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1. INTRODUCTION

There is a number of problems in gauge field theory, whose
solution depends on the gauge choice. For example: computation
of the fermion Green functions “!” , quantization of theories
with chiral anomalies’/?/ , interpretation of the gauge ambigui-
ties 3/ . So, a physical principle restricting the arbitrari-
ness in the gauge choice would be useful for their considera-
tion. .

In the present paper, we would like to draw attention to
the "minimal" version of an operator quantization of gauge
theories in which such a physical principle is just the gauge
invariance. This version is based on the construction of the
physical variables by using an explicit solution of the Gauss
equation. For simplicity we shall illustrate the method by an
example of QED and restrict ourselves to a short discussion
of the non—~Abelian theory.

2. COULOMB GAUGE AND '"MINIMAL' QUANTIZATION

i) The Coulomb gauge is the most convenient and simple tool,
for describing bound, states in, the gauge theories, and it is
more often than the others used for a path-integral construc-
tion by the canonical quantization’?/ . Recall that one of the
recent practical achievements of QED, the Lamb shift correcti-
ons can be calculated only in the Coulomb gauge /5/ .

A fault of this gauge for standard quantization is the re-
lativistic noncovariance. For example, there is the problem
of defining a moving electron wave function, i.e., the Green
function residue

R = lim (p - mp )G (p). n
6*mR

As it has been pointed out '3/ | the residue (1) is equal to

unity (R = 1) in the rest system, while in a moving reference

frame the value of R depends on the velocity and, generally

speaking, looses its meaning due to the infrared divergence.



This problem in QED has been considered still in earlier pa-
pers for example (The same problems are pertinent to re-
lativistie gauges, where the Green function has a cut instead
of a pole, and the value of R can be equal to zero or infinity
depending on the choice of gauge). The task of restoration of
the Coulomb~gauge relativistic covariance is practically im—
portant for QCD, where the "Coulomb" version of potential con-
finement is used for proving spontaneous chiral symmetry brea-
king/7/.

.ii) On the other hand, it is well known’8/ that there is a
general proof of the Coulomb-gauge relativistic covariance in
the framework of the canonical operator quantization. Most com—
pletely and consistently this method is formulated in the pa-
per by Schwinger’/%/ . The Schwinger operator quantization is
based on the choice of the gauge-invariant energy-momentum ten-
sor (the Belifante tensor)
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Tensor (2) differs from the canonical one (used in the conven-
tional Dirac quantization) by a total derivative. Together
with the nonlocal term in commutator (3), it plays a very im-—
portant role: they both restore the correct transformatien
properties of the transverse field operators
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where My, 1is the infinitesimal operator of a boost transfor-
mation

M, = fa®x(eT, (AT, 9Ty - x, 7 (AT, ¥, (5)

BE is the ordinary Lorentz transformation with parameters and
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is an additional gauge transformation by which a field A}
again becomes transversal in the new reference frame E#= 4
+3fz;,23 = (1, 0, 0, 0)
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Thus, the gauge of transverse fields AE‘ in the operator quan-—
tization is changed together with the time axis of quantiza-
tion E“ and coincides with the Coulomb one only in the rest
frame.

~111) Just the same transformation properties (4) in classi-
cal electrodynamics are inherent to the nonlocal classical va-
riables
ieAT. = v(ieA, + g, )v"1 = ie(s I ..HL(} YA
J i i i Ik o "k k>

i »
P

) : (8)

T - ie —
v¥, (v enﬂleazajAle

Jd

that can be constructed by an explicit solution of the Gauss
equation
l2 PR .
A, = di 9y Ay - g (9
It is easy to check that the substitution of the solution of
eq. (9) into the Lagrangian

1

L£(x) = —TFfb, s Wiy, (3, +rieA ) — mlw, (10)

leads to the expression
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that depends only on wvariables (8). Therefore solving one
gauge—invariant equation (9) we remove out two fields. The



nonlocal variables are invariant under gauge transformations
of the initial fields A#’W: leA = g(xeA +8 Yeg~l, vE- gy
AT(A8) =ATA), ¥T8-¥T 1ike the finitial Lagranglan (10). The
quantization of variables (8) is completely reproduced by the
Schwinger scheme (2)-(4); and moreover, the very procedure of
this variable construction by an explicit solution of the
Gauss equation under the condition of gauge invariance justi-
fies the application of the Belifante tensor (in terms of
which the dependence on the 1ongitudinal field J; A; disappears)
and the prOJectlle operator in the commutation relatlon (3)
(which arises in the explicit solution of the constraint equa-
tion (9)).

