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1. INTRODUCTION 

There ,is a, number of ,probl~ms in gauge fieId theory, whose 
solution depends on t~e gauge choice. Fór exampIe~ ~omputation 
of ,the fermionGreen func tions " 11 , quantization of theoní es 
with chiral anomaIies / 21 , int~rpretation' of the gauge ambigui­
ties /31 • 50, a physical principIe restricting the arbitrari­
ness in the gauge choice would be useful for their çonsidera­
tion. 

In the present paper~ we would Iike to draw attention to 
the "minimal" ver~ion of an operator quantization of gauge 
theories in which such a physical principIe is just the gauge 
í nvar i ance , This version Ls based on the -cons t ruc t í.on of the 
physical variabIes by using an explicit solution of the Gauss 
equation. For s~mplicity we shaIl illustrate the method by an 
example of QED and restrict ourselves to a short discussion 
of the non-Abelian theory. 

2. COULOHB GAUGE AND "MINlMAL" QUANTIZATION 

i) The Coulomb gauge is t he most conven i en t a~(L,s-imple too l , 
for de s cr í.b í.ng bound, s tat es in) t he gauge theories, and t isí 

more often than'the others used for a path-integral construc­
tion by the canonical quantization(41 . Recall that one of the 
recent prac,tical achievements of QED, the Lamb shift correcti­
ons can be calculated only in the Coulomb gauge / 51 • 

A fault of this gauge for standard quantization i5 the re­
Iativistic noncovariance. For example, there is the problem 
of defining a moving electron wave function, i.e., the Green 
function residue 

R lim (p - rnR)GR(p). (I) 
s- rnR 

As it has been pointed out / 5 1 , the residtie (1) is equal to 
unity (R = 1) in the rest system, while in a moving reference 
frame the value of R depends on the velocity and, generaIIy 
speaking, 100ses its meaning due to the infrared divergence. 
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This problem in QED has been considered still in earlier pa­
pers for example/6 1 • (The same problems are pertinent to re­
làtivistic gauges, where the Green function has a cut instead 
of a pole~ and the value of R can be equal to zero or infinity 
depending on the choice of gauge). The task of restoration of 
the Coulomb-gauge relativistic covariance is practically im­
portant for QCD, where the "Coulomb" version of potential con­
finemcnt is used for proving spontaneous chiral symmetry brea­
king /71 • 

. ii) On the other hand, it is wel1 known/8 / that there is a 
general proof of 'the Coulomb-gauge relativistic covariance in 
the framework of th~ canonical operator quantization. Most com­
pleLely and 'consistently this method is formulated in the pa­
per by Schwinger/9! . The Schwinger operator quantization ís 
baseà on the choice of the gauge-invariant energy-momenturn ten­
sor (the B~lifante tensor) 

F'\ F üi, 'P Q i ,\ ­T
(Lv 11 Àv + 'r Y/l (1 a - e A ) v - g Ilv a1.. + "2a ('11 rÀlJ.v qt), 

(2) 

rÀ{1v = 2"
1 

[Y,\ ~ Y/l ]yv + g,Lv YÀ -' gv'\ Y/l ' 

and on the nonlocal commutation relations 

. -t T-t . l' 3-+ -+ 
l[F (Ô -ai J2aj)Ô (x-y). (3)oi(x.t).A j(y.t)]= i j 

Tensor (2) differs from the canonical one (used in the conven­
tional Dirac quantizatio~) by a total derivative. Together 
with the nonlocal term in commutator (3), it plays a very im­
portant role: they both restore the correct transformation 
prop~rties of the transverse field operators 

o T
8A~ = ifk[Mok • A~] 8LA Il + a/lA, 

T8'P T = ifk [M ok • 'P ] = õ~ 'PT 
_ ieA'P T, (4) 

AT 1 .T e -T T 
o = - â2 J o = - â 2 'li Yo 'P 

where Mok is the infinitesimal operator of a boost transf6r­
mation 

3 T T T T
Mok = f d x [ t T ok (A • 'P ) - X k T 00 (A ,'11 )], (5) 

8~ is the ordinary Lorentz transformation with parameters and 
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1 T T
A = (k :;y (ao A k + ak A o ) (6 ). 

a 
is ~n additional gauge transformation by which a field A~ 
again becomes transversal in the new reference frame e/l = e; + 
+ 8~ e;, e~ = (1, O, o, O) 

ae . A e 0, (B.A B/l ,A/l ) . 

