its ¢laasical integrability. This system
is equivalent to the zero curvature condition for the OSF(N\Z) valued
1 -superform L)_°J(2 8) and therefore can be 1nterpreted as the com=-
patibility condition for some matrix linear problem. To see this,recall
that the original 1-superform £ (2.7) by construction satisfied the
Maurer-Cartan equation on the whole infinite-dimensional superalgebra
5&.: This causes the reduced 1-form S)F‘J to satisfy an analogous
equation on superalgebra OSP(N\2) (2.6). The existence of zero-cur-
vature representation for the system (2.9), (2.10) means that the lat-
ter can be explicity solved for any value of parameter m . Further

discussion of integrability aspects is beyond the scope of present
work.

3. EXAMPLES: N = 1,2,3

N = 1. In this simplest case indices 1i,j take only one value
1, and the euperfield q"j involves one component q''(B) = e—M(Z).
Constreint (2.9) is satisfied identically, eq. (2.10)‘;5 nothing else

than the N = 1 supersymmetric Liouville equation/17/.

. -
th- w =wvme

N = 2. This model posaesses abelian internal symmetry SO (2) x
x 80_(2). Correspondingly, gq 3(2) is a 2 x2 matrix:
ot 2 W6, (13 o U3 pquations (2.9), (2.10) take the
most readable form with making.use of the complex U(I)-notation:

Di(k+if)y=o, D (Uri¥)= 0 (3.1)

_ . —Uu tL Y
DD, (Uu+iw) =-Uime (3.2)

- - 2
}t:])‘t +;.‘D?.;._ Dt =‘D;—gD-:_.
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Constraints (3.1) are Grassmann TU(I) -analyticity conditiona/18/-and
eg.(3.2) 1is N = 2 supersymmetric Liouville equation/13/. In this
case there appears for the first time a prototype of the Wz field,
the scalar field V¥ (x) = W (2) o=o coordinatizing the coset SO+(2)
x S0_(2)/S0(2). In the limit m .= O, when Yukawa couplings to fer-

mions vanish, this field becomes free 1

N = 3. It is the first model with the nonabelian internal sym-
metry group SO+(3) x S0_(3) and, corregpondingly, with the WZ action
in the bosonic sector. Purthermore, it is the first example of D = 2
Lagrangian model respecting invariance under superconformal symmetry
which has noncanonical generators in addition to the canonical ones.

To igveal the off-shell irreducible field content of N = 3 super-
field q J (1.J = 1,2,3) we take advantage of the projection method.
The constraint (2.9) leaves in qi'1 8 + 8 independent components:
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(this definition is most convenient though not unique). The fields
A(x), Be(x) are auxiliary, they are eliminated by the dynamical
equation (2.10)

~2u (=) ¢ _
Axy=-3me , B(X)=0 - (3.4)

For ‘the physical fields eq.(210) yields the following system:

2.(4.'2.9 \J—Lm[w N ARRCX D L -a
-2U
PP u=ime (‘f’_q‘,‘f}) rmte (3.5)

- y’fj = m (¥ %)Je-u ) - Xy=0
. :-u
’34—"‘/—":"”’(?{»%)6 » P+ X=0-

Its bosonic sector embodies the Liouville equation for dilaton u(x)
and the equations of conformally invarient WZ sigme model on the
coset space SO+(3) x S0(3)/50(3) modified by Yukawa couplings with
fermions. Thus, in the framewprk of this model there comes about at
once N = 3 supersymmetrization both of the Liouville equation (or
the free one for m = 0) and the equations of conformally invariant
50,(3) x SO_ (3)/SO(3) - WZ sigma model. It is worth remarking that one
m@y put m = O in egs. (3.5) without losing auy invariance properties
of them. Couplings with fermions are switched off in this limit (simul-
taneously with vanishing of the potential term of dilaton), and the
system (3.5) splits into the pure WZ sigme model equation and free
equations for dilaton and fermion fields (this phenomenon is quite
analogous to the trivializationm of ordinary N = 1 supersymmeiric

WZ sigma model at the points of conformal invariance 5’7/).
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Equations (3.5) are derivable from the action
d- \Ax{igu’au+_m(% 9%)+

t’mha 1G98 (393, - e - ;
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B L I ST
where G (t = 1) 79, q(t = 0) = I. It is straightforward to
check that the kinetic and potential parts of (3.6) are invariant se-
parately with respect to the N = 3 superconformal transformations
(for simplicity, we write down merely supersymmeiric transformations
from the right component of C,): L.
FEg S i en (L6 - g gk,

Su =-ipaEn s, o ,

Syl =,k x‘)nr“‘w\e S ¢ GUagaptien Sau g 0?357)

S =-miytieEn e, Sromo -

Sl{ -v+($‘)"_ r*k(:l‘.*)ék”(q“ ?*(I'VY'J x g‘*k(x*) E, J ‘1’ YJ «
As was already mentioned in the preceding section, realization of the
remaining 03 ~-transformations can be found by commuting (3.7) among
themselves. Note the presence of additional 50 (3) - singlet spinor
parameter V), (x*) 1in (3.7). The coefficients in its x¥ -decomposi-
tion are group parameters associated with an. infinite set of noncano-
nical spinor generators present in N = 3 superconformal elgebra- -
(see Appendix A). Respectively, under the action of these generators
the field 'X4,and its derivatives of any rank undergo pure shifts and
have thus a meaning of Nambu-Goldstone fermions corresponding to spon-
taneous breakdown of these noncanonical supersymmetries (an analogous
interpretation is valid as well for X_. which is shifted under the
action of noncanonical generators from the left branch of C;). It
should be stressed that all other fields in the action (3.6) are also
of the Nambu-Goldstone nature, just as in ordinary sigma models. These
fields ‘and an infinite set of their x-derivatives enter as leading
components into the superfield parameters of infinite-dimensional quo-
tient space C /H3 (with the inverse Higgs phenomenon constraints
taken into account). The group-theoretical meaning of fields u(x)
and _qij(x) is obvious. The fields 4’” , ¥J and their derivatives
of any rank are group coordinates associated with an infinite set of
gpecial conformal supersymmetries whose constant parameters appear as

11 '



coefficients in the x -expansions of functions j“*LQIf3 and
':(1'3 (starting from the linear terms). An analogous situation
persists in models with higher Ny,

To complete this Section we quote the coupling constant quanti-
zation formula needed to make meaningful 2,3/ the quantum theory as-
sociated with the action (3.6). With our normalization of the Wz term,
the quantization condition is as follows

2
LS Ry ) (3.8)
&3 »

where K is an arbitrary integer, K & Z .

