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1. INTRODUCTION .

In this paper we construct a procedure how to get finite, nontrivial
resultes for physical quantities which within the conventional perturba-
tion theory in fixed renormalisation scheme (RS) are given by divergent
expansione in appropriate coupling constant.

The method is based on the idea of Stevenson [1], who showed how the
renormalisation group (RG) invariance of the theory can - under certain
circumstances- lead to finite results even for highly divergent series.
Tontrary to him and other authors [2] we, however, do not think that
this invariance, when applied to divergent .series, implies a unique sum
if such a sum can be defined at all. The role played by the renormali-
sation procedure in the construction of nontrivial quantum field theo-
ries [3] shows definitely that the renormalisation procedure cannot be
regarded as purely perturbative in nature. It binds intimately together
all aspects of the full theory and therefore its separation into “per-
turbative” and "nonperturbative” parts is bound to be ambiguous.

The paper is organised as follows. In the next Section the nature of
the problem is recalled, necessary notation introduced and the main re-
sults of papers [1,2] briefly reviewed. The importance of the RG inva-
riance for the attempts to sum perturbation expansions is discussed in
Section 3, where also the main ingredients of our method are formulated
and 1its close connection with the Borel summation technique [4] demon-
strated. The implementation of this method by means of higher order RG
parameters is covered in Section 4, followed in Section 5 by the compa-
rison of their respective merits. In Section 6 the complications conne-
cted with the nonzero value of the coefficient ¢ in eq!(2) below are
sketched and numerical results presented.The relation of our {esults to
conventional perturbation theory in fixed RS is clarified and the in-
terpretation of the fundamental ambiguity in our procedure outlined in
Section 7.

2, THE NATURE OF THE PROBLEM
In renormalised quantum field theory, such as QCD or QED, the physi-

Bvneanietnbill RHCTETYS
(TR accnﬂhosﬁwﬁ
_BUSINOTEH




cal quantities are conventionally expressed as perturbative expansions
in powers of the renormalised couplant & (we adopt notation of [5]).
This couplant depends in the massless case on a set of dimensionless pa-
ramaters ¢; and a single dimensionfull scale parameter /a>, introduced
in the process of renormalisation. In the following we discuse in deta-
il the case of massless QCD with ng flavours of quarks.

For physical quantities each set, of parameters ‘4$c£ defines certain
RS ( for Green functions additional parameters are needed for a unique
specification of a given RS ). Let us consider in such a fixed RS per-
turbation expansion of some physical quantity R, depending for simpli-
city onm a single external variable Q, in the form

@
at L f
204)= 2™ fa™ s,
where the couplant &2/, ¢ (y) obeys the equation

d_“/_ﬁx_/ & éﬁ/a,)——~bdz Vicargai.~). .

We _concentrate on the case d=1, for generalication to df1 see Section
3.10. In massless QCD the coefficients b,c are fixed once the number of
quark flavours is given: b=(33—2qf)/6, c=(153-19n,)/(66-4nf). The arbi-
trariness in the choice of the couplantzZAZC(?) io then a direct con-
sequence of the freedom in the choice of A4 and ci,ifz.

Within the class of "finite” RS (i.e. those in which all but finite
number of c;’s are zero and in fact in any RS in which the r.h.s. of
(2) is well-defined convergent series) the equation (2) can be integra-
ted with some consistent boundary condition like (5]
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where B(x)=1+cx+qu3+c5x3+ ..... The dimoensionfull parameter /ﬂ appearing
in (3) specifies unambiguously which of the solutions to (2) we have in
mind. Conventional N-th order perturbation expansion for the quantity R
is usually defined by truncating (1) and (2) to the same order {6].This
is, however, a rather arbitrary step. From conceptual point of view it
would certainly be better to define once and for all orders of (1) our
expansion parameter czﬁ:;f;) taking 1t from the class of the well-defi-
ned “"finite" RS and then to investigate the convergence of expansions

(1)

like in (1), which is what we are really interosted in. Unfortunately,
there are numerous indications, reanalysed recently in [1], that the
perturbation expansions in such a fixed RS are highly divergent. The
next best choice is to allow for the variation of the RS, but in such a
way that the corresponding couplant has a well-defined limit for N-»@m.

r—r e

There 1is little sense in complicating the situation by considering the
expansion (1) in such RS where the expansion parameter itself is ill--
defined in the 1limit N-9@ . This attitude has originally been sugges-
ted in [7] ard we stick to it in this paper too.

Although in ‘some sense the parameter 7  plays an exceptional role as
it 1is connected with the regularisation procedure, mathematically all
the parameters Z’.ci are on the same footing. We can for instance wri-
te down the analogue of eq.(2), looking this time for the derivative of
the couplant with respect to cy [5] @

6&aﬂ?ll /6 A%)‘;/ﬂéa / zﬁz ;Ej 4@262{ '
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The parameters Z”,ci can, within their definition region (i.e. so long
as the couplant stays positive number ) be chosen at will, but the RG
invariance binds together the behaviour of the couplant &/ as a func-
tion of these variables with that of the coefficients T4 [5]

Klt) =T =Ly G/T)= Bt Cskg, ek : 5
where all the f% are RS invariants, depending merely on the external
momentum Q. The relations (5) express the formal consistency of pertur-
bative expansions in various RS 1n the sense that the N-th order par-
tial sum