Thus, we have discussed three versions of quantization of
fields in the "Coulomb gauge": i), ii), iii). In the first one
the gauge is fixed and we are faced with the Lorents noncova-
riance. In the second version we fix the gauge but it automa-
tically changes with the time-axis transformation. In such a
way the Poincare algebra of the observables can be proved on
an operator level. In the third version we do not need the
constraint fixing the gauge, in such a "minimal" scheme (It
is sufficient to solve eq. (9) explicitly and to use its part
that transforms in a nonhomogeneous way[(az)"la A,] for const-
ruction of nonlocal variables demanding their gauge invarian~
ce).

The only difference between the second and third versiogs
is in the explicit construction of the physical variables.
This construction leads to some additional physical consequen-
ces which we are going to discuss in the present paper.

‘3. COMPUTATION OF THE FERMION GREEN FUNCTIONS

Let us consider at first the computation of the one-partic-—
le fermion Green function
i2n) %% (0 -1)Gp) = fatxatye P W o TiYT )8 Ty 05, (11)
(where YT, ¥T are operators in the Heisenberg representation)
in the relativistic version of Coulomb gauge, In the one-loop
approximation G(p) has the form
G(P) = Go(P) + Gy(@) T (PG, () + O(eh), (G, () = (p -~ m) 1),
where Z(p) 1is the electron self-energy of order e? which
contains contributions from the transverse fields and the Cou-
lomb interaction”/®/
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It is known (8) that 2 (p) can be represented as a sum of the
invariant X (p) and noninvariant AX{(p) under Lorentz trans-
formations terms *

J

Z(p) = EL(p) + AZ(P); (8] T p(p) =0; 87 AZ(p) # 0)
. ,
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The response of AZ(p) to the Lorentz transformation can be
got by changing the integration variables in eq.(13)
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Lorentz transformation for the Green function contains also
the gauge transformation (4):

(20)*i8%(p - 018, G(p) = iefatxdty eP* ¥ { 0| T [wT (x)¥T(y)x

< A9) - AGOY (¥ (1)]] 0> 1.

Using the explicit form for A (6) we get the following expres-
sion

(dq)
q%q®

SAZ(P) =~ ¢ f [By Gy (P - m) + (p -m)G oByxl,

= By!"invariance' we shall understand the equality
. -1
G,(p") = %Vpco(p)sph




where By is given by the formula (14). As

B
2f2_=0'
q q

We get that the total response of 2(p) to the Lorentz trans-
formation is equal to zero

Go(P~a)(P-m)=1+G (p-9q)d . [ (dg)

8 0, 2(P) = (a;j + 8, )13(p) =0. €15)

It is important to emphasize that the relativistic invariance
(15) is broken for the canonical energy-momentum tensors since
it differs from the Belinfante one by a total derivative,
which is essential for &, .

Thus, the transition to another Lorentz frame will be accom—
panied by additional diagrams induced by a transformation of
type (4) that is equivalent to the choice of the gauge (7).

If we choose the time axis ({) parallel to the particle mo-
mentum (so that the fermion Coulomb field moves together with
it) we get for the self-energy an expression without infrared
divergences on the mass shell

(dq) 2 (dq) 1
$(p) = [ - ~ S5 Y% 7= ¥, = —Im@ED+4) -
% p_Gusm ® ° qd+m 4m
1 3 2_p? p(p —m) p (1o
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—D(P—m)+?(P*m) [ =——(Log — )1+ o7 ) 20 It

here D =-§-— yg+ Logd4n, ¢ is a dimensional regularization para-
meter. Due to eq.(15) the renormalized Green function (11) has
the correct analytical properties
R =AMm(p-mQGR@)==1

p - mgp

and this result is relativistic—-invariant.

4. THE PATH INTEGRAL

There are two approaches to formulating the path integral
in gauge theories: heuristic and constructive ones. An example
of the heuristic approach is the Faddeev - Popov ansatz, and
an example of the constructive one is the proof of the Faddeev -

Popov ansatz by the operator canonical quantization%}L43/. The
path infegral construction is usually accomplished with the
help of such modifications 6f operator quantization (for ins-
tance: a local commutation relation’/!!/ or & canonical enérgy-
momentum tensor 4/ ) which break relativistic covariance. No
wonder, the path integral thus obtained leads to relativisti-
cally noncovariant Green functions for fermions °’

Then a question arises whether it is possible to reproduce
the relativistic version of the Coulomb-gauge operator quanti-
zation by the path-integral method. Sincé the "flowing" cha-
racter of the gauge condition has to be reflected, our "const-
ructive" path integral should explicitly depend on the time-
axis of quantization E“

Zgonst[ﬁ,r)] = _(d\pdwdﬂf\u5[5-?.}&E Tdet [ (9 : )% «
€17)
x exp tiS + i(d4x(‘Pq + W)L,

where Bg = Bu - g‘(B-E) » (B, ==Au,@l)(1t should be noted that
even the path integral (175 does not reflect all specific pro-
perties of a more fundamental operator method of quantization).