4. N = 4 SUPERCONFORMAL SIGMA MODELS

The case N = 4 is distinguished in that it admits two nonequi-
valent infinite-dimensional superconformal algebras ~§( and ;9;
having, respectively, oOsSpP_(4i2) ® o0sp,(412) and SU_T244, H®

® Su.(2!4,1) as the maximel finite-dimensional subalgebras 4 (see
Appendix A). The second superalgebra is minimal in the sense that all
its generators are canonical (just as in the N = 1 and X = 2 cases).
It forms a subalgebra. of the first, more extensive, N = 4 superal-
gebra. The latter involves ir addition an infinite set of noncanoni-
cal bosonic and fermionic generators and is a straightforward exten-
gion of N = 3 superalgebra treated in the preceding Section. The
superconformal sigma model for the superalgebra of the second kind,

- with the W2 - SU_(2)x S(),(Q)/SUUI)-sigma model in the bosonic sector,

was constructed by two of us (E.I. and S.K.) in/14 15/ (it was called
there the "N = 4 supersymmetric Liouville equation, because at m£0O
it incorporates, just as its N<3 prototypes, the Liouville equation
for dilaton). Here we construct a sigma model for the N = 4 -super~
conformal algebra of the first kind, discuss its peculiarities and
reduction to the N = 4 model studied previously.

In accord with the general algorithm of Sect. 2, we ghould cova-
riantly reduce the space CL,/Hq to its finite~dimensional geodesic
subspace ()SP(QIQ)/HH‘ Specificity of this case is the presence of
one-parameter family of diagonal superalgebras

“
t
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Equations (3.5) are derivable from the action

ng{i'bu’aud—m(_’a,’ 9$)+
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where ’i’o(t =1) = E{o, ?;‘o(t = 0) = I, It is straightforward to
check that the kinetic and potential parts of (3.6) are invariant se-
parately with respect to the N = 3 superconformal transformations
(for simplicity, we write down merely supersymmetric transformations
from the right component of 03) L.
G20 83,)5 = -1 My (1, €9 Je W Sg ),

S,_,( :-op*k(x*)\t’k

Sw; Jaw*"cx*yur“‘w\e S C@anaiptien <ot iE,

Sye ~-mc1,”k rhexrye ™ , $x.=o0 G.7

S 14 —vf(fﬂ*)" r*k(x“) Ek”(ﬂm 74‘%
As was already mentioned in the preceding gection, realization of the
remaining 03v-transformations can be found by commuting (3.7) among
themselves. Note the presence of additional SO (3) - singlet spinor
parameter 9+(x+) in (3.7). The coefficients 1n its + _decomposi-
tion are group parameters associated with an infinite set of noncano-
nical spinor generators present in N = 3 superconformal algebra
(see Appendix A). Respectively, under the action of these generators
the field 'x4_and its derivatives of any rank undergo pure shifts and
have thus a meaning of Nambu-Goldstone fermions corresponding to spon-
taneous breakdown of these noncanonical supersymmetries.(an analogous
interpretation is valid as well for Y. which is shifted under the
action of noncanonical generators from the left branch of C;). It
should be stressed that all other fields in the action (3.6) are also
of the Nambu-Goldstone nature, just as in ordinary sigma models. These
fields and an infinite gset of their x-derivatives enter as leading
components into the superfield parameters of infinite-dimensional quo-
tient space C /H3 (with the inverse Higgs phenomenon constraints
taken into account). The group—theoretical meaning of fields u(x)
and qoj(x) 1s obvious. The fields 4’“ , Y7 and their derivatives
of any rank are group coordinates associated with an infinite set of
special conformal supersymmetries whose constant parameters appear as

_E g.‘k(;x:*) ks ‘1’,.5 vy
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coefficients in the x -expansions of functions f‘” (x*)  and
jq"‘ (x*) (starting from the linear terms). An analogous situation
pergists in models with higher 2

To complete this Section. we quote the coupling constant quanti-
zation formula needed to make meaningful 2, the quantum theory as-
sociated with the action (3.6). With our normalization of the WZ term,
the quantization condition is . as follows

2
5‘&‘ =4, (3.8)
8

where K is an arbitrary integer, K € Z .

4, N = 4 SUPERCONFORMAL SIGMA MODELS

The case = 4 1is distinguished in that it admits two nonequi-
valent infinite-dimensional superconformal algebras % and ‘?
having, respectively, oOsSpP_(4i2) ® oSp,(412) and SU_(214, H®

® Su;(?_ll,() as the maximal finite-dimensional smbalgebrets/9 (see
Appendix A). The second superalgebra is minimal in the sense that all
its generators are canonical (just as in the N = 1 and N = 2 cases).
It forms a subalgebra of the first, more extensive, N = 4 superal-
gebra. The latter involves ir addition an infinite set of noncanoni-
-cal bosonic and fermionic-generators and is a straightforward exten-
gion of N = 3 superalgebra treated in the preceding Section. The
superconformal sigma model for the superalgebra of the second kind,
with the WZ - SU_(2)x Svft‘z)/su(')_) -sigma model in the bosonic sector,
was constructed by two of us (E.I. and S.K.) in/14 15/ (it was called
there the "N = 4 supersymmetric Liouville equation, because at m£0
it incorporates, just as its N<3 prototypes, the Liouville equation
for dilaton). Here wé construct a sigma model for the N = 4 super-
conformal algebra of the first kind, discuss its peculiarities and
reduction to the N = 4 model studied previously.

In accord with the general algorithm of Sect. 2, we should cova-
ri&ﬁtly reduce the space Cq/Hq to its finite~dimensional geodesic
subspace OSp(lH’D/H.(. Specificity of this case is the presence of
one-parameter femily of diagonal superalgebras

a
i
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osp (412) in Y, = K_(1u)y ® K (uq)

OSP(J)(L('Q—) - {Qt\JU,TLJ‘ G—L: \k

(:)=L-«+. rwt (Lig v oL 443 (4.1)

Lu) G-L+ *m (G—Ai+ - o ﬁ“\

Though the general construction of Sect. 2 corresponded to the choice
of oL = 0 in eqs.(4.1), it can be easily adapted to the case of J/#0O

too (the equations of motion undergo a minor modification). For speci-
al velues o = +1/2, the generators of one of two SU(2)'s contain-
ed in S0(4) =< {T“J} drop out from the r.h.s. of basic anticommuta-
tor {G—, ,G-Jk and superalgebra (4.1) contracts into swi(2(i,1).

The latter enters as a subalgebra into the minimal N = 4 supercon-
formal algebra ;?: (eq. (A.10) in Appendix A). This fact will be

used later in discussion of the relation to the previous N = 4 mo-
del.