(7) 
. e A~ = A/l - e/l(A.e). = AJ + ôA~, cJ'l "" - rj1 (a . e). A Il eJ ll 

Thus, the gauge of transverse fields A; in the operator' quan­
tization is changed together with the time axis of quantiza­
tion e/l and coincides with the Coulomb one only in the rest 
frame. 

. iii) Just the sarne transforrnation properties (4) in classi ­
cal electrodynamics are inherent to the nonlocal classical va­
riables 

1
ieA~ = v(ieA j + aj ) v-I ie(ô.1k -- ;),

.I 
__.~ (J k ) A 
(j k' 

(8)
• qJT v'V, (v = exp 1ie _1_ a. A. n, 

-.. 2 J Ja 
that can be construct~d by an explicit solution of the Gauss
 
equation
 

(j2 A = a. a A. - (9)J' o 1 o 1 o • 

It is easy to check that the substitlition af the solution of
 
eq. (9) into the Lagrangian
 

f(x) = - _1_ F 2 
+ q; [iy (J I- ieA ) - m 1'J1 (tO)

4 11t-' 11 /l IL ' 

leads to the expression 

f( x ) 1 :l 1 . )2 -F
1 

.. 
2:2 (ao A·kT 0k - J A~ jj + 'PliY [r1/l +â2 o 4 'I Il 

1 1 T 1 2 1, T -T T 
+ iea

1 
-(a. A.)]I'P = -(ao A k -ak -j ) ----,-F,,-J +A1,jl'+'P [iYllall-m]'I'

1 â2 1 1 2 â 2 o 4, ' r r 

that depends only on variables (8). Therefore solving one 
gauge-invariant equation (9) we remove out two fields. The 
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nonlocal variables are invariant undeT gaug~ transformations 
of t he i n i t i a1 f i e1ds A 11 ' 'I' : i e A~ = g (i e A 11 + a11 ) g - 1, 'P g = g 'I' 
AT(Ag)=AT(A),'PTg::'I'T like the initial Lagrangian (10). The 
quantization Df variables (8) is completely reproduced by the 
Schwinger scheme (2)-(4); and moreover, the very procedure of 
this variable construction by an explicit solution of the 
Gauss equation under the condition of gauge invariance justi ­
fies the application of the Belifante tensor (in terms of 
which the dependence on the longitudinal field aiA i disappears) 
and the projectile operator in the commutation relation (3) 
(which arises in the explicit solution of the constraint equa­
tion (9». 

Thus, we have discussed three versions of quantization of 
fields in the "Coulomb gauge": i), ii), iii). In the first one 
the gauge is fixed and we are faced with the Lorents noncova­
riance. In the second version we fix the gauge but it automa­
tically changes with the time-axis transformation~ In such a 
way ~he Poincare algebra of the observables can be proved on 
an operator Leve l , In the third version we do no·t need the 
constraint fixing the gauge, in such a "minimal" scheme (It 
is sufficient to solve eq. (9) explicitly and tp use its part 
that transforms in a nonhomogeneous way [(â 2 )-1 ai A i] for cons t-: 
ruction of nonlocal variables demanding their gauge invarian­
ce). 

The only difference between the second and third versions 
is í.n the expli~it construction of the physical var i ab l e s . '. 
This construction leads to some additional physical consequen­
ces which we are going to discuss in the present paper. 

'3. CDMPUTATlbN DF THE FERMION GREEN FUNCTIONS 

Let us consider at first the computation of the one-partic­
le fermion Green function 

i(21r) 404 (p - q.) O(p) :: f d4 x d4 y e ipx- iqy < O I T ('P T (x) \ii T (y» 1 O>, (11 ) 

(where 'I' T, \li T are operators in the Heisenberg representation) 
in the relativistic version of Coulomb gauge. In the one-loop 
approximation O( p) has the form 

O(p) :: 0o(p) + 0o(p) L (p)G (p) + 0(e 4) , (0 (p) = (~ - m)-1 ),o 0 

where L(p) is the electron self-energy of order e 2 which 
contains contributions from the transverse fields and the Cou­
Lomb interac tion '/5/ 

q. q ,_; _ q2 
L(p) = .( (dq) [(o,, l J ) O O' jl.] 