It is clear that all scattering amplitudes on the mass
shell got by the path integral (17) do not depend on the time-
like vector ¢, except for the one-particle Green function re-
sidues (1). For their computation according to the operator
quantization we have to choose the vector f, parallel to the
momentum characterizing Green function.

By changing the variables one can pass to the path integral
in any gauge f(A) =0

¢

ZCOnst.[Y”;’] = [d‘_l}d\]!d4A“ S[LT(A)]exptiS + i[d4x x
‘ (18)
« (Bvig « gyt
where
{ ¢
Ve (A)) = explie aE.A | (19)

(082
is the transition matrix that restores the correct analytic
properties of the Green one-particle functions in any gauge.
On the level of "constructive" path integral (18) these one-
particle functions do not depend on the gauge choice and have
correct properties, while the Faddeev -~ Popov "heuristic" path
integral, without V; , leads to their dependence on the gauge

7



choice. Therefore, one can consider expression (18) as a more
exact definition of the Faddeev - Popov path integral that
follows from the relativistic covariant and gauge—-invariant
operator quantization.

One can show that the gauge-invariant construction of phy-
sical variables in the non—Abelian theory/!2/ up to some de-
tails leads to the Schwinger operator quantization’?/ with the
"running" gauge. This quantization corresponds to the path in-
tegral depending manifestly on the time-axis (, (unlike the
naive Coulomb-gauge path integralj4JIJ3/) and to the one-par-
ticle Green functions with correct analytic properties (16),
in any case, in the one~loop approximation.

On the level of a "constructive" integral af the type (18)
the choice of gauge is only the one of integration variables.
Therefore the gauge ambiguities that appear on a more funda-
mental level of the opeartor quantization should be presented
also for a path integral for any gauge. It is important to
emphasize that the inverse differential operator in the non-
local commutation relation of the Schwinger quantization coin-
cides with the operator in the Faddeev — Popov determinant.
Thus the problem of determinant zeroes on the level of the
operator quantization reduces to the problem of unique const-
ructing of the nonlocal commutation relation of the type (3).

Let us consider the solution of this problem by the simp-~
lest example of Abelian theory. We have to separate all fields
into two orthogonal classes with zero and nonzero eigenvalues
of the operator 3? and to quantize the fields from each class
separately, then to construct the corresponding path integral
that should not depend on the choice of variables or gauge.

In the conventional commutation relation of the type of (3)
the class of infrared fields

2 2 2 .
ai Aj(x,t) =0, Aj(x,t) = bj(t) (20)
drops out and only the fields

2 2 : 3 >
diAj(x,t) #0, (fd xA;(x,t) =70) 21n

are included. At first we consider the Abelian theory in the
function class (20) in a finite volume of space

3 1.2 2 2 LoD
L-ga x[—zFﬂu (b) - %bi +biii(x,t)] =
1,2 2.2 38 . .2
=§V[bi=p_ bi‘]+ b)rd XJi(X,t).
8

Sy | iy S

We introduce here the mass i for the infrared regularization
of the propagator of the quantum field

. . Six
JL . ij
. = —— = Vb., ifp.,b.] = &.., b., b, = s
P ipy, by = 8y, (ilby, b1 = ——)
22
S iqg,t iﬂ“'( )
D, (t) = 1<T(b, (1), b (@) >, - ) [dq, — =18
ij 2 i ' o 2%V o qf—y2+ie ij 2#\]

We see that there is such a limit of the infinite volume and
Zero mass

Visoo, p>0, 24V = M2 £ 0, : (23)
where the propagator (22) is not zero

Lim Dy (t) = id;; M® £ 0 - (24)
Vooe
,u»o

and we have the ‘nontrivial evolution operator

iTH g 2 ib.J.
Lim <el > = exp{M_(aa—b) le P

T,V-N:o
poo

|b1=0 ' (25)

Tt is clear that in limit (23) the propagator of the total

. - AT
field A, = AT ¢+ b,

O,
S (26)
\Y%

: g 2 : . 1 3,> -

has the form of a sum of the usual transverse propagator and
expression (24)

Dyj (x) = © <T(A;(X)A;@)> = Dy (x) + 15 M?,

or in the momentum representation

g —— + izt M t@ey (27)

T
D.. =(8,, -q, —
ij (Q) (81_] ql 62 J q2 + iE
L]

So, we have got one version of the "confinement" propagator/14/
that reflects the collective excitation of infrared fieids
(20) in the whole space fields occupy. In view of this fact
the attempts to get the confinement propagator by analytical

9



calculations in the framework of the convention perturbation
theory given only in the function class (21) look very doubt-
ful.

