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I. INTRODUCTION 

/ 1-J1 Nonlinear D = 2 sigma models with Wess-Zumino (WZ) terma
have a wide range of uses in string theoriea. One of the most impor­
tant applicatio~s concerns the strings on group manifolds (see, 
e.g. / 41 and references therein),where W~ sigma models provide a con­
sistent description of group coordinates, enauring D D 2 conformal 
symmetry at the ~ull quantum level. Conformal invariance is achieve~ 

with a fixed ratio of the overall sigma model coupling constant and 
/ 2/•the coef~icient of WZ term A characteristic feature of conformal­

ly invariant WZ sigma models.is the presence of new, symmetry under 
two commuting Kac-Moody gauge groups which ar.e realized as left and 
right multiplications of the basic group element / 2 ,51 9(X): 

~'(::J:-+-,.L-)""8L(x..-)~(X.+J.J:.-)3.R(.x.+), ,x.t = ~ (~" ~ J.:-4). ( 1.1) 

Promoting the group-manifold string action to a world-sheet super­
symmetric one involves a proper supersymmetrization o~ conformally 
invariant bosonic WZ action. 

Superextensions of the group space WZ sigma modelsexplored so 
far / 5- 71 possess N • 1 D • 2 supersymmetry. Internal symmetry of 
corresponding actions commutes with supersymmetry•. both the bosonic 
and fermionic fields are assigned to adjo1nt representation oi inter­
nal symmetry group. At the points of con~ormal invariance, rigid 
D • 2 supersymmetry and internal symmetry are enlarged, respectively, 
to infinite~dimensionalN • 1 , D • 2 superconformal symmetry and two 
commuting gau~e symmetries which are a superextension of bosoniç sym­
metries (1.1) 51. At these points the physical component action is 
reduced to a sum of conventional bosonic WZ action and free fermionic

pl 
actions/ 7 , 5/ . Again, internal symmetry enters in a trivial combina­
tión with supersymmetry (now as a semi-direct product). With making 
use of general construction of Gates, Hall an~ Ro~ek/B/~ WZ sigma 
models possessing other types of D = 2 superaymmetry become possible. 
However, the bosonic manifolds of these modela cannpt be immediately 
identified with any homogeneou8 group space and reveal a more compli­
cated geometry. 
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Our purpose in the present paper is to introduce a 
new wide class of conformally invariant supersymmetric WZ sig­
ma models on group manifolds. Their crucial distinctions from 

the models known previously consist, first, in that they possess in 
general N-extended D a 2 supersymmetry and, second, that the bosonic 
WZ sigma model one starts with is defined on the automorphism group 
SO_(N) X SO+(N) of above supersymmetry (indices ± refer to two ~de­
pendent light-cone directions in D • 2 Minkowski spaco). So, internaI 
~etry and supersymmetry do not commute even at the rigid leveI. 
When combined with D = 2 conformal BYmmetry, those cIose to give 1n­
finite-àimenéional N-extended' Buperconformal symmetry (of the type 
(N,N». The latter is complete aymmetry of the model in question for 
a given N. The bosonic sector of the model, apar-t from fields pa­
rametrizing the symmetric apace SO_(N) x SO+(N)/SO(N), necessarily 
incorporates the dilaton «(x) (it may possess· either free of Liou~ 

ville actions) and a number of further boaondc fields (for N~4). Bo­
sonic and fe~onic fields are assigned to different representations 
of diagonal SO(N) and const1tute an irreducible supermultip~et of 'N­
extended superconformal symmetry. ~he fiélds on group space automati­
cally enter with the' correct conformally invariant WZ action because 
N-extended superconformal symmetry includes SO (N) Kac-Moody symmet­
ries/ 9,10/ which prove to be realized on the + elements of coset 

$0_(1\1) x Scq.cIV)/S~N) just by traneformations (1.1). 

The models we consider have a natural geometric descript10n as 
nonlinear sigma models for infinite-dimensional N-extended supercon­
forma~ groups. ~, with th~ quotient spaces CN / SO( 1: 1)XSO(N) as tar­
get manifolds)(here SO(1~1) is D = 2 Lorentz group). These manifolds 
are parametrized by coo~di~ates oí N-extended D. 2 superspace and 
py infinite sets of Nambu-Goldstone superfields. The nonlinear reali­
zation techniques combined with the covari~t reduction method/1~ 
leave us with th~ finite pumber of 1+ N(~-1). essential superfields. 
They turn out to be subjected to the universal irreducibility condi­
~ions whiçh generalize the similar ones defining H'tw1sted ch1ral" 
multiplets ih N = 2 and ~ = 4 D a 2 SUpersymmetries/13-15,8/. 

The physical fields are leading compQnents of these superfields. The 
superfield equat10ns of mot10n also have a universal simple forro for 
any N. They possess a zero-curvature repr~sentation on superalgebras 

;Another line of extending cónventional DF2 geometric structures 
to an infinite-dimensional case, the construction of gauge theories 
for conformal supergroups, is worked out now by van Holten /11/. 

2 

osp(NI~, thus indicating that the proposed models are classically in­
tegrable. 

Our main incentives are to give a general characteri~ation of 
the proposed class of sigma models and to study a number of simple 
instructive examples. We confine our analysis to the classical leveI. 
A complete quantum consideration will be given elsewhere. 

The matter is organized as follows. In Sect.2 we construct non­
linear realizations of general N-extended D=2 superconformal symmet­
ry,deduce the superfield irreducibility conditions and equations of 
motion,find the transformation laws both of superspace coordinates 
and the basic Nambu-Goldstone ~uperfields.ln Sect.3,4 specific examples 
are considered,the new models w~th N=) and N=4. These are the firsi 
examples ofb.=2 superconformaI Lagrangian field models enjoying sym­
metries with noncanonical generators.We find the r~levant component 
actions and superconformal transformations leaving these actions in­
variant.ln Sect.4 we also discuss the reduction to a special version 

of us/ 14,15/. As the new re­of N=4 model constructed earlier by two 
sult, the invariant action for this theory is found.The exam~les il­
lustrate the most of basic features of new superconformal WZ. sigma 
models.These features are summarized in Sect.5,where we also specu­
late upon a possible contact with string theories ~d indicate a gene­
ralization' to the case of D=2 heterotic supersymmetry. In Appendix A 
we quote the structure relations of general N-extended D=2 supercon­
formal algebra and of its Na3 and N=4 subalgebra~.Appendix B treats 
the physical on-shell field content of the WZ supermultiplet for ar­
bitrary N. 

2. NONLINEAR REALlZATIONS OF D = 2 SUPERCONFORMAL SYMMETRIES 

TO,construct a nonlinear sigma model for N-extended D=2 supercon­
formal group CN,we take advantage of standard nonlinear realization 
techuiques augmented by the covariant reduction method/12/.Th1s method 
allows one to define the group action in infinite-dimensional coset 
spaces doing with a finite number of essential parameters - (super) 
fields.Th~ Bcheme we apply has already been used in/ 13-15/to deduce 
N=2 and N=4 superextensions of the D=2 Liouville equation. 

So,let us consider a nonlinear realization of infinita-dimensio­
nal conformal supergroup C wi th the superalgebra !3';,.~/J(_(1JAj)(i)iK+(1IN}

N 
(aée ,Appendix. A) in the coset space (AI/HN ) H...=- $0("."))( SO(AI):Jlere,~O(1.1) 

.~ LJ '<J
and SO(N) are generated,respectively,by LJ:l",;"lu_and T"J·;.lo....... L: o ­

(this choice of the stability subgroup will be substantiated later on). 
We tak~ for the coset the following parametrization: 
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..... ' t~ l..~ ,. o<> t 
... x.-L_(± e G-3.:!: I. L. Q", L"",!. ~ ~~ G-~~ e "t.-:. t/2 lf. 

~-=e. e e".". ...... 
~ l-C. (L o .- to L,,_) ~. 'f~J' tL';.. 

)( e. e. - L 

t,j
0-) ~ {~ J ~ C'"IH IV • (2.1) 

Here 
l' r" I.a-L ;: V QtLLJ ... d L;j \.::1 ~± C. ,=' ~ tL~~"Jl /".U.j ... \q 
It "'1. ~., l.,+'" 'l.. '2."1 0 lo:. ~ '-.T'u:" 

"JJ, k J • ' ",J ,', 

(the indexing is explained in Appendix A). Note that we limit oursel­
ves to a subgroup of complete D .. 2 superconformal group corres­

(cf. / 11/ ) . ponding to n ~ - 1, ~~. - 1/2 The transformation 'laws 
given below immediately extend to the 'whole group. 

The Goset element (2.1) is parametrized by superspace coordina­
tes r.±,=.{x"',x.-Je-t':'J8-j-J}(~Jj=-(J2"..~) and an.infi~~e number of 
Nambu-Goldstone superfields U (1:')., 'fld(l.)) S~ I.CL'),a.-.tC~\,,,, Portu­
nately, by ~he general theorem of ref./ 161 all those can be expres­
sed in terms oí a finite set of essential superfields by imposing 
proper ,constraints on relevant Cartan's 1-forms. An inspection of the 
structure relations of superalgebra ~ (see Appendix A) from the 
standpoint of aforementioned theorem shçws that our choice for the 
stability subgroup guarantees a mínima! set of unremovable parameters. 
trhese arf3 superdi.laton u..(z) and superfields ~~Jo.) which p,aramet­
rize the coset SO (X) x 50 (N)!SO(N). Por further conveniençe'we+ - .• ,
combine them into a single N x N matrix superfield ~I.J (~) : 

. 10 "e<.,,-) "" tLe. •
• ' (_lLll:)I -2 .. "]' 1:0 L. );:'J -Lll~) ........ ··
 

~I.-lt~): e ~ e. ~"Jvt..) , (2.2 )
 

where ('L"e)i.j are SO(N) generators in vec'tor representation. The 
transformation properties of ~j(Z) and g± can be found by resorting 
to the fact that ~ is realized in the space Cu/HN by teft shifts 

t •~ ... ~ =~'.h';~" fC,v ; :L~JE CN/H", ; h' E- HN (2.3) 

As follows from the structure relations of ~ (A. 5 )., i tS\1ffices to 
i)mow the supersymmetric transformations wi th generators G~:!:, all 

the remaining ones are recovered by commuting those among themselves. 
Infinitesimally, they are 

4­

b~±:~(?±'rt) . 
~9!~= r" .... l.(e± r':t)g'!:l. 
(' ~j _ :.. k \. I kj \.. / tk a"j 
,,~ - CV W+ 1" W'_ Y .' 

v , ~ "j _ .f (""'" ~ (' 9 -J J)J Se+z _ 2. ~ I.j ]) k ~ e t k)
\N'+ -"[ .1.)+ 2) -,. ~ + (2.4) 

vJ::j =. k (])~ ~e-~.-])~ cSa-J~ - 2.;"j 1)~se-\() 

+ ~ ... ) iHere .t'- (x- are anticommuting parameters-functiona and D+ are 
covariant spinor derivatives ­

~ ':;) • t .: d {~ j 1 _ 2 " C i.j 'd , ]) ~ '"" .J 1 _ ()]) =- - • -+ l.. 8 - , ])+ 1),. j - Lo Õ - + '1 +, u : J - o, 2.5 
t. "à9"±.l.. ?~± - , - r')X-­J 

General superconformal variation of qij ia of the same form as in 
eq.(2.4). Corresponding :tunctions w~j involve as the leading 
terms the parameters of induced Weyl-tranaformations and of two Kac­
Moody SOJN) -symmetries 

;" \ .f C t ' ( t)c:.J · -e- \±.l':'jJ(.x~) 
W+ J ("%:±) -= - i:! x: b - t\
 

- e=o
 

Extension to the whole V = 2 superconformal group having in addition 
an infinite se~ of generators with negative dimensions goea aimply by 
allowing arbitrary inverse powers of x± in the x -decompositions

+í. +C·.L
of group parameters r-(x!.), À'- ~~\x±), etc. Note that the left 
and right indices of q~j are rotated by independent groups SO_(N) 
and SO+(N). We denote these indices by the same letters with the hope 
this will not lead to any misundersttinding. 