For the time being, our consideration will not be confined to
any specific value of o/ . After covariant reduction of &4 /Hy
ol
to 03/3[ )(llll)/HH , the basic superfield
. . okl gk -
"_‘ - :1" 2L ‘P '{'- vl
C‘/J = (Q 3
(t«e Y are 50{4)-generators in the vector representation) sa-
tisfies the following system of equations

T [ : e 3t
S}»C},Jk+3>f1, N A

;«k ;_.- [N 4 (4.2)
|52 GEaniq = 5 EIDIY
A . [ A . ck k€
.-b:(al-(ll: $3~‘2=Lm(gk 9 + SJZCL o S (4.3).
c2o e58q YY)

Comparing eqs. (4.2) and (4.3) with the general system (2.9), (2.10),
one observes that the equation -of motion has been slightly modified
whereas the form of off-shell irreducibility conditions remained un-
changed. Note that,as before, q,J transforms under C, according to
the general tra.nsformation law (2.4).

13



Let us turn to the component a.nalysis of eqs.(4.2) and (4.3).
Constraints (4.2) single out of (V.J an irreducible supermultiplet
16 + 16:

g9 =e’qi | A IO S i
Lj: Tkl mk ¢ .
2} &"’ fi’ D E; i(]) “, )

134
A<|' =’}: z-»: % - - . ae (_ . e
- . ra_A‘.—(»fA-‘o Yo £‘Jk _‘.:DJ k
=Dz & (§:9)
=S

wk_ m
=q7przt
=9 D" g%

Like in the N = 3 case,the independent component fields are the

© = 0 parts of these superfields. The eight fields B" , F . and
'G are auxiliary; theése enter the & - expansion of Ct."'J as coef-
ficients of the monomials ~ .©'0~ . Among the physical fields there
is a vector field At () which is subject to the differential cons
traint '

DA (®) - PeA(=E)=0O (4.5)
following (after some algebra) from the superfields constraint (4.2).
So, Ay (X)actually describes one degree of freedom off-sghell (cf. no-
toph in four dimensions). The general solution of eq.(4.5) is 'via e
S0(141) ~-scalar field Y(x) of dimension cm®:

Ay () = P2 90=) . C L (4.8)
Thus, the irreducible manifold of bosonic fields consists of 8 phy=-
sical fields (two real SO, (4) —singlets uee) , Yex) and six real
S0, (4)xS0_(4)/80(4) —parefeters ¢L%? () and 8 auxiltary fields
(two real 80,(4) -singlets F , & and six real fields BT (Y
forming the fwo-rank skew symetric tensor of SO (4)‘9) The fermionic
sector comprises 16 fields of physical dimension om ffa which fall

#In the present model, any tensor representation of SO (4) is .
equivalent to that of SO (4) due to the existence of a "bridge" Q"J
relating vector indices &f SO (4) and SO, (4) to each other. Our con-
vention on the representation”content of*fields ensures the most
simple form of invariant actionm.

14

:z.nto_two vectors of SO+(4') (g: R g: )‘and two vectgrs of SO_(4)
gt

The equation of motion (4.3), when rewritten in components,

amounts to the system
Bij =0
22k

-2
\lG- —l-lme

; . it : e
2 (3 2,4)4 =i m | (23 ES e gyisi-assFa e le”
' D,d- U mﬁ’e.-?'u +im (E-%'EQ ¥

M

'34.'3_'U=O
. AL mU -

R_E = m(2.9)e (4.8)
. e Lo~

2,55 =-m(q TN ¢

- r(,:‘ =0

DO+ 'l_: =0 >

where

2 (zh +d35)

[}

i

I S CAR TR

(4.9)

and eqs. (4.7) were used in the process of dériving the physical equa-
tions (4.8).

It is advantageous to rewrite both the system (4.8) and the ori-
ginal equations (4.2) and (4.3) in the 1sospinor two-component nota-
tion using the isomorphiam $0,(H) x SO_(¥)~ [Su, (.’l\] [ su.(2)}*,

Any vector index of superfield q,f'd , spinor derivatives, sp:mor
coordinates, etc. must be substituted by a pair of SU(2) -doublet in-
dices according to the rules#)

)Our ():onventions are as foilows (both for ordinary and underlin-
ed indices — 2 24
(c&\ G=4,4,2,3)" “ G“‘“), i S =-4,
’ = & - -
P Ea. SP P;_s‘ -s,'gd‘l:a“FSF = £ 5¢% == (T )ya .

Here (& )"g. = (v‘ g2,93)g" = (T)aP are ordinary hermitian Pauli mat-

rices, symbol (- )means complex conjugatiion. Elsewhere SU(2)-indices

are raised and lowered w11h the help of inverieant tensors £*8 , C.Jis
£%€ and &8



A‘L_)A.m_f: (G ).,m. ACYAL L= E‘P . Ada.A_p@ ACA"

(4.10)
a [4 s
BT gt e 8% Bua 2 £yg £0g BT BF = BTES

t

where ordinary and underlined indices refer, respectively, to SO (4)
and SO_(4).

Keeping in mind that the SO_{4) x S0, (4) matrix superfield
q’-& ,-l‘\_q, &,da o Y can be represented, without loss of generality, as

~AAd Jda

(‘,—-— ]

= qrt.qr* (4.11)

and passing further to components with doublet indices, one finally
rewrites the system (4.8) as

CR (1—4“-'34'1'.4. )"" N (H'?-o‘-\)g_Q %zga_(q'(._.s ZP "qlu* gta) Q.
A A S AL AT RS TS A Ji D

-2 . AL~ ~ da
R¢-U =mre M imE T 4 9,005

D+HD-V = O

AEEE - m T2 T e (4.12)
-55%= mE2%*q 17,4 " .

denit=o0

-3 =0,

These equations follow from the action

2 SJlx,{{;_-_’B;u'a-u - %‘ §¥'a_§+ —;2_ §_r)+§— _ '_;{'.- 6-2‘4_

. 4a " A - 4 1 I3 e T
, —tmE qlzga%4éd. itae‘ ’1 + ‘_q¢1L19+v9 1.’1* Vl+

| i

w'%. ~ 1 W/iv ~

- L Vl ')o-*l £ (iz.) M ¢ +24) < (i')’} ’ ‘
1 zu -24) i 2 : (4.13) I
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ings with the common set of spinor fields E:a’

L2 G) - (0T 25)e fo/m{~'~ PG 2F) =+ =) ]

(Ft=0=F , § t=03-1), Lg1= e

Transformations of .N = 4 superconformal symmetry which leave (‘4.143)
invariant can be found by the general recipe, starting with the rea-
lization of Cy

as left shifts in Cy [y, and substituting the exp-
ressions (4.7) for auxiliary fields. We restrict our presentation here,
like in the N = 3

case, to giving supersymmetric transformations
from the right branch of Cy

G sqyP-tlenan (g gt L) - o

’lm ‘S"}a a}
;4 S%)d’= %‘i“_zq(rungf‘_‘_rus ;:d) +r4 a ’14,,‘ *S‘ ‘l*’& 1
Su "’:‘S‘“m Traa

Sv=-t S“hm 2o

SE‘::—r"La(‘%. "%"2. :'_rf ((1’4 9"%\}
+ab P

. 480 4-(&
"‘2.""‘(f" §49 Ei% r L ) g*?)‘ (r ’209 E“, f* ’Z"‘s E*P\)

3'li¢=-(“9~*)rt“(‘ci;'?*%: s -2 L) P ?{,’,"a,q,bf —;«

(‘ l{&"’)l Pa‘§¢9§+e J‘:“g+8 g;—}} +2.&'34S4
-5l “7@1;’2 LI R e
$32%--m 3 9% §ge e

Svtf&= o,

rela ety ST =V E).