For the generation functional of the Green functions for
the Abelian theory with the commutation relations like (26)
in limit (23) we get the following expression

- 2 2
Z[nyr]]=exp{12w—'(aibl) {Z(birl’;’-)ibzo’ (28)

where Z(bly,7) 1is the usual functional integral
Z(o|n, ) = [d¥AVa*A 5(; A e iS[A,,A;+ by +ifd*x[ Wy + ¥}, (29)

We can generalize the relativization procedure got above to
expression (28)

by - b, = b, -0, (b.0). - (30)

Thus the solution of the problem of zeroes of the determinant
in the path integral on a more fundamental level of the opera-
tor canonical quantization leads to the stochastization of the_
usual path integral (29) over the zero eigenfunctions. In QED
we omit the infrared fields (20) (M = 0). In QCD the inclusion
of infrared gluon fields may be justified by the nonlinearity
of theory and strong coupling of fields on the infrared limit
accompanied by long-wave correlations and collective excita-
tions.

5. PHYSICAL APPLICATION: CONFINEMENT IN THE SCHWINGER
MODEL

The "minimal" quantization (see Section 2.iii) that does
not use the gauge fixing as an initial assumption differs from
the relativistic version of the Coulomb gauge only by the ex-
plicit construction of the nonlocal physical variables (8).
Let us consider here some physical consequences of this const-
ruction by an example of the Schwinger model (see eq.(10)
where ¢ = 0,1, m= Q).

As is known, this model gave rise to the popular Wilson cri-
terion - confinement based on a linearly rising quark potenti-
al’/18/ | Formally the choice of the variables (8) leads really
to the Coulomb gauge with the linearly rising potential and to
the following exact results for the current correlators and
for the one-particle fermion Green function

10

1
T<T(]u(x)v ]V(O))>O = €H.a£l/6 aaaB AM(X‘—Y)r (31)

LT B3, = epl-in[Ay - y) - A x-9)1IG, (x-¥). (32)

where AM,,zAO . G0 are the Green functions of free scalar

—_—

: 2
fields with masses M ==y/51——, M = 0 and of a free fermion
m

massless field, respectivély.
Calculation of the fermion Green function in the model
leads to the following asymptotics in the momentum space
T P - _DYM
G -~ = G S A AL
(p) 05 (p) 5 57

Pooe p->o (P + 1e

So, the probability of finding a particle with quark quan-
tum numbers is not equal to zero

Limp G(p) # O, ’ (33)
p-»o
that means, the Wilson crfiterion is not a criterion for confi-
nement. Note, that this result is gauge-invariant in the sen—
se, we discussed in Section 4.

The "minimal' construétive way of quantization (8) leads
to another mechanism of confinement in the Schwinger model re-
lated to topological properties of the gauge field.

The explicit solution of the Gauss equation defines the
nonlocal variables (8) up to the factor g(X) which corres-
ponds to a solution of the homogeneous Gauss equation

v =exp {i(A(x) + 31531 A = g(x) exp{ig—lgai Al (34)

g(x) = explir(x)}, (35)

where G?A(x) = 0. The 8&-factor has to be a smooth function
without singularities as we solve eq.(35) in an empty space
R(1).

For a finite space [X;| < R there are nontrivial solutions
of -eq.(35) that represent a map of the space R(1) onto the
group U(1) -manifold with an integer degree of mapping n

11



g('n)(x) = exp“%rrni, n=0,+1,+2,...
Lim g™(x) = 1. (36)
!xl—mR

So, our dynamical variables ¥T are topologically degenera-
ted. This degeneration concerns all observables in the theory
through the Green—function generating functional where the
fermion sourcés acquire additional topological phases

T ( _ -
- faxiv g™ g gg™ Ty,

?his degeneration has to be removed by taking an average over
its parameter (n). So, instead of the Green function (32) we
get the following result .

N
Lim Lim 1 b3

Rooco Nooe n=-N

G(x -y)

Ve MmaT (x —y) -

GT(x-y), x=y G

0 , X#y

.

ip(x-y)
hence G(p) = fd2x d2y e G(x —y)=0. At the same time, for
the two-current correlator we obtain the old result (31); it
. . 2
retains its pole at p? = j%“u

Such a picture is caused by destructive interference of the
infinite number of phase factors g™ (x) . We would like to
emphasize the noncommutativity of the limit procedures in (37)
determined as in quantum statistics/!8/ ; an opposite ordering
leads to the old result (32).