. 2 lJ ~ Yi oYj+ Yo oyo -~ , 
q q.ql1 

(12), 
e 2 . 4 2 2 ~ 2 2 ­

(dq:) = -- Id q, q = q - q = q • O o = -ao (p - q) • 
(211)4 11 o 

It is known (8) that L(p) can be represented as a sum of the
 
invariant L (p) and noninvariant ~.2. {p) under Lorentz trans­

formations t-erms *
 

~ (p) = L F (p) + ti s (p ); (o ~ L F (p) :: O; oOL Ó.L (p) I: O) 

LF(p) = - .r (dq)~ Y 0 0 Y ' (13) 
q I1 I1 

ti L (p) =.r (d q ) {qã o q + q ã q + ~ Go q]; ( q = y, q . ) . o q 2 q2 - - - 1 1 

The response of I!i~(p) to the Lorentz transformation can be
 
got by changing the integration variables in eq.(J.3)
 

o~ qo = lk qk • ·8~ qk = ! k qo 

(14)
(dq)
 

o~I!iL(P) :: f k .r ---r Bit Õoq· + qÕ oB k i.

2 -~ 2 

q q 

q q ,..
 
where Bk :: qk Yo + Yk qb - ~qi Yi -......Q-'iq. However, the total


2qoqk 

q. q2 
Lorentz transformation for the Green function contains also 
the gauge transformation (4): 

(2r,)4iô 4(p -q')0AO(P):: iefd4xd 4 y eiPx-iqYI<OI T['PT(x)\iiT(y)x 

T -'1' 
x i\(y) - A(x) \1' (x)'!' (y)] 10 > L 

Using the explicit forro for A (6) we get: the following expres­
sion 

(dq) .." "
 oA 2. (p) lk J 2 ~~ [Bk 00 (p - m) + (p - m) G o Bk 1,
 
q q
 

* By~'invariance" we shall understand the equality 
-1
 

00 (p ') = Sp'p 00 (p ) Sp'p .
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where Bk is given by the formula (1·4). As 

B kao (p - q) (p - m) :::: 1 + G o (p - q) q • r (d(l.) --- = o. 
2 -+ 2 

q q 

We get that the total response of S(p) to the Lorentz trans­

formation is equal to zero
 

0L to t I (p) :::: (o~ + oA J I (p) :::: o . (5) 

It is important to emphasize that the relativistic invnriance 
(15) is broken for the canonical energy-momentum tensors since
 
it differs from the Belinfante one by a total derivative,
 
which is essential for 0A .'
 

Thus, the trans'ition to another Lorentz frame will be accom­
panied by additional diagrams induced by a transformation of 
type (4) that is equivalent to the choice of the gauge (7). 

lf we choose the time axis (e) parallel to the particle mo­
rnentum (so that the fermion Coulornb field moves tog~ther with 
it) we get for the self-energy an expression without infrared 
divergences on the mass shell 

(dq) 2 (dq) 1 a
 
2(p) r-- A-" J~ Y -,,-'- Y :::: --lm(3D + 4)
 

. q2 P -q.+m o o 
q q + m 411 

" 1 " " 2 2 " A (16)A 

D(p - m) + _(p _ m)2 [ P +m (Log m -p )( 1 + p (p -·m) ) - _P_] L 
2 .p 2 m2 2p 2 2p 2 

here D == ...! - YE + Log411, t is a dimensional regularization para­e 
meter. Due to eq.(I5) the renormalized Green function (11) has 
the corr:ect analy~ical properties 

R :::: Lim (p - mR) G R (p) :::: 1 
P-+ rnR 

and this result is relativistic-invariant. 