F4 /z*(' riN-1) = / /2’”)@(”/2‘(') 6)
varies by amount proportional to 42”" when we change the RS,i.e., the
values of foci, Lq?,N-g. Increasing the order N not only are further
terms added in (6), but in general also the couplant may change as more

of the coefficients ¢, ‘enter the game. Exploiting all the available pa-

rameters c[,iéN-l wasxeasential for the Principal of Minimum Sensitivi-
ty [5] to work, but apart from this it has no special justification. We
shall on the contrary take the number of c; s used fixed for all orders
and investigate the consequencesg of the RG invariance for each of the-
se parameters separately. -

Changing the value of T° or c, we get by means of (5) another series
corresponding to some other RS. Both the couplant and the coefficients
rg will be different, but should the original series be convergent, so
would be the new one and moreover they would give the same result. This
is the implication of the RG invariance for convergent series. For them
the choice of a particular RS influences the results at each finite or-
der, but the relation (5) guarantees that the full sum (1) is indepen-
dent of it. There is a number of methods trying to resolve this ambigu-
ity at finite order [5,8,9] each of them assuming that there is indeed
a unique meaning of the full sum in (1) and that the problem is merely
a question of how best and fast to approach it.



In QCD, howevér, the expansions in (1) are likely to be divergent iﬁ
any fixed RS [1,7]. 1In such circumstances, the question of the unique-
ness of the perturbation results cannot be answered. prior to giving
these formal expressions some good meaning. In this case the RG invari-
ance gives us merely an infinite number of divergent series of the type
(1), each of them associated with one particular RS, connected by rela-
tions (5). These relations express now only the formal consistency - in
the sense mentioned above - of all these series, but do not by itself
help us in summing them.

For divergent series we interpret the requirement of RG invariance,be-
side the relations (5), as the condition, for the moment rather vaguely
defined, that all the RS should be treated on the same footing. In ot-
her words, when attempting to sum divergent series like (1) we should
keep in mind that we are dealing not with one particular series, but
rather with the whole infinite set of them. Starting from some initial
series in RS ={irec:}, the RG invariance generates for us by means of
(5) the coefficients ry in any other RS={ztci} .They, together with the
new couplant given in (2),define another divergent series, which could
equally well serve as the initial one. The sum we are looking for shou-
1d not discriminate one RS with respect to others. Thig is the most we
can get from RG invariance for divergent series.

In [1] Stevenson suggested a possible acenario of how to get <finite
and nontrivial results for the sum of divergent seriea, exploiting the
above mentioned RG, restricted in his example to the subgroup associa-

ted with the change of the variable 7°. Within the class of these "“ze-<
ro" schemes he %éscussed a toy example of the series
4 4
1
> () 1(./00
=0 (7)
which can be considered as (1) in some initial RS .For the above seri-

es his Principle of Minimum Sensitivity implies that for each finite
sum of the first N terms in (1) the “"optimal" value of Z is not cons-
tant behaving at large N as 7T(N)=)%N ,2%50.278 and consequently

41 7z,
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is finite and closely related to the Borel sum of (7).

This example demonstrates that we can get a finite result for the 1i-
mit li:xqafgﬂ(f(m) provided 7 is not fixed as N—a%but increases to in-
finity. 'The optimisation condition supplies just the right dependence
T(N) to yield the finite result. This conclusion has been generalised

in [2] to a wider class of series (7) and shown to depend on the assum-
tion that the Borel transform of the series (1) has finite radius of
convergence r®. To get finite result in the case of series (7) we can,
however, take any value X-):x° of the factor X in the relation 'Z"(N):)(N.
In [2] the optimised result i.e. 25:2; was shown to correspond to the

maximal possible result of all the convergent limiting procedures (8).
This fact was regarded in [2] as a strong argument infavour of conside-
ring (8) as a "correct representation” of the perturbative part of the

physical Qquantity R(Q). We return to this claim in the next Section.

3. THE METHOD:

3.1 General remarks.

The physical question we want to have answered is the following:are the
higher order terms in (1) really so overwhelmingly important as indica-
ted by the divergence of these expansions in fixéd RS, or do they in
some way compensate each other between different orders, sco that only a
few lowest orders are of practical interest? We feel that the mere di-
vergence of expansions (1) does not imply the dominance of high orders
but to answer this question honestly we should from the beginning take

them seriously.

Our aim is thus to construct a method that takes into account all or-
ders of perturbation expansions, but yields finite results even in the
case when (1) is divergent in fixed RS. The basic idea has already been
mentioned in the previous Section. To make such a method of practical
use, we furthermore require that it
a/ works order by order, using conventional calculations in fixed RS
b/ converges for N-2»00 in the conventional sense
¢/ contains no analytical extrapolations of any kind (as those employ-

ed in Borel summation technique and its variations)
d/ respects RG invariance in the sense mentioned earlier

3.2. Basic formulae

In this Section the results of ref.f1] are derived in a different manﬁ—
er, which, contrary to the original derivation in [1], is applicable to
completely arbitrary coefficients q&(Z') of (1) at some initial T=7"°

g/l',(/r"}cz"’/t') ) 4, =alz?) (9)

and which makes transparent the close relation of the "sum” of (9)

to the corresponding Borel sum. For the moment we stay in the zero RS,
the case of cifo is subject of Sections 4 and 5. We furthermore assume
c=0 in this Section. The technical complications connected with nonzero



value of ¢ in realistic QCD are considerable, but do not change the si-
tuation in any essential way (see Section 6). Defining now as the ini-
tial RS that corresponding to Z'°<0, the RG invariance dictates the de-
pendence of the coefficients r, (T ) on Z through relation (5) which can
be recast into a form of reccurence differential equations