So far, qij(Z) was not subject to any constraints besides the 
-ij -tj ,...ji -jf. rie ( ipurely algebraic ones q . q .. q . q .. o orthogonal ty con­

ditions) following from the definition (2.2). To get the dynamical 
equations for qij we have to carry out the covariant reduction of 

coset space CN/Hw to its subspace OSp(NI2)/BN. Here, OSp,(NI2) is 
generated by diagonal comb1nations of generators of the left and 
right finite-dimensional conformal superalgebras OSp+(Nl2) C K+(1[N): 

2. ~ ~ ~- _. 
~~ ::. L-. t + l'Y1 L{:~. . G- + = G--i + '!:. m <;'.1. ­

- 2,- 2+ 

(2.6)
U -=. Lo+-L o - 1 

LWI] = Cl'YI- iT i..j :. li..j + Li..,j
0+ 0­
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This reduction goes as follows. Given Cartan's l-forma defined from 
the beginning over infinite-dimensional superalgebra ~_ : 

n. = ~f~ ~ ~ -= LU 1:. L ±. +- r±.. G- t ~ ... (2.7) 

one imposes on them the covariant constraint 

..lL = D..
~QC< 

~ DSp (tJ 12) (2.8) 

which means thatall the components of il except for those entering 
with the generators of subalgebra (2.6) are equated to zero~ Covari­
ance of the condition (2.8) is seen by the following simple reason­
ing. The only 1-forms arnong (2.7) that transform inhomogeneously are 
those before the generators of BN=SO(l,l)xSO(N). These forms remain 
non-zero since ~.( OS'p(N\2). 

From the geometric point of view, the constraint (2.8) reduces 
CN/HN to its fully geodesic hypersurface OSp(NI2)/BN. Indeed, any 

motions of Cartan's moving frame along the directions orthogonal to 
that subspace are covariantly forbidden by eq. (2.8). Note that the 
parameter m has the meaning of inverse "radius" of pseudosphere 
30(1,2)/SO(l,1) contained as a subspace in OSp(Nl2)/SO(f,1) x SO(N) 
/12/. Setting m = O in eq.(2.8) gives rise to an alternative reduc­
tion to the flat superspace P(N.l.2)/BN, where P(N.'2) • is N-extended 
D = 2 Poincaré' supergroup with generators {L,--(!, G~i! U, Tijj fol­
lowing from OSp(NI2) by contraction rn" O. Covariant reductions 
to other subspaces of ~/HN are as well possible~ However, in alI 
these cases the number of essentia! superfields increases. We limit 
our cons1deration to the const~a~nt (2.8) and its flat m = O version. 

Without entering into detailes, we mention that the practica~ ro­
le of eq.(2.8} is to express alI the auperfield parameters in terma 
of qi j 

(Z) and ~ts spinor and ordinary derivatives. Furthermore, it 
imposes the followi~ covariant differential constraints on qij(Z): 

bl1-,..j· T ]) ~ 'itIM ~ 
2.. 
-;.; 

•• o
SI.J "b~ ~...f. 

"b-:- ",j"" +:D~ ~l.~ ~ S;a:~ ~~ ~/'W\ (2.9) 

and 

"b~ l~i J)1 t )"e = ~ rn <.. ~jf'l-':k T gke~ij - sJk ~':l) . (2.10) 
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Por completeness, we have written down also the nonlinear ort~ogona~ 
i' ' 

lity condit10n for q J: 

•• ••• ~~ Icl t:e. C'~~ -2L<' 
~tJ ~~J '"' '{,-J l. q,J'" -:.~ ~ (~ ~ )=- õ e . (2.11 ) 

It leaves in qi j just 1 + N(g-l) independent superfield compo­

nents in agreement with eq.(2.2) • 

The superfield system (2.9)-(~.11) defines the so~ght nonlinear 
sigma model for N-extended D=2 superconformal group ~. Pynamics' is 

Ir concentrated just in eq.(2.10) which incorporates correct equations 
f' of' motion for physical component fields (see below). Constraints (2.9) 

are the kínematical irreducibility conditions.lt is a àimple exercise 
to check their compatibility with eqs.(2·.10). For m #. O,they can be 
independently derived by applying spinor derivatives on bothsides of 
eq. (2.10). Remarkably, they do not imply this equation, i.e. are ful­

. filled off-shell and in fact irrespective of specific value of m. 
This' leaves a room for constructing more general sigma models on thà 
basis of qij (with, as well as without, conrormaã invarianceh These 
constraints directly generalize the Grassmann analyticity conditions 
of N = 2 and N = 4 cases/13-15,8/, which single out there the rele­
vant analytic representations (ntwisted chiral" by terminology'of 
ref. /8/). 

Exposing an irreducible off-shell field content of qijfor ar­
bit~ary N is technically hard ~:obl~m. Here we explicitly solve it 
only for N'- 4. On the other hand, on-sh~ll and wi th m a O, this ana­
lysis becomes much simpler and can ~e br?ught to the end for any N. 
By continuity in m, the resuit eq~aliy applies to general situation 
with m /I O. 

~ I. t, ,..".. 

Equation (2.10) for m = O can be easily solved~: 

(2.,12 ) q.:\Cjc~.) =. q,~e.<.r) ajR~ t~+), 

where the left- and right-moving sup,erfields q~( and qRje. compri~'e, the 
multipíets of two independe~t light-cone components of supergroup ~~ 

Inserting this general solution in the system (2.9), one split~ the 
latter into a pair of unrelated equations: 

~uperfiéld solution (2.12) encompasses familiar claas1cal solu­=tions for the free field u(x) 
<ra"'j(.x)·='i"'j(l)I~:o: . 

",' 
ul.:):..)=UL.<.~-),+Ull(:J:.~),~:J <..~) 

~(1) \ and for the WZ field 
e=c:.? 

......... i .....Jf.. ~)/-/ 
-= <tL o (~-) 'l;~a l:x:. ,.. 
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D~ \,j:(~-) +])~_ C{,&.i,e<."i.-) =- ~ ~':j])~ ~:-e(~_) (a) 

(2.13)
]) ~ eJ:- 0/) ~ J) i '" ~e ( 2~) =- ;:. ~:.i 1>:' 'J,~ e ( t ~) , d~) 

Both equations are identical by form. ao it aufficies to study one of 
them. say for qjf(Z-). As is shown in Appendix B. qte(Z-) con-

Lo N--i N- f ' tains in general (2 + 2 ) independent components. Their array 
starts from a SO_(N) -singlet UL(x-) and further includes the com­
ponents with the following type of symmetry: 

o t- +8 (2.14) 
+ ~\AI' 

where the even and odd numbers of cells correspond. respectively. to 
bosons and fermions (in the special N = 4 case a further reduct10n 
is possible. see Sect.4). In general. only 1-~ N(g-lJ . bosonic and

N' fO
N + j!CN-j)! fermionic components entering q J as coefficients of 
zero and first degrees of Grassmann variables have from the beginning 

1/ 2 a correct· physical dimension (cmo for bosons and cm- for fermi­
ons). Starting from N = 4. physical fields appear also with higher 
degrees of e. So,to achieve physical dimensions one is led to take 
appropria~e degrees of derivatives ~- off these fields (respectively. 
'd+ off the right mover-s L, that is to paaa to "potentials". The ne­

cessity of passing t~ potentials roots already 1n the off-shel~ con­
diti~ns (2.9) wh1ch for N ~ 4 entaf.L the notoph type differential 
constraints on the higher dimension components. Por N. 4 such a , 
constrained 1s easily solved in terms of potentia! of physical dimen­
sion(Sect. 4} However for N> 4 solving them may be a matter of serious 
difficulty (duo t~ the explicit presence of the WZ field 

'''j(x) = q~.i(~)1 in these constraints). 
" lo- 9=0 

Betore turning to the examples ~e mention an important property 
ot the syst~m (2.9). (2.10). its elassical integrability. 'bis system 
is equivalent to the zero curvature condition for the 05p(N\2) valued 

r'\. ie<t .",1 -superform ~L (2.8) and therefore can be ~terprete~ as the com­
patibility condit10n for some matr1x linear probYem. To see th1s.recall 
that the original 1-superform ~ (2.7) by construction sat1sfied the 

Jlaurer-Cartan equation on the whole 1nf1n1te-dimensional superalgebra 
~ 1 r'\,R.eJ
~N. , Th s causes the reduced 1-form ~L to sat1sty an analogous 
equation on superalgebra OSp(N\2) (2.6). The existence of zero-cur­
vature representation for the system (2.9), (2.10) means that the lat­
ter can be explicity solved for any value of parameter m • Purther. 
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discussion o~ integrability aspects is beyond the sco~7 af present 
work. 