4. THE PATH INTEGRAL 

There are two approaches to forrnulating the path integral 
in gauge theories: heuristic and constructive ónes. An example 
of the heuristic approach is the Faddeev - Popov ansatz, and 
an example of the constructive one is the proof of the Faddeev _ 
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Popov ansatz by the operator canonical quantization·~il.42/. The 
path integral cons t ruc t í on is usual l y accómpli shed wi th the 
help of such modifications bf operator quantization (for ins­
t anc e : a local commutation relation /11/ or' k canonieal energy­

ímomentum tensor /4/ ) wh'ich.break relativistic covar ance , No 
wonder, the path integral thus obtained leads to relativisti ­
cally noncovar í.aut Green func t i ons for fe rmí.on s /5/ • 

Then a question arises wnether it is possible to reproduce 
the relativistic version of the Coulorhb.:...gauge o'perator'quanti ­
zation by the path-integral method. Sincé the "flowing" cha­
racter of the gauge condit~ori has to be reflected, our "const­
rue tive" path integral should explicitly depend on the tirne­
axis of quantization e~ 

e _ - 4 e e e 2. 
ZConst[1],1]]:::: Jd'l'd'l'd Auo[a .,A ]det[(a ) ] x 

(17) 

x exp I i S + i r d 4 
x ( lIJ

-
7] -+-

-
1] lIJ ) I. 

where B~ 
e 

:::: B~ - f ll (B. n , (B L :::: A~ ,a ! )( I t should be noted that
l

even the path integral (17~ does not reflect alI specific pró­
perties of a more fundamental operator method of quantization). 

It is clear that alI scattering amplitudes on the mass 
shell got hy the patH integral (17) do not Aepend on the time­
like vector e~ except for the oDe-particle Green function re­
sidues (1). For their computation according to the operator 
quantization we have to choose the vector e~ parallel to the 
momentum characterizing Green function. 

By changing the variables one can pass to the path integral 
in any gauge f(A) :::: O 

e - - 4 4 
Z C [ 1]. 1]] :::: rdlIJ d lIJ d A" o[ f ( A ) ] exp I i S +- i r d x xanat. r 

( 18) 
- e - e-1 

x ['I' v r 1] + 1] ( V f) '1'] I.. 

where 

e 1 e e 
v r (A ) :::: exp I i e -()- a . A I ( 19) 

(a L)2~ 

is the transition matrix that restores the correct analytic 
properties of the Green one-particle functions in any gauge. 
On the leveI of "constructive" path integral (18) these one­
particle functions do not depend on the gauge choice and have 
correct properties, ewhile the Faddeev - Popov "heuristic" path 
integral, without v f ,leads to their dependence on the g~uge 
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choice. There~ore, one can consider expression (18) as a more We introduce here the'mass 11 for the· infrared regularization 
exact definition of the Faddeev - Popov path integral that of the propagatqr of the quantum field 
follows from the relativistic covariant and gauge-invariant 

8··operator quantization.	 oL _IJ_ ) , 
Pi ~= vs.. i[ P i ' b j] = 8 ij , (i[b i , bj ]

One can show that the gauge-invariant construction of phy­ obi 
V 

sical variables in the non-Abe~ian theory~!12/ up to some de­
tails leads to the Schwinger operator quantization'~! with the illlt~(22)iq o t 
"running" gauge. This quantization corresponds to the path in­	 8 ij e e1<T(b

D.. (t)=2	 o 2"Vtegral depending manifestly on the time-axis e~ (unlike the	 lJ i(t),bj(O:: -- - II 
A'

aa~o -2-·2 . = i8i j II > = q _ f1 + 1( 211 V
naive Coulomb-gauge path integral /4, l1 , 13/ ) and to the one-par­ l! o 

ticle Green functions with ~orrect analytic properties (16), 
in any case, in the one~loop approximation. We see that there is such a limit of the infinite volume and 

On the leveI of a rlconstructive" integral af the type (18) zero mass 
the choice of gauge is only the one of integration variables. 
Therefore the gauge ambiguities that appear on a more funda­ V~oo, 1l~0, 211 V = M

-2 
f; 0, (23) 

mental leveI of the opeartor quantization should be presenied 
also for a path integral for any gauge. It is important to where the propagator (22) is not zero 
emphasize that the inverse differential operator in the non­

Lim Dij (t) = i 8 ij M2 ~ O	 (24)local commutation relation of the Schwinger quantization coin­

cides with the ope~ator in the Faddeev - Popov determinante V~""
 

Thus the problem of d~terminant zeroes on the leveI of the Il~o
 

op'erator quantization reduces to the problem of vnique const­ and we have the'nontrivial evolution operator
 
ructing of the nonlocal commutation relation ,of the type (3).
 