_d_lzf@fu /)

with solutions (r, @=0))= rg(O))

-l ZL ()

(10)

From (10) we first form the N th partial sum

E?ﬁ) Eflﬁ' /zjd(f?r)——; Aule] Z‘,://f/ (11)

and then using the relation {10]

2 4)8,)
arrive at
2/} Z ‘Z‘-i?’i%zéf// (12)

We now investigate the class of limitting procedures, defined by spe-
cifying the N-dependence of T by means of two parameters

Ty =X w2 (13)
//‘,] WAl
Al )< hia K100 =iy 0 7—’1,,)/ &, 4)
(14)

where the factors a/fe(N)-Nf/((N\,Z—l)!N'l”) go to unity for fixed,ﬁ
when N-->e0

and obtain

3.3 The case /5=1
For ﬂ)zl and provided that the Borel transform of the initial series

(9) at Z°=0 has a nonzero radius of convergence r?,we can set A (N)y=1
in (14) and thus get *

(e M
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This expression points 1mmediate1y to the close relation of our pro-
cedure to the Borel summation ss it can equivalently be rewritten as

»@/,‘Cxﬁat): /Z /_9_@2/( ‘ (16)

which differsfrom the Borel sum of (9) at Z°°=0 merely by the finite

upper integration bound ( at TO:O,d/Z'?W and thus the weight factor
exp(-u/az9)) equals unity). The intimate connection of (15) with the
Borel sum, so immediate above is in thescase of general r, far from
obvious if one follows the derivation in [1,2]. We stresg that the
factor multiplying r-‘_(O) in (15) is a nontrivial 1limit of the sz of
contributions coming from increasing number of terms r,(ZIN))or /Zﬁl)
as N and consequently Z°(N) go to infinity.

The series (15) provides therefore well-defined representation of
R(C X, ﬂ:l) for 1/ < r®. For 1/% beyond r°(15) is of no direct use,
but in certain cases (14) can still converge if we carefully take in-
to account the factors dL(N)' This had been demonstrated in [2] for

the toy example r,‘(O):(—l)"k! , wWhere r°=1, but (14) converges up to
l/za 23.55. A word of caution is, however, in order here. Although in
the above example we can go beyond r® , this possibility is of little
practical use. We obtained finite limit (14) because we knew exactly
all the coefficients r,. In practice we can derive the asymptotic
behaviour of r as k-»®@ and calculate explicitly a few of the lo-
west ones. This would be sufficient to determine r® but would not a-
llow us to go beyond it. There the eventual finite 1limit of (14) is a
consequence of subtle cancellations between large numbers of opposite
signs, which necessitate exact knowledge of all r, . Were such an in-
formatioén available, as in the toy example of [1,2]), we could evalua-
te R(’Y—,ﬂ:l) beyond r® also through analytical continuation from the
region 1/;(,( r°. Both procedu.res require exactly the same kind of in-
formation, but the latter allows us to calculate R(}V,, =1) even fur-
ther, up to 1/X =@ where we recover the Borel sum (if it existse)!
The" point xzxa plays ne exceptional role, contrary to claims in [2].

3.4 General

If the original series, given by r,(0), has r°®> 0, the formula (14)
with_ﬂ=1 gives nontrivial, finite result (15). What happens if we
take B £1 ? To find out, we pewrite (14), setting a/(‘(N)=1 :

2
f/z,é) _/Z /&/o)/(dQ (17)

Fo ﬁ)l and N--»>@0 the upper integration bound(N 6)/9(' goes to zero

and as the integrand is finite within the nonzero r >0, the 1limit

necessarily vanishes. For Ié{ 1 we have two possibilities:

a/ the series (15) has finite r";[]. Then the upper integration 1limit
goes to 1nfiniéy crossing eventually r® and causing divergence

of (17). The same happens if r°zee  but 11mR(x,/6:1)=w.
KXo
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b/ r°=@ and 11#_[:5 X, /5:1)!400 as for instance for the series of the
type (-1)7(qk)! with @< 1. For such seriles the difference

(it""(_ﬁ o
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of (17) and the Borel sum behavés in the limit N-»a> as follows.
The second term evidently vanishes and the first one approaches the

series

e €T e pAT L gpa b
T 2 =) W gy = e

yVie
This vanishes in the lim-it NV—~)00 for ﬁ)q and for ﬁ =q,z<1 and os-
cillates with increasing amplitude for ﬂ(q and (3=q,2>1. Thus we get
in the limit N-3@ the Borel sum if q < 441 as well as for /.‘>=q,z <1.

For ﬂ( q or /3) =q,2 21 the sequence RN(X,. ) diverges. The Borel sum
is obtained also for ﬂ=1 in the limit ¥ -> 0.