Let us outline the main features of the model specified by eqs.
(4.12) and {4.13). Its bosonic sector involves two WZ sigma models
defined on two independent spaces SU+(2L)xSU_(2)/SU(2). These models

are interrelated solely via the fermionic sector due to Yukawa coupl-

9+M f'f)e-j“

T (4.14)

and Ef% . In the
bosonic sector one finds also an additional scalar field V¢x)
Though the latter possesses the free action for any m

, its presence
is necessary for N=4

superconformal invariance of the whole action
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(4.13). Again, all the fields involved are of the Nambu-Goldstone
nature, In particular, A4 (o) =D+ Y(x) are C—'u/nq coset para-
meters associated with the noncanonical vector generators present in
superalgebra %, (Appendix A, eq. (4.8)).

+

Just as in the N = 3 case, at m = 0O all the nonderivative
couplings vanish, and the action is reduced to a sum of two bosonic
WZ actions, free actions of scalars U(x), /(<) and free fermionic i
actions. '

FPormuld (3.8) for quantization of the overall coupling constant
is now modified due to the presence of two independent WZ terms in
the action (4.13) with an additional free parameter o . The quanti-
zation conditions involve two independent integers Ky ;Kgq

2 2 hm 2 - 4n . ’
42 (4-24) = 474 +2+4) . (4.15)

For  # + 1/2 these conditions emount to

R I N w= A Kok (4.16)
27 T Ky Ko ) 2 K.+ Ka

while at the singularity points &L =4 1/2, respectively, to

2y . 2
a) K,—> =, j—:n=?;_ ; b)"z"”)%a:i‘" (4.17)

In the rest of this Section we discuss the relation to the N-= 4
model constructed ea.r11e1/14'15/

~ Our starting points in/14’15/ were minimel N = 4 - superalget;ra

% and its covariant reduction subalgebra su’.('.z,li,*l). As has been
already remarked, this Su(214,4 ) corresponds to the choice of « =
1/2 or d = -1/2 in generators (4.1) (depending on the way one
singles out 3 from .V ). Thus, to descend to the model of refs. /14,

from the one given here we should put, e.g., = 1/2 in the

equations of the latter and simultaneously reduce initial C'z, —symmetry
to symmetry under supergroup C‘, with the algebra Jy . This is achie-
ved with the following anstitzé for g=%, 2 .

da, s ad oo

£ 27 (4.18)
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Employing general q/ —transfomtion law (2.4) one may check that
the ansatze (4.18) breaks C, down to semi-direct product of Cq
and diagonal SU(2)-subgroup of those two SU(2)'s from S0_(4)x50, (4)
which act on indices @ , @ . This diagonal SU(2) gives rise to
purely global rotations of Grassmann coordinates and the related com-
po’{zlent fields in q,é‘* . Two other SU(2)'s fall into supergroup

C, and extend as before to Kac-Moody gauge symmetries.

Substitution of (4.18) into egs.(4.2), (4.3) yields the self-
congistent system of equations for Clli""

Diq 8 +ntqre

IR e L St : (4.19)
v 4 Bx . 28 ve oy
:D%&[.(‘l;()'ﬁ P -2im 57597 (4.20)
where
e_ 1 L 1\« € ‘ da 4 4 i\2&
']):5—2_},_(« Y , DE¥= DIy
Let us set '
al <
i =2d . DI =
i =) . pi* =22

lex doublets of SU (2) < C4 . Then eqs. (4.19) and (4.20) take the
same form as those in/ 14,15 « In particular, the irreducibility cons-
traints (4.19) become .

— o
which amounts to regarding real coordinates 4% ana & T% o Gomp-

28 _ ¢t 8Ye

) q, 4 , D ci/—3 =0 (4.21)

£e

(by the reality property C}.L =-&uplgo Y » the same conditions
hold with ])+ Yo It is worth mentioning that the supermultiplet sub-
Jected to the constraints (4.21) has been.independently invented by
Gates, Hall and Ro%ek’® in searching for new D = 2 sigma models
with extended supersymmetry (it was called "twisted chiral N = 4
multiplet™). These authors used a bit different definition of spinor
derivatives leading to & more intricate form of the constraint. The
explicitly S0_(4)xS0_{4) -invariant form (4.19) has been given for
the Pirst time by Siegel/ 19/
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The supiffleld condition (4.18) in application to physical com=
od,a

ponents of %ﬁ = amounts to
~ aa
o @ = wed=0 , ("= 2% z0 . (4.22)
Relabelling the fermionic components as
dd _ Nk 41 o
€, =X ) ToT= v )
a2 T4 A 3 $2_§* - &}’(‘*’ )
§0- =Xy = ?(1’)1 - Y- =

and choosing ol = 1/2 in the action (4.13) (this choice is implemen~—
table only when followed by eqs.(4.22))one finds the reduced action

- (L L R g e

~ - — d A~ W.E. o~ .
_lm(Y_éi‘l'}(_*,*—V_ ?«ZLQ*%X (?,‘\:l (4 :2'3)

which reproduces the component equations obtained in/14’15/. Quanti-
zation of the coupling constant *2‘ is given by formula (4.,17a).

Finally, we note that an alternative reduction to the N = 3
model of Sect.3 is effected, on the comporent level, by choosing

ok = 0 in (4.13) and setting (with unessential numeric coefficients
_ignored)

gt et ity e aan

)

5. DISCUSSION

For reader's convenience, we 1list now the most important peculi-
arities of the proposed new class of superconformal W2 sigma models
with focusing on its distinctions from the type considered previously

75,6/,
(a) These nonlinear sigma models are defined on coset manifolds

ot N -extended D = 2 conformal supergroups. Though the number of
coset parameters is originally infinite one succeeds in imposing co-

20

variant constraints on them so as to leave in game a finite set of
parameters which are identified then with the physical bosonic and
fermionic fields. The internal symmetry group of underlying bosonic
WZ sigma model for a given N is SO_(N) x SO+(N). It enters the
whole supergroup in a nontrivial way and does not commute with D = 2
supersymmetry being the automorphiam group of the latter.