M2 o 2 ib.J.i THLet us. consider the solution of this problem by the simp­	 exp {_(_) [ e J J ILim < e > (25)lest example of Abelian theory. We have to separate alI fields	 2 ob bi = or.v», i 
into two orthogonal classes with zero and nonzero eigenvalues 11 ~ o 
of the operator of and to quantize the fields from each class 
separately, then to construct the corresponding path integral It is clear that iri limit (23) the propagator of the total 
that should not depend on the choice of variables or gauge. field A. = A'F + b. 

1 1 1 

In the conventional cornrnutation relation of	 the type of (3) 8 .. 
. ~ ~. 1 3 ~ ~ lJ

the class of infrared fields	 1[FOI' (x, t) , A. (y, t )] = (8.. .:... a. -e--~ a. )8 (x - y) + - (26) 
J lJ 1 â2 J V
 

2 ~ ~
 oi Aj (x, t) = O, A j (x, t) = b j (t ) (20) has the form of a sum of the usual transverse propa?ator and 
expression (24) 

drops out and only the fields 
D ij (x) = T1 <T( A i (x) A j (O)) >0 D ir (x) + i 8 ij M 2 , 

2 ~ . 3 ~ oi. Aj ( x , t) f; O, ([d xAj(x, t) ='0)	 (21) 
I or in the momentum representation
I. 

are included. At first we consider the Abelian theory in the ;
 
function class (20) in a finite volume of space i­ TIl .424


,I D .. (q) = (8 .. - q. -- q. ) + 1(2") M	 8 (q)8 .. , (27)lJ lJ 1 q2 J q 2 + i ( lJ
 
3 1 2 2 2 ~ •


L = f d x [ -""4 FIlV (b) ~bi + bdi(X,t)]
2	 IJ So, we have got one version of the "confinement" propagator /14/ 

~ : 
that reflects the collective excitation of infrared fields 

1 '2 22 3 . ~ (20) in the whole space fields occupy. In view of this fact= - V [b i = 11 bi.J + b i r d x J i (x, t ) ,	 j.
2	 . the attempts to get the confinement propagator by analytical 
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ealeulations in the framework of the eonvention perturbation 
theory given only in the funetion elass (21) look very' doubt­ +< T ( j /l ( x), jv (O) ) >0 = (/la (vf3 aa a{3 fi M (x - y ),	 (31)
fuI. 

For the generation funetional of the Green funetions for 
the Abelian th~ory with the eommutation relations like (26) 
in limit (23) we get the following expression 

M2 a 2	 I'Z[ 77 ,1]] = exp {2 (àb i) t Z ( b I n. Tf) Ib = o '	 (28) 

where Z(bl77,~) is the uRual funetional integral	 /1 

Z(bl77,7j) = [d'lid'Pd4 A/1 o(J i Ai)expliS[Ao,A i +- bi ] + i[d4 x [ \P77 +~'P]t. (29) 

We ean generalize the relativization proeedure got above to 
expression (28) 

e 
b i	 --l> b/l = b/l - f/l(b. r i. (30) 

Thus the solution of the problem of zeroes of the deterrninant 
in the path integral on a more fundamental leveI of the opera­
tor eanonieal quantization leads to the stoehastization of the 
usual path integral (29) over th~ zero eigenfunetions. In QED • 
we omit the infrared fields. (20) (M ~ O). In QCD the inelusion 
of infrared gluon fields may be justified by the nonlinearity 
of theory and strong eoupling of fields on the infrared limit 
aeeompanied by long-wave correlations and eolleetive exeita­
tions. 

5.	 PHYSICAL APPLICATION: CONFlNEMENT IN THE SCID~INGER
 

MODEL
 
I 

The "minimal" quantization (see Seetion 2.iii) that does 
not use the gauge fixing as an initial assumption differs from 
the relativistie version of the Coulomb gauge only by the ex­
plieit eonstruetion of the nonloeal physieal variables (8). 
Let us eonsider here some physieal eonsequenees of this eonst­
ruetion by an example of the Sehwinger model (see eq.(10) 
where fL = O, 1, m = O). 