3.5 Conditions for finite, nontrivial limit of R¥( Z./3)

The above digcussion suggests a somewhat special role of 75:1 and the
importance of the finite r®. For series with r°=0, £=1 doee not vield
finite results. But could we not choose /!\>1 in thie caee and still
get what we want: finite, nontrivial limit of the sequence RN(X 87
Unfortunately, we camnnot.. To investigate convergence properties of
this sequence we first write down the expression for the difference
ARY ¥ z(N)-R*! (2 (N-1))  using g, Tr. (TOHQY (Z() )

L /
N_ ; Ay ad ke &yt
A.-?. = @N*éﬁ(./“h)}—’i/‘ﬂ-fja m%g/%))dé?«))-aftﬂ/-//_zw) l
The second and third terms in (78) can be reduced by means of (2) and
(10) so that we obtain in the limit N-»@

ARGy, 111-96,

We shall discuss two distinct possibilities for the sequence rY to

converge to a finite limit: ’ »

i/ QN is a smootl} function of N and does not change sign with N ( in
the asymptotic region N-»>@). Then (18) approximates well the de-
rivative dr™ /dN and the finite limit requires thie derivative to
vanish for N-»@ faster than 1/N. For power behaviour Q& AT
impliesﬁl, except in the case ,6:1, when it 'suffices /‘70.This‘
fact shall be crucial in the following.

i1/ Q, does change sign with N-»ap . Then the criterion with the de-
rivative cannot be used, but/‘) 0 is still sufficient, because

now the successive terms conspire in such a manner that finite 1li~

- -

©
o o
mit 11,5' R7( T(N)) results, as exemplified by the series?(—l)/k
30D 0
which has the finite limit as N-9@@ for any &.>0.

To determine when we get nontrivial results we calculate the deriva-

tive dQ"[ /3)—_ AT Zﬂ-_' A/o)@)s ANG. -
Wﬁ—‘a’(/af t= * v

For finite limit of R¥( x’ﬂ ), depending nontrivially on X , qQ, must

not change sign and must behave as 1/N for N-2»a@. Then, however, only

ﬂ:l is acceptable. So only ﬁ:l can lead to finite result depending

nohtrivially on k.

For series with r°=0,ﬂ)>1 is clearly necessary to guarantee finite
resultsl'l‘hese, however, can not depend on‘,'( and must in fact be equal
to zZero as R“(Z=w ,/3)=0 for each N and R( ¥, 4) is continuous func-
tion at l/x =0. For>ﬂ >1 we therefore get either zero , €O or oscil-
lating behaviour of R¥ as N-2co .

Summarising, we see that =1 is the largest value ofﬂ ,leading to
finite, nontrivial results for R ¢Z ,/G). Forﬁ >»1 only zero ,00, oOr
oscillating behaviour of R’” .i8 possible, while for p<1 either wlos-
cillating behaviour or finite,X-independent result, equal to the Bo-

rel sum comes out.

3.6 The case of general Z°°

The derivation of our basic result i.e. the formula (15) is extremely
simple due to the choice £%0. If the initial T% 0, we can, however,
proceed quite analogously with only minor modifications. Defining now
';Z': T +T° 8o that a(f):l/(f;z’) and repeating all previous steps
‘setting thie time f:f,ﬂ we get

-t g
By pe1,2)=bin 2 L eIGE) =2 HOF05)
where 4 1*’1
G hidly)-la Fad Ear) [2)
obey

22277 ) .
ALl HyC P —_ (Ot 2°/.

. AT° & )iﬂ/l; (21)
Evaluating explicitly ',Z:(l-exp(—'t‘}x ))/2° from (20) we find

EQ( 7\bt 47

Zo(2°) = 7 /; ) que Zly) : )

where zg(y)=(l-exp(-y))/y and y= 2%+ . Obviously, 025(1,2‘) red\;ces

to (1/% Y/ £+1)1  for fixed X and 2°-3F ae well as for 29fi-

xed and x—-im.For Z'o>0 and X-20 (i.e. y-303 only the first term in
) ol AN T P

2,(y) contributes and we get ,:#;(0, )-21*) Tag

) recovering, as
(4

9



we must, the original series (9) in fixed RS={ Z°}. The shape of the
functions (%.7% for ,(:0,1 and a typical value &, =0.11is displayed
in the Figure.If (15),corresponding to Z‘°=0, has r® »0, then series (1)

24 EP o= will have the same radius of conver-
//’/ //” ' gence. The reason is that for fixed X
4 ,‘// and T°the behaviour of .ze(ﬁ 2% as
2& I/ /// a function of/ is given by the ex-
! / . pressgion .
! / &/
wl [/ ity
’ / // 0% 0 ,?e/,z, ) Zreo % éﬂ)/ef‘ z
/ —— — (8 which is an immediate consequence of
4 (21) and the analyticity of the fun-
tion -z4(y), guaranteeing the Taylor
a’. ) , N -<L R . %%expansi?n around y:o.
Q7 Qg2 g3 G+ g5 46 §7

We now come to the important point of the potential dependence of
our results (19) on z°. We began Section 3 with the rather xloosely
formulated requirement that our procedure must respect RG invariance.
We can now be more specific: our results (19) must not depend -on the
choice of the initial RS, specified in this case by T°! That this is
indeed the case can be verified quite straightforwardly by differen-
tiating (19) with respect to z°, ‘employing: in the process (21) and
the fact that according to (10) drK(Z‘io)/dZ"’ =kr,‘._, (2"): We proceed in
fact very much in the same way as in the conventional framework where
the knowledge of (10) and (2) leads to.the formal independence: of (9)
of °. For /X £ r® our expansions are, on the other hand, conver-
gent. series so that all mathematical operations with them make good
sense and the results, i.e. (19), are really independent 02 T°!

3.7 The influence. of higher RG prarameters

So far we have varied 7 with N according to (13) but stayed in the
zero schemes, where all c¢;=0. Allowing these parameters to assume ar-
bitrary, but fixed values complicates the ‘derivation, but doesn’t in-
fluence the final result (19). Taking into account merely c,,eq. (10)
is replaced by , .

Ay Ity
ZH) - 4y ) -5y 76) .

and also the couplant has a bit more complicated form. Nevertheless,
as we shall demonstrate in Section 4.3 the final result for R(%,_{)
is independent of 4, The same holds for all ci‘,ig 2.