3. EXAMPLES: N = 1.2,3 

N = 1. In this simplest case indices i,j take only one value 
1, an~ superfield q~j involves one component qi1(~) c e~~3). 
Constraint (2.9) is satisfied 1dentically, eq. (2.10) is nothing elae.

t than the N 1 aupers;Y1Dmetric Liouville equation/17/'•CI 

11: -LL 
D+ 'JL u =- \.m e. !,J 

N = 2. This model possesses abelian internaI symmetry SO (2) x 
-- ij + \ 

x SO (2). Co~respondingly, q (Z) is a 2 x 2 matrix: 
ij - iO i· ji

q = e-~e'l'() J~ E J o: - f. • Equations (2.9), (2.10) take the 
moat readable form with making.use of the complex U(I)-notation: 

])+(\.L+L.'f')=0 ) ])_(u+~4')~ o (J.1) 

JL]) (u. + ~ '0).,.. _-"1&.",eI. • +- ~ 'fi_ -t..(+ 
'(J.2 ) 

~ • 2- :: ']) ~ _ ~ l)2.~ 
J),t, =. ])! +1."D"t. ])t 

Constraints (3.1) are Grassmann U(I) -analyticity conditions/ 18/. and 
eq.(3.2) ia N = 2 supersymmetric Liouville equation/ 13/• In this 
case there appears for the first time a prototype of the WZ field, 
the scalar field 'f (x) a \f (Z)\e-=o coordinat1zing the coset SO+(2) 
x 50 (2}/SO(2). In the limit m= O, when Yukawa couplings to fer­
m10~ vanish, this field becomes free / 1) / . 

~. ·It 1s the tirst model with the nonabelian interna! sym­
metry group ~0+(3) x SO_(3) and, correspondingly, with the WZ action 
in the bosonic sector. Parthermore, it is the first example of· D • 2 
~angian model respecting invariance under superco~ormal aymmetry 
which has noncanonical generators, in addition to the canonical ones. 

To reveal the off-shell irreducible field content of N = 3 super­iO 
field q J (i.J 1,2,3) we take advantage of the project10n method.CI 

The constraint (2.9) leaves 1n qij 8 + 8 independent components: 
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Fermions B o s o n s 

-u<.~)",,· .'
 
't' ~<'3=) =. ~;("e)\ .: ~ t'Í(b~C{, )~m t e 'l.:Jl:J:)-=- <t~Jl~)\
 

+ 9=0 9=0 e=o 

"f'L.(::c\: "\'~(t)\ =~ (]):"'~'<:Ç1)t'1~\ A(:J:)=])~ 'Y}<'1.)~j(l)\ z: Ã (x) 
- ') o~o ~ 9=0 9:::'0 

(3.3) 
• -. lo:. ( :. "\.' k \ 

)'.+ (~):::- ~ E,"..J (q; 1>+ '\.-l 9:: o B\x)-=])~ Y~Ü)cVkll) tU,jl .:: 
e::. o 

• "k. ~ -1j~\ =- ~e(~)l. _(X)::. - ~ CJ ('\.]>- iq,.) O:: o 

(this definit±on is most convenient though not unique). The fie1ds 
A(x), B e(x) are auxi1iary, they are e1iminated by the dynamica1 
equation (2.10) 

A{x) = - 3 m e- 2« l:~') e;"- ex:) :. o • (3.4) 

For'the physica1 fie1ds eq.(2jO) yie1ds the following system: 

ra_ (i":'d~ j"vy:J= z""L('t'_~,,)j 'f} - (1/'_~p);: Y'+JJ e-U 

. _ u ('......) 2. - 2U 
'0-- 'd+ U =- Lo m Q... '1"_ 9"lf+ + m e (3.5) 

. J4 . '" J' - u
'4- 'f/,1' =;n c»: 1u) e ) ô-- X..,.::: o 

: .-., Z-LA
'ô I- '1/_ ::: - #'n ( ~" ~) e , d+ x_ :. o . 

Its bosonic sector embodies the Liouvi11e equation for di1aton u(x) 
and the equations of conformal1y invariant WZ sigma mode1 on the 
coset space 30+(3) x SO(3)/SO(3) modified by Yukawa coup1ings with 
fermi.ons. Thus, in the framewprk of this mode1 there comes ábout at 
once N = 3 supersymmetrization both of the Liouvi11e equation (or 
the f'ree one for m = O) and the equations of conformal1y invariant 
SO (3) x SO (3)/30(3) - WZ sigma mode1. It is worth remarking that one+ -, . 
~'put m = O in eqs~ (3.5) without losing a:ny tnvariance prope!ties 
of them. Ooup1ings with fermions are switched off in this 1imit (simul­
taneous1y wi th vanishing of the potential term of dilaton). and the 
system (3.5) sp1its into the pure WZ sigma model equation and free 
e~uations for di~aton and fermi'on fields (this phenomenon is quite 
analogous to the trivialization of ordinary li = 1 supersymmetric 
WZ sigma model at the points of conformal invariance/5,7/). 

lO 

Equations (3.5) are derivable from the action 

S -::. t2. \tA~x t~ 'di-LJ. 'O_lA ~ ~ fu. ('õ+ ~:~ d_ 't-.,,) ~ 

~ . \f-~ ~tl-t.tn.t~:~q,,,Lt~-o(dt~o)(~-~'()-'to) - (t ~ -)1 ­
o 

(J.6)_~ ~:'J"t\f'_~ -i if'+;''ê)_'t'+~ -~::t_'d+x_.-~x-to_x+-

'1.. - 'lu ~ 4J~ ã ~j 't' j Q- toe 1 l ~ 1 = C,WI o 
- ~ e. - L m - V" + J ' 

where êic(t .: 1) :: <la, qo(t = O) I. It:l:.s straightforward to1:1I 

check that the kinetic and potential parts of (3.6) are invariant se­
parate1y with respect to the N 1:1I 3 superconformal transformations 
(for simplicity, we write down merely supersymmetric transformations 

trom the right component of ° 3 ) :_. .' 
• k: ,=.." "J" )

(i~ (.~~ o ) ~.J =- - ~ f (x-") ( 1. ~ E. •j ... ~ ~ '*'+J - ~ "t' ~ ) 

c '+\c:( ~)Ulk
õ U ::'-Lt' X 1+.. . , • 

~'fIt ::.'O+tt",zex';) +- ~ t'.k(.r.")f.Ié:~.j X-+ 't) ... (~-,,(d ..~v\·Jr+J(.x:t) -~+u rt'(x"'), 
~ ",.~.k:. -u (I (J.7)

~'f: ':.-m'l-~ t" (x. ...)e J ~):._":.O ,_ ... 

~ 1.. .. :»t l x .+)-4t+~(x..)é~j~~~(í)+~p)~j - f ~t\«.r,+) t""J ~+.. 't'~. 
As was already mentioned in the preceding section, realization of the 
remaining C -transformations can be found by commuting (3.7) among

3 
themselves. Note the presence of additiona1 SO (3) - singlet spinor 
parameter V+(x+) in (3.7). The coefficients in

+ 
it~ x 

+ 
-decompoai­

- tion are group parameters associated with ano infinite set of noncano­
nical spinor generators present in N = 3 superconformal algebra ­
(see Appendix A). Respectively, under the action of these·generat9rs 
the field 'X ~ and its derivative~ of any rank undergo pure shifts and 

have thus a meaning of Nambu-Go1dstone fermions corresponding to spon­
taneous breakdown of these noncanonica1 'superaymmetries (an analogous 
interpretation is valid as we~l for l_ which is shifted under the 
action of noncanonical generators from the 1eft branch of C3 ) . It 
should be stressed that all other fie1ds in the action (3.6) are a1so 
of the Nambu-Goldstone nature, just as in ordinary sigma modela. These 
fields 'and an infinite set of their x-derivatives enter as leading 
componentã into the superfield parametera of infinite-dimensional quo­
ti,~nt space 03/H3 (with the inverse Higgs phenomenon constraints 
taken into acco~t). The group-theoretical meaning of fie1ds u(x)

ij . . ' 
anâ .,·'Qo.<x) is obvious. The fields 'fi..", 'Y_J and their derivatives 
of any rSnk are group coordinates associated with an infinite set of 
special conformal supersymmetries whose constant parameters appear as 

]] 



coefficients in the x -expansions of :functions f -: ~x."") and 
~-~ (~-) (starting from the linear terms). An analogous s1tuation 

persists in models with higher AI • 

To complete th1s Section we quote the coupling constant quanti­
zation formula needed to make meanirigful/2 , ) / the quantum theory as­
sociated with the action (J.6). With our normalization of the WZ te~mt 

the quantization condition is as follows 

K. ~2. = i , ().8) 
8:1\ 

where K. is an arbitraxy integer, K· E:- 7L. ­

4. N = 4 SUPEROONFORMAL SIGMA MODELS 

The case N = 4 is distinguished in that it admits two nonequi­
valent infinite-dimensional superconformal algebras ~ and ~ 
having, respectively, osp_ (4i2) (f) OSp+(412) and SU_(2.1.(J.()~ 

(f) SU+-(2.I{)t) as the maximal finite-dimensional subalgebras/9/ (see 
Appendix A).The second superalgebra is minimal in the sense that all 
its generators are cánonieal (just as in the N a 1 and ~ a 2 cases). 
It forma a subalgebra. of th~ first, more extensive, N • 4 superal­
gebra. The latter involves ir. addition an infinite set of noncanoni­
cai bosonic and fermionic, generators and is a straightforward exten­
sion of N =) superalgebra, treated in the preceding Section. The 
~perconformal sigma 'model for the superalgebra of the second kind, 

, with the WZ - 51.1-(2))( SUt-(2.)/SU(9..) -sigma model in the bosonic sector, 
was constructed by two' óf us (E.I. and S.K.) in/14 , 15/ (it was called 
there the " N .. 4 supersymmetric Liouville equation," because at tv\ 1:- 9 
i't incorporates, just as i ts N ~) prototypes, the Liouv111e equation 
for dilaton). Here we construct a sigma model for the N· 4 ,super­
conformal algebra of the first kind, discuss its peculiarities and 
reduction to the N = 4 model, studied previouslY. 

In accord with the general algor1thm of Sect. 2, we should cova­
riantly reduce the space C4/H4 to its finite-dimensional geodesic 
subspace oS p ( 41 '1V I-t It· Specificitl of this case is the presence of 
one-parameter family of diagonal superalgebras 

12 

Equat~ons ().5) are derivable from the action 

S-::. t2. \A~X ti '"drLÁ é)_~ ~ -h t1t. (()+ ~:{ éL't- c.) + 

T t ~ ~t. -tn. ~~-oi~" Lt<t-oi dt~ o) (~r~ '()-~~ ') - (t ~ - )1\ ­
o 

_~ 't':()T't'-~ - i if':-d_'t'+L ~ i 'X-_~-r'X- -~ x,».»; (;.6) 

.",.-. -u~ lL.... o
'2. - 2/..( • 'V'" Q .. j 't' J Q., :J ~ -= <:,1N1 , 

- 1:!1 e. - l.. m - Vo + 
2­

where q (t == 1) :: ã, q (t = O) = I. It is straightforward to o ~ o 
check that'the kinetic and potential parts of ().6) are invariant se­
parately with reapect to the N =) superconformal transformations 
(for simplicity, we write down merely supersymmetric transformations 

from the ~ight component of 0):.. .' 