(b) The manlfgld of physical bosons for a given N 1is the pro-
SO-W) XSOy (W) - -
duct My, x 7 » My, being a Dy -dimensional Eucli
dean space with

D, =2 - ”_(‘_’i‘_‘) (5.1)

(the bosonic manifold dimension is determined by counting the pairs
of independent bosonic left and right movers, for details see Appen-
dix B). Among the fields with values in *ATbk, one always finds the
dilaton W(xY . The remainder transforms according to real repre-
sentations L (k =4,6,0e0, 2[%1 , A= 2) of S0_(N) (or,
equivalently, of SO (N), see footnote on p. 14).

(c) On the classical level there arises the relation between the
parameters of bosonic WZ action needed to maintain conformal inva-
riance in the quantum case. This is owing to thé presence of two com-
muting SO+(N) - Kac-Moody symmetries in the underlying N -extended
superconformal symmetry.

(d) The complete sigma model -action may include potential terms
which are superconformally invariant on their own and neceassarily in-
corporate the Liouville term for dilaton. Thus, the models in ques-
tion can be equally viewed as.higher N superextensions of the Liou-
ville theory., Note that in the standerd D = 2 sigma models with ex-
tended supersymmetry an invariant introduction of potential terms be-
comes possible only after extending the original superalgebra by cen-
tral charges (see, e.g.lzo ).

(e) For any N these models are classically integrable. Their
equations of motion are equivalent to vanishing of curvature of cer-
tain 1-superform (with values in OS%J(A’lZ) or su(2j1,1}).

(£) The N=3 and N=4 models (3.6) and (4.13) provide us with the
first examples of Lagrangian field theories which possess D « 2
superconformal symmetry having among its generators the noncanoni-



cal ones. These models are self-contained (at least, classically),
all the involved fields have the true physical dimension and 50(1,41)
-welghts and enter the action with correct kinétic terms. It should
be pointed out that noncanonical symmetries in the present case are
spontaneously broken, in contrast, e.g., with the standpoint of/9/
where those assumed ‘o be unbroken. It would be interesting to inqui~
re the quantum structure of these models, at least in the limit m =
0 where the standard techniques of refs./8'5'21/ are applicable. This
would allow to test them for quantum self-congistency and, in parti-
cular, to evaluate the central terms (if exist) in corresponding
quantum commutators of superconformal charges., .

There remain many other things still to be completed, such as
solving of general constraints (2.9), (2.11) off-shell via proper un-
constrained prepotentials and finding the relevant superfield actions.
This can hopefully be done in the framework of the harmonic superspace
approach/22/ that proved to be most adequate for handling extended
supersymmetries. However, as mentioned in the end of Sect.2, the cons-
truction of.invariant actions for XN >4 may encounter troubles relat-
ed to the appearance of the notoph-type differential constraints off-
shell, These are necessarily required in order to ensure a correct
number of off-shell bosonic degrees of freedom but in generel may
have no lacal solution via potentials because of nonlinearities in
WZ fields (as distinct from the simplest N = 4 condtion (4.5)). A
possible way out is, of course, to implement them in the action with
the help of Lagrange multipliers.

An interesting development would be the generalization to the
case of D = 2 heterotic superconformel symmetries of the type (N,M),
N # M. An immedlate heterotic analog of our square N x N -matrix
superfield QEJ(%) is a rectangular N x M -matrix superfield qu(?\
(LE 1,000 N3 j = 1,... M) depending on coordinates (axt, o * 911)
and subjected, by each of its indices, to the constraints of the type
(2.9). The dynamical equation (2.10) is also generalized in an obvious
way, The WZ fields will parametrize the nonsymmetric coset SO0_(N) x
xS0, (M)/S0(P), P = min (N,M).

’

We end with several comments concerning a possible relation to
string theories. As is known, any conformally invariant D = 2. sigma
model can be regarded as a candidate for string theory, bosonic or’
fermionic (with proper Virasoro-type constraints added) What sort of
fermionic strings could be associated then with the models constructe
ed here? These strings should possess extended D = 2 superconformal
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variant constraints on them so as to leave in game a finite set of
parameters which are identified then with the physical bgsonic and
fermionic fields. The internal symmetry group of underlying bosonic
WZ sigma model for a given N is SO_(N) x SO+(N). It enters the
whole supergroup in a nontrivial way and does not commute yith D=2
supersymmetry being the automorphism group of the latter.

(b) The manifold of physical bosons for a given N 1is the pro-

So-(”) X SOQ—C/V) A4 _
duct Mp, x ey ? M, being a Dy ~dimensional Eucli
dean space with

D, = 2”—( M) (5.1)

w

2,

(the bosonic manifold dimension is determined by counting the pairs

of independent bosonic left and right movers, for details see Appen-
dix B). Among the fields with values in N\DA, one always finds the

dilaton txun\ « The remainder transforms according to real repre-

sentations L (k =4,6,0.., 2[51 , A= 4) of SO_(N) (or, °
equivalently, of SO+(N), see footnote on p. 14).

(c) On the classical level there arises the relation between the
parameters of bosonic WZ action needed to maintein conformal inva-
riance in the quantum case, This is owing to the presence of two com-
muting SO+(N) - Kac-Moody symmetries in the underlying N -extended
superconformal symmetry.

(d) The complete sigma model action may include potentiai terms
which are superconformally invariant on their own and necessarily in-
corporate the Liouville term for dilaton. Thus, the models in ques-
tion can be equally viewed as higher N superextensions of the Liou-
ville theory. Note that in the standard D = 2 sigma models with ex~
tended supersymmetry an invariant introduction of potential terms be-
comes possible only after extending the original superalgebra by cen-
tral charges (see, e.g./20 e

(e) For any N these models are classically integrable. Their
equations of motion are equivalent to vanishing of curvature of cer-
tain l-superform (with values in 0SP (N [2) or sw(2i1,1)).