The existence of nontrivial solutions (36) is enshured by

the following relation which takes place in the theory under
consideration

ﬂl(U(l)) =21

ﬂl.being the first homology group. This relation may be gene-
ralized for theories with a gauge group G in D-dimensional
space-time as ‘

7y (G) = Z. (38)

12
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So, the same topological confinement mechanism should take
place if such a criterion is satisfied. .

For example, in QEDg4,, this relation is not valid (mg(U()=
= 0), which is in agreement with the observability of the
electron. In QCDgsi criterion (38) is satisfied (wy(SU@3)) = Z ),
which means vanishing of the amplitudes for coloured-particle

creation’10/
scc Shc 0 0
Seh S 0 Shn

where S, is an S-matrix element of a transition between a co-
lour state (c) and a hadron one (h).

However, the usual free propagators of quarks and gluons
are used in calculations of the colourless amplitudes. So, in
correspondence with the unitarity principle

ss o (1 4 iT)(1 - iT*) =1

or

T <i|T|h><h|[T*[f> = 2Im<i|T|f >, (i,f €h)
h

the inclusive processes provide a possibility of measuring’
the coloured particle quantum numbers. In this way, the "des—
tructive interference — confinement" lays a foundation of the
quark-hadron duality principle/ﬂ/:

SUMMARY

In the present paper a gauge-invariant and relativistic—co-
variant operator construction of the physical variables and
path integral in gauge theories has been proposed. We have
shown that such a "minimal" quantization method solves the
old QED problems as the correct definition of the electron
wave function/5J5/or the residual of its Green function and
leads to a new picture of the colour confinement. The latter
is based on the destructive interference of the phase factors
that appear in topologically degenerated theories (7p_,(G) =
=2). In this picture the coloured-particle creation amplitu-
des are equal to zero due to this quantum phase interference.
At the same time the free quark and gluon propagators are used

13



in

calculation of the colourless observable amplitudes. So,

the unitary principle provides a possibility for measurement

of

the coloured-particle quantum numbers in the inclusive pro-

cesses. Note, that just these assumptions are implicitly used

in

the parton model and now-a-days, in QCD phenomenology at

high and low energies.
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MuHMMAaibHOE KBaHTOBaHHE H KOHQAHHMEHT

B paborTe paccMaTpuBaeTcsa ''MHHHMalibHas' BepcHs KaHOHH4eCt
KOI'o KBAaHTOBaHHs, OCHOBAaHHas Ha ABHOM pemleHHH ypaBHeHHs
CBASH M Ha NpHHIHNE KaJIMOPOBOYHOII WHBAapPHAHTHOCTH. Ha mpumet
pe BHuMCHeHHss ogHO4YacTH4YHON dyHkuuu [puHa 6weUIO MoOKasaHo,
4to TpeboBaHHe KaNUGpPOBOYHOH UHBAPDHAHTHOCTH BeOeT K pellaTHt
BHCTCKOH KOBapHAHTHOCTH TEeOPHH H K JoonpepeiieHH® GyHKUHO-
HanbHOro MHterpaina ®aggeeBa - llomoBa, KOTOpHI He 3aBHUCHT
OoT BhGOpa Kanmu6poBKH. ''MHHMManbHoe' KBaHTOBaHHE HCIONb3OBat
HO AJi3 HUCClleJOoBaHUsa Npo6jieMsl KanuGpOBOYHOH HeOQHO3HAYHOCTH
H OJf pacCMOTPeHHs HOBOI'O TOINOJOTHYEeCKOrO MeXaHH3Ma KOH-
datiHmMenTa.

PaboTra BunosiHeHa B JlaBopaTopHH TeopeTHYeCKoH d¢dH3IHMKH
onAaun.

Mpenpumt O6benuHeHHOro HHCTHTYTA siAepHBIX UccnenoBanuit. Jly6ra 1987
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"Minimal" Quantization and Confinement
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We consider a "minimal" version of the Hamiltonian quan
tization based on the explicit solution of the Gauss equa-
tion and on the gauge-invariance principle. By the example
of the one-particle Green function we show that the requi-
rement for gauge invariance leads to relativistic covari-
ance of the theory and to a more proper definition of the
Faddeev — Popov integral that does not depend on the gaugq -
choice. The "minimal" quantization is applied to consider
the gauge-ambiguity problem and a new topological mecha-
nism of confinement.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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