(q::{s.1o);',j:-~r+k(x.")(l+-€.~~j ... ~b,,*, ..J _ ~"J ~:)) 
c • +I<.( X *)UI!c . •õ U ::'-Lt' 1-+, ~ 

~ 'fi ~ ~ '0+ t""~(x") + t. t'-+k.(x.-+) f.~ •.j )::. +'t) ... (t-,,( d" ~I)\;:J r "J(.:x.:. t') -'- 'O+u r+ L (~T)) 
~ ... 'I! +\( , -u l' (J.7)

S'f': :.-m'\r~ f'4 (x... )e I ~~_-:.o ._ ... 
".. • . • .." +) Ic. ~ J L J 

~ x. ... -::. \>+<':J:.+)-i r'+!c:(:;C-+)E. "Jt<t:184-"'vYJ·- i ~ (.r. t 't'... 't' ... 

As was already mentioned in the precedíng section, realization of the 
l'emaining 0), -transf'ormations can be found by commuting (J. 7) among 
themselves. Note the presence of additional SO () - singlet spinor 

I parameter V~(x+) in ().7). The coefficients in+ 
it~ x + -decomposi­

tion are group parameters associated with an infinite set of noncano­
nical spinor generators present in N =) superconformal algebra 
(see Appendix A). Respectively, under the action of these generatoJ;!s 
the field "X+ and its derivatives of ány rank undergo pure shif'ts and 
have thus a meaning of Nambu-qoldstone fermions corresp~nding to spon­
taneous breakdown of these noncanonical supersymmetries (an analogous 
interpretation is valid as well for X- which is shif'ted under the 
action of noncanonical generators from the left branch of C3 ) . It 
should be stressed that all other fields in the action (J.6) are a180 
of the Nambu-Goldstone nature, just as in ordinary sigma models. These 
fields and an infinite set .of' their x-derivativas enter as leading 
components into the superfield parameters of infinite-dimensional quo­
tient space O)/H) (with the inverse Higgs phenomenon constraints 
taken into account). The group-theoretical meaning of fields u(x)

--ij .' .
and QQ (x) 1s obví.oua, The f'ield.s 'V..", 't'_J and their derivatives 
of any rank are group coordinates associated with an infinite set of 
special co~formal supersymmetries whose constant parameters appear as 
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coefficienta in the X -expanaiona of functiona ~+~(X~) and 
f-~ (X-> (atarting from the linear terma). An analogous situation 
peraiata in modela with higher }V 

To complete thia Sectio~we quote the coupling conatant quanti ­
zatian formula neede~ to make meaningful/2,3/ the quantum theory aa­
aociated with the action (J.6). With our norma::"ization of the WZ term, 
the quantization condition ia.aa followa 

K ~2. 
= i, (J.8) 

8:1\ 

where K is an arbitrary integer, K. ~ Z . 

4. N = 4 SU~ERCONFORMAL SI GMA MODELS 

The caae N = 4 ia diatinguished in that it admita two nonequi­
valent infinite-dimensional auperconformal algebras ~ and ~ 
having, reapectively, osp_ (4i2) (f) o s P ... (412) and SU_(2.\-<,.()<I> 

(f) SU .. (2U)f) as the maximal finite-dimensional aubalgebraa/9/ (aee 
Appendix A}.The second superalgebra ia mínimal in the sense that alI 
its generatora are canorlical (just aa in the N • 1 and N D 2 cases). 
It forma a subalgebra of the firat, more extensive, N • 4 superal­
gebra. The latter involves ir. addition an infinite set of noncanoni­
'cal_pC?~onic and fermionic -gener-atoz-a and is a straightforward. exten­
aion of N ... 3 auperalgebra treated in the preceding Section. The 
auperconformal sigma 'model for the superalgebra of the second kind, 
with the WZ - 5(.1-(2).1< S lJt-(2)/SU(~> -sigma model in the bosonic sector, 
was conátructed by two of us (E.I. and S.K.) in/14,15/ (it was called 
there the 

n
N 4 aupersymmetric Liouville equation,

.. 
because at h1 1:- OD 

it incorporates, jus~ as i ts N ~ 3 prototypes, the Liouville equati(;>n 
for dilaton). Here we construct a sigma model for the N. 4 auper­
conformaI algebra·of the firat kind, discuss its peculiarities and 
reduction to the N = 4 model studied previouslY. 

In accord with the general algorithm of Sect. 2, we should c9va­
ri~tly reduce the space C4/H4 to its finite-dimensional geodesic 
aubapace OSp(41'l>/H't.. Specificity of this case is the presence of 
one-parameter femily of diagonal auperalgebras 
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OS? (11(2) i.., !!lI.( = II( _ (( IL4) Cf> IK to (H 4) : 

(..t) (.,L).. . ;:loL)
 
OS.f (4\'2.)::= {R-t ) U J T"-J J G-:t \
 

R't') =L_~ t + 'M~ (L.(~ +- r:J... L1-(:+) (4.1) 

• (.,I.) c. .. \ 
G-I.+ = (;.~!.+ .t W\ (G-\+ - d.. f\:{.).

- 2­

Though the general construction of Sect. 2 corresponded to the choice 
of d.. .... O in e qa, (4.1), it can be easily adapted to the caae of d#:o 

toe (the equations of motion undergo a minor modifieation). For speei­
a1 values oi = +1/2, the generators of one of two SU(2)'s eontain­
ed in SO~4) c:<- {l-"j} drop out from the r.h.a.of basic antieommuta­
tor {c;,.; J ~~ ~ and supezed.gebz-a (4.1) contracts into SU;(2 f1,1). 
The latter enters as a aubalgebra. into the minimal N = 4 supercon­
formal algebra ~ (eq, (A.10) in Appendix A'). This fact will be 
used later in discussion Qf the relation to the previous N = 4 mo­
del , 

For the time being, our consideration will not be confined to 
any apecific value of ot. • Aft er covariant reduction of r;;.4- / I-('f 

(.J)(to O Sp 4 ( 2.) / H4 , the baaie auperfield 
Htlte. ".2 " .' -u.l- l.-If \'-Jq.,"J :=. (e. ) 

e 'J\.t. I() are SO(4)-generators in th'e vector repreaentation) sa­
tisfies the following aystem of equations 

)))~ <vH • J>: V" · -k g" 1>; '(,jt 

1 ~ •k • ~ \c • c ~.j .,..l. q e. k (4.2 )
l3>- t J +])~ 'V :=. 2. ~ .JJ_ V 

.~ Ice.·-"e o\( .\t ~t 
n~ (q;~ :b~ ",V = i.m (S q....J + ~J C{tL - S.J ~ + (4.3) 

kj e't, o").)t2o{E. v . 

Comparing eqs. (4.2) and (4.3) with the general system (2.9), (2.10), 
one observes that the equationof motion haa been alightly modified 
whereas the form of off-shell irreducibility conditions remained un­
changed., Note that,as before, q...~j transforma under C4 according to 
the general transformation law (2.4). 

la 



Let us -turn to the component analysis of e qa, (4.2) anti (4.-3).q;jConstraints (4.2) single out of an irreducible supermultiplet 
16 + 16: 

"l:'~ _ ~ (-oi,.."",." \.~m~.j :: êU~':j :>+ - 2f '{., -U T tt-) 
~i.j =. l.~j~( c('k J:>_ S~ 7';. _ ~ (.,..W\ -C).......
 

S_ - L{ -lJ_ ~- 'tt1t ~ <'""l _'"' A =-0A+ ':..'l>. ~+ A .. 0-_... - 'r -. ~ ~Jkl.( -l])j )keOf' 
~+ -i~ E, tt" +~A _ = D~ ~':_ (4.4) 

i. • ~jke( ])j -4)kf
..,~-,...,.W\ 7 k. ~- '" ti€. t -~ .F c::::. q, .1J_ ~ ... 

G- ~ ~:~k])~ ~: 

Like in the N = 3 case,the independent component fields are the 
g = O parts of these superfields. The eight fields Btj , F. and 
G are auxiliary; these enter the f) - expansion of ~i:j as coef­

ficients of the mónomials -.e+e- • Among the physical'fields there 
is a vector field A±. (x') wh1ch is subj ect to the differential· cons­
traint 

(,LA+ (~) - 'd+ A_ <:r.) = D (4.5) . 

following (after some algebra) from the superfields constraint (4.2). 
80, A~(x)actually describes one degree of freedom off-shell (cf. no­
toph in 1~~ dimensions). The general solution o~ eq.(4.5) is'via a 
SO(1,1) "'scalar field tf(:t=) of dimension cmo: 

A-± (~) = 'd:t 'f(.x.) . (4.6) 

Thus, the irreducible manifo~d of bosonic fields consists of 8 phy­
sical fields (two real 80+(4) -singl~:s u.(oc.), 'f(x) and six real 
SO+(4)xSO_(4)/80(4) -parameters 'ftL.Jl (3=-)) and 8 aurll1ar:r fields 
(-two real 80

+
(4) -singlets F , G- andsix real

•
fieldsBt"Jl (~') 

forming the fwo-rank skew symmetric tensor of SO (4)~). The fermionic 
+ f(sector comprises 16 fields of physical dimension cm- 2. wh1ch falI 

~n the present model, any tensor representation óf SO (4) 1s.• 
equivalent to that oí 80 (4) due to the ex1stence of a "br1!gen ~:J 
relating vector indices Ôf 80 (4) and 80 (4) to each otper. 0Ur con­
vent10n on the representat1ón-content of+f1elds ensures the most 
simple form of 1nvar1ant act1on. 

]4 

into two vec t ona of 80 (4) (~~. ,}' .. ,):and two vectors of SO (4) 
( ,~~ , Ç. ~ ). + ":>1' '-:::> ~ . ­

The equation of motion (~.3), when rewritten in components, 
amounts to the system 

' Bij :. O
 

.:2u
~ \F -=',4~me._2U (4.7), 

lG- ::. - llm e. 

ô_Lê(,-t d+~)~d :o-l. rnl \~_zc.)l.~i _(!_~)j~i_2d.Ó;ke(~,_~t~~1e-U 
~ -lu • I '" ) - ~ 

ô ...ô_U -=- m e. + ... m'-~-CV·~t e' 

'a+'ô_1.Í -== o 
'd-s~: l'Y\l~_t);:e-U (4.8) 

~ ~ -u 
~+~~=-M(~~~) e. 

~_,} ~ o 

'() .. ~~ = o , 

where . 
~ ~ == 2. (s~ i- d. S ~ ) 

(4.9) 
'''. .,

ú == ~ (~ ... 4J.. u ) 

and eqs. (4.7) were used in the process of deriving the physical equa­
tions (4.8). 