(f) The N=3 and N=4 models (3.6) and (4.13) provide us with the
first éxamples of Lagrangian field theories which possess D« 2
superconformel symmetry having among its generators the noncenoni-
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cal ones. These models are self-contained (at least, classically),
all the involved fields have the true physical dimension and S0(141)
-weights and enter the action with correct kKinetic terms. It should
be pointed out that noncanonical symmetries in the present case are
spontaneously broken, in contrsst, e.g., with the standpoint of/9
where those assumed ¢ be unbroken. It would be interesting to inqui-
re the quantum structure of these models, at‘least in the limit m =
0 where the standard techniques of refs. /8,5,21/ are applicable, This
would allqew to test them for quantum self-consistency and, in parti-
cular, to evaluate the central terms (if exist) in dorresponding
quantum commutators of superconformal charges. '

There remain many other things still to be completed, such as
solving of general constraints (2.9), (2.11) off-shell via proper un-
constrained prepotentials and finding the relevant superfield actions.
This can hopefully be done in the framework of the harmonic superspace
approach/ae/ that proved to be most edequate for handling extended
supersymmetries. However, as mentioned in the end of Sect.2, the cons-
truction of invariant-actions for N >4 may encounter troubles relat-
ed to the appearance of the notoph-type differential constraints off-
shell, These are necessarily required in order to ensure a correct
number of off-shell bosonic degrees of freedom but in general may
have no local solution via potentials because of nonlinearities in
WZ fields (as distinct from the simplest N = 4 condtion (4.5)). A
possible way out is, of course, to implement them in the action with
the help of Lagrange multipliers.

An interesting development would be the generalization to. the
cagse of D = 2 heterotic superconformal symmetries of -the type (N,M),
N # M. An immedlate heterotic analog of our square N x N -matrix
superfield %“J(%J is a rectangular N x M -matrix superfield Qﬁlﬁi\
(L= 15000 N; j = 1,00« M) depending on coordinates (x*, o=* 9‘3)
and subjected, by each of its indices, to the constraints of the type
(2.9). The dynamical equation (2.10) is also generalized in an obvious
way. The WZ fields will parametrize the nonsymmetric coset SO_(N) x
x50, (M)/SO(R), f = min (w,M).

We end with séveral comments concerning a possible relation to
string theories. As is known, any conformelly invariant D.= 2 sigma
model can be regarded as a candidate for string theory, bosonic or
fermionic (with proper Virasoro-type constraints added) What sort of
fermionic strings could be associated then with the models construct-
ed here? These strings should possess extended D=2 superconformal
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symmetries and contain, among their coordinates, those of compact
spaces SO_(N) x SO+(N)/SO(N). The remaining scalar fields are natu-
ral to identify with a kind of transverse coordinates of the flat
part of string manifold (except for dilaton which seems not to be iﬁ-
cluded in the number of string coordinates). Though the situation is
reminiscent of the one in models of striags on group manifolds/4/, .
there are -essential differences., First of all, the number of physical
bosonic fields in the models under consideration (and, hence, the
even dimension of hypothetical string manifold) is fixed still at the
classical level in terms of N by eq.(5.1). Actually, all the invol-
ved physical fields have intrinsie geometric origin being group para-
meters associated with spontaneously broken generators of initial N -
extended superconformal symmetry. One more difference lies in the
fact that the bosonic fields valued in the flat part of full manifold
are assigned now to nontrivial representations of interanal SO_(N) b d
SO+(N) -symmetry (beginning with N = 5) while in previous considie-
rations they were supposed to be singlets of internal symmetry.

Clearly, the question of how consistent is the string interpre-
tation of the proposed models will be possible to answer in a full
generality only within the complete quentum framework. Keeping in
mind the above peculiarities, one may expect serious modifications
as compared with the currenmt schemes. This regards, e.g., the flat-
-space critical dimension formulas. It may happen that the present mo-
dels exist quantum-mechanically only for special values of N, namely
those which ensure the quantum critical dimension to coincide with
the clessical one.

An importent step towards a string interpretation of models in
question i1s their reformulation in a locally supersymmetric way by
coupling to conformal D = 2 supergravities., This would help to re-

- veal what are the relevant generalized Viresoro conditions. As a mat-

ter of fact, it is the whole, infinite-dimensional superconformal sym-
metry that has to be gauged and we expect a close contact at this
point with the recent construction by van Holten/11/
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J.McCabe, V.I.Ogievetsky and M.V.Saveliev for interest in the work
and discussions,
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APPENDIX A, General D = 2 Superconformal Algebras

N-extended superconformal algebra in two dimensions consists of
two independent light-come cpmponents, each being generated by an in-
finite set of gemerators A et . Here R=01, ...V ,every in-
dex 1 runs over vector representation of SO(N), L] means antisym-
metrization and n € 2 or Z + 1/2, depending on whether R 1is
even or odd. (We assume the Neveu-Schwarz type grading). Discarding

possible central terms, these generators obey the following (anti)
commutation relations’ 10»1?

Lot Ui jg) 4 Checald
Ar;, taotld Am JS] 3“”A Jer el A

cipdedsd
=( {{_h(?. N-m (2- V-)} An+m flemas _ (A.1)
Z Z ks ghidk AL""“?““'L‘llv-'j\c-‘-jsl];
h=4 k=1 nem

(a hat means that the corresponding index should be missed).

We are interested in a contact subalgebra [EK({ A ) of (A.1)/1°/

enerated b Lt -2
& VoAt (aeo v B n cv o).

Note that one may impose the reality condition

— Tl gl LR i) .
A“ :L—u) A“ (4.2)

conaistently with the relations (A.1). It is convenient to redefine
generators so that the reality property takes the familiar form:

z“ti.-.. te} {a vl .

»2
I

- Q41 Q
. e 1 - Rl 2R+3-¢0
Nt i I

[_:_¢... Lgl

n [

»

where the numeric coefficient has been included in order to simplify

subsequent formulas. Besides we introduce a condensed notation
2A ~ tL‘--':"lAl

Ln = An (A-1 ¢ n ¢+ e2)
~ it b2a0) )
G-Q.:“E A,[h 244 (A 2&m o) Az04,, ., L4]. (2.4)
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Then, the structure relations of superalgebra K(1[¥) read

2A 2B p [y 2.(A+6 )
LA U] [na ey m A P S g

=4 ka4, . )

2AFBY 4
L G Inh-e)-ml- m Grmam, *
oA 28+4 ‘*hdk L(A*g)—(_ @
.5)
RS M I ST ceo
h=4 k=4
z,(A+E>+q
TN EA SPL INCEOE (5] Lo -
‘ 2A“ 2844 ek "‘\d“ 2(A+B »
..2%7::2;‘(‘4\ g Lh&m , OéA,B$ —9‘-1

Finally, we give a detailed exposition of (A.5)for the cases N=3
and N=4 treated in the paper.The generators are specialized go as to
keep closer to the notation of/15'. We denote the corresponding super—
algebras by the same letter _W which was used throughout the text to
repregent sums of two isomorphic light-cone branches.