10

3.8 Application to convergent series. a

P 44y
Let us take Z%0 and consider simple convergent series x-a(—l) [=A /k,/,
which sums to &, exp(-ds) and thus for Ao--»a (i.e. for Z"’:O) vields
conventional result equal to zero.From (14-15) we get for this series

Urs-1)=2 (x) T ~E (%) i A peg)=o0

which vanishes for 2::0 (and X - as any series (15) with r® > 0). '
This 1is an example of a general situation: conventional results are
for convergent series recovered only for /541 or for ﬂ:l, but ¥-> 0.
For ﬂ=1 and /'C;{O the procedure embodied in (14-15) is therefore not
regular. For divergent series there is no reason to reject these va-
lljes'and all pairs ,{‘,/3 yielding finite results are in principlé
equally acceptable. ‘

The fact that our procedure is not regular for the values of ,‘C ,
which are required to get finite results in the case of divergent se-
ries is nothing absurd, but indicates that it makes little sense to
try to split divergent series into “"convergent"” and "divergent"” parts

Adding the conventional sum of a convergent series to a divergent one
“summed” by means of (15) differs from the result of applying (15) to
the formal sum of these series. Similarly for other operations.

i3.9 The case of nonoscillatig series

Traditionally the oscillating character of the divergent series has
been considered vital for obtaining finite generalised sums. For in-
stance the series with coefficients r4(0)=k! has in the conventional
sense an imprdﬁer limit @ for any 4,. Not so according to (15). The
basic reason for this unexpected situation is again the fact that we
deal not with one particular series of the mentioned type, but rather
with the whole infinite set of them. The formula (15) yields finite
results - R(ﬂ ,1)==1n(1-1/% )- even in the mentioned case.

Contrary to the oscillating series we oannot, however, go beyond
the point 1/% =1 (our result becomes complex and thus looses physical
sense there). For 1/ £ 1, on the other hand, our résult —ln(l—l/x )
is no less sensible than the one for the oscillating series (7) 1i.e.
ln(1+1/% ). The point 1/% =1 corresponds to the conventional result.

3.10 Generalisation to the case d{l
For df1 the invariants (0, appearing in (5) acquire simple dependence
on d [5]). If d is a natural number (1) can be rewritten as

o Y
5F mima ) = 2 Zm ),

Ty A= (23)

11



where r ()= (Z°). We can then apply (15) and get

444-0(,

22 4<1) = 2 %ﬂ// (24)

We stress that for us (23) is a definition of the formal expression
(1) as our procedure does not commute with multiplication of the se-
ries. Should we first apply (15) to (1) with d=1 and then multiply
the result with lim@ = ( T(N))=0 we would get zero instead of (24).
00
4. The method : cgy
4.1 Basic formulae
In this Section we show that beside T also any other RG parameters c;
can serve to define a procedure similar to that of the previous Sec-
tion. We describe in some detail the modifications connected with the
use of cg. For cg <0 the couplant G4 (’C‘,cz) is defined as a solution
of the equation ( assuming as above c=0)
=2 4%/1(’ a-4 /
Z(‘a +4
where A=2 cj . The introduction of ey
the couplant &Q (Z°,¢c ) on ‘T but as we shall hold 2@ fixed and vary Cyq
we assume for the moment Z =0 and only later in Section 4.3 do show

(25)
complicates the dependence of

that the results are in fact independent of this assumption.
For T =0 the solution of (25) is again simple : a,(O.c‘):d/I =
where 0¢20.84 is the solution of the equation

Lpaliteo

For T =0 we also have simply: da,(O,c,_)/dcithﬂ(O,c‘ )y where l’:s=1/2p<f~
In [1,2] the asymptotic freedom of QCD has been regarded as crucial
property for the construction of the finite limit as N->a . From the
point of view of mathematics involved, the only essential condition
for the procedure to work is, however, that as N-35a the couplant va-
nishes sufficiently fast. In the case of cg the same situation arises
if we send Cy~?—co . In the following all the steprs of the preceding
Section will be straightforwardly reformulated for Cgq-

The RG invariance with respect to Cg determines the dependence of
2,
A (G
e =-(%- ’)’{; 4.2 /5}
analogous to (10). They have the solutions

Prens (4) = f ;;,,’ é’"”’)f"‘/" )4

D Aai e
e (2 }Z ELat Bt (1c4)¢,

the coefficients r,‘(cL)’:'r‘_('Ezo,c’_) on ¢, through the relations

27)
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where (2k-1)!!'=(2k-1)(2k-3)...1= 2‘F(k+1/2)/ﬁf Forming the N-th par-
tial sum, separately for odd and even orders, we get (JV -I)/H]

Ar400 (0
’e 6‘} Z lc:/?))l; ;:7,)

Z Aasto) ] rine %
o (206 E 4 /Y/f/’)//q7)/

closely reminiscent of (12). Assuming now

mJ = —xém)ﬂ

Aere, A

(28)
we obtain
p _ /?z /0) o 4, 1817
2 /g) },D—lt——@,,’), )o([ﬁr} 209
N
falig) > O (x4 ) Gl

7o pt%) 1%

where a;-(ﬂ) are the same as in (14). Combining (29—30) we arrive at

Hylo)
%p) ,Zwﬂ [ﬁf) g‘* Z /’/,zui,)//);z/hw D’:jM)

which for =1 yields finally‘

Aylo) 7 .
2ns-1)- 2. Fiie)”

provided the r.h.s. of it convergee. The only essential difference of
(31) from (15)‘11es in the presence of mere [Y((3%1)/2+1) compared to
¥ (j+2) there. The above defined procedure based on the use of c, and

embodied in (31) is again closely ( although not as much as for Z~ )~

related to Jthe generalised Borel sum of the series :l( 2 *1
co
KH
7:/2) /e B(e'D)dt; B(x)= 2 m) (32)
for =1/2.