It is advantageous to rewrite both the system (4.8) and the ori ­
ginal equations (4.2) and (4.}) in the isospinor two-component nota­
tion using the isomorph1sm SO+(li) x SO_'(lI) ~ l <;U?('1)]:tl( l~tJ_(2.)];t. 
Any vector index of superfield ~~d • spinor derivatives, spinor 
coordinates,etc. must be substituted by a pair of SU(2) -doubiet in­
dices accordi~g to the rules*l 

*tur conventions are as follows (both for ordinary and underlin­
ed i.!ldices): .,1.4- • ---.) .,2.. :41 J 

(<S'i).tCl.. -::. (t ," ~~Q , L =-(. =-l:.t:~.. =~-.J.)
 
(,,~-:.A.(\.(J2J~) e g -3J 01. -a- r;o.Q,- ol ~
 

~.t(\t' =~ .... tCL.AE.~ =s.", (!'o/~=E.. P<Sf' =- t. r.r~ -=--(a-)etQ..

c; LQ.j!>, t, r ~ -- ­

Herfl(~)et~ = (~~Jq-2,q-!)~ -: (~:."')(:\J3 are ordinary h e.rndt í an Pauli mat­
rices, symbol (-)means complex conjugation. Elsewhere SU(2)-indices 
are ra:f:sed and lowered wi th the help of invari ant t ensors ( ..p , (. ..1,'3 , 

é.ali. and é aL. • . 
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Ai.~AJ.a.:.k Ai(~;:).,La.j AJ..Q,AJ.o.:.= E..~(!> E,J. A"/a. A~« ~ AiA:' 

(4.10) 
• .,(Q... - • .,aa. _a.	 .<L.J..( B~ ai 

~~~ ~~-:. ..L &~ ({f' =)'-_. p>c.- B~<! -= E.d.1l f-d .&\....- B - =. O!r
 

. \[2 I - -F -- , ,
 

where ordinary and underlined indices refer, respectively, to SO+ (4) 
and SO_(4). 

Keeping in mind that the SO_{4) x SO+(4) matrix superfield 
i~~,~~~~~~)a~ e~ can be represented, without loss of generality, as 

ã J.Q..la.. '" ~ <Á. ,.., ~a.. ,,-- ) =. q,.. . q.,:z,	 (4.11) 

and passing further to components with doublet indices, one finally 
rewrites the system (4.8) as 

( ""'- eJ.d. - f>' J.~.- (-ci. fa.. f J.Q.)-U,
éL ~f	 -'õ+'\..~ )=-"~((+-2ol)S:-'\.t:l.qa..\~( ... ~ ...... q,~~ S+ ~ 

..... _(QC4, "" g' ) <!9,.- ("",o.---cfl.,...,e. fa.)-lA
'õ_('(.", -d~~~~ )-:.-"f (-(-2- d S_ 't-c'.!.f ~2..õ:~ ... +~4~ s+ e 

2~ ~~- ~ J.~
~+'()_ U ; h'1a.. e t- ~m s- - 'tt.. ~..t ~1~a. S + 

'3 +- 'Cl- 1.f =- o 
~~ ela.. ...... J. '" ll:' -u
 

~+ ~ _ ':-- Wl S~ <t .. ;- ~ll.a. e
 (4.12) 
eLo... ~ 9..,.... r/..,.,. ~ -l,..(


i()-!..... = tn;'_ ~ ..~ <{,:2,. ~ e
 

'()+ 7=~ =- o 
ol4.

()_ ~+	 =- o . 

Th~se equat10ns follow from the action 
~ r { . . ll. -2t..<S:. ~	 ~ol~.r. ti'O+u'cl-U - i !.+'d-~+ -t !_r;)+!_,- ~ e ­

~ ~ i.<!..';"" ã. ~ ",o..	 - !:.. h ~'d-1+ ­'-lA.} -+ --t-li. ~+ 'lf1J- V 
- 1.1-1'\ ":>_. <t-2.9,a V~~ol S t e. f -'lJ..'- ;L :L ~ 

_.~ 'l.i	 tt.1 ~ ~kI.1:.. '" .( ~WI% • .... 1 
,. -, ~ - +- 2.(i-~J..) ('/t:z.) +~) (1')J 

(4.13) 

·1 

Zk/'~"{f)'~ tft ('J/f,-'()-'i) + Ir/I; tk.{~-'it(i-/a1oi~(t?-'')-f)~·(j- ~-) t 
•	 D 

o
(~(i=i)=~ ) ~ (t."'o) ~ I), t.~1: cm . 

r	 Transformat10ns of N .. 4 superconf'ormal symmetry wh:1ch 'leave (.4.13) 
invariant can be found by the general recipe, start1ng with the rea­/(' 
lization of C'I as left shifts in c." b~'i and substituting the'exp­
ress10ns (4.7)' for auxiliary fields. We restrict our presentation here, 
like in the N .. 3 case, to giving supersymmetric transformations 
:rr~m the right branch of C l.( : 

(~~f~~JL~=iJ<'H2.at)<'t+cLCA ~!tl1"S+fa.s~Q.)- .f/~Q.1+~ - 5/j Q. 7+: 1 
.... -4 '"	 oi. • {, +eLQ l -tal g a) .. .ta g +.,{g Q 1
(~1 ~ ~a-) ~ ~ l<'{-2.J.)(~ s.... + r ~ +-oc +r "•..c t- t' ~ +­

(' • +eLa
 
oU := - i. r 1 +eLa.. .
 

(' ..J.a 
c)l1" -= - ... r ~......~
 

~ ~"'Q __ t+al.e. cõ.-( ~ ,..; ) a. _ f-t"PQ.Cã.- c '"' cr.) ti.. _ +al.et~ 1"'d ~+eL~ .
 
~+ - o+'h. g J Yc 0+ Y4'J r 0-t U +) tV:l 

. (+'0. e J. -trJ.C' ~) .( ~'Q- e., .. .c.g p a, )al

+~L~ r ~.. ~ ~+g -r I+~ ~-tf> -L r ~+f ~+(,-f 1'tg !.1'-t 

c eLa. \ t",t/.::.'-, .... ) a. ) tr«: ,., \ tio, +al.GL ... r'
c)~t =-(f+2.J..)r "<fi" d~~:J. g +({-2,..L r ~c ';}.. lJ,"Jf - r ';)-f'U - (4.14) 

-t(f-4J.~)Lff(1.S-t;~:g-.r+.((s+~!;) + ~~~+ r+oLQ... ­

"l -t a. g ti.. ..oi C P 1 ,,,,J.o­(1"- ~ r t 7+ 1~(l -t' ~+6 ~+f J + 2 y+t
 
~~~~ __ "'ef"'~~ + e- u


• s , -	 m l{,.. 't-:l. t f' 
&h~~=	 o

1.- , 
IJ 'IJ' ';"0, ,\ .l.a. +)

f+flOoo;=.	 t'+'~(~+) ,v+ ::: y+ (:J:, . 

Let us outline the main features of the model specified by eqs,. 
(4.12) and (4.13). Its bosonic sector involves two WZ sigma models 
defined on two independent spaces SU+(2)xSU_(2)/SU(2). These models 
are interrelated sole~y via the fermionic sector due to Yukawa coupl­

'~	 • tIo,Q. rJ.a,.
ings with the common set of spinor fields '! + and ~: - • In the 
bosonic sector one finds also an additional scalar field 1f(~).

J ~hough the latter possesses the free action for any ~ , its presence 
1 is necess.&rY for N=4 superconformal invariance of the whole action 
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(4.13). Again, alI the ~ields involved are of the Nambu-Goldstone
 
natur~. In particular, A'±(x) -=- "d:t 'f'{.x) are ClI/Hli coset para­

meters associated with the noncanon1ca~ vector generators present in
 
superalgebra ~I{ (Appendi:x A, eq, (A.8».
 

Just as in the N = 3 case, at m a O alI the nonderivative
 
couplings varrí.sh , and the action is reduced to a sum of two bosonic
 
WZ actions, free actions of scalars U LX) , '1.f'(~) and free fermionic
 
actions.
 

Formul~ (3.8) for quantization of the overall coupling constant 
is now modified due to th~ presence of two indep'endent WZ terms in 
the action (4.13) with an additional free parameter oé • The quanti ­

zation conditions involve t~o independent integers. 4( f )" ":t 
:f~(~-2oL):. 411 , f.1.(4 +2ol):: '111 (4.15)

K.. K.2,. 

For oi tt ~ 1/2 these conditions amount to 

12. ..L oJ..:. 1- Il.- ~'2..i- + (4.16) 
;};:Ji Kf K2. ~ ~.f+t('2.. 

w.hile at the singularity points éJ..... a í1 1'/2, respectively, to 

a) K(~ 0'0) 1~ = ...i.- b ) .c2..-'J» 00 ) J.: _ .i. (4.17)
.2.11 ~'2.. :t:JJ - K: .. 

In the rest of this Section we discuss the relation to the N· = 4
 
model constructed earlie/ 14,15/ •
 

.-...,. Our start±ng points in/14,15/ were mínimal N a 4 ' supez-e.Lgebz-a 

~ and its covariant reduction subalgebra Su.(2.'~;1). As has been 
already remark?d, this SU (2.\,i)~ ) corresponds to the choice of do. = 
1/2 or d.. ~-1/2 Ln gen~r~tors (4.1) (depending on the wa:y one 
singres ou't ~ from,~ ). Thus, to descend to the model of ;r,efs./14, 

15/ from the one given here we should put, e.g., o<. =, 1/2 in the 
equations of the latter and simultan~ously reduce initial C~ -~ymmetry 
to symmetry under supergroup ~ w1th the algebra ~ • This is achie­

, ao
ved rith the following ansl1tzE! for 'j,!!!:-T"" ~,.i.a. :, 

$'~~)oI.a..::: E.~a..t'!!:aI... (4.18) 

Employing general ~j-transformationlaw (2.4) one may check that 
the ansatze (4.18) breaks C li doe to semí-direct pz-oduct of c;. 
and diagonal SU(2)-subgroup of those two SU(2)'s from SO (4)xSO (4). - + 
wh1ch act on indices ~ , a.. • Th1s diagonal SU(2} gives rise to 
purely global rotations of Grassmann coordinates and the related com­
po~nt fields in q,i:.c:J.. • Two other SU(2) ts falI into supergroup 
C~ and extend as before to Kac-Moody gauge symmetries. 