“N=o

AP & ik N ik oo (4.6)
CAF IR SR h) A A SN

tlbw, L3 =(-wd Luyun
tlln, 6512 (5-x)Ghvn
(6%, 6a =-280 Lyg + (K=Y e kT,
lta,fpl=- (3 +0)ipsn
PLf,Te )= {rP, "1‘1 o
{FP,GQ‘S Tfu»'L
LALTs, cl‘ QLJkTska?_ .
LT, (;,,1i 1= eoik G«EZ,S rs g (24

LLTS, L) = 8 Tohm

(A7)
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N = &o
t ik ke e fak€Y ke
Z,={Ln, 6%, LSJJ=TS-’ Gpl =R, U R e A (A.8)

illu,Lml= (m-wI L nem
Pl Ln, 65 = (5-2) 6ann
tULn, T 12=(50) Tpin
LL L, 912 - m Tl

tLbn, Ag)=-(m+8)Anss

. ¢ ke ik_je e__jk Ptk kg€
LLTnJ Tw\ S'—'— g Tv;lv—m - S TMJ+|M + SJCTHLW. - SJ vm-m

LT kLS, 1 e, - STk e, »
LLT..:A, rt’ 1= SL rr‘;m _ gl ‘"Pf.‘

LT, Ap) =0

{of, 6dy=-285 Lo rCo- ) Toih

{ [ , Y;B: (2+5) SLJAus ke T.,\f,,e's

6s, Apl= o
{TF)I-S‘S=O
illp,Agl=0
LLAP)A517—O

Superalgebra. gg/ containg two minimal N = 4 superconformal sub-
algebras 9 (%) arranged as

;}_’h:)z Lp. + h————‘(:/*‘) An ’ ni='41014)‘
(¢ i i 4 Co o1 o
7, - AR S +%(3*I)r'z,'l’ T2

(A.10)
ORI VI AP S VL L i PP RN
j - E(Tm T3 £ . ), 01,2
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o (1) i)
Here, /. I generate two independent SU(2) Kac-Moody algebras

whose sum is S0(4) Kac-Moody algebra with generators 1, Y . The
superalgebra 5u(1 112) corresponding to the choice of o = ’/.z( 4/1\
in aq'(4.1) is formed by sums of generators o’t_”_ +) , %, “)

(#) < o (#) e I 1%, -)<¢
, Yy I (£, 2, % "

>

+) <
.£

y_é (')" .9;(_) “ ) and of the analogous generators coming from
the complementary light-—cone branch of full N = 4 contact superal-
gebra. Superalgebra %G) together with its copy contained in the
second branch constitute the symmetry algebra of minimal N = 4 sigma
model (4.23).

APPENDIX B. On-Shell Structure of WZ Supermultiplet for any N

Here we examine the component content of the left-moving super-
field q}f(z‘) defined by eqs.(2.12) and (2.13b). The analysis for
right movers proceeds similarly.

It will be tonvenient for us to define the superfield projections
of ql‘i(z")' in the following way
e telaiy o bl ig tsl
9, ), Feo253 3)= g, @b CL._@.] (3.1
\’,{ -.l-rwu( L‘t LMfi ¢
Fre ()= g @b " TGy o
Without loss of generality indices of spinor derivatives are assumed
to be totally antisymmetrized because any symmetric pair of them would
yield X ~derivative by the anticommutation relations (2.5).

We wish to show that the constraint (2.13b) together with the
nonlinear orthogonality conditions

I ZM
H4 A g Sm_ sm W em prn _ Pn
q,l_(i')ﬂ,"‘_ @)= v 4. W )1 Y. (1_)1/1. (l)“; @, 9 > (B.2)
leave among the superfields (B.1) an irreducible set of the type
plctured in eq. (2.14)

lbqbzl-a,l Lirta. Ca

‘1 (z) Fa)=1, eyt L@y, FEY L TRy (8.3)



The proof amounts to demonstrating that all the remaining superfield
projections are expressed in terms of .the basis ones (B.3) and x .=
derivatives of the latter.

To begin withithe singlet and two-renk skew-symmetric superfields
from the set (2.14) are already contained in the N x N -matrix qi®(z”)
as its 1 + Eﬁg:ll independent superfield parameters., Next, we consi-
der the three-rank tensor FL'blLs(i‘) . Using repeatedly eqgs.(2.13b)
and (B.2) we are able to show

plebats Fli'i’i’](z‘)»«(z(S;';"F.f%-)+511;5 Fay- 89 EG). (B4

PFurther, any subsequent tensor from the set (B.1) can be generated by
applying a spinor derivative to the preceding tensor (modulo products
of lower rank objects and their x~ -derivatives). Thus, the indepen-
dent components of F°'LZL’LVZ ) cen be specified by inspecting
D'Fand :D”'Ft“’”°“](z) Teking adventage of anticommutation rela~
tions (2.5) together with the generel identities following from eqs.
(2.13b) and (B.2)

1 Cem n . Ly ’:»--1 ‘:Mn
DD DG v DI DT 9. q, (B.5)

Cm kS jk

. N ‘o e
W bmqlJLs qﬂ_ "qr ’.D. A SJ :D:"”)‘m q'll‘.s'q’l-s"P (B.6) .
(+ products of lower rank tensors and their x~ derivatives) one easi-
ly establishes that Di' F12 produces no new structures. So, the lat-
ter can arise only from Di‘ F[°1L‘L“3(z)and one ‘has now to show the
abgence of independent components of the mixed type EP in this object.
In fact, from this step we may proceed by induction. Assume that
the conjecture (B.3) has been proven up to tensors of rank m323 .
Then, we should prove it for the tensor of rank m + 1 i.e._ to show
that all the components of the mixed type D(""‘H FL°‘)L’
are expressed through the lower rank tensors and, x-derivatives of
the latter,
[H i Jote first that S™**  cen be carried through %ie in
(again discarding certain products of tensors of ranks 3 and
m=- 2). Purther, when index Lm,( is symmetrized with an index from
the set [14,...in{\ione meets three typical situations. First, ano-
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ther index may hit a spinor derivative. No new structures arise in
this case because any symmetrized pair of spinor derivatives reduces
to x -derivative. Alternatlvely, Lm+( may pair with a free index
of the second superfield qL Z2"). Up to x  -derivatives, all such
terms are reduced to the expressions of the type