Due to lower value of V the uge of cy 18 less
powerful and leads to finite results only for series behaving at most
liké (k/2)!. For such series, however, both 7= and ¢, -based Procedures
are equally good, although theéy lead m general to d:fferent results.

As '{:‘ar as the conditions for finite, nontrivial results of the 1i-
miting procgdure specified by (28) are concerned the situation turns
out to be the same as for 7" : =1 is the only value. .allowing nontri-
vial, [X -dependent results for R(X /&; The arguments parallel clo-
sely those of Section 3.4 and we shall nct repeat them here.
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4.2 The independence of R(X., ) of the fixed Z .

For technical reasons we took at the beginning of this Section 7 =0.
To prove that the results (31) do not in fact depend on the value of
fixed = , we first calculate the derivative

) N-/
ARYNX L T)_ A o by, _
ALITLT 4 2 fatseb) aly o)
Using (2) and (22) this can be written as

)8, - (G2%)Na B, tfo-pati, +l-2)2 c%.‘z .

2 2 ~ 1-7%
For Z =0 and c, negative we have -c, 4 = N4 =(0(//}?)N

-4
B

If ﬁ 1 then Q must behave as 1/N to yield finite X -dependent re-
sults and so in this case ar¥ (o, cy y/dT~N" as N- -)m . Repeating the
above procedure to calculate second and higher derivatives we find
that they vanish even faster than (33). As all the derivatives dRN/dZ'
at Z°=0 vanish in the 1imit N-?00 and the functions R (0, Cy (N)) have
finite limit too, R(X /‘I) limR (x T ﬂ 1) must be independent of T,
Similar steps can be taken to prove the c¢laim made in Section 3.7.

and thus

In this case the rolegsof T and CL are reversed and we must use (4) in-

stead of (2) and (27) instead of (10).
dr‘.(z;{.'l)/d (k-

AL (2(4), ) 3 Na'6, +r-1)2 @y,

c”& p (- 96 (34)
which behaves for N-->aqp as (2/%1- )Q N . For finite limit we need
again ﬂ:l, Qx1/N or /3{1, Q'.;l/Nr,]*>1. In both cases (34) vanishes
as N-»o0 Higher derivatives are again vanishing even faster than
(34) and therefore the limiting R(X ,/G) is independent of fixed Cq

3
At c,=0, da(e,c,)/de, =",
and thus

4,3 The case of general c:

Instead of (28), which means we take for the initial RS that specifi-
ed by T=0,c’=0, we can build our procedure starting from general c::
c (M)=—2xl1 + c :—ZX I‘l(l y/l\d where y= c‘/zx Instead of (31) we get

Al g=1) = Z A/Q)%/E/Q) (35)

which is analogous to (19) and where Z“(x ,C’ )

CE‘,;Q;&:’) £(4:9) 2, (2,0)

obey the relations
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——t . —r

—————— o —————

—
and are therefore given through 2, ()=(12% sk )Z 2, (y)=(2 X/o("),;’-.'

L 08 ) (7")”“”—”—1-#1 )y
g 3y
‘34‘ /74 /Tlfi)[’,?_"f “ 2(

The functions Zg(y), z4(y) have qualitatively the same behaviour as
the function z,(y) in Section 3.6 (with the substitution y-> -y, cor-
responding to the fact thz}}’ while 2‘°> 0, CZ’< (9 For X -0,(y-3-0) we
[ _ L
again have,—?k(c‘,,x) 74(?‘).

5. GENERALISATIONS AND COMPARISON OF 2~ AND <
The procedure described in detail for 2~ and ¢, can stralghtforwardly

be generalised to any RG parameter c Technical complications ra-

I
ridly increase, but one feature of the results persists: the higher
the value of i, the less powerful the procedure based on the corres-
ponding cy - So from both principal and practical points of view it

iis c¢rucial to know the asymptotic behaviour of the coefficients r‘ .

Although there are arguments [11], indicating that in QCD perturba-
tion expansions, when considered in fixed RS, are asymptotically fac-
torially divergent and even of constant sign, they may contain flaws
[1] to be taken at the face value. Nevertheless, '‘as stressed earlier,
our procedure , when 7 1is employed workse even for this situation.
From all the singularities discussed in [6] those associated with in-
frared renormalons are most likely to find their reflection also in
our perturbation expansions. Fortunately, these singularities would
lie in the 1/X plane far from the origin, the first pole being ex-
pected [6] at 1/% 230 and therefore should not thwart our procedure.

In previous Sections we demostrated close connection of our formu-
lae and the results of generalised Borel summation techniques. Speci-
fically we saw that the use of T corresponds to V=1 in (32) while
cy is similar in effect to V=1/2 and generally ¢y to V=1/1. But
what about Y >»1? From the point of view of mathematics all ci’s are
equally good, 80 could we not define a procedure, analogous to those
of previous Sections, which would correspond to Y»1 ? We can but it
suffers a serious drawback.