Substitution of (4.18) into eqs.(4.2), (4.3) yields the self-
consistent system of equations for ~~ oi.. : 

....... J.f.Q~.f ]) "g <t::.J.. '
 
JJt-" + + '{I = O 

{ ]): ~ '{,-t- et + J)~~ ~~..t. =- o (4.19) 

]>:~ [<'i')-t J>!( (~}! 11' j -: 2. ~ m E.~ ~ t)lf> lJ, ~~, (4.20) 

-.here 
~'""h ... e ~ Lo n '" J) i:. ~ '= .±.... b ~ (cr ~ )~ B:­.JJ+ :: ~ ])~ (~ ... )..t li" 

r ­ n -" . 
Let us set 

c/.,( J.. 
.,.. .L.( = ."..... ])~- =. S):
,J)~ -.u+ 

....2 - oL

J) ",, ~ = ::;;' al l>..:-- =-:n.:+ -..lJ+ 
-t..ta. - cJ.. a..

wh1ch amounts to regarding real coordinates e and e - - ai! Gómp­
lex doublets of SU (2) c. e'4 • Then eqs. '(4.19) and (4.20) take the 
same form as those±in/14,15/. In particular, the irreducibility cons­
t~a1nts (4.19) become 

])~ C{, ~ p) :. O ) ])_(~ 'li ~)cl. =O (4.21) 

- lf 
(by the real1ty property ~.!!:, = - €o!! t € .ff ~ , the ssme conditions 
hold nth J)± ). It is worth mentioning that the supermultiplet sub­
jecte~ to the constraints (4.21) has been.in4ependently invented by 
Gates, Ball and Ro~ek/81 in searching for'new D = 2 si~ models 
with extended supersymmetry (it was called "tnsted chiral N. 4 
multiplet"). These authors used a bit different definition of spino~ 

der~vatiyes leading to a more intricate form of the constraint. The 
explic1tly SO_(4)xS0-J4) -invariant form (4.19) has been given for 
the tirst time by Siegel/19/. 
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The superfield condition (4.18) in application to physical com­
.J.,j. a..n­

ponenta of ~.- )- amounts to 

,.., a.c:L ~a.. ala. .... a..o - (:x-).::. E. Vex.) :. O .... (4.22~-Va., ) J l + 1'=-- -=?-O· 

Relabelling tb.e fermionic components as 

'1;..1.-(:: ü..c.. ~ i. . .J... 
~+ _ 1-+ ~._ ': 'fI_­

.L 2. -al oLtI.~) 
~ ~2.._ x:»: ..1.8 -~.) .~.~ - =. "t'_- :. E.- - -r <.. '-\'_~ 
":»+- = 'X. + =. f. )(1.+ 

and choosing o( = 1/2 in the actiori (4.1) (this choice is implemen­
table only when followed by eqs.(4.22»one finds the reduced aqtion 

4 ( í { - - " .( ~ -2u'S= ~.2.. J'P'X l "i~~u(iLl..{ + ~ 1:.+ 'd-l- +- + 'i. '-P_ o+'t'_ - 2: m e ­

( 
J....., <ti. - .- ~ ...., cJ. \ ~ X w .1.. --)J (4.2) 

- ~ trl 't'_-~ 1!t: 't +0(. - 0/_ CJ. (~ X+aI J ~ li (th 

which reproduces the component equations obtained in/14, 15/. Quanti­

zation of the coupling conatant ~~ ia given by formula (4.17a)4 

Finally, we note that an alternative reduction to the.N =). 

model of Sect.) is effected, on the compor.errt leveI, by choosing 

d-. = ° in (4.1), and setting (with unessential nurneric coefficients 
_~~ored) 

I"V,J.. B a..~ .t o.. ....a., .J. a.. ~a.. 

~;J :::~,: 7+ ~ t, ~+) ".:-
= é- - -; ~_ V~O. (,21-. 2 4 ) 

5. nrscussros 

For reader's convenience, we list now the most important peculi­
arities' of the proposed new class af superconformal WZ sigma modela 
with focusing on its distinctions from the type considered previously
/5.6/: 

(a) These nonlinear sigma models are defined on coset ~anifolds 

of AI -extended D·: 2 conformals~pergroups. Though the number of. . 
coset parameters ia originally infinite one succeeds in imposing co­

variant conatraints on them so as to leave in game a finite set of 
parameters which are identified then with the physical bosonic and 
fermionic fields. The internal symmetry group of underlying bosonic 
WZ sigma model for a given N ia SO_(N) x SO+(N). It enters the 
whole aupergroup in a nontrivial way and does not commute with D = 2 
supersymmetry being the automor~hism group of the latter. 

(b) The manifold of physical bospns for a given N is the pro­
duct Ml>" X SO_(N))(' SO .. (N) , fv1]) being a D -dimensional Eucli­

", SDCA.') IV N 
dean space with 

= 2-W- { _ A/(AI-.f) (5.1)])1\1 
2. 

(the bosonic manifold dimension is determined by counting the pairs 
çf independent bosonic left and right movers, for detai~s see Appen­
dix B). Among the fields wi th values in M 1)"" one alwaya finds the 
dilaton U (x') • The remainder transforma according to real repre­

aente t í.ons ~)k ( k. = 4,6, ••• , 2l~] , N:# 4) of SO_(N) (or , 
equivalently, of SO+(N), see footnote on p. 14). 

(c) On the clasàical leveI there arises the relation between the 
parameters of bosonic UZ action needed to maintain conformaI inva­
riance in the quantum case. This is owing to the presence o~ two com­
muting SO+(N) - Kac-Moody symmetries in theunderlying N -extended 
superconfõrmal symmetry. 

(d) The complete sigma model 'action may include potential terms 
which are auperconformally invariant on their own and necessarily in­
corporate the Liouville term for dilaton. Thus, the models in ques­
tion can be equally viewed aa.higher N superextensions of the .Liou­
ville theory. Note that in the standard D: 2 sigma models with ~x­
tended supersymmetry an invar~ant introduction of potential terms be­
comes possible only after extending the original auperalgebra by cen­
tral charges (aee. e.g./20/). 

(e) For any N these models are claasically integrable. Their 
equations of motion are equivalent to vanishing of curvature of cer­
tain l-auperform (wi th values in Os'p (,N 12) or Su.(2.11, 1}) • 

(f) The N.) and Nc4 models ().6) and (4.1) provide us with the 
first examples of Lagrangian field theories which possess D. 2 
superconformal symmetry having among its generators the noncanoni­

20 21 
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cal on~s. These models are self-contained (at least, classically), 
alI the involved fields have the true physical dimension and SO(1,1) 
-weights and enter the action with correct kinêtic terms. It should 
be pointed out that noncanonical sYmmetries in the present case are 
spontaneously broken, in contrast, e.g., with the standpoint of/9/ 

where those assumed ~o be unbroken. It would be interesting to inqu1~ 

re the quantum structure of these models, at least in the limit m = 
O where the standard techniques of refs./8,5,21/ are app'licable. This 

would allow to test them for qu~tum self-consistency and, in parti­
cular, to evaluate the central terms (if exist) in corresponding 
quantum commutato~s of superconformal charges. 

There remain many other things still to be completed, such as 
solving of general constraints (2.9), (2.11) off-shell via proper un­
co~strained prepotentials and finding the relevant superfield actions. 
This can hopefully be done in the framework of the harmonic superspace

22/approach/ that proved to be most adequate for handling extended 
supersymmetries. However, as mentioned in the end of Sect.2, the cons­
truction of-invariant actions for ~>4 m~ encounter troubles relat­
ed to the appearance Df the notoph-type differential constraints off­
shell. These are necessarily required in order to ensure a correct 
number of off-shell bosonic degrees of freedom but ln general may 
have no local solution via potentials because of nonlinearities in 
WZ fields (as distinct from the simplest N = 4 condtion (4.5». A 
possible way out is, óf course, to implement them in the action with 
the help of Lagrange multipliers. 

An interesting development would be the generalizatioh to the 
case of D = 2 he't e.rotdc 'Superconformal symmetries of the type (N ,M), 

N # M. An immediate heterotic analog of our square N x N -matrix 
superfield q,tj (·e) is arectangular N x M -matrix superfield <t"j à·) 
( t '= 1, ••• N; j = 1, ••• M) depending on coordinates (~±) e-': e-.j )

J 

and subjected, by each of its indices, to the constraints of the type 
(2.9). The dynamical equation (2.10) is also generalized in an obvious 
way. The WZ fields will parametrize the nonsymmetric'coset SO_(N) x 

)( SO (M)/SO(P), P = min (N,M) • .... 

We end with seve~al comment~ concerning a possible relation to 
string theo~ies. As is known, any conformally invariant D = 2. sigma 
model can be regarded as a candidate for string theory, bosonic or­
fermionic (with proper Virasoro-type constraints adde~ What sort of 
fermionic strings could be associated then with the mod~ls construct­
ed here? These strings should possess extended D = 2 superconformal 

22 

variant constraints on them so as to leave in gamea finite set of 
parameters which are identified then with the physical bosonic and 
fermionic fields. The internaI symmetry group of underlylng bosonic 
WZ sigma model for a given N is SO_(N) x SO+(N). It enters the 
whole supergroup in.a ~ontrLvial way and does not commute with D = 2 
supersymmetry being the automorphism group of the latter. 

(b) The manifold of physical bosons for a given N is the pro­
duct Mb•• X SO_CN) x SO~(N), M..... being a D --dimensional Eucll-

IV SOeN) ...."'" N 
dean space wi th 

=. 2.AI - { _ N(N--t) (5.1)])1\1 z, 

(the bosonic manifold dimension is determined by counting the pairs 
of independent bosonic left and right movers, for details see Appen­
dix B). Among the fields wi th values in /V\ 'b.v one always finds the 
dilaton L( (x') • The remainder transforms according to real repre­

sentatLons m1 l (k. = 4.6, •••• 2l~] , N#4) of SO_(N) (o r , 
equivalently, of SO+(N), see footnote on p. 14). 

(c) On the clasàical leveI there arises the relation between the 
parameters of bosonic UZ action needed to maintain conformaI inva­
riance in the quantum case~ This is owing to the'presence of two com­
muting SO+(N) - Kac-Moody symmetries in the underlying N -extended 
superconfõrmal sYmmetry. 

(d) The complete sigma model action may include potentiai terms 
which are superconformally 1nvariant on their own and necessarily in­
corporate the Liouville term for dilaton. Thus. the models in ques­
tion can be equally viewed as higher N superextensions of the Liou­
ville theory. Note that in the standard D = 2 sigma models with ex­
tended euperBymmetry an invariant introduction of potential terms be­
cómes possible only after extending the original superalgebra by cen­
tral charges (see. e.g./20/). 

(e) For any N these models are classically integrable. Their 
equations of motion are equivalent to vanishing of curvature of cer­
taln l-superform (with values in OSp (N 12.) or SLL(211, 1». 