As	 is known, this model gave rise to the popular Wilson eri ­
terion - eonfinement based on a linearly rising quark potenti ­ :1 
aI/ 15/ . Forma l l y the ehoiee of the var í ab l e s (8) leads really 
to the Coulomb gauge with the IinearIy rising potential and to 
the following exaet results for the eurrent eorrelatorfi and 
for the one-partiele fermion Green funetion 

~<T('P(x) \P(x»~ = exp {- irr [~M(x - y) - ~o(x - y} ]tG (x - y). (3~)o1 

where ~M ' ~ o , Go are the__ Green fune tions of free scalar 
2
 

f i e l ds with masses M = yI ~, M = O and of a free fermion
 
tt 

massIess fieId, respeetively. 
CaIeuIation of the fermion Green funetion in the model 

Ieads to the following asyrnptotics in the momentum spaee 

"' ­
G 'r (p) p 

G(p) pylM
 
- -2-' 

(p2 + ír ) 5/4
P--l>()() P p--l>O 

So, t~e probability of finding a partiele with quark quan­

tum numbers is not equaI to zero
 

Lim pG( p ) f: O, (33) 
p--l>O 

that means, the Wilson eiiterion is not a eriterion for eonfi­
nement. Note, that this J;esuI t is gauge-invariant in t he, serr­
se, we d i scus s ed, in Seetion 4. 

The "minimaI" eonstruétive way of quantization (8) leads 
to	 another meehanism of eonfinement in the SCRwinger model re­
Iated to topologieal properties of the gauge field. 

The expIieit solution of the Gauss equation defines the 
nonloeal variables (8) up to the faetor g(x) whieh eorres­
ponds to a solution of the homogeneous Gauss equation 

v =	 exp {i( À (x) + -1- ai A i)} ­ g(x) exp h+a i A.I, (34)a2	 a2 1 

g ( x) = exp. {i À(x ) I,	 (35) 

where a~ À(x) = O. The g -faetor ha s to be a smooth funetion 
withbut singuIarities as we solve eq.(35) in an empty.spaee 
R(l)'. 

For a f ini te spaee Ix 1 I < R there are non trivial so lu t onsí 

of ·eq.(35) that represent a map of the spaee R(l) onto the 
group U(l) -manifold with an integer degree of mapping n 
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80, the same topological confinement mechanism shoulà take 
g(n) { x ) = exp I i ~" n 1, n O,..:t 1 , t 2 •••. place if such a criterion is satisfied. 

For exampl e , in QED 3+ this relation is hot valid ("3(U(1))=(36)	 1
Lirn g(n\ x ) ±1. == O), which is in agreement with the observability of the' 

11[1-., R electron. In QCD 3+ 1 cri terion (38) is satisfied (173(80(3)) = Z), 
which means vanishing of the amplitudes for coloured-particle 

80, our dynamical variables WT are topologically degenera­ creation/10 I 

I~ ... ted. This degeneration concerns all observables in the theory 
tbrough the Green-function generating functional where the 
felmion sourcés acquire additional topological phases 

S == rdx 1wT (n ) _ - (-n) WT I 
som	 .. g TJ +TJg ~' 

This degeneration has to be removed by taking an average over 
its parameter (n). So, instead of the Green function (32) we 
get the following result 

N 
1 g(n ) (x) g ( . n ) (y) G T (x _ y ) G( X - y) == Lirn Lim L
 

2N
R....H.., N-..oe n==--N 

(37)
O T (x _ y) • == yx 

O x -/: y 

2 ip(x-y)
hence O(p) == fd x d 2y e G(x - y) == O. At t.he same time, for 
the two-current correlator we obtain the old result (31); it 

2 
• "O 2 ereta1ns 1ts pole at P = -17-­

Such a picture is caused by destructive interference of the 
infinite number of phase factors g(n) (x) • We would like to 
emphasize the noncommutativity of the limit procedures in (37) 
determined as in quantum statistics!16! ; an opposite ordering 
leads to the old result (32). 

The existence of nontrivial solutions (36) is enshured by 
the following relation which takes place in the theory under 
consideration 

"l(U(1)) == Z, 

171 being the first homology group. This relation may be gene­
ralized for theories with a gauge group O in D-dimensional 
space-time as 

17 _ ( 0 ) Z.	 (38)
0 1

12 

S cc 
ShC)
 

(
 (: :hJSch	 S1th 

where Sch is an 8-matrix element of a transition between a co­
lour state (c) and a hadron one (h). 