The whole philosophy of [1] and our paper is based on RG invariance.
It is this invarlance which generates for us from perturbation expan-
sions in one particular RS an infinite set of other series, associa-
ted with other RS. And it was precisely the existence of these series

15


http:t.j2f4-.f

which enabled us to construct our procedure. Without them we would be
left with only the "initial” series, such as in (7) and the Borel sum
would probably seem as the only plausible result.

For series with r®=0, the formula (15) defines another divergent
series, the degree of divergence of which is lowered by a factor k!,
One might then be tempted
to repeat the whole procedure this time starting with (15). In such a

compared with that of the original series.
way we could handle series up to (k!). Repeating it V -times, series
up to (k!)v would lead to finite results, which, moreover, would be
closely related to the generalised Borel sums [32] for V>1.

Although formally conceivable, this second and further steps lack
the fundamental ingredient, namely some analogue of the RG invariance
which indeed provides the only Jjustification for the whole construc-

tion in Sections 3,4.

6. THE EFFECTS OF c#0

In the previous Sections we have assumed)for technical reasong c=0,
although in realistic QCD the value of ¢=1.5-2 i& nonnegligible. The
complications due to c¢=0 would, however, otherwise obscure the essen-
ce of the exposition.In this Section we indicate the main steps in
the derivation of the generalisation of formula (19) to the case cf0.
Besides the obvious and harmless dependence of the coefficients rg4 on
c, the only change therein lies in the fact that now also the functi-
ons :z_ft'(x, Z°,c) do depend on it. Their calculation had been done nu-

merically and the results for =0 and 1, #4,=0.1 and c=1.8 isdisplayed

in the Figure, together with the curve corresponding to c=0. Clearly,
the effect of c#0 is nonnegligible, but the shapes remain qualitati-
vely the same as for c=0. Specifically it still hoalds that

a/ Zy (X, T%c) = (1/(L+1) 1) (/g f'2or @, fixed and 1/ -0
b/ % (x,7°%:¢) —-qofff for 4, ,c¢ fixed and X -» 0.

The essential steps in the construction of our procedure for the ca-
se of the T -vartable (i.e. ci:0,1§2) are the same as in Section 3.
1/ We start ih some initial RS specified by Z° or equivalently the
corresponding couplant (, as given in (3). We define T with respect
to this T° as T =T-7°. The couplant @/z)= A (T ,C&,c) is then given

as a solution of the equation 7
_ 3 a (1+ Cao
Z = .i_-—L + C/ﬂl 7(‘-————> .
a o As(1+C (36)
Note that for given R ,f: the couplant is an analytical function of

¢ in the neighbourhood of c=0. In the iouise of the derivation we use
for instance, the fact that d@/dc=- Q In(A/g,) at c=0. The equation
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(36) is for ch transcendental and so its solution must be found by
numerical methods.
2/ The coefficients r 4dre now determined by a generalisation of (10)

: d%ffz—é): %/Qf /27C)+ (¢ ’}/gez /ﬁc)

(37)
which suggest the gg:fral form of its solution
-€
/7 Tt Fr (2 :
% Z;C):?S!o ¢ )z;oc "7-'-5")“/’”‘70‘)" (38)

where the coefficients (k,l,ji obey ,as the consequence of (37),
the reccurence relations ( O¢ (k,1,-1)Z0)

(eeolllyert, )= Bocld )l @06 5-1) 5 O<344L-1 (a9
with the boundary condition o (k,0,3)= oy
3/ Combining now (36) with (38)and assuming iF(N)=}CN we have

Nef @
Hly, 8-1)=dia 2 MER ToR0@I=2 46307 oo

where
° 4 4, Mt g et By
270t 0055591 2 /gf%?wﬁ)x@ 40

4/ To prove that the above limit as N-»00 does indeed exiét is com-
plicated by the nontrivial and implicit dependence of 2@ ( TU(N)) on
N and &,( for c=0 we had simply Z a(T(N))=1/(1+ 1/( @GpZT(N)) ). One

way how to proceed is to expand ”

around c=0 and then to investiga-
te the limit of each term in the Taylor expansion separately.The pro-
blem boils down to the proof that for fixed}f all the derivatives
a* &Y act|_,1=1,2, ... have finite limits as N-»00 . .
5/ In the simplest case il we first prove by explicit evaluation of
(41) that the limit lim diﬁf/chH.Z%/dc at c=0 does exist and is a
differentiable function of T°. %hen(ye derive recurrence relations
o

a, Q%Qg, Ze) e )[ -235@792,’6/!3 ~aZ (eI jr,g‘ewj
They prove that also the derivatives of higher jfe' do exist at c=0.
Moreover, these relations can be used to show that the total deriva-
tives with respect to c (taking into account also the dependence of g,

on ¢ as gven in (3)) do obey ,at c=0, reccurence relations
g az(rzel d[ ~]
“ _ c .
R S NN DA AN 2D/
They suggest the following relation at general c :
oz, /, Zﬁt ~0 , J?
TR o i) 2, 2700+ 2200 o

which fbr c=0 reduces to (21). It is eaesy to show that (42) is exac-
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tly what. is needed to prove that the full sum (40) is independent of
Z%also in the case ch!

6/ To close the construction we should repeat, with appropriate modi-
fications, step 5 for all higher derivatives. This can be done but is
tedious and will be omitted here.