Len h ( tmad

9. "yt D ‘1/&- @)

which are in turn expressed via x -derivatives of the lower rank
tensors by the constraint (2.13b) and the identity (B.5) (following
from (2.13b)), Finally, the situation when Lm.( Joins an index
of the first superfield q, (x~) is reduced to the previous ones by
exploiting the general identlty {B.6). Thus, the only new independent
piece of F Loobmet g4 pliee L““] The induction procedure clearly
terminates at m = N due to the nonexistence of totally skew-symmetric
tensors of rank > N. This completes our analysis of the irreducible
field content of the (N,O) ~superfield df(z‘) subject to the cons-
traints (2.13b), (B.2). Finally, recall that passing to the fields
with correct dimensions involves taking a suitable number of derivati-
ves . . off the fields (B.3), starting with

prlictsiatad o Fromsred (e em™ ) LFI= am® Yy 0

REFERENCES

1. Novikov S., Dokl.Acad.Nauk USSR, 260 (1981), 31-35.
2. Witten E., Comm.Math.Phys., 92 (1984), 455-472,
3. Braaten E., Curtright T., Zachos C., Nucl.Phys., B260 (1985),
630-699.
4. Gepner D., Witten E., Nicl.Phys., B278 (1986), 493-549.
5. Di Vecchia P. et al., Nucl.Phys., B253 (1985), 701-726.
6. Curtright T., Zachos C., Phys.Rev.Lett., 53 (1984), 1799-1801.
7. Rhom R., Phys.Rev., 32D (1985), 2849-2851,
8. Gates S., Hall C., RoSek M., Nucl.Phys., B248 (1984), 157-168.
9. Ademollo M, et al., Nucl,Phys., BIII (1976), T77-110; 4ibid B114
(1976), 297-316.
1o Kac V., Comm.Math.Phys., 53 (1977), 31-64.
11. Van Holten J., Preprint NIKHEF-H/86~13, Amsterdam, 1986,
1?. Ivanov E., Krivonos S., Lett.Math.Phys., 8 (1984), 39-45.
13. Ivanov E., Krivonos S., Lett.Math.Phys., 7 (1983), 523-531.
14. Ivanov E., Krivonos S., in: "Proceeding of VII International Con-

ference on Problems of Quantum Field Theory", JINR, D2-84-366,
Dubna, 1984.

29



http:D,:L."Ut

15.

16.
17.
18

Ivanov E., Krivonos S., J.Phys. A: Math.Gen., 17 (1984), L671-
676,

Ivenov E., Ogievetsky V., Teor.Math.Fiz., 25 (1975), 164-177.
Chaichian M., Kulish P., Phys.Lett., 78B (1978), 413-416.
Galperin A., Ivanov E., Ogievetsky V., Pis'ma v ZhETPh, 33(1981),
176-181.

19. Siegel W., Class.Quantum Grav, 2(1985), L41-L45,

20. Alvarez-Gaumé L., Freedman D. Comm.Math.Phys. 91 (1983), 87-101.
21, Knizhnik V., Zamolodchikov A. Nucl.Phys., B247 (1984) 83-103.
22, Galperin A., et al., Class.Quantum Grav., 1 (1984) 469-498,

Received by Pubiishing Departiment
on April 23, 1987.

30

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices - in US 8,

including the packing and registered. postage

D11-83-511

D7-83-644
D2,13-83—689

D13-84-63

31,2-84f160

D2-84-366

D1,2-84-599

D17-84-850

D10,11-84-818

D4-85-851

D11-85-791

D13-85-793

Proceedings of the Conference on Systems and
Techniques of Analitical Computing and Their
Applications in Theoretical Physics. Dubna,1982. 9.50

Proceedings of the International School-Seminar
on Heavy Ion Physics. Alushta, 1983. 11.30

Proceedings of the Workshop on Radiation Problems
and Gravitational Wave Detection. Dubna, 1983. 6.00

Proceedings of the XI International
Symposium on Nuclear Electronics.

Bratislava, Czechoslovakia, 1983. 12.00

Proceedings of the 1983 JINR-CERN School
of Physics. Tabor, Czeéhoslovakia, 1983, 6.50

Proceedings of the VII International Conference
on the Problems of Quantum Field Theory.
Alushta, 1984. . 11.00

Proceedings of the VII International
Seminar on High Energy Physics Problems.

Dubna, 1984. . . 12.00
Proceedings of the 111 International Symposium

on Selected Topics in Statistical Mechanics.

Dubna, 1984, /2 volumes/. 22.50

Proceedings of the V International Meeting

on Problems' of Mathematical Simulation,

Programming and Mathematical Methods

for Solving the Physical Problems,

Dubna, 1983 7.50

Proceedings of the IX All-Union Conference
on Charged Particle Accelerators.

Dubna, 1984. 2 volumes. ’ 25.00
Proceedings on the International School
on Nuclear Structure. Alushta, 1985. ’ 11.00

Proceedings of the International Conference
on Computer Algebra and Its Applications

in Theoretical Physics. Dubna, 1985, 12,00
Proceedings of the XI! International Symposium
on Nuclear Electronics. Dubna, 1985, 14,00

D3,4,17-86-747 Proceedings on the V Intermational School

on Neutron Physics. Alushta, 1986, - 25.00

Orders for the above-mentioned books can be sent at the address:

Publishing Department, JINR

Head Post Office, P.0.Box 79 101000 Hoscow, USSR



SUBJECT CATEGORIES
OF THE JINR PUBLICATIONS

Index Subject

T e
N & W = O

16.
17.

18.
19.

W @ N Oy O E&W N e
e e e e .

. High energy experimental physics
. High energy theoretical physics
. Low energy experimental physics
. Low energy theoretical physics

Mathematics

Nuclear spectroscopy and radiochemistry
Heavy ion physics

Lryogenics

Accelerators

Automatization of data processing

. Computing mathematics and tech'm‘que

. Chemistry

. Experimental techniques and methods

. Solid state physics. Liquids

. Experimental physics of nuclear reactions

at low energies

Health physics. Shieldings
Theory of condenced matter
Applied researches
Biophysics

Usanos E.A., Kpusonoc C.O., JIeBuaut B.M. E2-87-357
Hosstit xnacc CynepKoH(OpPMO-HHBAPHAHTHEIX ‘
o MoZeJel BecC-3yMHUHOBCKOIO THIIa
B IBYX M3MepeHHAX
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D=2 cynepxoHpopMHBEIX CHMMeTpHIi, BKIIOYAIOIME MOJEIH Becc-
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A New Class of Superconformal Sigma Models
with the Wess-Zumino Action

We construct nonlinear sigma models for infinite-dimensional
N-extended D =2 superconformal symmetries (of the type (N,N)).
These are classically integrable and naturally incorporate confor-
mally invariant bosonic Wess-Zumino sigma model defined on the
supersymmetry automorphism group SO_ (N) x SO, (N). Manifestly
invariant superfield techmques are employed. A *finite set of basic
Nambu-Goldstone superfields is singled out by imposing infinitely
many covariant constraints on the relevant Cartan 1-forms. The
resulting superfield equations of motion and off-shell irreducibili-
ty conditions have a universal form for any N. We solve the irreduci-
bility conditions on-shell for arbitrary N and off-shell for N <4.
The N =3 and N =4 models are examined in detail.

The investigations has been performed at the Laboratory of
Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987