However, the usual free propagators of quarks and gluons 
are used in calculations of the colourless amplitudes. 80, in 
correspondence with the unitar~ty principIe 

SS + ==	 (1 + i T)( 1 - i T*) = 1 . 

or 

L < i I T I h > < h I T* I f'> 2 Im < i I T I f >, ( i, f ~ h) 
h 

the inclusive processes provide a possibility of measuring 
the coloured particle quantum number s , In, this way? the "des-' 
tructive interference - confinement" lays a foundation o~ the 
quark-hadron duality principle/~/' 

~UHMARY 

In the present paper a gauge-invariant and relativístic-co­
variant operator construction of the physical variables and 
path integral in gauge theories has been proposed. We have 
shown that such a "minimal" quantization method solves the 

;
.	 old QED problems as the correct definition of the electron 

wave func tion /5.6 I or the residual of i ts Green function and) 

I 

leads to a new picture of the colour confinement. The Lat t.e r 
is based on the destructive interference of the phase factors 

1 that appear in topologically degenerated theo~ies ("D_l(G) == 
== Z ). In this picture the coloured-particle creation ampLí,tu­

'I des are equal to zero due to this quantum phase interference. 
At the same time the free quark and gluon propagators are used 
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in calculation of the colourless observable amplitudes. So, 
the unitary principIe provides a possibility for measurement 
of the coloured-particle quantum numbers in the inclusive pro­
cesses. Note, that just these assumptions are implicitly used 
in the parton model and now-a-days, in QCD phenomenology at 
high and low energies. 
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RnueBa R.n. u AP· E2-87-274 
MJiHHMaJlbHOe KBaHTOBaHHe H KOHql<lHHMe HT 

B pa6oTe paccMaTpHBaeTcH 11 MHHHM<lJibHaH 11 BepCHH KaHoHHt~ec 
Koro KBaHTOBaHHH, OCHOBaHHa.R Ha HBIIOM pemeHHH ypaBHeHHH 
CBH3H H Ha IIpHH{\HIIe KaJIHOpOBO'IHOII HHBapHaHTHOCTH, Ha IIPHMe 
pe BhltiHcneHHH OAHot~acTH<~Hofl: ~YHK~HH fpHHa 6hlno noKasano, 
'ITO Tpe6oBaHHe KaJIH6pOBO'IHOH HHBapHaHTHOCTH BeAeT K pen.RTH 
BHCTCKOH KOBapHaHTHOCTH TeOpHH H K AOOIIpegeneHHIO ~yHK~Ho­
HaJlbHOrO HHTerpana $aAAeeBa - ITOIIOBa, KOTOphlH He saBHCHT 
OT Bbi60pa KaJIH6poBKH. 11MHHHMaJibHOe 11 KBaHTOBaHHe HCIIOnb30Ba 
HO AnH HCCneAOBaHHH rrpo6neMbi KaJIH6pOBO'IHOH HeOAH03Ha'IHOCTH 
H AnH paCCMOTpeHHH HOBOrO TOnonorH'IeCKoro MeXaHH3Ma KOH­
~aHHMeHTa, 

Pa6oTa BbiiiOnHeHa B naoopaTOPHH TeopeTH'IeCKOH ~H3HKH 
OIDUf. 

flpenpHHT 061te.tUDU!HHOrO HHCTHTyTa fl.IIepHblX HCcne,I).OB8HHH. }J;y6ua 1987 

Ilieva I.P. et al. E2-87-274 
"Minimal" Quantization and Confinement 

We consider a "minimal" version of the Hamiltonian quad­
tization based on the explicit solution of the Gauss equa­
tion and on the gauge-invariance principle. By the example 
of the one-particle Green function we show that the requi~ 
rement for gauge invariance leads to relativistic covari­
ance of the theory and to a more proper definition of the 
Faddeev - Popov integral that does not depend on the gauge 
choice. The "minimal" quantization is applied to consider 
the gauge-ambiguity problem and a new topological mecha­
nism of confinement. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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