(f) The N-3 and Nc4 models 0.6) and (4.13) provide us with the 
first examp-Ies of Lagrangian field theories which possess D ~ 2 
superconformal symmetry having among its generators the nQncanoni­
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cal ones. These models are self-contained (at least, classically), 
alI the involved fields have the true physical dimension and SO(1,1.) 
-weights and enter the action .with correct Kinetic terms. It should ~ 

be pointed out that noncanonical symmetries in the present case are 
spontaneously broken, in contr~st, e.g., with the standpoint of/9/ 

where those assumed ~ó be unb~oken. It would be interesting to inqui­
re the quantum structure of these models, at'léast in the limit m = °where the standard techniques of refs./8,5,21/ are applicable. This 
would allqw to test them for quantum self-consistency and, in parti­
cular, to evaluate the central terms (if exist) in corresponding 
quantum commutators of superconformal charges. 

There remain many other things still to be completed, such as 
solving of general constraints (2.9), (2.11) off-shell via proper un­
constrained prepot~ntials and finding the relevant superfield actions. 
This can hopefully be done in. the frnmework of the harmonic superspace 
approach/22/ that proved to be m~st adequate for handling extended 
supersymmetries. However, as mentipned in the end of Sect.2, the cons­
truction of invariant·actions for N>4 may encounter troubles relat­
ed to the appearance of the notoph-type differential constraints off­
.shell. These are necessarily required in order to ensure a correct 
number of off-shell bosonic degrees of freedom but in general may 
have no local solution via potentials because of nonlinearities in 
WZ fields (as distinct from the simplest N = 4 condtion (4.5». A 
possible way out is, of course, to implement them in the action with 
the help of Lagrange multipliers. 

An interesting development would be the generalization to. the 
case of D ~ 2 heterotic superconformal symmetries of ·the type (N,.), 
N ~ M. An immediate heterotic analog 'of our squareN x N ~matrix 

superfield q,tj (c.) i's a rectangular N x M. -matrix superfield ~"j (r)
•• -+ • 

( l. = 1, ••• N; J = 1,... M) depending on coordinates (~- I ~- \ e-tJ 
1# 

) 

and subjected, by each of its indices, to the constraints .of the type 
(-2.9). The dynamical equation (2.10) is also generalized in an obvious 
way. The WZ fields will parametrize the nonsymmetric'coset Se_CU) x 

,cSO+(M)/SO(P), P = min (N,M). 

We end with several comments concerning a possible relation to 
string theories. As ia known, any conformally invariant D.• 2 sigma 
mQdel can be regarded as a candidate for string theory, bOBonic or 
fermionic (wi~h proper Virasoro-type constraints adde~ What sort of 
fermionic strings could be associated then with the mod~ls construct­
ed here? These strings should possess extended 'D = 2 superconformal 

22 

symmetries and contain, among their coordinates, those of compact 
spaces SO_(N) x SO+(N)/SO(N). The remaining scalar f~elds are natu­
ral. to identify with a kind of transverse coordinates of the tlat 
part of string manifold (except for dilaton which see~s not to be in­
cluded in the number of str1ng coordinates). Though the situation is 
reminiscent of the one in models of strillgs on group manifolds/4/, 

there are 'essential differences. First of alI, the number of physical 
bosonic fields in the models under consideration (and, hence, the 
ev~n dimension of hypothetical string manifold) is fixed still at the 
classical leveI in' terms of N by eq.(5 •.1). Actually, alI the inyol­
ved physical fields have intrinsic geometric origin being group para­
meters associated with spontaneously broken generators of initial N ­
extended superconformal symmetry. One more difference lies in the 
fact that the bosonic fields valued in the flat part of full manifold 
are assigned now to nontrivial representations of interanal SO_(N) x 
SO+(N) -symmetry (beginning with N = 5) while in previou~ considie­
rations they were supposed to be singlets of internaI symmetry. 

Clearly, the question of how consistent is the string interpre­
tation of the proposed mod~ls will be possible to answer in a full 
generality only within the complete quantum framework. Keeping in 
mind the abov~ peculiarities, one may expect serious moditications 
as compared with the current schemes. This regards, e.g., the· flat­

-space criticaI dimension formulas. It may happen that the present mo­
deIs exist quantum-mechanically only for apecial values of N, namely 
those which ensure the quantum criticaI dimension to coincide with 
the classical one. 

An important step towards a string interpretation of models in 
question is their reformulation in a locally ~upersymmetric way by 
coupling toconformal D = 2 supergravities. This would help to re­
veal what ~e the relevant generalized Virasoro conditiona. As a mat­
ter of fact, it is the whole. infinite-dimensional superconformal sym­
metry that has to be gauged and we expect a close contact at this 
point with the recent construction by van Holten/11/. 

Ãcknowledgements. We co~dially thank S.J.Gates, D.A.Leites, 
J.McC8be, V.I.Ogievetsky and M.V.Saveliev for interest in the work 
and dis~ussions. 
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APPEUDIX A. General D = 2 Superconformal Algebras 

N-extended superconformal algebra in two dimensions consists o! 
two independent light-cone cpmp~nents, each being generated by an ~-

. A[I. 4 ... c.. Q1 n A Jfini te set ot generators" • Here ~ -= OJ-i, IV ,every in-o,, 

dex i runs over vector representation of SO(N), t 1 means an.tisY1Jl­
metrization and n E Z or 7L + 1/2, depending on·whether R is 
even or odd , (We assume' the Neveu-Schwarz type gradir1g). -Discarding 
possible central terms, these generators obey the following (anti) 
commutation relàtions/ 10,11/ 

A[ ~ , ..,~~lA Lj.,,·Js] _ )QS+( At j ... ,j g l A;~4o"~Il:1
 
11 "'" , + t , ......
 

-ll~ . L~(·"~l2j ... ·jS] 
::t~~ 'fl"'(~-S)-W\ ('2..-p.)1 AH+W\ - (A. 1) 

" ". 
~ ~ ~.k.~S ('~~IÁ~ l~ ... ·~~ .. · ~Q.j400.j\L'" Js] 1
 

- ~ ~ Lo. (-~) /:) A l'\-t- W\ ~
 
"'~. k~4
 

(a hat meana that the corresponding index should be missed). 

We are intereated in a' contact aubalgebra IK( ~ I Iv' ) o! (A.1l'O/ 

generated by A(~c," ~jt1 (0._ ( AI' (1-2 c. h c i- oco'). 
11 - o. J'" ) 2. ­

Note that one may impoae the reality condition 

-A t ~ .... ~e :1 • Q.-+ 2. t ~ ( ... ~ lZ] (A.2) 
n =(:1.-) A n 

consistently with the relationa (A.1). It is convenient to red~fine 

generators so that the realitl property takes the familiar form: 

~ tt .... i.4~ A'" [~4o' ~ll]A 'rl =.., 
• IH·" ,P. . 

- ~Dt+<.- {) ~] ~R"~'-(-{) t~(o" L.1l.1
ÃY\[~('" ~Q1 li 4 A (A.3)::. e '2, h , 

where the numeric coefficient has been included in order to simplify 
subsequent formulas. Besides we introduce a condensed notation 

2A ,., t~4 ~'2A 1 
L t'\ = At'\ 

o_o 

(A - ~ f h ~ ... bO ~ 
1 ! 

2AH ,... r.~4, .. ~2A+C 1 ..c [N (A.4)
G-~ =A~ ,(A-l.fh\<. ... OO),A=O,-() ... , 2]' 

Then, the structure relations ot auperalgebra K(1/N) read 

1(At-e.) 2.A 2& h l-k ~h i k 2 (A ~ &-- t)
l.l L2A L'l~ 1=- Ln(-t- &) - ~(t -A)ll H+Y'\ +}: J;: (-{) ~ L \o\-+r\-'l 

\0\. l'II\ 11I=1 1("" J ) 

2.A 2.a'+( { ?,.(A+e,) ~ oi,
l.lLI'I) &rV\ }-:: ly\(~-~)-~({-A\1 G-W'H" +
 

lA 2&+-t h"
~ \' (_~)"+ r""dl{ :l.,(A+t!.)-t 
... ~ ~ Õ GW\H\ (A.5) 

h:::. \(:. ., 

2.A +( :ll!>oH 4 i. ~ (A t e. + -<)
{b-"" ) c;.1'YI ~-=?..L"C:i-&)-""(:2.-A)1L.,+~ ­

2A". 2.BH i-t-K :"j" 2. (A + B) 

- 2. L.. z: (--\) Lh+W' A .(~ O <. o L~1' 
h:::.( ,,"- 4 ) - I O"" '2. 

Finally, we give a detailed expoaition ot (A.5)tor the cases N-3 
and N=4 treated in the paper.The ,enerators are specialized 60 as to 
keep clbser to the notation otI 15 ' . We denot'e the corresponding super­
algebras by the sarne letter ~ which was used throughout the text to 
represent suma of two isomorphic light-cone branches. 

.. N = 3. 

(A.6)~ -{L b- i LL~j J "[J k -i->, .Jk. r z 
3- 17,) <. s =15 f. Gol' ::. E:. p J 

~.LL""L"",,"1::. (~- ..... ) L ..+W\ 

lo LL"'1 G-~ 1 =(~-I(.) G-~+..,
 
+- (K - 't~ E. ~j k T k.
lGr~K) G-~ 1 -=- -2 ~Lj L..:+~ K+'t 

~ lt.." rp1 ::. - (I + p) Ip+'1 (A.7) 

~ \.. rr) Ts"j =- {rp I r~ \-=- o 

~ {rp I ~~ \ -= - Tf+~
 
.' .' ~ k
 

~_ l T~ ) Te.J .) .:::. ~"J T s ... e.
 
. .' k \:.
 

l T.~ " J , -: l." ..l G- to S ~.:j r'r+s s ) ~~ ~ ~+S 

l. l T;, L"" '1 =- S TS'-T"'" 
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!!....=...!. 

2J { : L~jJ LJ [LJ k: 1 .:jke e [lo.} ~e) ~jk.e
Ji(=Lt1JG~)Ls :Ts.,G-p =.E rf)Ls' =E. ~s\ (A.8) 

Ll L101 I L Wl 1 =. (~-""") L I'\+YY\ 

i. L L~ 1&;']= Cl-'G) G-~+~
 

:, l L~ r~) -=-(~ +p) \\'~"
I 

. L ~jJ Ir ~~ 
l.. L\'\) TWI =. - WI 1M4~k 

~ L L~ I ÓSJ =-(~ ... S) 6", ... s 

í..Ll"~j T"e 1 -=. ~~k_~je. _ ('Lt,jl( ('j·t T 
t k rjk j 

Le 
n J W\ J '" to_ <). I 11+ W\ ... Ó 101 + WI - li lI\ + "'" 

. l ~ j k: '1 ~ ..j ke. r e, o .:IC I'" j ('J k ~ 
L T1'\ \ G-~ .) =";),.. n ~. 1'1 +~ 1" Õ ~~n, - d G-t"'~,(A.9) 

• f _.: ~ r ic: '1 _ t' [ Ic: r -i_ ej k r ::. 
t. t, 'Í'\ ) r..J - ~ f+-to\ 3 rt 

... 