7. INTERPRETATION AND APPLICATIONS - AN OUTLINE

In the previous Sections we have described an algorithm, showing how
a Jjudiclous use of the RG invariance can lead to finite, nontrivial
results for series divergent when considered in fixed RS.Thése resul-
ts can, for the Z'variable, be written in two alternative ways

A pa))= 4“.2 /zfv))a‘%[u)) f /2“)»?/'9 7e) (43)

where TYN)= 'Z'°+/¥N. Provided the coefficients rA diverge at most 1li-
ke k! this series has nonzero radius of convergence r?, inside which
R(x ,4) can be approached order by order by making use in (43) of
conventional perturbation calculations which supply the coefficients
re (Z°). To a finite order -the sum (43) depends, besides X , also on
the choice of 29, exactly in the same way as in conventional approach
which ,as we know, corresponds to X =0. We face now three questions.
The first concerns the meaning of the ‘X -dependence in eq.(43). We
consider it a manifestation of the inherent ambiguity in the separa-
tionn of the full theory into its "perturbative” and “"nonperturbative"
parts.Accoding to our understanding this ambiguity oannot be resol-
ved within the. perturbalion theory itself. In the forthcoming paper
[12] we shall give a number of arguments in favor of this conJecture
employing, among other facts, the triviality of the full Z,SD ‘theory
and draw analogy between the role of our parameter ;{ and/4 from (3).
Secondly, if the perturbation theory should have any predictive po-
wer, then there must be a unique value of ;K - to be determined to-
gether with /1 from comparison with data - deecribing with reasonable
accuracy all the physical quantities of "perturbative” nature. This
last notion is, however,only very loosely defined concept without gi-
ving first the formal expressions (1) some good mathematical and phy-
sical sense, which is just what we are trying to do. Even without fi-
xing fhe value of x we can use our formula (43) to derive mathemati-

cally well-defined, Z-&ndependent relations between any pair of phy-
sical quantities R' Ry

,? ;E: ﬂ@t)igf

(44)
where the coefficients v:f (RS invariants, formed from Ty jfk ) are

different from those we would obtain by formal manipulations with (1),
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We consider relations like (44) as basic results of perturbation the-
ory. Also this point is thoroughly covered in [12].

Third, in practical situations (43) must always be truncated to low
order and therefore we must also choose carefully, as in conventional
framework, the "optimal"” 2°. Recall -that the coefflcients Ty

/4le)’,f2/f~tJ = }ngz 61%) -#-Jf7/ . 2444 =éﬂ

are in fact functions of the difference T°-t, t=bln(Q/A ), and the
last term above is /4 and thus also Q-independent. For fixed k and Q
going to infinity the first term dominates and requires;ﬁ =XQ, X1,
to avoid the large logarithms. This is what is done in the conventio-
nal framework , where the only problem seems to be the question what
exactly € should be. However, it is also the “constant” terms rgé"“p
usually neglected,which are factorially divergent! It is these terms,
which then require the introduction of nonzero‘x in the relation (13).
By choosing Z°-b1n(Q/A )., as usually, and assuming X > 0, we there-
fore do not in the least violate the spirit of the RG improved per-
turbation theory, but mefely take into account also the presence of
the constant terms, which are usually disregarded due to their small
values for k=1. If £° is very big, due to big Q, and X modest, it
takes a large N before Z (N) differs in any significant way from T°
and thus for small N the sum 2:'0 r, ( T‘(N))G“’(’E(N)) shall be prac-
tically the same as in fixed RS={Z°}.
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0 cmuicne pAROS TeOpuM BO3MYUWEHWA B KBAHTOBOM TeopUM NONA

Teopua sosmyweHnit 8 KTl nepeonpegenfseTca Takmm o6pa3oM, KOTOpMM MNO3BONA-
€T ee npuMeHeHMe fawe B Cnyuae, KOrpa paas Teopun BOIMyuWeHuA B GMKCHMpPOBaH-
HOM cxeme NepeHOPMMPOBOK PacXoAATCA. PesyneTaTu BLPamanTCA B Buae CXORAWMX~
ca /npn onpepeneHHsX ycnoauAx/ PAAROS B cTeneHAx CBOBOAHOro napamerTpa X ,
XapaKkTepusyouwero Mcnonb3OoBaHHY KOHCTPYKuun. TIPMBOAATCA apryMeHTs 8 NONb3y
TOro, WTO 3Ta HEOAHO3HAUHOCTL CBA3AHA C HEORHOSHAUYHOCTBI PACHENNEHHA NONHOM
Teopun Ha ee neptypbaTushue u HeneptypbatueHwe uacTu. NoKasaHa TeCHam CBA3b
NOnyuYeHHNX Pe3ynbTaToB C NPOUEAYPOH CyMMauuu no Gopemo M onpepeneHo mux
OTHOWeHne K pAARaM OGWUHOM Teopuu BOIMYWEHUH B MNOCTOAHHONW CXEMe nepeHOopMU=
poaok. ’

Pabora ewnonHeHa 8 JlaGopatopuu TeopeTuueckoi ¢namku QUAH.
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On the Meaning of Perturbation Expansions in .
Quantum Field Theory

We reformulate perturbation expansions in renormalised quantum field
theoriés in a way that allows straightforward handling of situations when
in the conventional approach (i.e. in fixed renormalisation scheme) these
expansions are divergent. in our approach the results of perturbation cal-
culations of physical quantities appear in the form of {under certain cir-
cumstances) convergent expansions In powers of a free parameter x, charac-
terising the procedure involved. This Inherent ambiguity of perturbative
calculations is conjectured to be an expression of the underlaying ambiqul-
ty in the separation of the full theory into its perturbative and nonper-
turbative parts. The close connection of our results with the Borel summa-
tion technique is demonstrated and their relation to conventlonal perturba-
tion expansions in fixed renormalisation scheme is clarified.
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