. L ':..1 
,l- T H J fl r.J -=. o
. ' c: Loj

{ 6-r )6-;t ~ ~ - .2. ~ J L r to'to -r (~-- 1-) Tp+~ 

\ ~ ri 1 ( (I.:j 1\ ..:jk~ T ke.
"\ &" I S J -=. '2.+- s)~, u 'l-~ S - ~ \ 'l..+ 5 

~ [G-~ ) 4 r-j ~ fr:<t.
 
lrf)rsJ=-o
 
i. L Ir ) A~1 -: o 

l.lA r;ô.c;1=o 

Superalgebra !/.l( contains two minimal N = 4 superconformal sub­
algebraa ~ (t) arranged as ­

- .dt. (i) - L + Jo1 (11 -oH_> .1 H-::--f;OI")' 
n - ,., - 4 '"" 

rv(!) Ja/(t)i ~;. _ <f ./) t.: -_/.(
~ := d~ s: \:r~ + ~ (2. -t i: '1.. ) ,,- s . -;.) .. 

(A.10) 

cr(±) ~:i.:; .1. (T,..':..J· ~ J... f. ~j. J:. e T. te.) )f'I:: 0, r, 2) ..I ~WI .2. :l. .., J 
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q (.t) :J 
Here t ~h generate two independent SU(2) Kac-Moody.algebras 
whose s:um is SO(4) Kac-Moody algebra with generators T~L.J • The 
superalgebra SU(1,1 1'2) corresponding to the choice of c{ -= li;.. (- "/2. ') , 
in e'(,(4.1) is formed by suma of generators X_~+) J ~ /+), ' 

s.;" : ~.J. O):' (/(O<)'(C/(-) v(~) er (-) L· 

.v o 0.(-1 J oi.., J-:L
2. ..a ,.2 ". 

!/í (-):. y: C-) L'';) and of the analogous generators coming from. 
2- J 

the complementary light-cone branch of full N = 4 contact superal­
gebra. Superalgebra ~C~) together with its copy contained in the 
sacond branch constitute the symmetry algebra of minimal N = 4 sigma 
model (4.23). 

APPENDIX B. On-Shell structure of WZ Supermultiplet for any N 

Here we examine the component content of the left-moving -super­
field q~e(Z-) defined by eqs.(2.12) and (2.13b). The ana1ysis for 
right movers proceeds similarly. 

It will be eonvenient for us to define the superfield projections 
of qii(Z-} in the following way 

~t: _ ~il.2.1.,3 __ "ti i.~ i..~e. 
q, L <.~) ) F (~).: q,L(lib- 'ltl-(Jt·.· ) (B.1) 

.' i.it (L.~.. . i:. ... ) ~ ""H (.
F'-t ... I. ....+i (r)== <t- ..J..Z')D- .,. 1)_ q,1-<..r)) ... 

without loas of generality indices of spinor derivatives are assumed 
to be totally antis~etrized because any symmetric pair of them would 
yield x:-derivative by the anticommutation relations (2.5). 

We wish to show that the constraint (2.13b) together with the 
nonlinear orthogonality conditiona 

~t. jt ~':'d ( 5'" Sr'I'\) i..! .:..... ~eM'l pVl P"')'t-L (~-)~l. (~-) ~ N '(,1- ~L. ,CVL (~:)1tl- (l-)::;- (lJ, ... q,.L. (B.2) 

leave among the superfields (B.1) an irreducible aet of the type 
pictured in eq. (2.14) 

. • H. .~!te _ lL.~~1i:.~1 l;'.i: ... i. ...")
 
't-I.:(~-) F''('l;.-)=<t,L. 0.-)")- ~L <.~ ), FCi) ) .. ' 1 F (1..) (B.3)
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The proof amounts to demonstrating that alI the remaining superfield 
projeçtions are expressed in terms of .the basis ones (B.3) and x-· ­
deriv'atives .cf the latter. 

To begin wi th,the singlet and two-rank skew-symmetric superflelds 
f:om the set (2.14) are already contained in the N x N -matrix qiL(Z-) 
as its 1 + N(~-1) 1ndependep~ s~perfield parameters. Next, we consi­
der the three-rank tensor F~t~1L~(~_) • Using repeatedly eqs.(2.13b) 
and '(B.2) we are able to show 

4 ~ 1 i. ~ F[.~4~1~~1 ~ (l'~I~~' ~2.. t'~:I.~~Fi.4) ('i.'~2.rl.~ \ (B.4)F ~ : <'l:-)-t""N 3 Fti.-) +li <.:r - o r <'l.-)} . 

o	 Further, any subsequent tensor from the set (B.1) can be generated by 
applying a spinor derivative to the preceding tensor (modulo products 
of lower rank objects and their x- -derivatives). Thus, the indepen­

, (,4t.:lL.,\ ~"I( -)dent components of P Z can be specified by inspecting 
'l)ttFtJand ~ Lt FtL.~~& ~"1 (r). Taking advantage of anticommutation r-eLa-: 

tions (2.5) toget~er with the general identities following from eqs. 
(2.13b) and (B.2) 

'""l'\ ;,. t l>;:. ...... -,... t a e. ~ -::. • H]) Lo 4 ]) t. iM-I,....., t...., n 
J)_	 ... _ ..lJ_ V L L. N -... - 0_ q,. L .(B. 5), 

. . 's ks Js ~t ;."'" Its '2. jk t.t "~"'Qi.s cs
,])~4 ... ])~~q,JL .q,L·-::.-CVLJ>_ ... J>- <trL.. +N~ JL .. ·.u- VL ,ch. + (B.6) 

(+ prod~~ts of'lower r~ tensors and their x- derivativesl,one easi­
ly establishes that Dit pi~ produces no new structures. So, the lat ­

-	 i "~ 

ter can arise only from D ~ pt~:lL1L~)(i-)and one ,has now to sha~ the 

absence of independent co;~onents af the mixed type ~ iri th1s object. 

In fact, from this step we may proceed by induction. Assume'that 
the conjecture (B.3) has been proven up to tensors of rank m~3. 

Then, we should prove i t for, the t.ensoz- af rank m + 1 i. e. to show 
that alI the components of the IDixed type D,:L."Ut F l~l) L,2'" L...1 
are expressed through the lower rank tensors ando x-derivatives of 
the latter. 

1)_i.. .... ..-t	 ICe. 
[ '	 . Note first that can be carried ,through q, L- in 

.. t· .. ~ ... J 
P (again discarding certain products of tensors ~f ranks 3 and 
~- 2). Purther, when index Lm+~ is symmetrized with an index from 

the set [i1 , ••• i m1,one meeta three typical situations. First, ano­

ther index may hit a spinor derivative. No new structures arise in 
this case because any symmetrized pair of spinor derivatives reduces 
to x--derivative. Alternatively, L'~+~ may pair with a free index 
of the second superfield q~1z-r. Up to x- -derivatives, AlI such 
terms are reduced' to the expresaions of the type

t 

~fn _ í.1 <'~Mo\+4 ~ ... )n 
q, L (z) 1>- ... ]) -- '!tL cr) 

which are in turn expresaed via x--derivatives of the lower rank 
tensors by the constraint (2.13b) and the ldentity (B.5) (following 
from (2.1Jb»~ Finally, the situatioh when Lt1\+t joinS an inde.x 
of the first superfield qL(x-) is reduced to the previous ones by 
exploiting the general identity {B~6). Thus, the only new independent 
piece of FL / ... i. tM+i is F r.i. , ... L. ....H~ The induction procedure clearly 

terminates at m = N due to the nonexistence of totally skew-symmetric 
tensors of rank > N. This completes our analysis of the irreducible 
field content of the (N,O) -superfield ~i(Z-) subject to the cons­
traints (2.13b), (B.2). Finally, recall that passing to the fielda 
with correct dimensions involves taking a suitable number of derivati ­
ves ~_ ' off the fields (B.3), starting with 

F t ~ 4 ~ z L J l. ~ 1 ::: Ft~4~,1~J~41 (LF)= c.~-.() tF]~ )_ "3_	 c.W\o , etc. 
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HBa.HoB E.A., KpHBoHoc C.O., JleBHa.HT B.M. E2-87-357 
HoBhiH KJiacc cynepKoHcl>opMO-HHBapHa.HTHhiX 
U MO,D;eJieH BecC-3YMHHOBCKOrO THna 
B ,Zl;BYX H3MepeHWIX 

DocTpOeHhi HeJIHHeiiHhxe tJ-Mo,D;eJIH ,D;JIR 6ecKoHelffioMepHhiX 
D = 2 cynepKOHcPopMHhiX CHMMeTpHH, BKJIJOqaJOLI.Ufe MO,Zl;eJIH Becc-
3YMHHOBCKOrO THna Ha npOCTpa.HCTBaX 8)_ (N) x 00+ (N )/SO(N) 
rpynn aBTOMOpcPH3MOB cynepcHMMeTpHH. KoHelffioe qHcno ocHOB­
HhiX cynepnoJieH Bhi,D;eJI.ReTC.fl nyTeM HaJIO:>KeHH.fl KOBapHa.HTHhiX 
CBR3eii Ha cPoPMhi KapTaua. CynepnoneBhie ypasHeHWI ,D;BH:>KeHHR 
H YCJIOBH.fl HenpHBO,ll;HMOCTH HMeiOT e,D;HHhxH BH,Zl; ,Zl;JI.fl npOH3BOJihHO­
ro N . .UeTaJihHO paccMoTpeHhi MO,D;eJIH c N =3,4. 

Pa6oTa BhmonHeHa B Jia6opaTopHH TeopeTHqecKoii $H3HKH 
OH.RH. 
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Ivanov E.A., Krivonos S.O., Leviant V.M. E2-17-357 
A New Class of Superconformal Sigma Models 
with the Wess-Zumino Action 

We construct nonlinear sigma models for infinite-dimensional 
N-extended D = 2 superconformal symmetries (of the type (N,N)). 
These are classically integrable and naturally incorporate confor­
mally invariant bosonic Wess-Zumino sigma model defined on the 
supersymmetry auto~orphism group so_ (N) X so+ (N ). Manifestly 
invariant superfield techniques are employed. A finite set of basic 
Nambu-Goldstone superfields is singled out by imposing infinitely 
many covariant constraints on the relevant Cartan 1 -forms. The 
resulting superfield equations of motion and off-shell irreducibili­
ty conditions have a universal form for any N. We solve the irreduci­
bility conditions on-shell for arbitrary N and off-shell for N :; 4. 
The N = 3 and N = 4 models are examined in detail. 

The investigations has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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